

FINAL YEAR PROJECT REPORT

ANOMALY DETECTION IN CELLULAR NETWORKS USING MACHINE LEARNING

In fulfillment of the requirement For degree of BS (COMPUTER SCIENCES)

By

SYED TALAL HASSAN MUHAMMAD MURTAZA KHAN BILAL DOST MALIK

51800 BSCS 51831 BSCS 51812 BSCS

SUPERVISED

BY

SIR BILAL MUHAMMAD IQBAL BAHRIA UNIVERSITY (KARACHI CAMPUS) SPRING-2021

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

Signature :	Jalat
Name :	SYED TALAL HASSAN
Reg No. :	51800
Signature :	HA Murtazakl.
Name :	MUHAMMAD MURTAZA KHAN
Reg No. :	51831
Signature :	Hild.
Name :	BILAL DOST MALIK
Reg No. :	51812

Date : 17 06 2021

The copyright of this report belongs to Bahria University according to the Intellectual Property Policy of Bahria University BUORIC-P15 amended on April 2019. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this report.

© 2019 Bahria University. All right reserved.

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express my gratitude to my research supervisor, Sir Bilal Muhammad Iqbal for his/her invaluable advice, guidance and his/her enormous patience throughout the development of the research.

In addition, We would also like to express my gratitude to our loving parents and friends who had helped and given me encouragement.

ANOMALY DETECTION IN CELLULAR NETWORKS

ABSTRACT

The identification of "abnormal" events in datasets has long been a focus of machine learning research. Anomaly detection or outlier detection are terms used to describe this technique. Grubbs provided the most likely first definition in 1969. Outliers are observations that appear to diverge significantly from the rest of the sample. Although this criteria remains relevant today, the reason for spotting outliers has changed dramatically. Because pattern recognition algorithms were quite sensitive to outliers in the data back then, the major reason for the detection was to eliminate the outliers from the training data thereafter. Data cleaning is another name for this operation. The interest in anomaly detection has waned significantly with the emergence of more robust classifiers. However, in the year 2000, academics began to become increasingly interested in the anomalies themselves, as they are frequently linked to certain noteworthy occurrences or questionable data sets. Anomaly detection methods are currently employed in a wide range of applications and are frequently utilised to supplement classic rule-based detection systems.

Traditionally, the design of a cellular network has focused on energy and resource optimization to ensure that the network operates smoothly even during peak hours. This means, however, that radio resources are frequently overprovisioned in cells. In order to react to changing user demands in the most effective way possible in terms of energy savings and frequency resource use, next-generation cellular networks require dynamic management and configuration. Machine Learning approaches are now being studied in mobile networks to assist with resource management. In this scenario, you will look at how machine learning can be used to detect abnormal network usage patterns that might lead to a change in the base station's setup.

TABLE OF CONTENTS

Π	INTRODUCTION			
	1.1	Background	12	
	1.2	Problem Statements	12	
	1.3	Aims and Objectives	13	
	1.4	Scope of Project	13	
2	LI	TERATURE REVIEW	15	
	2.1	Anomaly Detection Methods	. 15	
	2.2	Rule Based Method	15	
	2.3	Model Based Approach	. 16	
	2.4	Static Single Processing	. 17	
	2.5	Clustering Based Methods	. 17	
	2.6	Information Theory Methods	. 18	
	2.7	Root Cause Analysis	. 19	
3	DE	DESIGN AND METHODOLOGY		
	3.1	Design	. 20	
	3.2	Data Gathering	20	
	3.3	Data Pre Processing	20	
	3.4	Problem with high dimensional data	21	
	3.5	The Curse of Dimensionality	21	
	3.6	Visualising the high dimensional data	21	
3.6. 3.6. 3.7		5.1 Principal Component Analysis	22	
		5.2 t-SNE	23	
		Feature Filtering	23	
	3.8	Approaches for Anomaly Detection	23	
	3.8	Clustering based method for anomaly detection	23	

3.8.2 Decision Trees
3.9 Training the classifier
3.10 Feature Extraction
3.11 Feature Importance
3.12 Evaluation Matrix
3.12.1 Confusion Matrix
3.13 Methodology27
3.14 Information Gathering
3.15 Designing
3.16 Development
3.17 Testing
3.18 GUI
3.18.1 PCA
3.18.2 t-SNE
4 IMPLEMENTATION
4.1 Dataset
4.2 Components in project
4.3 Data Pre-Processing
4.4 Data Visualization
4.5 Training a Model
4.6 Feature Reduction
4.7 Setting Threshold
4.8 Feature Importance
4.9 Evolution Of Error For Different Threshold
4.10 Confusion Matrix
4.11 Best Performance Feature Reduction
4.11 Dost 1 offormation

	5.1	Theory	39
	5.2	Neural Network	39
	5.3	Evaluation Metrics	40
	5.3	1 Confusion Metrics	40
	5.4	Result	40
6	CO	NCLUSION AND RECOMMENDATIONS	42
	6.1	Conclusion	42
	6.2	Research Analysis	42
	6.3	Process	43
	6.3.	1 Data Processing	43
R	REFERENCES		