

FINAL YEAR PROJECT REPORT

YOGGUIDE: DETECTING, RECOGNIZING AND TRACKING YOGA POSES USING VISION TECHNIQUES

In fulfillment of the requirement For degree of BS (COMPUTER SCIENCES)

By

AZKA KHAN MUZNA REHMAN 48435 BSCS 48467 BSCS

SUPERVISED

BY

MS. SAMEENA JAVAID BAHRIA UNIVERSITY (KARACHI CAMPUS) FALL-2020

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

Signature	:	APREME
Name	:	Muzna Rehman
Reg No.	:	48467
Signature	:	12 xee
Name	:	Azka Khan
Reg No.	:	48435
Date	:	Sunday, 13 December

APPROVAL FOR SUBMISSION

We certify that this project report entitled "YOGGUIDE: DETECTING, RECOGNIZING AND TRACKING YOGA POSES USING VISION TECHNIQUES" was prepared by Azka Khan(48435) and Muzna Rehman(48467) has met the required standard for submission in partial fulfilment of the requirements for the award of Bachelor of Science (BSCS) at Bahria University.

Approved by,

Signature :

		0	
		1.	
	\mathcal{N}	11	
-1-1	<u> XX</u>		
	/		

Supervisor: Ms. Sameena Javaid

Date

Sunday, 13 December

ACKNOWLEDGEMENTS

v

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express our gratitude to our research supervisor, Ms. Sameena Javaid for her invaluable advice, guidance and her enormous patience throughout the development of the research.

In addition, we would also like to express our gratitude to our loving parent and friends who had helped and given us encouragement.

YOGGUIDE: DETECTING, RECOGNIZING AND TRACKING YOGA POSES USING VISION TECHNIQUES

ABSTRACT

In computer vision, human pose estimation is a deep-rooted issue that in the past has revealed many challenges. In many fields such as security, video games, physical therapy, etc. analyzing human activities is beneficial. One of the challenges in human pose estimation is Yoga. These days, with stress and pressure full lives, people generally prefer doing yoga at homes as yoga is said to be art of relaxation, but they feel an instructor's need to evaluate their exercise form as doing wrong posture can cause health problems. Since these resources are not always available, human pose recognition can be used to create a system of self-training exercise that allows individuals to better learn and practice exercises by their own.

This project objective is to develop an application which is an attempt to ensure correct yoga posture for three main poses which includes plank, warrior and pose reverse warrior in an intuitive way. This project uses deep learning technique for pose estimation in which different stages are involved including pre-processing stage, data augmentation, creating CNN model and training the model. Yoga-guide's ultimate aim is to use pose recognition as a tool to allow a person to practice different poses of yoga and classify the pose.

In this project, using convolution neural network (CNN) model using Keras with TensorFlow as backend a deep learning model is proposed. The key benefit of using this technique is that it offers extraction and identification of features that are appropriate for pose recognition. We are able to achieve accuracy of 97%.

TABLE OF CONTENTS

DECLARATION	ii	
APPROVAL FOR SUBMISSION	iii	
ACKNOWLEDGEMENTS	v	
ABSTRACT	vi	
TABLE OF CONTENTS	vii	
LIST OF FIGURES	x	
LIST OF APPENDICES	xii	

CHAPTER

1

L	INTR	ODUCTIO	ON	1
	1.1	Backgro	ound	1
	1.2	Problem	Statements	2
	1.3	Aims an	nd Objectives	3
	1.4	Scope of	f Project	3
		1.4.1	Plank	3
		1.4.2	Warrior	4
		1.4.3	Reverse Warrior	5
2	LITERATURE REVIEW			
	2.1	Introduction		
	2.2	Study of	dy on Human Pose Estimation	
		2.2.1	Modelling based on Neural Network	14
		2.2.2	Using Kinect sensor by Adaboost Algorithm	15
		2.2.3	Joint Angular Displacement Maps	15

		2.2.4	Wearable sensor-based and optical-camera	based
		method	s 16	
	2.3	Study o	of SDLC Methodology	18
		2.3.1	Iterative Model	18
		2.3.2	Justification on the Selected Methodology	19
3	DESI	GN AND	METHODOLOGY	21
	3.1	Overvi	ew of the proposed method	21
		3.1.1	CNN Sequential Model	21
		3.1.2	Software Development Life Cycle (SDLC)	35
	3.2	Model	Analysis	36
4	IMPLEMENTATION			37
	4.1	Langua	age and Framework	38
	4.2	Modul	es	38
		4.2.1	Activity:	38
		4.2.2	Fragments:	38
5	CON	CLUSIO	N AND RECOMMENDATIONS	45
	5.1	Limitations/ Issues		45
	5.2	Future	Directions	45
	5.3	Summ	ary	46
REFE	RENCE	S		47
ADDE	NDICES	2		49
	1 IDICIN			

viii