

FINAL YEAR PROJECT REPORT

BUMBLEE BEE PE ROBOT

In fulfillment of the requirement
For degree of
BS (COMPUTER SCIENCES)

By

RUMAFAH OMER	48520 BSCS
SYED TAIMOUR ALI	48551 BSCS
MUHAMMAD WAQAS KHAN NIAZI	48455 BSCS

SUPERVISED

BY

DR. GHULAM MUHAMMAD SHAIKH

BAHRIA UNIVERSITY (KARACHI CAMPUS) FALL-2020

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

Signature:

Name

Rumafah Omer

Reg No.: 48520

Signature: Stah

Name : Syed Taimour Ali

Reg No.: 48551/

Signature:

Name : Muhammad Waqas Khan Niazi

Reg No.: 48455

Date: 22/December/2020

APPROVAL FOR SUBMISSION

I/We certify that this project report entitled "BUMBLE BEE PE ROBOT" was prepared by Rumafah Omer, Syed Taimour Ali and Muhammad Waqas Khan Naizi has met the required standard for submission in partial fulfilment of the requirements for the award of Bachelor of Computer Science (Honours) at Bahria University.

Approved by	
Signature: _	the land of land.
Supervisor :	Dr. Ghulam Muhammad Shaikh
Date : _	

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express my gratitude to my research supervisor, Dr Ghulam Muhammad Sheikh for his invaluable advice, guidance and his/her enormous patience throughout the development of the research.

In addition, we would also like to express my gratitude to our loving parent and friends who had helped and given me encouragement.

BUMBLEE BEE PE ROBOT

ABSTRACT

Robotics is an industry or a field that is emerging all over the globe. One of the most fascinating areas in robotics is humanoid robots. These robots are well sophisticated robots that perform tasks similar to humans and interact with them. The crucial and most important phase in the development of a humanoid robot is to design it in an effective way.

This report elaborates and addresses the design and development of a humanoid robot. In this project a humanoid project is to be developed which will encourage unfit people especially children to engage in some physical exercises and to reduce the harmful effects of mobile phones on them. This report details the process in which the robot was designed, assembled and programmed, and tested. It is like a dream for robot developers to develop a robot which not only looks like a human but also acts like one. Further developments can be carried in a humanoid robot by attaching various motors and sensors to it which will increase the degree of automaticity. Also, artificial intelligence can be integrated to it so that it can make decisions on its own just like humans.

TABLE OF CONTENTS

DECLARATION	ii
APPROVAL FOR SUBMISSION	iii
ACKNOWLEDGEMENTS	vi
ABSTRACT	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xiv
LIST OF CHARTS	xv
LIST OF FIGURES	xvi

CHAPTER

1	INTR	ODUCTION	1
	1.1	Background	1
	1.2	Motivation	2
	1.3	Problem Statement	5
	1.4	Aims and Objectives	5
	1.5	Scope of the Project	6
	1.6	Outcomes	6
		1.6.1 Outputs	6
		1.6.2 Final Deliverable	7
	1.7	Organization of Project	7
		1.7.1 Chapter 1: Introduction	7
		1.7.2 Chapter 2: Literature Review	8

		1.7.3 Chapter 3: Methodology	ð
		1.7.4 Chapter 4: Design	9
		1.7.5 Chapter 5: Implementation	9
		1.7.6 Chapter 6: Testing & Evaluation	10
		1.7.7 Chapter 7: Results	10
		1.7.8 Chapter 8: Conclusion & Recommendation	s 10
2.	LITI	ERATURE REVIEW	11
	2.1	Introduction	11
	2.2	Need oh Humanoid Robot	11
	2.3	Related & Existing Robots/works	13
		2.3.1 Taizo Humanoid Robot	14
		2.3.2 Xuan Humanoid Robot	16
		2.3.3 Kengoro Humanoid Robot	17
	2.4	Need of Bumble Bee Robot	20
3	MET	THODOLOGY	22
	3.1	Introduction	22
	3.2	Approach to Research	23
		3.2.1 Data Gathering Techniques	23
		3.3.2 Outcomes of Research	24
		3.3.2.1 Limitations	24
		3.3.2.2 Tools/languages/technologies used	25
		3.3.2.3 Considerations	25
	3.3	Approach for Project	26
		3.3.1 Project Development Framework	28
		3.3.2 Project Methodology Framework Diagram	29

		3.3.3 Project Schedule	30
		3.3.3.1 Key Milestones	30
		3.3.3.2 Project Gantt Chart	31
		3.3.4 Project User Case Diagr	am
			33
		3.3.5 Project Flow Chart	34
4	DESI	IGN	35
	4.1	Introduction	35
	4.2	Hardware Design	35
		4.2.1 Body Structure	36
		4.2.2 Components	38
		4.2.2.1 Raspberry pi	3B
			38
		4.2.2.1.1 Feature Table	40
		4.2.2.1.2 Application/Uses	41
		4.2.2.2 Arduino Mega 2560	41
		4.2.2.2.1 Feature Table	43
		4.2.2.2.2 Application/Uses	44
		4.2.2.2.3 Advantages.	44
		4.2.2.3 Jumper Wire	45
		4.2.2.3.1 Types	46
		4.2.2.4 Body Kit	47
		4.2.2.4.1 Parts Used	48
		4.2.2.4.2 Degree of Freedom (DOF)	49
		4.2.2.4.3 Features	50
		4.2.2.5 Lipo 2s 5200Mah, 7.4v battery	50

	4.2.2.5.1 Features	52
	4.2.2.5.2 Advantages	53
	4.2.2.6 Mic SF-922B	53
	4.2.2.6.1 Specifications	55
	4.2.2.6.2 Features	56
	4.2.2.7 Mini portable stereo Speaker 3.5	56
	4.2.2.7.1 Specifications	58
	4.2.2.8 MG996R Servo motor	59
	4.2.2.8.1 Wire Configuration	60
	4.2.2.8.2 Application	61
	4.2.2.8.3 Advantages	61
4.3	Software Design	62
	4.3.1 Types of Software Design	62
	4.3.1.1 Interface Design	63
	4.3.1.2 Architectural Design	63
	4.3.1.3 Detailed Design	64
	4.3.2 Software Designing of Bumble Bee	65
	4.3.3 Tools/languages/technologies Used	66
	4.3.4 Programming Logics	66
IMDI	EMENTATION	69
5.1	Introduction	69
		70
5.2	Hardware Implementation	
	5.2.1 Body Assembling	70 70
	5.2.1.1 Body Parts to be used	98
	5.2.1.2 Parts Assembling	71

5

		5.2.2	Arduino	and Raspberry pi	Serial
			Communi	cation Architecture	81
		5.2.3	Circuit Diagr	ram	83
	5.3	Softwa	are Impleme	ntation	84
6	TES	TING A	ND EVALU	JATION	85
	6.1	Introd	uction		85
	6.2	Tesing	and evaluat	tion	85
		6.2.1 H	Hardware Te	esting	86
		6	5.2.1.1 Servo	Motor Testing	86
			6.2.1	1.1 Technique Used	88
			6.2.1	1.2 Correction	88
		6	5.2.1.2 Circu	it Testing	89
			6.2.1	2.1 Technique Used	89
			6.2.1	.2.2 Correction	90
		6	5.2.1.3 Batte	ry Testing	91
			6.2.1	3.1 Technique Used	91
			6.2.1	3.2 Calculation	92
		6.2.2 \$	Software Tes	sting	93
		(5.2.2.1 Unit	Testing	94
			6.2.2	.1.1 Technique Used	94
			6.2.2	.1.2 Correction	95
		6	5.2.2.2 Syste	m Testing	96
			6.2.2	.2.1 Technique Used	96
		6	5.2.2.3 Acce	ptance Testing	97
			6.2.2	.3.1 Technique Used	97
		6	5.2.2.4 Over	all Testing	98
			6.2.2	.4.1 Performance Testing	98

		6.2.2.4.1.1 Technique Used	98
		6.2.2.4.1.1 Corrections	99
7	RED	ULTS	100
	7.1	Introduction	100
	7.2	Pictures of Bumble Bee P.E Robot	100
8	CON	ICLUSION AND RECOMMENDATIONS	104
	8.1	Introduction	104
	8.2	Significance of the project	104
	8.3	Limitations of the project	106
	8.4	Benefits of the project	107
	8.4	Future Scope and Direction	108
9	REF	ERENCES	109