

FINAL YEAR PROJECT REPORT

BRAIN-COMPUTER INTERFACE (BCI)-CONTROLLED UNMANNED AERIAL VEHICLE (UAV)

In fulfillment of the requirement For degree of BS (COMPUTER SCIENCES)

By

SYED YOUSUF NABEEL SHAH MOAZ QAMAR MUHAMMAD WAQAR AFZAL 48378 BSCS 48882 BSCS 48910 BSCS

SUPERVISED

BY

MR. BILAL MUHAMMAD IQBAL

BAHRIA UNIVERSITY (KARACHI CAMPUS) FALL-2020

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

		1
Signature	:	Mose
Name	:	Moaz Qamar
Reg No.	:	<u>48882</u>
Signature	:	- 4/1
Name	:	Muhammad Waqar Afzal
Reg No.	:	48910 1
Signature	:	2. Jouri
Name	:	Syed Yousuf Nabeel Shah
Reg No.	:	<u>48378</u>
Date	:	<u>14-Demeber-2020</u>

APPROVAL FOR SUBMISSION

I certify that this project report entitled "BRAIN-COMPUTER INTERFACE (BCI)-CONTROLLED UNMANNED AERIAL VEHICLE (UAV)" was prepared by MOAZ QAMAR, MUHAMMAD WAQAR AFZAL, SYED YOUSUF NABEEL SHAH has met the required standard for submission in partial fulfilment of the requirements for the award of Bachelor of Computer Science (Honours) at Bahria University.

Approved by,

Ud. los Signature : Supervisor: Mr Bilal Muhammad Iqba

Date : <u>14-December-2020</u>

BRAIN-COMPUTER INTERFACE (BCI)-CONTROLLED UNMANNED AERIAL VEHICLE (UAV)

ABSTRACT

Brain-computer interfacing (BCI) is a technology that is almost four decades old and it was developed solely for the purpose of developing and enhancing the impact of Neuroprosthetics. As the non-invasive EEG headsets are made and used for commercialization there are lot of application has seen such as home automation, wheelchair control, controlling vehicle steering etc.

Controlling the drone with brain is one the latest application developed with the help of BCI. These applications, however, do not require a very high-speed response and give satisfactory results when standard classification methods like Support Vector Machine (SVM) and Multi-Layer Perceptron (MLPC). Issues are raised when there is a high-speed control requirement for fixed-wing unmanned aerial operation. Vehicles where such methods are kept unstable due to the low rate of classification. Such an application requires the system to classify data at high speeds in order to retain the controllability of the vehicle. This paper proposes a novel method of classification which uses a combination of Common Spatial Paradigm and Linear Discriminant Analysis that provides an improved classification accuracy in real time. A non-linear SVM based classification technique has also been discussed. Further, this paper discusses the implementation of the proposed method on a fixed-wing and VTOL unmanned aerial vehicles.

TABLE OF CONTENTS

DECLARATION	ii
APPROVAL FOR SUBMISSION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF SYMBOLS / ABBREVIATIONS	ix
LIST OF APPENDICES	x

CHAPTER

1

2

	INTRO	DUCTION	1
	1.1	Background	1
	1.2	Problem Statements	2
		1.2.1 Thinking to Play Games	2
		1.2.2 Thinking to See	2
		1.2.3 Thinking to Capture	2
	1.3	Goals and Motivation	3
	1.4	Aims and Objectives	1
	1.5	Scope of Project	4
	LITE	RATURE REVIEW	5
	2.1	Background of BCI	5
	2.2	Defination of BCI, EEG and Brain Signals	7
		2.2.1 BCI	7
		2.2.2 EEG	7
-		2.2.3 Types of Brain Signals	8

	2.3	Brain Waves and Electroencephalography (EEG)	8
	2.4	Experimentals Subjects	9
		2.4.1 Acquistions Protocols	9
		2.4.2 Subject Training	10
	2.5	Data Acquistion	10
3	DESI	GN AND METHODOLOGY	11
	3.1	Methdology	11
		3.1.1 Video Streaming	11
		3.1.2 EEG Headset	12
		3.1.3 Signal Acquistions	12
		3.1.4 Signal Preprocessing	12
		3.1.4.1 Preprocessing	12
		3.1.4.2 Feature Extraction	12
		3.1.4.3 Classification	13
		3.1.5 Drone	13
	3.2	14 Channel Dataset	13
	3.3	ICA Algorithm`	14
4	IMPI	LMENTATION	15
	4.1	AR Drone Class	15
	4.2	Command Class	17
	4.3	Config Class	17
	4.4	Nav Data	37
	4.5	Tcp Class	44
	46	Udp Class	47
	4.7	Version Class	50
	4.8	Main Class	57
5	RESU	ULTS AND DISCUSSIONS	59
	5.1	Xavier Panel	59
	5.2	AR Drone	59
		5.2.1 Featuers of Program	59

vii

5.3	Main Screen	60
	5.3.1 Menu	61
	5.3.2 Toolbar	61
5.4	Settings	62
5.5	Keyboard Configuration	63
5.6	Rules	64

CONCLUSION AND RECOMMENDATIONS		70
6.	Conclusion	70

REFERENCES

6

72

viii