

FINAL YEAR PROJECT REPORT

IMAGE BLUR ESTIMATION AND REMOVAL USING DEEP LEARNING

In fulfillment of the requirement For degree of BS (Computer Science)

By

USMAN SAEED MUHAMMAD DANIYAL USMAN IJAZ

48441 BSCS 48468 BSCS 48450 BSCS

SUPERVISED

BY

MS. SAMEENA JAVAID

BAHRIA UNIVERSITY (KARACHI CAMPUS) FALL-2020

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

- Samero

Signature	:	- ATTAUNT
Name	:	Muhammad Daniyal
Reg No.	:	<u>48468</u>
Signature	:	- siter
Name	:	Usman Saeed
Reg No.	:	48441
Signature	:	· Wij
Name	:	<u>Usman Ijaz</u>
Reg No	:	48450
Date	:	22 nd December 2020

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express my gratitude to my research supervisor, Dr Sameena Javaid her invaluable advice, guidance and her enormous patience throughout the development of the research.

In addition, we would also like to express my gratitude to our loving parent and friends who had helped and given me encouragement.

IMAGE BLUR ESTIMATION AND REMOVAL USING DEEP LEARNING

ABSTRACT

The objective of this project is to develop a system that estimates the type of image blur and removes it using deep learning. This report explores different techniques used for image blur estimation and removal. Different stages involving image processing that include pre-processing stage, segmentation, and feature extraction will be discussed in this report. The end product of this project will be coded in Python.

This project uses Convolutional Neural Network (CNN) and Artificial Neural Network (ANN) to develop the software. The advantage of CNN is that it allows prominent features extraction from a data that is 2D and 3D. Then the ANN is used to estimate the type of blur so that it could be removed. After the initial stages of pre-processing, training and testing is done and 90% of data is used for training and remaining 10% for testing. There are three layers used in CNN among which two are hidden layers. The total of 192 neurons are used in this system.

TABLE OF CONTENTS

DECLARATION	ii
APPROVAL FOR SUBMISSION	iii
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
TABLE OF CONTENTS	viii
LIST OF FIGURES	ix
LIST OF APPENDICES	x

CHAPTERS

1	INTI	RODUCTION	1
	1.1	Background	1-2
	1.2	Problem Statements	2
	1.3	Aims and Objectives	5
	1.4	Scope of Project	5
2	LITE	RATURE REVIEW	6-8
3	DESI	GN AND METHODOLOGY	9
	3.1	CNN Classifier	9-10
	3.2	Project Architecture	11
	3.3	Techniques used to maximize accuracy	12
		3.3.1 Data Augmentation	12-13
	3.4	Accuracy Model	13
-	3.5	3D Model	14

		•	
4	IMP	LMENTATION	15
	4.1	SRCNN Network	15
		4.1.1 Patch Extraction	15
		4.1.2 Nonlinear Mapping	16
		4.1.3 Reconstruction	
	4.2	Loss Function	17
	4		
5	DESI	ULTS	
5	5.1		18
	5.1	SS of Running Project	18-20
6	CON	CLUSION	21
	•		
DEFE	ENCES		
KEFEI	EINCES		22
ADDEN	NDICES	5 A	
ALLEI	DICES		23