

FINAL YEAR PROJECT REPORT TUBERCULOSIS DIAGNOSIS USING DEEP LEARNING

In fulfillment of the requirement For degree of BS (COMPUTER SCIENCES)

By

SHAHRUKH SHAKEEL	48523 BSCS
MUHAMMAD YASEEN	48539 BSCS
MIAN MUHAMMAD JAWAD	48488 BSCS

SUPERVISED

BY

DR. RAHEEL SIDDIQI
BAHRIA UNIVERSITY (KARACHI CAMPUS)

FALL-2020

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

Signature

Name : Shahrukh Shakeel

Reg No. : 48523

Signature:

Name : Muhammad Yaseen

Reg No. : 48539

Signature: darvel

Name : Mian Muhammad Jawad

Reg No. : 48488

Date : 10/12/2020

ii | Page

APPROVAL FOR SUBMISSION

We certify that this project report entitled "TUBERCULOSIS DIAGNOSIS USING DEEP LEARNING" was prepared by SHAHRUKH SHAKEEL, MUHAMMAD YASEEN & MIAN MUHAMMAD JAWAD has met the required standard for submission in partial fulfilment of the requirements for the award of Bachelor of Computer Science at Bahria University.

Approved by,

Signature :

Supervisor: Dr Raheel Siddiqui

Date : 10/12/2020

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express my gratitude to my research supervisor, Dr Raheel for his invaluable advice, guidance, and his enormous patience throughout the development of the research.

In addition, we would also like to express my gratitude to our loving parent and friends who had helped and given me encouragement.

TUBERCULOSIS DIAGNOSIS USING DEEP LEARNING

ABSTRACT

The project aims to develop a CNN model for classifying X-ray images. In this report, we introduced a deep learning-based approach to automatically detect the manifestations of tuberculosis using chest X-rays. Pakistan is the country with the highest exposure to TB cases.

Chest X-rays are used to diagnose active tuberculosis in symptomatic patients. This method of screening is ideally performed in primary health centres where clinicians are available and sometimes by portable X-ray machine. The main challenge of this screening method is timely reporting and follow-up of the patient at the beginning of treatment. We have created a convolutional neural network to model automated tuberculosis diagnosis, an advanced deep learning algorithm.

The suggested method will automatically detect whether the given image is infected with TB or not. This method helps doctors to make accurate predictions of the disease in a short period of time, thus helping to improve the clinical outcome.

Keywords - Deep learning - Chest X-ray - Symptomatic patients

TABLE OF CONTENTS

DECLARA?	TION		ii
APPROVA	LFOR	SUBMISSION	iii
ACKNOWI	EDG	EMENTS	v
ABSTRACT	Γ		vi
TABLE OF	CONT	TENTS	vii
LIST OF TA	ABLES	S	vii
LIST OF FI	GURE	ES	viii
LIST OF A	PPENI	DICES	X
CHAPTER			
1	INT	RODUCTION	1-2
	1.1	Background	1
	1.2	Problem Statements	1
	1.3	Aims and Objectives	2
	1.4	Scope of Project	2
2	LITI	ERATURE REVIEW	3-5
	2.1	Digital Imaging and Communication in Medici	ne (DICOM) 3
	2.2	Pulmonary Tuberculosis	3
	2.3	Tuberculosis Detection	4
	2.4	Convolutional Neural Networks	5
3	DES	IGN AND METHODOLOGY	6-7
	3.1	Shenzhen Dataset	6
	3.2	Montgomery Dataset	6
	3.3	Libraries	7

			Vii
	3.4	Why We Choose CNN	•
4	IMP	LMENTATION	8-10
	4.1	Initial consideration	8
		4.1.1 Implementation	8-9
	4.2	Project flow diagram	Ģ
		4.2.1 Explanation of project flow diagram	g
		4.2.2 Structure of Convolutional Neural Network	10
5	RES	ULTS AND DISCUSSIONS	11
	5.1	Training Accuracy Table	11
	5.2	Testing Accuracy Table	11
	5.3	Discussion	11-12
6	CON	CLUSION AND RECOMMENDATIONS	13
	6.1	Conclusion	13
			13
REFE	ERENCE	s	14-15
		References	14-15
APPE	ENDICES		16-17
	I. Tr	raining & Validation Accuracy	16
	2. Tr	raining & Validation Loss	16
	3. Tr	aining & Validation with Accuracy & Loss	17