

FINAL YEAR PROJECT REPORT

ROUTE SELECTION TO MULTIPLE DESTINATIONS USING OPTIMAL PATH ALGORITHM

In fulfillment of the requirement
For degree of
BS (COMPUTER SCIENCES)

By

TAHA MURTAZA GAIN HIJA MOHSIN UNZILA IRSHAD 48418 BSCS 48370 BSCS 48423 BSCS

SUPERVISED

BY

DR. HUMERA FAROOQ

BAHRIA UNIVERSITY (KARACHI CAMPUS) FALL-2020

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

Signature :

Name : Taha Murtaza Gain

Reg No. : 48418

Signature :

Name : Unzila Irshad

Reg No. : 48423

Signature :

Name: Hija Mohsin

Reg No. : 48370

APPROVAL FOR SUBMISSION

I/We certify that this project report entitled "ROUTE SELECTION TO MULTIPLE DESTINATIONS USING OPTIMAL PATH ALGORITHM" was prepared by Taha Murtaza Gain, Unzila Irshad, Hija Mohsin has met the required standard for submission in partial fulfilment of the requirements for the award of Bachelor of Computer Science (Honours) at Bahria University.

Approved by,

Signature:

Supervisor: Dr. Humera Farooq

Date : 3rd January 2021

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express our gratitude to our research supervisor, Dr Humera Farooq for her invaluable advice, guidance and his/her enormous patience throughout the development of the research.

In addition, we would also like to express my gratitude to our loving parent and friends who had helped and given me encouragement.

ROUTE SELECTION TO MULTIPLE DESTINATIONS USING OPTIMAL PATH ALGORITHM

ABSTRACT

The considerable growths of social apps give rise to the new challenges and opportunities. One of these applications are based on the route selection. The purpose of these application is to provide routes to the users. The information provided in the system help the users to select different routes based on the requirement of the user. Hence, an optimal path selection may also help to generate alternate routes from source to destination. An autonomous route selection will be done with the help of optimization technique. Optimal path selection algorithm approaches for finding shortest route. In existing solutions, the customer required to generate separate queries for each destination. In addition, the customers required to search best routes paths manually from the applications. The designed platform will help the customers to select the optimal routes from single destination. The customer will find all the optimal paths by a single query. The searching algorithm will help to find the best solutions based on the provided time and location by single query. The designed application will help the existing solutions to enhance the productivity and customer satisfaction.

TABLE OF CONTENTS

DECLA	RATION		
APPRO	i		
	ii		
ACKNO ABSTR	v		
		vi	
	OF CON	viii	
LIST OF	K		
LIST OF	x i		
CILADE	S.D.		
CHAPTI	ER		
1		RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	2
	1.3	Aims and Objectives	2
	1.4	Scope of Project	3
2	LITE	ERATURE REVIEW	4
	2.1	Introduction	4
	2.2	Local Search Algorithm	4
	2.3	Swarm Intelligence	6
	2.4	Genetic Algorithm	9
	2.5	Hill Climbing	10
	2.6	Simulated Annealing	11
3	DEST	GN AND METHODOLOGY	14
J	DEGI	OIT IN THE WALL OF OFFICE A	- 4

				1.			
	3.1	3.1 Framework and Methodology					
		3.1.1	Framework	14			
		3.1.2	Proposed Methodology	15			
	3.2	Interfa		17			
				.,			
4	IMP	LMENTA	ATION	19			
	4.1	Overv	19				
	4.2	Fronte	19				
		4.2.1	Fetch data from maps for routes	19			
		4.2.2		20			
		4.2.3		21			
	4.3	Backer	Backend Coding				
		4.3.1	Environment File	21			
		4.3.2	Terminal Class	22			
		4.3.3	User Requests	23			
5	RESI	25					
	5.1	Develo	25				
	5.2	Analysi	is and Interpretations	25			
6	CON	CONCLUSION AND RECOMMENDATIONS					
	6.1	Conclus	29				
	6.2	Future '	Work	29			
REFE	30						
APPE	33						