

FINAL YEAR PROJECT REPORT

IMAGE CLASSIFICATION OF CLOTHING ARTICLES

In fulfillment of the requirement For degree of BS (COMPUTER SCIENCES)

By

HUZAIFA SHAHID AHSAN GHAFFAR NOMAN AHMED

48451 BSCS 48411 BSCS 48453 BSCS

SUPERVISED

BY

DR. RAHEEL SIDDIQUI BAHRIA UNIVERSITY (KARACHI CAMPUS) FALL-2020

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

Signature	:	Huzeitz
Name	:	HUZAIFA SHAHID
Signature	:	Ahsan
Name	:	AHSAN GHAFFAR
Signature	:	Nonen

. . .

Name : NOMAN AHMED

APPROVAL FOR SUBMISSION

We certify that this project report entitled "IMAGE CLASSIFICATION OF CLOTHING ARTICLES" was prepared by AHSAN GHAFFAR, HUZAIFA SHAHID, NOMAN AHMED has met the required standard for submission in partial fulfilment of the requirements for the award of Bachelor of Computer Science at Bahria University.

Approved by,

Signature :

Supervisor: ____Dr Raheel Siddiqui_____

Date : <u>12-14-2020</u>

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project mid evaluation. We would like to express my gratitude to my research supervisor, Dr. Raheel Siddiqi for his invaluable advice, guidance and his/her enormous patience throughout the development of the research.

In addition, we would also like to express my gratitude to our loving parent and friends who had helped and given me encouragement.

IMAGE CLASSIFICATION OF CLOTHING ARTICLES

ABSTRACT

A picture is worth a thousand words. Albeit a cliché, for the fashion industry, an image of a clothing article allows one to perceive its category (e.g., dress, coat, shirt, sneakers, etc). Image classification is a classical Computer Vision problem.

By what method may we approach composing a calculation that can characterize pictures of apparel articles into particular classifications like shirts, jeans, dress, and shoes? PC Vision scientists have concocted an information driven way to deal with address this. Rather than attempting to determine what all of the picture classifications of premium look like straightforwardly in code, they give the PC numerous instances of each picture class and afterward create learning calculations that take a gander at these models and find out about the visual appearance of each class. In other words, they first accumulate a training dataset of labeled images, then feed it to the computer in order for it to get familiar with the data.

Despite the fact that the current customary picture grouping strategies have been generally applied in functional issues, there are a few issues in the application cycle, for example, inadmissible impacts, low order accuracy results, and feeble versatile capacity. The deep learning model has an amazing learning capacity, which coordinates the component extraction and order measure into an entire to finish the picture grouping test, which can adequately improve the picture characterization precision. To apply this image classification algorithm, we use Convolutional Neural Networks (CNNs) which is the most popular neural network model being used for image classification problem. The large thought behind CNNs is that a nearby comprehension of a picture is adequate. The reasonable advantage is that having less boundaries enormously improves the time it takes to learn just as decreases the measure of information needed to prepare the model. Rather than a completely associated network of loads from every pixel, a CNN has barely enough loads to take a gander at a little fix of the picture. It's like reading a book by using a magnifying glass. The magnificence of the CNN is that the quantity of boundaries is autonomous of the size of the first picture. You can run a similar CNN on any picture of any goal, and the quantity of boundaries won't change in the convolution layer.

TABLE OF CONTENTS

7

DECLARATION	2
APPROVAL FOR SUBMISSION	3
ACKNOWLEDGEMENTS	5
ABSTRACT	6
TABLE OF CONTENTS	7
LIST OF FIGURES	10
LIST OF APPENDICES	12

CHAPTER

1	INTRODUCTION	13
	1.1 Background	13
	1.2 Problem Statement	13
	1.3 Aims and Objectives	14
	1.4 Scope of Project	14
	1.5 Benefits Of Project	14
2	LITERATURE REVIEW	15
	2.1 Introduction	15
	2.2 Previous Work	15
	2.2.1 Categorize Clothing Articles	15
	2.3 Summary	<u>18</u>
3	DESIGN AND METHODOLOGY	19
	3.1 Introduction	19
	3.2 Useful Libraries	19
	3.3 Data Set	19
	3.4 Explore Dataset	20
	3.4.1 Image Dimensions	21
	3.4.2 Image Shape	21

			8	
	3.4.3	Total categories/Labels	22	
	3.4.4	Total training and testing records	22	
	3.4.5	Graphical representation of Data	22	
3.5	Progra	mming Language	23	
IMP	LEMEN	TATION	24	
4.1	Load I	24		
4.2	Data P	24		
4.3	Define	e Model	25	
	4.3.1	Keras Tuner	25	
	4.3.2	Select Best Model	27	
	4.3.3	Train Model	28	
	4.3.4	Save Model	28	
	4.3.5	Evaluate model	28	
	4.3.6	Test Model	30	
	4.3.7	Implementation of data augmentation	31	
		4.3.7.1 Test Model Again	33	
	4.3.8	FLASK Framework for GUI	33	
RES	ULTS A	ND CONCLUSIONS	35	
5.1	Discussion on model accuracy			
	5.1.1	Accuracy with First Attempt	35	
	5.1.2	Accuracy with some experiments	35	
	5.1.3	Accuracy after using keras tuner Library	36	
	5.1.4	Accuracy after using data augmentation	36	
5.2	Discu	Discussion On GUI for our model		
	5.2.1	Android Application	37	
	5.2.2	FLASK framework for python	37	
CON	CLUSI	ON AND RECOMMENDATION	38	
6.1	Concl	usion	38	
6.2	Recor	nmendation	38	
REF	ERENC	CES	39	
			J.	

4.

5.

6.

7.