
 
i 

 

 

“ADAPTIVE NEURAL NETWORK METHOD FOR AN 

EXOSKELETON DEVICE CONTROL” 

 

 

 

 

 

 

By 

SHOAIB ZIA 

 

 

 

Supervised By 

ENGR. MARYAM IQBAL 

 

 

 

DEPARTMENT OF ELECTRICAL ENGINEERING, 

 BAHRIA UNIVERSITY ISLAMABAD, PAKISTAN 

March 2023 



 
ii 

 

 

“ADAPTIVE NEURAL NETWORK METHOD FOR AN 

EXOSKELETON DEVICE CONTROL” 

 

 

 

 

 

 

 

 

 

By 

SHOAIB ZIA 

 

A thesis presented to the 

 Department of Electrical Engineering, BAHRIA University Islamabad, Pakistan 

 For the fulfillment of degree requirements of  

 Master of Science 

 In 

 Electrical Engineering 

 2023 

 Islamabad, Pakistan 



 
iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
iv 

 

 

 

 

 

 

 

 

Student Name: SHOAIB ZIA       Registration Number: 74821 

Program of Study: Masters in Electrical Engineering 

Thesis Title: “ADAPTIVE NEURAL NETWORK METHOD FOR AN EXOSKELETON 

DEVICE CONTROL” 

         It is to certify that the above student’s thesis has been completed to my satisfaction and, to 

my belief, its standard is appropriate for submission for evaluation. I have also conducted 

plagiarism test of this thesis using HEC prescribed software and found similarity index at 17% 

that is within the permissible set by the HEC. for MS/MPhil/PhD.  

     I have also found the thesis in a format recognized by the BU for MS/MPhil/PhD thesis. 

Supervisor Name:  ENGR. MARYAM IQBAL 

Supervisor Signature 

March 30, 2023 

 

 

 

 

 

 

 

 

 

MS-13 

Thesis Completion Certificate 



 
v 

 

 

Author’s Declaration 

 

I, SHOAIB ZIA declare that my MS thesis titled “ADAPTIVE NEURAL NETWORK 

METHOD FOR AN EXOSKELETON DEVICE CONTROL” is totally my own work and has 

never been submitted for a degree at BAHRIA UNIVERSITY ISLAMABAD or anywhere else 

in the globe. I declare if my information is erroneous, the University may revoke my MS degree 

even after graduation. 

 

 SHOAIB ZIA 

 March 30, 2023 

 

 

 

 

 

 

 

 

 

 

 

 



 
vi 

 

 

 

 

 

 

 

 

 

I, SHOAIB ZIA solemnly declare that the research work presented in this thesis titled  

"Adaptive Neural Network Method for an Exoskeleton Device Control" 

           is solely my research work with no significant contribution from any other person. Small 

contribution/help whenever taken has been duly acknowledged and that complete thesis has been 

written by me. 

           I understand the zero tolerance policy of Bahria University and the Higher Education 

Commission of Pakistan towards plagiarism. Therefore, I as an author of the above titled thesis 

declare that no portion of my thesis has been plagiarized and any material used is properly 

referred / cited.  

I undertake that if I am found guilty of any formal plagiarism in the above titled thesis even after 

award of MS degree, the university reserves the right to withdraw / revoke my MS degree and 

HEC and the university has the right to publish my name on HEC / University Website on which 

name of students who submitted plagiarized thesis are placed. 

 

 

SHOAIB ZIA 

01-244211-010 

March 30, 2023 

 

MS-14B 

Plagiarism Undertaking 



 
vii 

 

 

Acknowledgments 

            I consulted with numerous persons, analysts, academics, and professionals to prepare my 

idea. They improved my understanding and clarity of thought. Special appreciation to my advisor, 

Engr. Maryam Iqbal, for her persistent support, insightful counsel, and encouragement throughout 

the completion of this Master of Science thesis. She gave me tremendous encouragement, 

ingenuity, and attention while finishing this research. Her guidance and clear work ethic helped 

me finish this project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
viii 

 

 

Abstract 

Patients with brachial plexus injuries or those involving the spinal cord often experience a loss of hand 

function. They need a tool that can assist them in resuming normal life by regaining some use of their hands. 

Exoskeleton devices are becoming more popular as a treatment for this condition since they can actuate the 

fingers of patients, restoring their ability to grip items and carry out other more mundane tasks. In this 

dissertation, we propose the model of a revolutionary exoskeleton device controlled by an adaptive neural 

network-based controller. The network of neurons was motivated by the ease with which human hands grip 

a broad range of items. The gripping forces exerted by a human fingertip on an item in many distinct 

positions were measured. The neural network is used to estimate the unknown items, and adaptive control 

is utilized to realize the adaptive features in the unknown environment, in order to realize the stability and 

high precision control of the control system while facing human interferences. Adaptive control is used to 

carry out both of these tasks. The user initiates a grip, at which point the neural network uses information 

about the object's orientation, mass, and dimensions to calculate an estimate of the force needed in each of 

the five digits to hold it.  
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Chapter 1 

Introduction 

1.1 Background 

The human hand is very versatile, allowing for a wide range of grip types such as cylindrical, 

palmar, hook, lateral, tip, spherical, etc. The United States is home to an estimated 296,000 

individuals with spinal cord injuries and 795,000 people with strokes. There is a correlation 

between these individuals' impaired hand function and their inability to carry out routine everyday 

tasks. So, there is a great interest in exoskeleton devices for such cases to rehabilitate the patients. 

Our project is designed to help those who have suffered a brachial plexus injury and now have 

impaired hand function as a result of the damage. Even if the patient's elbow and shoulder are in 

working order, it will be quite challenging to improve their hand's functioning because human 

hands are bit complex. Therefore, the purpose of the neural network-based device is to assist users 

in executing fundamental grasping operations in a semi-autonomous manner by activating just the 

fingers and may be the wrist. To easily grasp items, the gadget requires a well-thought-out design 

and a strong control algorithm. To the authors' knowledge, very little study has been conducted on 

controls for exoskeleton systems.  
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1.2 Problem Statement and Proposed Solution 

Stroke is one of the basic cause of disability. It causes functional impairments and disturbance in 

sensory function. In exoskeleton device rehabilitation, control motion, constrain violation, 

unknown disturbances and trajectory control are basics. Also because of the nonlinear nature, 

precision control is difficult to establish.  

The proposed adaptive neural network control approach takes uncertainties into account. The 

adaptive neural network is used to estimate the unknown items, and adaptive control is used to 

actualize the adaptive characteristics in the unknown environment, in order to achieve stability and 

high-precision control of the control system while dealing with human interferences. 

 

 

 

 

 

 

 

Figure 1-1 Block diagram of proposed model 
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1.3 Novelty 

Despite the fact that the research covers a parameter that has grabbed the interest of most of the 

researchers and electrical engineers for a long time, there are several limitations in the work done 

by various authors at different periods. The current research will focus on Adaptive Neural 

Networks for human exoskeleton device that can help in rehabilitation. Human Hand will used as 

a part for Neural Network method implementation. In this research, several factors are used 

simultaneously such as motion tracking, state feedback control, and disturbance observer. So these 

factors all together can make it more precise and more accurate to work and all factors can be 

carried out. 

1.4 Adaptive Neural Network 

The neural network model is based on the single-neuron model. Issues with nonlinear controls and 

unsure model controls can be successfully solved by its robust learning capabilities and continuous 

nonlinear function approximation capabilities. To track a device, for instance, Waing et al. [36] 

presented controller for neural network with a highly nonlinear topology. It has good control effect, 

according to the simulation results.  

The dynamical features of motorized muscular actuators were resolved and the jitter of the 

adaptable controller under the motion state was reduced by Lee et al. [39], who developed a sliding 

control technique that utilized neural networks and conducted tracking experiments on the 

actuator's position and speed. This means that Exoskeletons can be controlled with precision by 

the neural network. Adaptive neural networks imitate organic neurons. It processes data and 

demonstrates intelligence by predicting outcomes, spotting trends, and picking up knowledge from 

the past. It achieves a number of advantages through the creation of interconnected neurons, 

including a capability for non-linear data processing, robustness in the face of failure, and 

autonomous maintenance. Adaptive neural networks can use a variety of adaptive strategies to 

generalize to a specific task. 
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Chapter 2 

Literature Review 

2.1.1 Literature Review 

 

A generalized work of neural network-based lower limb control of a robot using disturbance 

observer by ‘Zhengyuan Hao’ expresses the importance of the intelligent control of exoskeleton 

device and the importance of the rehabilitation process in functional impairments treatment 

(Zhengyian Hao, Kang Liu). The focus of this paper is on robotic exoskeleton rehabilitation motion 

tracking of the lower limb [4]. 

Similar work has been done by Liang Ding, in which the focus had been made on a full-state 

constrained wheeled mobile robotic system. Here adaptive neural method has been implemented 

for tracking control. Neural network and Lyapunov function have been used for estimating 

unknown functions and the driving effectiveness of the wheeled mobile robotic system is 

optimized [1]. 

Another work has done on neural network method for flexible pneumatic muscles. The author 

focuses on position control in order to do successful robotic workout therapy. Here again 

nonlinearity and hysteresis of flexible muscles are solved through neural network method. To 

achieve stability, an  improved network adaptive control method is used [3]. 

In another paper work has been done on the exoskeleton system of a function with a motion control 

algorithm. In highly parallel and strolling modes, the gadget describes user and exo movements, 

taking into consideration electric drives and supporting surface reactions. Algorithms for 
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managing the motion of the exoskeleton is presented, taking into consideration the center of mass's 

provided law of motion as well as information concerning throughout the pertinent periods of 

movement, there is a force connection between each particular leg and the exoskeleton. The 

mechanism of gravitational control has used in the research for rehabilitation reasons [2]. 

 

A neural network is a computer model for neural networks based on the single neuron model. It 

offers an efficient solution to resolve FPM's numerical control difficulties and issues with 

imprecise model control. For instance, Waing et al. [14] presented work for controlling neural 

networks with a highly nonlinear topology to perform robot tracking. The outcomes of the 

simulation indicate that it has a superior control effect. Robinson et al. [15] suggested an adaptive 

neural network control method that integrated neural networks and adaptive control. By 

developing a neural network-based method for sliding mode control and conducting tests on the 

position and speed of the actuator, Lee et al. [16] were able in order to combat the nonlinear 

properties of pneumatic muscle actuators. As a result, the neural network effectively controls 

robots powered by FPMs. 

The RML device is the newest exoskeleton invention; it is made up of rigid mechanical linkages 

connected to series elastic actuators (SEAs)[13,9]. Since the linkages are flexible, the device can 

bend in accordance with the user's natural bending profile, and the SEAs enable precise force 

sensing at the fingertips. Since all of the SEAs are fixed to the palm, the device prevents the normal 

abduction and adduction of human fingers. A rotating series elastic actuator, which would have 

allowed for measurement of thumb torque, was not included in this iteration of the device. 

This paper shows that index and thumb of exoskeleton device are attached to rigid linkages that 

are powered by motors [14]. The design relies solely on the index and thumb mechanics to 

accomplish abduction and adduction, as well as flexion and extension. This device employs a 

crossed parallelogram mechanism to allow for simultaneous rotation of the distal and middle 

phalanxes and the middle and proximal phalanxes. The concept incorporates three motors into a 

single finger mechanism and tips the scales at just 0.51kg. 1.1 kg is the total weight of the 

exoskeleton. This exoskeleton has a relatively low force application capability (only 0-5 N), 
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making it difficult to grab big objects. The large size and weight of this exoskeleton device can be 

uncomfortable for the user. 

The fingers of this hybrid device [15] may all bend or lengthen due to internal wires and motors, 

but the little and ring fingers are connected to a single motor. Additionally, it contains soft jamming 

structures that utilize jamming layers that are joined to the tops of all five digits and are powered 

by a vacuum pump that is connected to tubes. The soft jamming structures become stiff when a 

vacuum is provided, which facilitates grabbing. Additionally pneumatically actuated are the 

fingers' adduction and abduction. Additionally, the device's bottom palm has an additional soft 

structure linked to it to aid with grabbing. 

An orthotic hand assistive exoskeleton (OHAE) was created by Baker et al. (2011) to lessen the 

force of muscles required to grasp objects [20]. The three fingers are its actuated digits, and they 

are all propelled by cables that are fastened to a glove. The portable, easily manufacturable device 

has four main sub-systems and is portable. When an FSR sensor is situated at the appropriate 

fingertip, the actuator motors retract or extend, which saves muscle energy. In order to assess the 

viability of supervisory systems based on (EMG) input, Peerdeman et al. (2010) developed a 

prototype for a bionic hand prosthetic modeled on the biomechanical design of the human hand. 

The grip selection and execution are governed by the myoelectric signals that are gathered and 

recognized before being sent into the model to direct the actions that realistically replicate the 

prosthetic hand [26]. The model is put to the test using two different gripping methods on a simple 

item, demonstrating hand reshaping and flexibility in the fingers and thumb. The results show the 

exact finger movement. But this study does not involve a dynamic examination of the finger 

extension; it is left for further investigation. A new design for a thumb exoskeleton device for 

rehabilitation was put forth by Iqbal et al. in 2010. 

The gadget was optimized using normal hand workspace and capabilities. The process involves 

analyzing typical everyday activities. The optimization findings demonstrate the thumb 

exoskeleton's functional and ergonomic requirements. 

The SCRIPT Passive Orthosis, a novel hand and wrist exoskeleton design, was unveiled in 2013 

as a component of the Monitored Rehabilitation Care Utilizing Personal Tele-robotics (SCRIPT) 

project, It was conducted by an international team of academics from the Netherlands, the USA, 



 
7 

 

the UK, Germany and Italy. The SPO is an arm and wrist orthosis that interacts with incentive 

games and provides customizable extension support for post-stroke treatment. It is made up of an 

already-assembled mobile arm support with a palm plate and fingers caps, a wrist-torque transfer 

mechanism, a torque-producing mechanism, and a variety of sensors, like an IMU, a flex monitor, 

and a comparator (Amirabdollahian et al., 2014; Ates et al., 2013, 2015). Therapists have tested 

the model in numerous therapeutic settings and post-stroke patients have used it extensively at 

home. The developed exoskeleton's biggest drawback is the lack of a controller that can manage 

the movements to automatically assist stroke sufferers with their orthoses [24]. 
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Chapter 3 

Neural Network Controller Design and Control System 

3.1 Simulink Model  

The figure 3.1 below shows the Simulink model of the exoskeleton device. Different fingers are 

used with grip position. 

 

 

Figure 3.1 Simulation model of exoskeleton device (Fingers) 
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3.2 Simulation Model Of Exoskeleton Device Joints 

The figure 3.2 below shows the Simulink model of the project for joints. Different fingers joints 

are used to trace trajecteries to show whether the desired path is followed or not. 

 

  

 

3.3 Methods For Adapting Adaptive Neural Networks 

Three alternative methods are used to give adaptive neural networks flexibility. Utilizing an 

evolutionary approach, one can adapt to a problem's surroundings or change input data. Learning 

from several neural networks allows the non-evolutionary method to adjust to the learning curve. 

Additionally, the hybrid approach combines the application of both evolutionary and non-

evolutionary methods. These methods enable ANNs to generalize to situations, adjust their model, 

and learning rate, and input data adaptation as necessary. 

Figure 3.2: Simulation of exoskeleton (joints) 
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3.3.1 Structural Adaptation 

In order to identify the best network design, adaptive neural networks can automatically update 

their models. Finding the best design entails determining how many layers the neural networks 

will require to function correctly. Three model selection strategies are used to facilitate structural 

adaptation. The first method searches through all of the previously accessible architectures to 

choose the model that is most appropriate. The second approach starts with a big, complicated 

model and progressively reduces it to find the ideal design. The third approach begins with a 

straightforward model and becomes more complex as learning goes on.  

Adaptive neural networks assist in reducing the time needed to process huge datasets with the aid 

of structural adaptability, and as the operation duration decreases, the time of getting output also 

decreases. In applications where real-time output is required, structural adaptability is therefore 

helpful. Robots, for instance, need real-time data processing to move.  

Additionally helpful for animation in games, movies, and other applications requiring outstanding 

animation are adaptive neural networks that employ structural adaptation. Mode-adaptive neural 

networks are one type of adaptive neural network that, for example, may provide real-time 

quadruped motion control. The quadruped in the animation can adapt to its changing environment 

because of the mode-adaptive neural networks, which also enable realistic motion control. 

 

3.3.2 Functional Adaptation 

Functional adaptation involves changing the slope of neural network activation functions to 

minimize output error. The mathematical formulas known as activation functions decide whether 

or not a neuron in a neural network should fire. By determining whether the neuron's input will be 

useful for making predictions, and activation functions. They enable neural networks to learn and 

carry out complex tasks by introducing non-linearity to their output. Artificial neural networks will 

resemble linear regression models without activation functions. A neural network model's error 

rate can be decreased with the use of functional adaptation. Functional adaptation is most helpful 

for classification and recognition tasks since it increases output accuracy. 
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3.3.3 Parameter Adaptation 

During training, parameter adaptation refers to adjusting to shifting weights and biases in the input 

data. In neural networks, weights are attached to each input. Weights demonstrate the effect that 

input will have on the result. The influence of input increases with increasing weight. And bias is 

a constant that is added to the total weights to modify the result in order to best fit the data. A 

neural network's weights can be modified while being trained to solve a particular problem if it is 

parameter adaptable. Additionally, neural networks can learn from new weight inputs with the aid 

of parameter adaptation while maintaining the accuracy of their learning from earlier inputs to a 

minimum. Swarm optimization, genetic algorithms, and back-propagation algorithms are a few 

examples of algorithms that can be used to give adaptive neural networks parameter adaptability. 

Artificial neural networks encounter a number of significant obstacles that adaptive neural 

networks can solve. The capacity to adapt makes neural models scalable since they can change 

their structure and input data at any point during training, which decreases the amount of time 

needed to train neural networks. Additionally, shorter training times and scalability enable 

artificial neural networks to overcome their cost-related problems. Consequently, the development 

of artificial neural networks can be encouraged by the use of adaptive neural networks. Figure 3.3 

shows different strategies used by adaptive neural networks. 
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3.4 Artificial Neural Networks 

Neurons, weights, connections, activation functions, and training are all crucial concepts to keep 

in mind while talking about ANNs. There is a difference between ANN models, which describe 

the structure of the network, and ANN algorithms, which describe the computations that lead to 

the results obtained by the network. 

Figure 3.4 shows a graphical illustration of a basic ANN. A layer is made up of neurons that do 

not communicate with one another. Each layer is denoted by a different hue in Figure 3.4. The red 

layer represents the input, the blue the hidden, and the green the output. Each sphere in Figure 3.4 

is an artificial neuron, and the lines connecting them show how their outputs are fed into the inputs 

of other fake neurons. Figure 3.4's red neurons represent the sample network's input nodes. All 

neurons with red color give data to the blue color neurons in diagram. The importance of each 

input is determined by these connections' weights 

Strategies 
used by 

Adaptive 
Neural 

Networks

Functional 
Adaptation

Parameter 
Adaptation

Structural 
Adaptation

Figure 3.3: Strategies used by Adaptive neural network 
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𝑤𝑗,𝑘
𝑖  = 𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑒𝑢𝑟𝑜𝑛,𝑛𝑒𝑥𝑡 𝑛𝑒𝑢𝑟𝑜𝑛 

The blue neurons that are in hidden layer carry out the input vector, and requires adding the supply 

and bias terms before performing the mathematical operation which is also called the squashing 

function, and sending the outcome to the output layer. This function, like the sigmoid 

function, may summarize all inputs times their weights in a straightforward network and condense 

them to a value between 0 and 1.  

σ(𝑧)= 
1

1+𝑒−𝑧
 

𝑧 = 𝑓(𝑥, 𝑤) = ∑𝑥𝑖𝑤𝑖 + 𝑏𝑖 might be used to express the value of z in Figure 3.4. 

 

Figure 3.4: Layers of Adaptive neural networks 

 

 

The weights of the networks are chosen at random, that’s why networks needs to train, which 

means that the weights need to be changed, in order to create the output that is wanted. This is 
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important to keep in mind when thinking about whether or not the results can be repeated. Neural 

networks are trained using a stochastic optimization technique known as stochastic gradient 

descent. The algorithm finds a weight set that match your data's input to output mapping function 

using randomness. Training networks can be divided into two categories: unsupervised and 

supervised learning. When learning is supervised, a network is trained with a known target result 

in mind. For instance, in order to match the weights used by the network, an illustration network 

that will classify photos of horses must be trained on visuals that have previously been identified 

as such. Unsupervised learning is when the learning process happens on its own.  

With this kind of learning, the input data itself is used to force the network to discover patterns, 

features, and relationships. This may seem like a challenging and drawn-out process. But in a 

deeper network with a lot of complex data and unknown patterns, relations, and features, it might 

be the best alternative. This work focuses on Adaptive neural network, which can categorize and 

forecast data. As a feedforward ANN, the network in Figure 3.4 always pushes data through the 

layers from left to right in the diagram. In contrast to these ANNs, feedback ANNs have a recurrent 

design where a layer's output also connects to that layer's input or the inputs of prior layers.  

𝑓𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 =
1

1 + 𝑒−𝑧
 

Where 

𝑧 = 𝑓(𝑥, 𝑤) = ∑(𝑥𝑖𝑤𝑖 + 𝑏𝑖) + 𝑦𝑖 . 𝑤ℎ𝑖 + 𝑜𝑢𝑡𝑝𝑢𝑡𝑖 . 𝑤𝑜𝑖 
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Figure 3.5:  Layers of Adaptive neurons with feedback networks 

 

The fundamentals of a feedback network are shared by RNNs, although they concentrate issues 

inside the time series and sequential tasks domain. Because they are good at predicting the results 

of subsequent time steps based on the preceding result. Simple RNNs have the drawback of having 

trouble remembering steps that have been repeated numerous times as well as what is important 

and what is not. Different details are significant depending on the context. Because we learn and 

concentrate on the context, humans are exceptionally good at sifting through enormous amounts 

of information to find the crucial elements; a simple RNN cannot do this. Thus, the development 

of Long Short-Term Memory (LSTM) units was required. These units can remember and forget 

values for any length of time, solving the context problem. Figure 3.5 depicts a schematic 

representation of a traditional RNN. 
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3.5 Human Hand Exoskeleton 

The human hand is made up of a thumb and four fingers. Each finger have three joints. The thumb 

contains distinct bone structures and distinct joint names. 

The functions and names of joints of the index, middle, ring, and little fingers are: 

The metacarpal-phalangeal joint (MCP) joins the metacarpal bone to the proximal phalange at the 

base of the finger. 

The middle joint of the finger, the proximal interphalangeal joint (PIP), joins the proximal and 

intermediate phalanges. 

The distal interphalangeal joint (DIP), which joins the intermediate and distal phalanges, is the 

terminal joint of the finger. 

The names of the thumb finger joints are: 

The metacarpal and carpal bones at the base of the wrist are joined by the carpal-metacarpal joint 

(CMC), which is the root joint of the thumb. 

The middle joint of the thumb, the metacarpal-phalangeal joint (MCP), joins the metacarpal to the 

proximal phalange. 

The terminal joint of the thumb, the interphalangeal joint (IP), joins the proximal and distal 

phalanges. 
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Figure 3.6: Human hand palm with different joints 

   

 

 

The carpals and metacarpals of the fingers (index through little) can be taken to be fixed at the 

wrist joint. The little and index fingers can be used to detect a little amount of metacarpal 

abduction, which does exist, but it is often a negligible component of the overall hand movement. 

The three bones that make a finger are the proximal phalange, middle phalange, and distal 

phalange. Just one phalangeal bone found in the thumb is the proximal and distal phalanges 

(proximal, middle, and distal phalanges), and the metacarpal moves quite a bit. 
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3.6 Controller Design Principle 

In daily life, humans routinely and readily execute a broad array of grasps. The goal of the control 

algorithm is to mimic the force distribution produced by a human's fingers while grabbing an item. 

It has been shown that neural networks may learn new tasks by discovering a sophisticated 

nonlinear mapping between input and output data. The input, hidden, and output layers of a neural 

network are composed of interconnected neurons that are weighted. In supervised learning, the 

network is trained by continuously exposing it to a set of training data and receiving feedback in 

the form of the desired output data set. Over and over, the network uses backpropagation to fine-

tune its weights until it achieves the sought-after precision. After collecting enough data from 

typical human gripping items of varied shapes and sizes at varying orientations, the network is 

trained using the same principle 

3.7 Control System 

3.7.1. Adaptive Neural Network (SNNAC) Algorithm 

The algorithm, known as Single neuron network adaptive control (SNNAC) is made first and the 

output can be expressed as 

𝑢 (𝑘) = (𝑘 − 1) + 𝐾 ∑ 𝑤𝑖ʹ(𝑘)𝑥𝑖(𝑘)
3
𝑖=1  

𝑤𝑖ʹ =
𝑤𝑖(𝑘)

∑ ∣ 𝑤𝑖(𝑘) ∣3
𝑖=1

 

 

  

u (k) represents output signal 

The weighted coefficient is represented by  𝑤𝑖(𝑘) 

K represents proportionality coefficient and K > 0. Selecting K value is crucial. The better the 

speed, greater will be the K, yet the system will become unstable due to the large overshoot. 
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𝑥1 (𝑘) = (𝑘)  

𝑥2 (𝑘) = (𝑘) − (𝑘 − 1)  

 𝑥3 (𝑘) = (𝑘) − 2(𝑘 − 1) + (𝑘 − 2)  

System input and control output difference at time k can be represented by the value e(k). 

𝑤1 (𝑘) = 𝑤1 (𝑘 − 1) + η
I
(𝑘)(𝑘) 𝑥1(𝑘) 

𝑤2 (𝑘) = 𝑤2 (𝑘 − 1) + η
P
(𝑘)(𝑘) 𝑥2(𝑘) 

𝑤3 (𝑘) = 𝑤3 (𝑘 − 1) + η
D

(𝑘)(𝑘) 𝑥3(𝑘) 

 

η
I
 = Learning rate of integration 

η
P
 = Learning rate of proportion 

η
D

 = Learning rate of differentiation 

And z(k) = e(k) 

 

 

Combined, the aforementioned equations make up a single neuron adaptive control (SNNAC) 

system. It is replaced into the aforementioned control system under the assumption that 𝜃 d (k) is 

the reference input signal, and u(k) is the control signal to regulate the device bending motion. 𝜃 

(k) is the output signal at time k, and e(k) = 𝜃 d (k) - 𝜃 (k) is angle error. By changing the weighting 

coefficients, this method—which is straightforward in structure and has a high degree of 

robustness—realizes the self-adaptive function. 
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3.7.2 Adaptive Neural Network (INNAC) Algorithm 

Higher standards for system and neural network parameters apply to the Adaptive SNNAC 

algorithm. If the parameters are not appropriately selected, it is easy for the closed-loop control 

system to diverge. An enhanced Adaptive neural network control mechanism is used to increase 

the system's stability. 

The differential equation of the system can be shown as. 

𝜃  = 𝑓(𝜃, 𝜃̇) + 𝑔(𝜃, 𝜃̇)𝑢 

The ideal control design of second-order nonlinear system is 

𝑢 = 
1

g(θ) 
 [−𝑓(𝜃) + 𝜃̈ 𝑑 + 𝐾𝑇𝐸] 

Where, 𝜃̈ 𝑑 indicates second derivative of ideal trace trajectory, 𝐾 = [𝑘𝑝, 𝑘𝑑]
𝑇 , 𝐸 = [e, ė]𝑇  where 

𝑒 is the error of trajectory tracking. 

High order terms can be simplified into first order terms by Taylor’s formula 

𝑓 (𝑢o) =   (𝑢o ) + 𝑓′ (𝑢o)(𝑢 − 𝑢o) 

 Now the differential equation can be shown as 

𝜃̈= 𝑓1 (𝑢)𝜃̇ + 𝑓2 (𝑢)𝜃 + 𝑓3 (𝑢) = (𝑓1 (u0 )) + 𝑓1 ′ (u0 )(𝑢 − u0 )𝜃̇ + (𝑓2 (u0 )) + 𝑓2 ′ (u0 )(𝑢 − u0 )𝜃 

+ (𝑓3 (u0 )) + 𝑓3 ′ (u0 )(𝑢 − u0 ) 

After further simplification, it can be obtained as 

𝜃̈= 𝑓(𝜃, 𝜃̇) + 𝑔(𝜃, 𝜃̇)𝛥𝑢, 

𝛥𝑢 = 𝑢 − 𝑢o 

(𝜃, 𝜃̇) = 𝑓1 (𝑢o)̇ + 𝑓2 (𝑢o )𝜃 + 𝑓3 (𝑢o) 

(𝜃, 𝜃̇) = 𝑓1 ′ (𝑢o)̇ + 𝑓2 ′ (𝑢o )𝜃 + 𝑓3 ′ (𝑢o) 

Radial basic function neural network can be used to approximate function f(𝜃) in order to gain the 

stability of the closed-loop system. The following is the neural network algorithm: 
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ℎ𝑗  = 𝑒𝑥𝑝 (− 
‖x−cj‖2 

2𝑏2𝑗
) , 𝑗 = 1,2, … , 𝑚 

𝑓 = 𝑤𝑇ℎ(𝑥) + 𝜀 

Where 𝑥 = [x1 , x2 , … , xn ] 𝑇 is the network's input, 

While hj is the hidden layer's j neuron's output.  

cj = [cj1, cj2,..., cjn] is central vector value of j hidden layer, and h = [h1, h2, . . . , hn] 𝑇 stands for 

the Gaussian function's output, W for the network's weight, and for its approximation error. 

The Adaptive neural network method was developed by combining neural networks with adaptive 

control, putting system stability and potential unidentified interference into consideration. The 

control output can be produced as follows by substituting the neural network's output with the 

function f(𝜃).  

𝑢 = 
1

g(θ)
 [−𝑓̂(𝜃) + θ  𝑑 + 𝐾𝑇𝐸] 

𝑓̂(𝜃) = 𝑊𝑇ℎ(𝜃) 

 

Among these, W is the estimated value of the ideal weight, and h(𝜃) is the Gaussian function.  

The adaptive law is constructed as follows:                                                                                                                                                                                                                                                                       

𝑊̂ = −𝛾𝐸𝑇𝑃𝐵ℎ(𝜃) 

Where 𝑃 and 𝐵 shows setting matrices and 𝛾 shows adjustable normal number. 
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Chapter 4 

Results  

4.1 Results 

The trajectories of different fingers have been verified through MATLAB. Thumb, index finger, 

middle finger, ring finger and little finger, all trajectories are verified. 

 

4.1.1 Thumb 

Figure 4.2 below shows the trajectory of the Thumb angle and Trajectory its angle error. 

Trajectories are shown with ideal position and the path followed after implementing the 

Adaptive neural network method. The trajectory of the error angle is also shown after 

implementing the desired method. 
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Figure 4.1: Trajectory of Thumb angle and Trajectory of Tumb angle error 

 

 

4.1.2 Index Finger 

Figure 4.2 below shows the trajectory of Index Finger angle and Trajectory of Index Finger  

angle error. Trajectories are shown with ideal position and the path followed after implementing 

the Adaptive neural network method. The trajectory of the error angle is also shown after 

implementing the desired method. 

 

Figure 4.2: Trajectory of Index Finger angle and Trajectory of Index Finger angle   

 

4.1.3 Middle Finger 

Figure 4.3 below shows the trajectory of Middle Finger angle and Trajectory of Middle Finger 

angle error. Trajectories are shown with ideal position and the path followed after implementing 

the Adaptive neural network method. The trajectory of the error angle is also shown after 

implementing the desired method. 
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Figure 4.3: Trajectory of Middle Finger angle and Trajectory of Middle Finger angle error. 

 
 

4.1.4 Ring Finger 

Figure 4.4 below shows the trajectory of the Ring Finger angle and the Trajectory of the Ring 

Finger angle error. Trajectories are shown with ideal position and the path followed after 

implementing the Adaptive neural network method. The trajectory of the error angle is also shown 

after implementing the desired method. 

 

Figure 4.4: Trajectory of Ring Finger angle and Trajectory of Ring Finger angle error 
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4.1.5 Little Finger 

Figure 4.5 below shows the trajectory of the Little Finger angle and Trajectory of the Little Finger 

angle error. Trajectories are shown with ideal position and the path followed after implementing 

the Adaptive neural network method. The trajectory of the error angle is also shown after 

implementing the desired method. 

 

Figure 4.5: Trajectory of the Little Finger angle and Trajectory of the Little Finger angle error. 

 

4.2 Explanation 

The five fingers' angle trajectory and error trajectory are shown in the figures. The optimum angle 

track for each finger is represented by the curve with red color in the angle tracking curve. SNNAC 

and Adaptive neural network method (INNAC's control) findings are shown as blue and green 

curves, respectively which are Adaptive neural networks. The Adaptive Neural Network tracking 

trajectory is more closely related to the ideal trajectory curve and it has a superior controlling 

effect, according to the experimental results of the angle trajectory of each finger. The curve with 

red color and the curve with blue color in the error curve graphic, respectively, show the variation 

in the angle trajectory regulated by SNNAC and Adaptive Neural Network. The results 

demonstrate that the angle control is unstable, the SNNAC control effect is suboptimal, and the 

error fluctuates significantly at the curve amplitude. The error fluctuation is less, the Adaptive 

neural control effect is better and the controlling effect is more reliable 
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4.3 Trajectory of Angle 

Figure 4.6 below shows the trajectory of the angle. Trajectory shows the ideal position and the 

path followed by the device after implementing Adaptive neural networks. The disturbances are 

shown which are lagging behind the ideal path. 

 

 

 

 

 

 

 

Figure 4.6: Trajectory of angle with disturbances 
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Chapter 5 

Conclusion and Future Work 

The conclusion of this thesis is that the Adaptive Neural Network Method of Artificial Intelligence 

can be used to control exoskeleton devices in an easy and effective manner. Because the trajectory 

path was successfully followed, it may now be managed by utilizing Adaptive neural networks 

and Supervisory controls. This method estimates the values of any unknown parameters, and it 

ensures that the planned trajectory is precisely followed. The overall control performance of the 

Adaptive Neural technique has significantly improved, and it possesses excellent angle control 

effect and stability. This method possesses great stability and interference-fighting characteristics, 

and it can promptly recover to the normal tracking state in the presence of external disturbance. 

Additionally, it can resist interference well.  

Uncertain model control issues and nonlinear control issues can be successfully solved by the 

robust learning capabilities and continuous nonlinear function approximation capabilities of 

Adaptive neural networks. The total control performance is improved, and adaptive neural 

networks have superior angular control effects and stability. This approach has strong stability and 

interference-fighting capabilities, and it can swiftly recover to the standard tracking state in the 

presence of external disturbance. 

Over the past 20 years, orthoses and exoskeleton technologies have developed significantly. Given 

the aging population and the rise of individuals with lower limb problems, this is not implausible. 

A problem still exists in creating robotic exoskeletons that can help several users at once and do 

so naturally and effectively. Therefore, more perceptive intelligent systems are needed. The motion 

tasks provided in this thesis are used to evaluate assistive techniques, however, it is necessary to 

check this approach using two or even more continual tasks with the same device. Few researchers 

have had the opportunity to work on this topic. It has always been claimed that the exoskeleton 

user's safety comes first. A clear mechanism that ensures this at the assistive level, nevertheless, 

needs more research. 
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Also we intend to implement human-robot interaction and force feedback at some point in 

the future. The angle control will serve as the foundation for the addition of force sensors, which 

will offer real-time feedback on the finger joint angle and force signal. This will allow for the 

successful completion of some more complicated and nuanced rehabilitation training assignments.  
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