
 i

VEHICLE DETECTION, SPEED MONITORING AND CLASSIFICATION FROM
VIDEO STREAM

By

Hoor Ul Ain Tahir 01-132162-031

Abdullah Waqar 01-132162-001

Supervised by

Engr. Waleed Manzoor

Submitted to the department of computer engineering in the partial

fulfillment of the requirements for the degree of bachelor’s in computer

engineering.

Department of Computer Engineering

Bahria University Islamabad

2020

 ii

CERTIFICATE

 iii

UNDERTAKING

I certify that research work titled “Vehicle Detection, Speed Monitoring and Classification

from Video Stream” is my own work. The work has not been presented elsewhere for

assessment. Where material has been used from other sources it has been properly

acknowledged / referred.

Hoor Ul Ain Tahir

01-132162-031

Abdullah Waqar

01-132162-001

 iv

DEDICATION

We dedicate this piece of work to our parents, foremost, for their unfathomable support

and to everyone who was there to guide us and help us through every thick and thin. Each

and every person whom we met during this journey had a great impact on us and helped us

in reaching at this point of success.

 v

ACKNOWLEDGEMENTS

All.praises.to.Allah. (SWT), The.Most.Gracious.and.The.Empathetic, whose.blessings

and.guidance.remained.with.us.during.the.execution.of.the project and without Whose

help I could not have.been.where.I.am.today. We.would.like to.express our.gratitude to

our project supervisor Engr Waleed Manzoor for his precious time. This.project.task.could

not.have.come.about without his technical help, moral.encouragement.and.guidance. He

provided us lots of advice.and inspiration.on our project. We would like to thank our

parents for supporting and encouraging us with their best wishes.

 vi

ABSTRACT

Detection of vehicle and its license number plate is an important part in real-time

applications. Many of the approaches initially detect a vehicle and number plate, after that

recognize the characters by using only an image of the specific vehicle. This approach has

low recognition rate because of the noise present in that specific frame. However, in our

proposed system a different real-time approach is used to detect the vehicle and localize its

license number plate instead of selecting a single frame to perform the recognition. In live

video stream vehicle was detected, then by applying Laplacian filter having a certain

threshold value, clear frames were obtained for further processing. Many of the existing

solutions are not fast for real-world situations because of several constraints. In this thesis

we present a robust and efficient vehicle detection and license number plate recognition

system based on the state-of-the-art SSD object detection. By using transfer learning a new

model was trained based on the collected dataset using SSD (coco dataset) pretrained

model. This dataset contains 1693 images having 800x600 resolution also vehicles are of

different types (cars, motorcycles, buses, and trucks). The SSD and KNN models are

trained and finetuned for each stage of vehicle detection, license plate localization,

character recognition and Color detection, so the system is robust under different

conditions i.e. due to camera, lighting or background. The extracted information of vehicle

number plate, type, color, time, speed, location, cropped images of vehicle and number

plate will be stored in the database created using MongoDB. Also, specific data can be

accessed from database using search option on frontend GUI application. The success of

our system greatly depends on the quality of acquired video. Our real-time system

efficiently and successfully localizes license number plate under different environmental

conditions i.e. indoor, outdoor, or daytime. It has ability to detect license number plates of

different provinces. These detected number plates can be of different colors, having

different fonts, number plates may be having solid color background or an image as

background. Depending upon all the mentioned factors accuracy of vehicle detection is

97.23 % and number plate localization is 89.84%. The live video stream is having 30 fps

for which it takes 15ms to detect a vehicle.

 vii

TABLE OF CONTENTS

CERTIFICATE .. ii

UNDERTAKING .. iii

DEDICATION .. iv

ACKNOWLEDGEMENTS ... v

ABSTRACT ... vi

Table of Contents ... vii

List of figures .. ix

Chapter 1 .. 1
Introduction .. 1

Chapter 2 .. 7
Literature Review ... 7

Chapter 3 .. 10
Design and Methodology...10

3.1 Stages of the system: ...11

3.2 Initial Plan ...13

3.3 Collection of datasets ...13

3.4 Training ...14

3.4.1 Labeling and XML creation ..14

3.4.2 Training on Google Colab: ..15

3.4.3 Uploadation on google drive: ..15

3.4.4 Converting XML into CSV: ..16

3.4.5 Generating TensorFlow records and label map: ..16

3.4.6 Batch size: ...17

3.4.7 Epochs: ..17

3.4.8 Configuring a Training Pipeline: ...17

3.4.9 Exporting Trained Inference Graph...18

3.5 Project chronological Steps ...19

3.5.1 Live stream from camera ...20

3.5.2 Detection of vehicle using SSD Model ...21

3.5.2.1 Laplacian Filter ..25

3.5.3 KNN Color Detection ..26

3.5.3.1 Challenges faced in vehicle color detection ..27

3.5.4 Localization of Number plate ..27

3.5.4.1 Challenges faced in the Detection of License Plates ..28

3.5.5 OCR (Optical Character Recognition) ..29

3.5.5.1 Temporal Redundancy ...30

 viii

3.5.6 Speed Monitoring ..30

3.5.7 Storing the data ...31

3.5.8 Graphical User Interface (GUI) ...32

Chapter 4 .. 33
Results ...33

Chapter 5 .. 36
Conclusion ...36

REFERENCES .. 37

Appendix ... 39

 ix

LIST OF FIGURES

Figure 1: Flow of Project .. 11
Figure 2: Stages of ALPR ... 12
Figure 3: Basic Flow diagram of training ... 14
Figure 4: labelling using LabelImg ... 15
Figure 5: XML into CSV .. 16
Figure 6: Epoch during training .. 18
Figure 7: Hanse Camera.. 20
Figure 8: Detection of vehicle using SSD model.. 21
Figure 9: SSD: Single Shot MultiBox Detector. ... 22
Figure 10: Truncated VGG16 ... 23
Figure 11: Layer of SSD ... 24
Figure 12: Localization of Number Plate.. 28
Figure 13 (a)Fancy/Fake number plate (b)Standard number plate 29
Figure 14: Histogram of pixels ... 30
Figure 15: Vehicle Database ... 31
Figure 16: GUI Vehicle Monitoring System .. 32

file:///C:/Users/hp/Downloads/FinalThesis_CE-143%20-%20Copy.docx%23_Toc46171476
file:///C:/Users/hp/Downloads/FinalThesis_CE-143%20-%20Copy.docx%23_Toc46171482

1

CHAPTER 1

Introduction

As there is manifold increase in traffic, which demands better road safety measures.

One of the main contributing factors in road safety is speed of vehicles which if not

observed properly may cause numerous fatal road accidents. Hence there is much need

to monitor the speed of vehicles to enhance the road safety vis a vis control of accidents.

Hence there is an urgent requirement to devise method through which we can identify

the over speeding vehicle for that purpose we need to know type, color, and registration

number of the vehicle.

Many industrial systems use dedicated camera systems which provide video input for

monitoring of vehicles by retaining the record of their license number plate. Vehicle

detection and Number Plate Recognition is an important research [1]–[3] because of its

practical implementation. Number Plate detection has been applied to smart parking

area system, automatic toll tax collection, traffic law enforcement, however, these

surveillance systems face several challenges when there is heavy traffic vehicles having

fancy license plates, tilted license plates and some known factors contribute in false

positives results of Vehicle detection as well as license plate detection.[4]

The installation of High Definition (HD) cameras along with speed Gun on the roads

assist in detection and speed monitoring of vehicle. However, the current systems most

of the times is not been able to capture clear images due to speed mismatch of vehicles

and camera shutter speed. As a result, system is not able to detect its feature i.e. Number

Plate of vehicle. Since failing to detect Vehicle and Number Plate will lead to failures

in next stages. So, detection of Vehicle and Number Plate requires higher accuracy or

almost perfection. [5]

Deep learning is a vast topic of study in machine learning, it has a closer resemblance

to Artificial Intelligence. By using Machine learning techniques several algorithms

were created that can train computers and further capable to differentiate several

instances of the same object. As there is increase in number of drivers and number of

2

vehicles on the road which eventually causes more problems related to traffic. Number

Plate Recognition algorithm helps in the detection of vehicles and its number plates in

effective manner by using fewer human resources. There are numerous reasons for the

increase in importance as there are an increased number of vehicles on the road and

each of the vehicle contains the number plate. Rapid growth in Digital Image

Processing studies has made it possible to detect vehicle and its license plates at a

speedy rate. The problems are detection of over speeding vehicle, highway monitoring,

parking area administration are currently tackled using machine learning techniques.

In this project we will explore the use of deep learning, aiming at vehicle Detection and

number plate recognition. This project gave the basic understanding of the modern

neural network and its application working with the computer vision. By using the

neural networks as building blocks, we were able to boost the accuracy of a model with

its pre-trained model.

Transfer learning is the machine learning technique in which a model created for a task

is reprocessed as the initial point for another model on the second task. As it is a

widespread approach in deep learning, pre trained models/networks are used as the

initial point on computer vision tasks, huge computation and time resources are

required to develop neural network models.

In computer vision the neural networks typically try to detect edges in starting layer,

middle layer is responsible for the shape and some task specific features in end layers.

In transfer learning, starting and middle layers are used from the pre trained model and

the final layers are trained again.

Transfer learning has numerous advantages, the main benefits are that it takes less time

to train and also less amount of dataset it required whereas to train a new model we

need a lot of time and a really huge dataset. The collect this much huge dataset a alone

a really huge task and time taking. So that’s where transfer learning helps us and save

our time and there is no need to collect huge dataset.

Object detection is one of the most common application of computer vision. Object

detection means detecting objects in an image or a scene by software system or

computer and locating objects in it accurately. In earlier years, object detection has

been used in many fields like security systems, self-driving cars, face recognition and

3

pedestrian counting. With the recent development in terms of hardware and software,

object detection has seen a flourishing development in some of the most advance

systems.

After object detection, another task that one need to solve is to accurately draw

boundary boxes around all the detected object. Today, if one can look at the

technologies which depend on on object detection as part of the task, accurate boundary

boxes help them to lessen the hardware cost. Robotic systems and Self-driving cars use

a lot of hardware sensors apart from object detection software to exactly locate the

position of object.

When someone’s life is given in the hand of technology, even a millimeter of precision

matters. For example, in case of self-driving car, object detection is the main task. So,

if object detection software is capable of accurately drawing boundary boxes around

the object it will further help in reducing hardware cost and decreases overall cost for

a normal consumers and industries. So there comes a requirement for having single

system and quicker execution. So, Our SSD model consists of 6 extra auxiliary

convolution layers after the five layers of truncated VGG16. Two of them are fully

connected. Five of them are used for object detection and in which three of them make

6 predictions and rest 2 layers make 4 predictions. SSD process is speed-up by

eliminating the requirement for region proposal. As the accuracy was dropped so to

enhance it SSD makes default boxes and works on the principle of multi-scale feature.

After the enhancements made in SSD, it matched to the accuracy of Faster R-CNN’s

when lower resolution images were used, further the speed was improved as well. The

SSD object detection composes of 2 parts: i) It extracts multi scale feature maps and ii)

For object detection it applies depthwise separable convolution filters. [6]

We can understand the meaning and purpose of multiscale feature map by this simple

example. If the distance between the car and camera is 5 meters, then it looks much

bigger in the image, compared to the case if the distance is 50 meters between the camera

and the car. Thus, for this example, we need two feature maps with different spatial

scales where one is suitable when the distance is 5 meters between the camera and the

car and the other one for when the distance is 50 meters from the camera. Note that even

the feature map with the larger spatial scale (for the first case in which the distance is 5

4

meters between the car and the camera) is also able to capture the image of the car when

it is 50 meter away from the camera, it does not provide accurate representation for the

50 meter away car since its spatial scale is not tight enough around the image car and

contains substantial leakage of information from the other objects in the scene.

Major building block used for Convolutional Neural Network (CNN) is the

Convolutional layers. Most simple function of convolution is to apply filter on the input

Resulting in an activation. When same filter is applied multiple times to the input it

results in an activation map also known as feature map that indicates the locations and

strength of a detected feature in the input. Convolutional Neural Network is an

innovative network that has the ability to discover a several filters in parallel particular

to the training dataset under the limitations of the particular predictive modeling

problem i.e. image classification. So, results are highly specific features that can be

found anywhere in an input image.

Considering the convolutional neural network in which the convolution is basically

linear multiplication operation between input and set of weights shows the behavior of

traditional neural network structure. In this method we consider two-dimensional input

for which the multiplication is carried out between two-dimensional weights and input

data array it is called as filter or kernel.

The used kernel or filter is kept smaller than the input image, the multiplication carried

out between a filter and filter sized area of an input image is dot product. Element wise

multiplication between filter and filter sized area of an is a basically a dot product that

is incorporated at the end and it gives a single output value input.

Intentionally smaller filter size is used as compared to the input in this way same filter

is multiplied to the input array multiple times at the different points of the input image.

Systematically filter is applied to each of the overlapping part or that particular filter

sized area of an input image. The filter moves from left to right and top to bottom.

The application of same filter to the input image is a good approach. The filter that is

designed to identify any specific type of feature in the given input, then by applying

the filter systematically on the entire input image, then the filter learns the specific

feature at any point of the image.

5

After multiplying input array and filter the output will always be a single value. When

the feature map is created each value is sent in the feature map by a nonlinearity

activation function i.e. ReLU.

Multiple features are learnt in parallel for the given input image. It is common for a

convolutional layer to learn from 32 to 512 filters in parallel for a given input. In this

method the model takes out the features from an input image in 32 or even 512 different

ways.

There are multiple channels for the Colored images characteristically one for each color

i.e. Red, green, and Blue (RGB). In data perspective the single image, which is

provided as an input are three images of different colors. The number of channels as

the input determine the size of filter as it must have same number of channels. As an

input image have 3 channels or depth of 3 then a filter applied on that image must

consist of 3 channels. In this instance, a 3 × 3 filter would be for 3 x 3 x 3 or [3, 3, 3]

for rows, columns, and depth. This means that if a convolutional layer has 32 filters,

these 32 filters are not just two-dimensional for the two-dimensional image input, but

are also three-dimensional, having definite filter weights for each of the three channels.

Yet, each filter gives a separate single feature map. Which means that the depth of the

output of applying the convolutional layer with 32 filters is 32 for the 32 feature maps

made.

In case of SSD instead of doing simple convolution, we apply different method i.e

depthwise separable convolutions which includes depthwise and pointwise convolution.

In this way the computation / Number of multiplications are reduced which results in

the increase in the overall speed of the model. In depthwise convolution, we apply a 2D

filter at each depth level of input image. For example. Suppose our input image is 8 x 8

x 3 Filter is 3 x 3 x 3. In a simple convolution we would directly convolve in depth

dimension as well. Whereas in depth-wise convolution, we use each filter channel only

at one input channel. To produce same effect with normal convolution, we select a

channel, make all the elements zero in the filter but that channel and then preform

convolution. For each channel we will need three different filters. Even though

parameters are remaining same, by using an only one 3 channels filter this convolution

gives us three output channels.[5]

6

We can understand the concept of pointwise convolution by this example. Suppose you

are trying to locate some old photes of your childhood days which are held in one of

the albums inside one of your closets at home. Now you don’t know where that exact

photo which you are looking for is. You took almost all the compartments from all the

rooms to your room and you can start searching for it. And after searching for a while

at last you found it. But now the room is a mess and while searching you mixed all the

stuff in one place. Now the job is to keep the things correctly at their particular places.

Now that’s exactly how important a 1 x 1 is for our model. A 1 x 1 kernel does three

main roles in any model, decrease the number of channels in a compute/ memory

constrained environment, Increase the number of channels, decrease the number of

channels. You may not have to isolate things accurately if the total number of rooms in

your home are equal to the number of compartments. In that situation you can just keep

one compartments per room. Likewise, you may be able to manage with images of size

12 x 12 now. But if you need to process image of size 1280 x 720 and a greater number

of them altogether then your GPU will not be able to handle this much of computations.

So, it’s very vital to keep the number of parameters as less as we can, and to accomplish

it we need to understand and make proper use of 1 x 1 kernels (pointwise).

We used K nearest neighbor KNN [7] technique to detect the color of the vehicle. It is

a type of supervised machine learning algorithm which can be used for regression and

also classification predictive problems. The advantage of using KNN is that it does not

have a specific training phase but it uses all the training data while preforming

classification. It uses feature similarity to predict the values of new datapoints. Other

advantages our that its implementation is very simple, its robust with regard to space

search space and takes very few parameters to tune.

7

CHAPTER 2

Literature Review

Vehicle Detection and Number Plate recognition has been researched often in many

studies, already existing solutions are still not robust enough on real-time situations.

The existing Vehicle Detection and Number Plate recognition systems are not efficient

for real-time video stream obtained via HD Cameras. Such systems do not indicate

accuracy or work efficiently because given solutions depend on limitations such as

search of vehicle or number plate in fixed region, Lightning conditions, viewing angle

of camera. Most important factor of the system is clarity of image or certain frame of

video stream on which processing is to be carried out. Computer vision [3] and pattern

recognition previously existing algorithms of Vehicle Detection and Number Plate

recognition systems deal with many challenges due to the above stated constraints.

Many of the computer visions tasks have lately accomplished betterment in

performance because of a huge annotated dataset and the hardware Graphical

Processing Units (GPUs) efficient of handling enormous data. For such situations Deep

Learning studies are used. However despite the notable progress of Deep Learning

approaches in Vehicle Detection and Number Plate recognition [4]–[6], there is still a

great need for Vehicle and Number Plate annotated datasets. Trained model determines

the outcomes of Deep Learning technique. The more amount of data allows use of more

fast and strong network architectures having more enhanced info of parameters and

layers. Existing systems do not show much accuracy because of their datasets. Models

which are trained on these datasets have some limitations that it may always use

camera mounted statically in the same position so all the images will have similar and

might have simple backgrounds as there are chances no motorcycles is present and only

in few of the cases where the Number Plates might not be well aligned.

8

In recent researches remarkable outcomes in several computer vision tasks like object

detection [8] [9] [10] has been seen by applying deep learning-based approaches. Deep

networks learn the discriminative feature by itself automatically directly from the

dataset provided to it this causes the main reason behind its extraordinary performance.

For the object detection the deep neural network has outpaced old typical traditional

methods of searching. Deep learning approaches used for object detection are mainly

divided into two types that is region proposal based method and regression-based

method. [11]

Earlier implemented Deep networks, Convolutional Neural Network (CNN)[12] based

detection methods like R-CNN starts localizing the location of the objects and object

scales that are according to the given test image which is basically an input for the

object so when training it returns resultant proposed region to the classifier to detect

the object. When classification is completed then the post-processing is applied so that

the bounding boxes can be rectified, along with re-scoring bonding boxes which is

created on the other objects in that particular frame.[13]

Lots of improved techniques based on CNN[12] emerged for object detection which

include RCNN[13], fast RCNN, faster RCNN and R-FCN. These new emerged

techniques attained better accuracies, but they lack due to complex network structure.

To increase the speed researchers recommended techniques consisting of a single

network which will directly predict bounding boxes instead of searching for region of

proposals. YOLO being a regression based technique which returns object borders and

directly give their recognition confidence. As YOLO has refined network structure,

capable of achieving real-time processing on Graphical Processing Units (GPUs) for

object detection but still this technique has the problem of inaccurate positioning of

object.

You Only Look Once (YOLO)[9] and Single Shot Detector (SSD)[3] technique in

which object detection task steps of classification and localization is converted into the

regression problem, that can perform object detection with a single neural network. In

YOLO, the problem for improving speed for real-life scenario was overcome in this

system by combining a region of proposal with that of classification to the exceptional

9

regression problem through an image pixel to bounding box coordinates consisting of

all class probabilities that will assess the whole image in the single run.

As YOLO still faces the problem in detecting smaller objects in a particular frame. This

issue was resolved by using SSD approach in which it makes default boxes and uses

multi-scale features for the convolutional detection layers. [9]

SSD a deep learning algorithm that is based on the Anchor method idea of Faster R-

CNNs [14]. It consists of the traditional classification networks i.e. VGG16 [15] and

after the VGG Network extra auxiliary layers also introduced for feature extraction in

which pointwise and depthwise convolution takes place. The scale of extra layers

change so that it can detect multiscale objects present in the frame. For training SSD[4]

model a dataset images with accurate labels are needed., A large number of datasets is

required in order to make weights more fitted. Collection of dataset images and then

labelling them is a time taking process.[11]

Both the algorithms YOLO and SSD use convolutional neural network as basic

network for feature extraction which make them far better than traditional object

detection methods in accuracy and speed. The difference between YOLO and SSD is

that the YOLO[9] algorithm uses multiple convolutional layers for feature extraction

and then via fully connected layer predicts the output probability. But SSD algorithm

uses different size auxiliary convolutional layers for the feature extraction after that

calculates the location-loss, confidence-loss and predicts the bounding box. The

SSD[3] algorithm do not consist of full connected layers which eventually helps in

making the detection speed more faster and it uses the features that are obtained from

multiple size convolution layers so in this technique less features are lost and detection

accuracy is improved.[16] SSD showed improvised result as the models gives less

detection false-rate and accuracy-rate about 0.97.

10

CHAPTER 3

Design and Methodology

Our project is divided into five main parts. Vehicle detection, color detection, number

plate localization, number plate recognition and speed monitoring. In first part we

detect whether the input stream has a vehicle in it or not. If the vehicle is detected by

the algorithm in the input stream, then the defined method will exactly find and crop

the vehicle from the input stream. Now the output of phase one will be considered as

input of phase two and three, Phase two will detect color of the vehicle using a defined

algorithm explained below and phase three will search for the vehicle’s number plate

and crop out the number plate, now the output of the phase three will be the input of

phase four in which it will recognize the characters on the vehicle’s numbers plate.

Through researching, we found that vehicle detection is already pretty developed and

there are number of methods exist online but still, we decided to use deep learning for

this project. We improved the accuracy with some pre-trained models.

We faced many challenges during our project, the first challenge was the gather the

pictures of different type of vehicles which should include Cars, Buses, Motorcycles

and Trucks. We labeled those images one by one and generated XML and CSV files

Using this data, we trained our SSD model which can detect/localize and classify

vehicles in an input live video stream but the accuracy was not significant. We

increased the number of pictures and trained again and good phenomenal results. The

next challenge was to detect the number of each vehicle. For this purpose, we applied

different image processing techniques explained below. The third challenge was to

recognize the characters on the number and also at to exclude extra writings on the

license plate.

11

The flow of out project is shown in the figure 1 below.

Fig 4. Flow of project

3.1 Stages of the system:

Automatic license plate reorganization ALPR systems typically have Five

stages: Acquisition of live video stream, Vehicle detection, License Number

Plate Extraction, Color Detection, and type of vehicle. The earlier stages needed

more accuracy or almost perfection, since failing to detect the number plate

would mean failure in the next stages as well. Many methods search first for

the vehicle and then its number plate to reduce processing time and eliminate

false positives. [15]

Color Detection

Grey

Crop Detected Vehicle

Type of Vehicle

 Car

Location/Time

 XYZ

 Figure 1: Flow of Project

12

Figure 2: Stages of ALPR

Another Important aspect of this project is storing all the gathered information

in a search able database. For which we have used MongoDB because of its

faster speed of storing and retrieving the data. Also, almost no actual constrains

as compared to MYSQL or oracle. A GUI was designed using Qt designer and

implement in our project using PyQt5 library of python and embedded our

database with it to make it searchable, it is an advanced search in which we can

search vehicles according to our requirement. Each time when a vehicle is

detected all its information i.e. Color, Type Location, Speed, and Time will be

extracted and stored in our database and can be searched anytime using this

GUI.

Acquisition Of Live Video
Stream

Vehicle Detection

License Number Plate
Extraction

Color Detection

Type of Vehicle (Car, Bus,
Truck)

13

3.2 Initial Plan

We planned to first build our own CNN model for detection and classification

of vehicles in a live video stream but this technique was too slow for our real

time system and also accuracy was not satisfactory.

We applied some data augmentation on the collected dataset as a reasonable

method to improve the prediction accuracy. Based on this idea we completed

the research on currently prevailing solutions for vehicle detection.

3.3 Collection of datasets

Firstly, we collected 976 images of different types of vehicles which includes

Cars, Motorcycles, Buses and Trucks and by using a pre-trained model we

trained our own SSD model but the accuracy was not got as expected. Then we

increased our dataset to 1693. These images were collected from internet and

some organizations which kept record of the vehicles. The average image size

of our dataset was 960 x 734, and the largest image resolution is 3424 x 2428.

The main idea for collecting this type of dataset over some other small dataset

is that we had to crop the detected vehicle and pass the output to the process

where the number plate is localized and character recognition is applied. The

whole program will lose accuracy if resolution of initial input is too low. So,

there is a tradeoff between speed and accuracy/performance. Large resolution

images required extra training/testing time and more effective device, but it

gives us a higher chance to detect a car and its number plate.

The problem occurred when using high-resolution images as a test set, as the

memory was not sufficient enough to hold them. So, instead of passing images

of different sizes we collectively resized the image to 800x600 resolution. Code

attached in appendix 1.

14

3.4 Training

Figure 3: Basic Flow diagram of training

To train a Deep learning model we have to preform some operations on our

dataset on the bases of which our network extracts the features and learn. For

this purpose, we have to first label our dataset and generate XML files for each

image, by using those XML files we generate CSV files for training and testing

images separately. Then from these CSV files we generate tensor flow records

(tf records) separately for training and testing and by using these tf records we

train our model (figure 3). Details of each step is given below.

3.4.1 Labeling and XML creation

The first challenge of our project was to pre-process our custom datasets. The

dataset was gathered from different resources i.e. from internet, Organizations

that keep record of vehicles. We had 1693 image, spilt them into training and

testing set. As there were 1293 images in training set and 400 images for the

testing set. So, for vehicle detection, we needed to manipulate our dataset and

generate the information of each image.

We used the “labelImg” labeling software and manually drew the bounding box

as shown in Figure 4. This software records the appearances of cars from each

image and also the exact coordinates of bounding boxes. Necessarily accuracy

of training depends on labelling in this case. The labeling tool generated XML

files for each image. In these XML files the information about four coordinates

of the bounding box that we drew are saved in the form of HTML code.

15

Figure 4: labelling using LabelImg

3.4.2 Training on Google Colab:

With a significant increase in size of datasets for deep learning models to fit as

a result there has been an increase in demand for Graphical Processor Units to

train the model faster.

We used Google Colab for training. Google provides a free GPU i.e

Tesla K80 GPU on the cloud for running large scale machine learning projects

and also 13 GBs of RAM. In case of uploading our dataset on this platform there

is a drawback that the dataset will be removed when session is restarted. So by

mounting Google Drive to the Notebook and using this feature, instead of

uploading the file each time we open the notebook.

3.4.3 Uploadation on google drive:

Firstly, upload the whole dataset which includes train and test images along

with their XML files on google drive. So, we can access them during the

training on our google colab notebook. Afterwards mount your drive with your

google colab notebook to easily access the dataset and XML files for further

processing.

16

3.4.4 Converting XML into CSV:

Once drive is mounted with google colab, now start the training process. First,

convert the XML files of training and testing images into CSV files, which

stores the name of the image, dimensions, the name of the class (the bounding

box we created), and information about the four coordinates of the bounding

box.

Figure 5: XML into CSV

We will create separate csv files for given training images and testing images

XMLs.

3.4.5 Generating TensorFlow records and label map:

The TFRecord is a format for storing data in a sequence of binary records. To

read data efficiently and faster it is helpful to serialize the data and store it in

the set of files that can be read by a computer system easily.

When working with a large dataset it is necessary to store data in such format

which is easy for the computer system to understand read. Eventually by doing

so the system can read the data faster and takes less time to copy and takes less

space in memory hence speeds up the training process.

We have to generate separate TFRecord for training set and the testing set to

train and also evaluate our model.

17

3.4.6 Batch size:

Set batch size to 12, it fits with google colab’s K80 Tesla GPU memory for

particular model. Batch size is number of images CPU or GPU can handles at a

time. As our dataset has 1693 images, it divides those 1693 images into sets of

12.

Batch size impact

The batch will affect following

• Model performance

• Step duration

The batch size will not affect:

• Training duration

3.4.7 Epochs:

We have dataset of 1693 images and divided into 142 batches, and then 12

iterations will complete 1 epoch.

We set the number of training steps/epochs to 50.

The more the epochs the better the training.

3.4.8 Configuring a Training Pipeline:

First, install required packages i.e. pillow, matplotlib then rather than training

model from scratch, transfer learning will be done from a pre trained object

detection model.

Transfer learning will take small amount of dataset as compared to training

from scratch. In this case base model that we used was trained with coco

dataset of common objects.

As we are using tensorflow object detection API so it necessary to download

the pretrained model weights and checkpoints and then configure the

corresponding pipeline config file to inform trainer about following information.

• The path to the pretrained model checkpoint.

• The path to training and testing tfrecord files.

http://cocodataset.org/#home
http://cocodataset.org/#home

18

• The path to the label map file.

• The training batch size.

• The number of training steps.

• The number of classes of our model.

We have used ssd_mobilenet v1 coco_2018 as our pre trained model. And its

pipline file from tensorflow object detection API ssd mobilenet v1 coco.config.

It took around 12-14 hours to complete the training.

Figure 6: Epoch during training

3.4.9 Exporting Trained Inference Graph

After completing the training, we extracted the freshly trained inference

graph, which will help us to perform vehicle detection.

After exporting the newly trained inference graph, we need to download

the .pb file.

That is our model file and we will use this file in our algorithm.

19

3.5 Project chronological Steps

Once the model is trained and downloaded, now comes the part where we use

our trained model in real-time scenarios and get the required results.

Live video streaming from
camera

Vehicle Detection

Crop Detected Vehicle

Color Detection

Localize license Plate from
Cropped vehicle image

Crop the localized number
plate

Apply OCR to the croped
number plate image

Save all the data in
database

20

3.5.1 Live stream from camera

Hanse 260x is a CCTV camera, we will

take live video stream from this camera.

The reason behind using this model is

that it has good motion detection and

tracking auto focus which help us in

getting better results. After connecting

the camera with our system, we will pass

the live stream to our algorithm and we

will process the live stream frame by frame. [10]

Features of our camera:

• Motion.Detection, .AWB, .ALC, .AES, .AGC, .Tracking.auto.focus

• 64.Presets. (Zoom, .Focus), .Reverse. (H/V) .& .Negative.Function

• RS232./.485, .OSD.Function

• Night.vision.Function

• 470.TV.Lines

• Slow.Scan.: .0.05.Lux

• 10X.Digital.Zoom

• Digital.CCD.Color.Zoom.Camera

• ¼ ±.CCD.410,000. (NTSC), .470,000. (PAL)

• 26X.Optical.Zoom

 Figure 7: Hanse Camera

21

Specifications:

3.5.2 Detection of vehicle using SSD Model

Figure 8: Detection of vehicle using SSD model

In the real time scenarios SSD [3] is created for object detection. For Faster R-

CNN a technique of region proposal is used to make boundary boxes and further

these boxes are used for the classification of objects. SSD process is speed-up

by eliminating the requirement for region proposal. As the accuracy was

dropped so to enhance it SSD makes default boxes and works on the principle

of multi-scale feature. After the enhancements made in SSD, it matched to the

accuracy of Faster R-CNN’s when lower resolution images were used, further

the speed was improved as well. As per given comparison, it achieved faster

processing speed and more accuracy than Faster R-CNN in real-time scenario.

22

(Accuracy is measured as the mean average precision mAP: the precision of the

predictions). [18]

The SSD object detection comprises of 2 parts:

• It extracts multi scale feature maps.

• For object detection it applies depthwise separable convolution filters.

Figure 9: SSD: Single Shot MultiBox Detector.

SSD using truncated VGG16, it uses first 5 layers of VGG16 to extract feature

map. Rest of the fully connected layers of VGG16 are discarded. The network

then detects the objects using the Conv4_3 layer. Each of the prediction

comprises of a boundary box and 4 probability scores for each class one extra

score for no object and then we pick the highest probability score as the class for

that bounded object. At Conv4_3 layer, 4 predictions are made per cell and it

makes total 38x38x4 = 5776 predictions regardless of the depth of the feature

maps. And many of the predictions doesn’t contain an object. It keeps a separate

class “0” to indicate that there is no object. [19]

23

Figure 10: Truncated VGG16

Predictors of our object detection model

When the feature map is extracted SSD network applies 3 × 3 convolution filters

on each cell for making predictions. Each filter gives 4 probability scores for

each class (i.e. Car, bus, truck. Bike) plus one boundary box to locate the object

and to identify the class. SSD uses multi scale feature maps to detect objects

independently. Which helps the network to detect objects even in low

resolution.

Our SSD model consists of 6 extra auxiliary convolution layers after the five

layers of truncated VGG16.Two of them are fully connected. Five of them are

used for object detection and in which three of them make 6 predictions and

rest 2 layers make 4 predictions [19].

Total number of predictions:

• Conv4_3 (from VGG16) makes 38 x 38 x 4 = 5776 predictions

• Conv7 makes 19 x 19 x 6 = 2166 predictions

• Conv8_2 makes 10 x 10 x 6 = 600 predictions

• Conv9_2 makes 5 x 5 x 6 = 150 predictions

• Conv10_2 makes 3 x 3 x 4 = 36 predictions

• Conv 11_2 makes 1 x 1 x 4 = 4 predictions

If we sum them up, we get 5766 + 2166 + 600 + 150 + 36 + 4 = 8732 predictions.

The greater the number of predictions, the better the accuracy.

24

Figure 11: Layer of SSD

Lower resolution feature maps (right) identifies larger scale objects. Multi-scale

feature maps enhance accuracy considerably.

The predictions of our SSD model are classified as, negative matches or positive

matches. For calculating a localization cost (the mismatch of the boundary box)

SSD network uses the positive matches only. If the resultant default boundary box

has an IoU (intersection over the union) greater than 0.5 the match is positive.

Otherwise it is negative. [17]

The main idea of using a SSD network is due to its faster speed. The process is speed

up by using depth wise separable convolution because this reduces the number of

computations/Multiplication. It include two steps. Depthwise convolution and

pointwise convolution.

1. Depth wise convolution:

In depthwise convolution, we apply a 2D filter at each depth level of input

image. For example. Suppose our input image is 8 x 8 x 3 Filter is 3 x 3 x 3.

In a simple convolution we would directly convolve in depth dimension as

well. Whereas in depth-wise convolution, we use each filter channel only at

one input channel. To produce same effect with normal convolution, we

select a channel, make all the elements zero in the filter but that channel and

then preform convolution. For each channel we will need three different

filters. Even though parameters are remaining same, by using an only one 3

channels filter this convolution gives us three output channels. [3]

25

2. Point wise convolution:

We can understand the concept of pointwise convolution by this example.

Suppose you are trying to locate some old photes of your childhood days

which are held in one of the albums inside one of your closets at home. Now

you don’t know where that exact photo which you are looking for is. You

took almost all the compartments from all the rooms to your room and you

can start searching for it. And after searching for a while at last you found

it. But now the room is a mess and while searching you mixed all the stuff

in one place. Now the job is to keep the things correctly at their particular

places.

Now that’s exactly how important a 1 x 1 is for our model. A 1 X 1 kernel

does three main roles in any model, decrease the number of channels in a

compute/ memory constrained environment, Increase the number of

channels, decrease the number of channels. You may not have to isolate

things accurately if the total number of rooms in your home are equal to the

number of compartments. In that situation you can just keep one

compartments per room. Likewise, you may be able to manage with images

of size 12 x 12 now. But if you need to process image of size 1280 x 720

and a greater number of them altogether then your GPU will not be able to

handle this much of computations. So, it’s very vital to keep the number of

parameters as less as we can, and to accomplish it we need to understand

and make proper use of 1 x 1 kernels (pointwise).

3.5.2.1 Laplacian Filter

As we are taking video as an input, we may get redundant frames in which the

object/ vehicle might not be clear due to some unknown factors. further

processing on those frames will decrease the overall accuracy of system and we

will get redundant data. So, in order to save our system from processing those

unclear/ blur frames we will discard them and only use process potential frames.

For this purpose, we used Laplacian filter to detect the potential frame which

have sharp features. The Laplacian filter return a value. This value is the

average number of sharp edges detected in the image. The greater the value the

26

sharper and clearer the image. We set this threshold to 800 on hit and trail bases.

It may vary in different situations or different specifications of the camera used

for the input video stream.

3.5.3 KNN Color Detection

We used K nearest neighbor KNN technique to detect the color of the vehicle.

It is a type of supervised machine learning algorithm which can be used for

regression and also classification predictive problems. The advantage of using

KNN is that it does not have a specific training phase but it uses all the training

data while preforming classification. It uses feature similarity to predict the

values of new datapoints. Other advantages our that its implementation is very

simple, its robust with regard to space search space and takes very few

parameters to tune.

To implement this technique, we first have to generate out training data. In this

case our training data will be the intensity values of different colors which we

want to classify. So, we extracted the RGB values of different colors of different

shades and stored them as our training set. Now the cropped vehicle image is

passed to this classifier. It extracts the RGB values of the input image and

compare with the training data we generated earlier by using the Euclidean

distance formula

After finding the distance from all the training data we pick the 3 least distance

values and check their classes, the class which occurs the most is assigned to

the vehicle. The process in which it determines the least 3 values is pre-defined.

It is the part in which we set the value of K and in our algorithm, we set it at 3.

27

3.5.3.1 Challenges faced in vehicle color detection

Vehicle color detection is not an easy task. The color may vary in different

conditions. These conditions are as follows:

I. Sunlight reflection on the vehicle.

II. Shadow on the vehicle.

III. Weather may be cloudy of rainy.

IV. Dirt on the vehicle.

All these conditions may affect the accuracy of our color detection algorithm,

to overcome this anomaly we created a more bigger training data with more

variety of shades and more variety of colors in it. This helped us to overcome

the problems occurred in these conditions and improved the accuracy as well.

3.5.4 Localization of Number plate

After the vehicle is detected in a video frame, we draw a final boundary box

around it and crop the detected vehicle from the main input frame. To find the

ROI in the image (area having License plate) we applied multiple image

processing techniques shown in figure 12.

First the cropped vehicle image is converted to gray and applied top and black

hat. Black hat enhances the dark object of interest in a bright background where

as top hat enhances the bright object of interest in a dark background. This step

is very important because to detect fancy and different color number plates we

needed to a make a new and unique method. As different provinces has different

color of number plates and different color of characters. After this step we

applied gaussian blur and thresholding and then find the contours, this gave us

the required edges in the image. Then comes the most important step of finding

the possible characters. For this we first generated an identification data. We

stored the flattened image matrix of each character from 0 to 9 and A to Z in

different fonts. By comparing these matrixes values with the parts of the input

image where the edges are found, if any similarity is observed. We label it as a

character and where ever the characters are found in series we label it as number

plate and draw a bounding box around it

28

Figure 12: Localization of Number Plate

3.5.4.1 Challenges faced in the Detection of License Plates

As its very important to have accurately localized number plate of the vehicle

for our system’s accuracy. There are different variations of number plates or

environments causes challenges in the Localization and recognition of

Characters. [5] These challenges are mentioned as follow:

A. Plate variations:

1. Number plates can exist anywhere in the frame.

2. There could be multiple number of plates in one frame.

3. There are different sizes of number plates as there is no standard size.

Also, the size of number plate varies in different type of vehicles (i.e.

Car, Motor cycle, Bus, Truck).

4. Color of number plate varies. And also, the color of characters written

on the plate are different. As there are different color of numbers plate

for different provinces.

5. There is no standard font or font size for the characters on the number

plate.

29

6. The standard license plate of ICT(Islamabad), can be seen in fig. 13(b).

Fancy/fake license plates may have any number of characters without

any regulations, as shown in Fig. 13(a).

7. Number plates can be covered by dirt.

8. Number plates may be tilted or not placed correctly.

9. Number plate may have frames and screws in addition to characters.

Figure 13 (a)Fancy/Fake number plate (b)Standard number plate

B. Environment variations:

1. Captured/selected frame of video stream may have clarity but can have

different types of illumination primarily due to different lighting

environmental or headlights of the vehicle.

2. The background of Captured/selected frame of video stream may

contain patterns like plates, such as numbers printed on a vehicle,

bumper with patterns on it and text written on car body.

3.5.5 OCR (Optical Character Recognition)

After the number plate is detected the next step is ko recognize the characters

written on it. For this purpose, we pass the cropped number plate image to our

algorithm. In which we first convert the image into gray scale and binarize the

image. After wards the same identification data used to localize the number

plate was used to identify the characters. We applied KNN technique which is

discussed above.

We created the horizontal and vertical histograms of each character in the input

image and also the identification as shown in the figure 14. By using these

histograms values we applied KNN classifier and set the value of K to 3 and

recognized the characters on the number plate.

30

Figure 14: Histogram of pixels

3.5.5.1 Temporal Redundancy

The characters written on the number plate are of many different fonts and sizes.

And there are many characters which look alike and may have very close

histogram values like the character “8” and “B”, or the character “0” and “D”

etc. we get variety of registration numbers for a single vehicle as the number

plate is localized continuously and OCR is being applied on every frame until

the vehicle has passed the camera. To overcome this anomaly, we used a

technique called temporal redundancy.

For this purpose, we made a queue and saved all the registration numbers

extracted of a single vehicle and then checked the probability of each character

and selected the most frequent one. This helped us improve the accuracy of

OCR.

3.5.6 Speed Monitoring

Another main part of our project is to record the speed of each vehicle. As the

vehicle is been detected in each frame. The location of the vehicle in each frame

is different as the vehicle is moving, we have to calculate the change in the

location of the vehicle in each frame in order to calculate the distance. As we

know the coordinates of the bounding box around the vehicle, we simply

subtracted the coordinates from the previous frame from the coordinates of the

current frame. We saved these subtracted values in a list for each vehicle and

then calculated their average to get the approximate distance. For the time we

31

knew that our video is 30 FPS (30 frames per second). This means that one

frame is processed in 0.033 seconds. As we have both the values i.e. distance

and the time. We will apply simple formula of speed which is distance over

time.

3.5.7 Storing the data

we used MongoDB database to store all the extracted information which

includes the type of vehicle, color, registration number the time at which the

vehicle is passed, the location/ name of the highway where this system is

installed and the cropped picture of number plate. The reason why we used

MongoDB is that it is faster in saving and retrieving data and because of almost

no constrains like SQL. It stores data as JSON-like documents.

Figure 15: Vehicle Database

Vehicle

Detection

Distance
Calculation

(CurFrameleftCord-
PrevFrameLeftCord)

Time
calculation

(FPS)
Speed=

Distance

Time

32

3.5.8 Graphical User Interface (GUI)

To show all the process and all the extracted information we created a graphical

user interface GUI. We designed this GUI using Qt designer and implemented

in our project using PyQt5 python library. This GUI includes the widget in

which the live video stream is shown. It also shows the bounding boxes on the

around detected vehicles in the stream. It also has a label in which the detected

number plate is been shown. And then there are some labels in which it shows

the type of the vehicle, its color, its registration number, the time at which it

was passed and the location where this system is installed.

We also embedded our database with it. In which can access and get required

data from the dataset by using advanced search. We applied mongo DB queries

to retrieve the required data from our database and showed it in an organized

tabular form.

Figure 16: GUI Vehicle Monitoring System

33

CHAPTER 4

Results

In.this.section, we conducted experiments.to.verify the effectiveness of the.proposed

system.

Vehicle Detection:

We.trained.our.model using a pre-trained model on SSD MobileNet V1, which was

trained on coco dataset. We used transfer learning and trained the model on our dataset

so it can detect vehicles. We trained our model on Google Colab, which gives variety

of option, it provides you to select whether you want to use python 2 or python 3 and

it also give you the option to use GPU or TPU. We used python 3 and GPU to train our

model, Google colab provides 12GB NVIDIA Tesla K80 GPU and 13 Gbs or RAM.

Our dataset contains images of cars, buses, trucks, and bikes We used object detection

algorithm, and use above mentioned trained model for detection of these vehicles.

Depending on our dataset It took us 12-14 hours to train our model. We gained 97.23%

accuracy.

Color detection:

After training our vehicle detection model, we build our color detection model, we used

KNN classifier to detect vehicle colors, we trained that model on local machine which

has Nvidia 1050Ti GPU and 8 GBs of RAM. we extracted the ranges of intensities of

RGB colors using MATLAB and trained our model on that data and gave it a test

dataset of different values of RGB intensities. We got 78.47% accuracy. But the

accuracy varies when there is light reflecting on the vehicle because reflection changes

the color completed.

34

License Plate:

From the cropped image of detected vehicle, then we localized the number plate of

vehicle by applying several image processing techniques and cropped it. Then applied

OCR on it.

OCR:

We applied OCR on the cropped license plate which is KNN based and the working of

OCR is mentioned above in section 3, the character recognition depends upon

weightages.

Improvement:

After applying all the above-mentioned procedures, still our overall accuracy was a bit

low when we tested on a live video stream. Then we figured there was blurriness in the

selected frames. We applied Laplacian filter on the obtained frames and by setting a

particular Laplacian value we were able to deselect blurred frames.(Code attached in

appendix 2) We set a threshold for it, that if the Laplacian value of the input frame at

that time is higher than a certain value , then it means that the frame is clear enough on

which we can perform the rest of the operations, like color detection, license plate

detection and OCR otherwise we can eliminate that frame. That’s how we increased

our overall accuracy.

Live video stream:

We are getting the live video stream for the camera mentioned in the section 3, to get

the maximum accurate results. According to the demand of industry the camera must

be mounted on the roadside matching the level of the vehicle. In such a way that it only

focusses on the front view of the vehicle. By doing so we will be able to get a clear

view of the vehicle number plate. Also, by doing so the reflection due to sun light will

be minimized and it will have least effect on the color on the vehicle. This system is

just suggested for single lane operation.

35

Dataset:

The images were collected from internet and some organizations which kept record of

the vehicles. The average image size of our dataset was 960 x 734, and the largest image

resolution was 3424 x 2428. After collecting all the pictures, we resized the images to

a standard resolution of 800x600. The code is also attached in the appendix 1.

Limitations

The limitations of our project are, the accuracy of color detection, that it varies under

different light conditions due to which colors belonging from same intensity group

might not be detected accurately. Second limitation is that there are many different

fonts and sizes of characters on the license plate of the vehicle, due to which the

accuracy of character recognition varies.

36

CHAPTER 5

Conclusion

In this thesis paper, we have.presented.a.robust.real-time.end-to-end.Vehicle Detection,

speed monitoring and Number Plate recognition system by using the state-of-the-art

SSD.object.detection.model. We.trained.our.own.network for Vehicle Detection and

Number Plate recognition stage.

This paper provided a concise study of recent deep learning approaches employed in

Number Plate Recognition systems. System consists of five major steps, including

vehicle detection, Color detection, Number Plate Detection, Optical Character

Recognition (OCR) and saving the data into database and some recent studies have

focused on each step independently. In this regard, we reviewed these researches based

on the application of deep learning techniques in them. In our project we used Deep

learning Neural Networks techniques to achieve the required results. We used SSD

objection detection model to detect the vehicles through a live video stream, we used

KNN classifier for the detection of the color of the vehicle and for the character

recognition on the license plate. It is an efficient system which detects vehicle, its color,

its license plate, and recognizes it through a live video stream, as future work, the

method.can.be.improved.further.by.incorporating.super-resolution techniques on the

obtained multiple low-resolution instances of the number plate for enhanced

recognition. Additionally, we plan.to.explore.the.vehicle’s manufacturer.and model in

the Vehicle Detection and Number Plate recognition pipeline. Even though our system

was.conceived.and.evaluated.on one country-specific dataset from Pakistan, we

believe.that.the.proposed.system.is.robust.to detect Vehicle, detect its color, localize its

Number plate, recognize character written on it in variety of fonts, record its speed and

save all the information in a searchable database in correct format which can also we

be accessed later for further use.

37

REFERENCES

[1] Du, S., Ibrahim, M., Shehata, M. and Badawy, W., 2012. Automatic license

plate recognition (ALPR): A state-of-the-art review. IEEE Transactions on

circuits and systems for video technology, 23(2), pp.311-325.

[2] Gou, C., Wang, K., Yao, Y. and Li, Z., 2015. Vehicle license plate recognition

based on extremal regions and restricted Boltzmann machines. IEEE

Transactions on Intelligent Transportation Systems, 17(4), pp.1096-1107.

[3] O. Bulan, V. Kozitsky, P. Ramesh, and M. Shreve, “Segmentation and

annotation-free license plate recognition with deep localization and failure

identification,” IEEE Transactions on Intelligent Transportation Systems, vol.

18, no. 9, pp. 2351–2363, Sept 2017

[4] Laroca, R., Severo, E., Zanlorensi, L.A., Oliveira, L.S., Gonçalves, G.R.,

Schwartz, W.R. and Menotti, D., 2018, July. A robust real-time automatic

license plate recognition based on the YOLO detector. In 2018 international

joint conference on neural networks (ijcnn) (pp. 1-10). IEEE.

[5] Li, H. and Shen, C., 2016. Reading car license plates using deep convolutional

neural networks and lstms. arXiv preprint arXiv:1601.05610.

[6] Li, H., Wang, P. and Shen, C., 2018. Toward end-to-end car license plate

detection and recognition with deep neural networks. IEEE Transactions on

Intelligent Transportation Systems, 20(3), pp.1126-1136.

[7] P. Soucy and G. W. Mineau, "A simple KNN algorithm for text categorization,"

Proceedings 2001 IEEE International Conference on Data Mining, San Jose,

CA, USA, 2001, pp. 647-648, doi: 10.1109/ICDM.2001.989592

[8] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time

object detection with region proposal networks,” in Advances in Neural

Information Processing Systems (NIPS), 2015.

[9] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” arXiv preprint

arXiv:1612.08242, 2016.

38

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, A. C. Berg,

SSD: Single Shot MultiBox

[11] Ning, C., Zhou, H., Song, Y. and Tang, J., 2017, July. Inception single shot

multibox detector for object detection. In 2017 IEEE International Conference

on Multimedia & Expo Workshops (ICMEW) (pp. 549-554). IEEE.

[12] Cai Z., Fan Q., Feris R.S., Vasconcelos N. (2016) A Unified Multi-scale

Deep Convolutional Neural Network for Fast Object Detection. In: Leibe

B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016.

ECCV 2016. Lecture Notes in Computer Science, vol 9908. Springer,

Cham

[13] Chen, K.H., Shou, T.D., Li, J.K.H. and Tsai, C.M., 2018, July. Vehicles

detection on expressway via deep learning: Single shot multibox object

detector. In 2018 International Conference on Machine Learning and

Cybernetics (ICMLC) (Vol. 2, pp. 467-473). IEEE.

[14] S. Ren, K. He, R Girshick, and J. Sun, "Faster r-cnn: Towards real-time object

detection with region proposal networks., " IEEE Transactions on Pattern

Analysis & Machine Intelligence, pp. 1-1, 2016.

[15] Karen Simonyan and Andrew Zisserman, "Very deep convolutional networks

for large-scale image recognition, " Computer Science, 2015.

[16] Single Shot MultiBox Detector for Vehicles and Pedestrians Detection and

Classification Qiong WU, Sheng-bin LIAO

[17] Miao, F., Tian, Y. and Jin, L., 2019, August. Vehicle Direction Detection

Based on YOLOv3. In 2019 11th International Conference on Intelligent

Human-Machine Systems and Cybernetics (IHMSC) (Vol. 2, pp. 268-271).

IEEE.

[18] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,

Andreetto, M. and Adam, H., 2017. Mobilenets: Efficient convolutional

neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861.

[19] Wang, Y., Wang, C. and Zhang, H., 2018. Combining a single shot multibox

detector with transfer learning for ship detection using sentinel-1 SAR

images. Remote sensing letters, 9(8), pp.780-788.

39

APPENDIX

Appendix 1: Resizing of the images

import os
import glob
import cv2

if.__name__.==."__main__":

 import.argparse

 parser.= .argparse.ArgumentParser(

 description.="Resize raw images to uniformed target size."
)
 parser.add_argument(

 "--raw.- .dir",

 help=."Directory path.to.raw images.",

 default.="./data/raw",

 type=str.,
)
 parser.add_argument(

 "--save.- .dir",

 help=."Directory path to save resized images.",

 default.="./data/images",

 type=str.,
)
 parser.add_argument(

 "--ext", help.="Raw image files extension to resize.",
default="jpg", type=str
)
 parser.add_argument(
 "--target-size",
 help="Target size to resize as a tuple of 2 integers.",
 default="(800, 600)",
 type=str,
)
 args = parser.parse_args()
 raw_dir = args.raw_dir
 save_dir = args.save_dir
 ext = args.ext
 target_size = eval(args.target_size)
 msg = "--target-size must be a tuple of 2 integers"
 assert isinstance(target_size, tuple) and len(target_size) == 2,
msg

 fnames = glob.glob. (os.path. .join(raw_.dir, "*.{}".format(ext)))

 os. .makedirs(save_dir, .exist._ok=True)
 print(

40

 "{} files to resize from directory `{}` to target
size:{}".format(
 len(fnames), raw_dir, target_size
)
)
 for i, fname in enumerate(fnames):
 print(".", end="", flush=True)
 img = cv2.imread(f import os
import glob
import cv2

if.__name__.==."__main__".:

 import.argparse

 parser.= .argparse.ArgumentParser. (

 description.= ."Resize raw images.to uniformed target size."
)
 parser.add_argument(
 "--raw-dir",
 help="Directory path to raw images.",
 default="./data/raw",
 type=str,
)
 parser.add_argument(
 "--save-dir",
 help="Directory path to save resized images.",
 default="./data/images",
 type=str,
)
 parser.add_argument(
 "--ext", help="Raw image files extension to resize.",
default="jpg", type=str
)
 parser.add_argument(
 "--target-size",
 help="Target size to resize as a tuple of 2 integers.",
 default="(800, 600)",
 type=str,
)
 args = parser.parse_args()

 raw_dir = args.raw_dir
 save_dir = args.save_dir
 ext = args.ext
 target_size = eval(args.target_size)
 msg = "--target-size must be a tuple of 2 integers"
 assert isinstance(target_size, tuple) and len(target_size) == 2,
msg
 fnames = glob.glob(os.path.join(raw_dir, "*.{}".format(ext)))

 os. .makedirs. (save_dir, .exist_ok.= .True)

41

 print(
 "{} files to resize from directory `{}` to target
size:{}".format(
 len(fnames), raw_dir, target_size
)
)
 for i, fname in enumerate(fnames):
 print(".", end="", flush=True)
 img = cv2.imread(fname)
 img_small = cv2.resize(img, target_size)
 new_fname = "{}.{}".format(str(i), ext)
 small_fname = os.path.join(save_dir, new_fname)
 cv2.imwrite(small_fname, img_small)
 print(
 "\nDone resizing {} files.\nSaved to directory:
`{}`".format(
 len(fnames), save_dir

Appendix 2: Laplacian Filter

import.cv2

import.numpy.as.np

#img.= .cv2.imread("0.jpg",.cv2.IMREAD_GRAYSCALE)

def blurdetect(img):
 laplacian_var = cv2.Laplacian(img, cv2.CV_64F).var()
 # if laplacian_var < 5:
 # print("Image blurry")

 #print(laplacian_var)
 return (laplacian_var)

42

Appendix 3: Main File + GUI code

import.cv2

from.PyQt5.import.QtCore, .QtGui, .QtWidgets

from.PyQt5.QtCore.import.*

from.PyQt5.QtGui.import *

from.PyQt5.QtWidgets.import *

import.os.path

import.time

import.pprint

import.vlc

import.tensorflow as tf

import.csv

import.numpy as np

from utils.import.backbone

from utils.import.visualization_utils as vis_util

from pymongo import MongoClient
#creating DB
democlient = MongoClient()
myclient = MongoClient('localhost',27017)
mydb = myclient["vehicle"]
mycoll=mydb["db_vehcile"]

t=vis_util.typee
c=vis_util.colorr
nom=str(vis_util.n)
#current_time="0"
#Locationnn="None"
#f=0

class Ui_VideoPlayer(object):
 def setupUi(self, VideoPlayer):
 self.instance = vlc.Instance()

 self.mediaplayer = self.instance.media_player_new()
 self.isPaused = False
 VideoPlayer.setObjectName("VideoPlayer")
 VideoPlayer.resize(1920, 1050)
 self.centralwidget = QtWidgets.QWidget(VideoPlayer)
 self.centralwidget.setObjectName("centralwidget")
 self.horizontalLayout_2 =
QtWidgets.QHBoxLayout(self.centralwidget)
 self.horizontalLayout_2.setObjectName("horizontalLayout_2")
 self.tabWidget = QtWidgets.QTabWidget(self.centralwidget)

43

 palette = QtGui.QPalette()
 brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))
 brush.setStyle(QtCore.Qt.SolidPattern)
 palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base,
brush)
 brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))
 brush.setStyle(QtCore.Qt.SolidPattern)
 palette.setBrush(QtGui.QPalette.Inactive,
QtGui.QPalette.Base, brush)
 brush = QtGui.QBrush(QtGui.QColor(240, 240, 240))
 brush.setStyle(QtCore.Qt.SolidPattern)
 palette.setBrush(QtGui.QPalette.Disabled,
QtGui.QPalette.Base, brush)
 self.tabWidget.setPalette(palette)
 self.tabWidget.setObjectName("tabWidget")
 self.tab = QtWidgets.QWidget()
 self.tab.setObjectName("tab")
 self.frame = QtWidgets.QFrame(self.tab)
 self.frame.setGeometry(QtCore.QRect(1050, 20, 821, 441))
 self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)
 self.frame.setFrameShadow(QtWidgets.QFrame.Raised)
 self.frame.setObjectName("frame")
 self.horizontalLayout = QtWidgets.QHBoxLayout(self.frame)
 self.horizontalLayout.setObjectName("horizontalLayout")
 self.LiveVideStreamFrame = QtWidgets.QLabel(self.frame)
 self.LiveVideStreamFrame.setFrameShape(QtWidgets.QFrame.Box)
 self.LiveVideStreamFrame.setText("")

self.LiveVideStreamFrame.setObjectName("LiveVideStreamFrame")
 self.horizontalLayout.addWidget(self.LiveVideStreamFrame)
 self.pushButton = QtWidgets.QPushButton(self.tab)
 self.pushButton.setGeometry(QtCore.QRect(1060, 480, 351,
31))
 self.pushButton.setObjectName("pushButton")
 self.label = QtWidgets.QLabel(self.tab)
 self.label.setGeometry(QtCore.QRect(1460, 520, 401, 161))
 self.label.setFrameShape(QtWidgets.QFrame.Box)
 self.label.setText("")
 self.label.setScaledContents(True)
 self.label.setObjectName("label")
 self.label_16 = QtWidgets.QLabel(self.tab)
 self.label_16.setGeometry(QtCore.QRect(1600, 480, 171, 31))
 font = QtGui.QFont()
 font.setPointSize(12)
 font.setBold(True)
 font.setWeight(75)
 self.label_16.setFont(font)
 self.label_16.setObjectName("label_16")
 self.label_17 = QtWidgets.QLabel(self.tab)
 self.label_17.setGeometry(QtCore.QRect(1580, 700, 191, 31))

44

 font = QtGui.QFont()
 font.setPointSize(11)
 font.setBold(True)
 font.setWeight(75)
 self.label_17.setFont(font)
 self.label_17.setObjectName("label_17")
 self.label_18 = QtWidgets.QLabel(self.tab)
 self.label_18.setGeometry(QtCore.QRect(1600, 740, 151, 31))
 self.label_18.setFrameShape(QtWidgets.QFrame.Box)
 self.label_18.setText("")
 self.label_18.setAlignment(QtCore.Qt.AlignCenter)
 self.label_18.setObjectName("label_18")
 self.label_19 = QtWidgets.QLabel(self.tab)
 self.label_19.setGeometry(QtCore.QRect(1090, 540, 91, 31))
 font = QtGui.QFont()
 font.setPointSize(11)
 font.setBold(True)
 font.setWeight(75)
 self.label_19.setFont(font)
 self.label_19.setObjectName("label_19")
 self.label_20 = QtWidgets.QLabel(self.tab)
 self.label_20.setGeometry(QtCore.QRect(1320, 540, 91, 31))
 font = QtGui.QFont()
 font.setPointSize(11)
 font.setBold(True)
 font.setWeight(75)
 self.label_20.setFont(font)
 self.label_20.setObjectName("label_20")
 self.label_21 = QtWidgets.QLabel(self.tab)
 self.label_21.setGeometry(QtCore.QRect(1080, 660, 91, 31))
 font = QtGui.QFont()
 font.setPointSize(11)
 font.setBold(True)
 font.setWeight(75)
 self.label_21.setFont(font)
 self.label_21.setObjectName("label_21")
 self.label_22 = QtWidgets.QLabel(self.tab)
 self.label_22.setGeometry(QtCore.QRect(1190, 760, 91, 31))
 font = QtGui.QFont()
 font.setPointSize(11)
 font.setBold(True)
 font.setWeight(75)
 self.label_22.setFont(font)
 self.label_22.setObjectName("label_22")
 self.label_23 = QtWidgets.QLabel(self.tab)
 self.label_23.setGeometry(QtCore.QRect(1320, 660, 91, 31))
 font = QtGui.QFont()
 font.setPointSize(11)
 font.setBold(True)
 font.setWeight(75)

45

 self.label_23.setFont(font)
 self.label_23.setObjectName("label_23")
 self.type = QtWidgets.QLabel(self.tab)
 self.type.setGeometry(QtCore.QRect(1070, 580, 91, 41))
 self.type.setFrameShape(QtWidgets.QFrame.Box)
 self.type.setText("")
 self.type.setAlignment(QtCore.Qt.AlignCenter)
 self.type.setObjectName("type")
 self.color = QtWidgets.QLabel(self.tab)
 self.color.setGeometry(QtCore.QRect(1300, 580, 91, 41))
 self.color.setFrameShape(QtWidgets.QFrame.Box)
 self.color.setText("")
 self.color.setAlignment(QtCore.Qt.AlignCenter)
 self.color.setObjectName("color")
 self.location = QtWidgets.QLabel(self.tab)
 self.location.setGeometry(QtCore.QRect(1120, 790, 221, 41))
 self.location.setFrameShape(QtWidgets.QFrame.Box)
 self.location.setText("")
 self.location.setAlignment(QtCore.Qt.AlignCenter)
 self.location.setObjectName("location")
 self.speed = QtWidgets.QLabel(self.tab)
 self.speed.setGeometry(QtCore.QRect(1070, 690, 91, 41))
 self.speed.setFrameShape(QtWidgets.QFrame.Box)
 self.speed.setText("")
 self.speed.setAlignment(QtCore.Qt.AlignCenter)
 self.speed.setObjectName("speed")
 self.time = QtWidgets.QLabel(self.tab)
 self.time.setGeometry(QtCore.QRect(1300, 690, 91, 41))
 self.time.setFrameShape(QtWidgets.QFrame.Box)
 self.time.setText("")
 self.time.setAlignment(QtCore.Qt.AlignCenter)
 self.time.setObjectName("time")
 self.label_15 = QtWidgets.QLabel(self.tab)
 self.label_15.setGeometry(QtCore.QRect(320, 20, 491, 61))
 font = QtGui.QFont()
 font.setPointSize(20)
 font.setBold(True)
 font.setWeight(75)
 self.label_15.setFont(font)
 self.label_15.setObjectName("label_15")
 self.horizontalLayoutWidget = QtWidgets.QWidget(self.tab)
 self.horizontalLayoutWidget.setGeometry(QtCore.QRect(30,
110, 1001, 51))

self.horizontalLayoutWidget.setObjectName("horizontalLayoutWidget")
 self.horizontalLayout_4 =
QtWidgets.QHBoxLayout(self.horizontalLayoutWidget)
 self.horizontalLayout_4.setContentsMargins(0, 0, 0, 0)
 self.horizontalLayout_4.setObjectName("horizontalLayout_4")

46

 self.label_27 =
QtWidgets.QLabel(self.horizontalLayoutWidget)
 font = QtGui.QFont()
 font.setPointSize(14)
 font.setBold(True)
 font.setWeight(75)
 self.label_27.setFont(font)
 self.label_27.setFrameShape(QtWidgets.QFrame.Box)
 self.label_27.setAlignment(QtCore.Qt.AlignCenter)
 self.label_27.setObjectName("label_27")
 self.horizontalLayout_4.addWidget(self.label_27)
 self.label_26 =
QtWidgets.QLabel(self.horizontalLayoutWidget)
 font = QtGui.QFont()
 font.setPointSize(14)
 font.setBold(True)
 font.setWeight(75)
 self.label_26.setFont(font)
 self.label_26.setFrameShape(QtWidgets.QFrame.Box)
 self.label_26.setAlignment(QtCore.Qt.AlignCenter)
 self.label_26.setObjectName("label_26")
 self.horizontalLayout_4.addWidget(self.label_26)
 self.label_30 =
QtWidgets.QLabel(self.horizontalLayoutWidget)
 font = QtGui.QFont()
 font.setPointSize(14)
 font.setBold(True)
 font.setWeight(75)
 self.label_30.setFont(font)
 self.label_30.setFrameShape(QtWidgets.QFrame.Box)
 self.label_30.setAlignment(QtCore.Qt.AlignCenter)
 self.label_30.setObjectName("label_30")
 self.horizontalLayout_4.addWidget(self.label_30)
 self.pushButton_2 = QtWidgets.QPushButton(self.tab)
 self.pushButton_2.setGeometry(QtCore.QRect(370, 240, 321,
41))
 font = QtGui.QFont()
 font.setPointSize(12)
 font.setBold(True)
 font.setWeight(75)
 self.pushButton_2.setFont(font)
 self.pushButton_2.setObjectName("pushButton_2")
 self.tableWidget = QtWidgets.QTableWidget(self.tab)
 self.tableWidget.setGeometry(QtCore.QRect(30, 310, 1001,
571))
 self.tableWidget.setObjectName("tableWidget")
 self.tableWidget.setColumnCount(5)
 self.tableWidget.setRowCount(0)
 item = QtWidgets.QTableWidgetItem()
 font = QtGui.QFont()

47

 font.setBold(True)
 font.setWeight(75)
 item.setFont(font)
 self.tableWidget.setHorizontalHeaderItem(0, item)
 item = QtWidgets.QTableWidgetItem()
 font = QtGui.QFont()
 font.setBold(True)
 font.setWeight(75)
 item.setFont(font)
 self.tableWidget.setHorizontalHeaderItem(1, item)
 item = QtWidgets.QTableWidgetItem()
 font = QtGui.QFont()
 font.setBold(True)
 font.setWeight(75)
 item.setFont(font)
 self.tableWidget.setHorizontalHeaderItem(2, item)
 item = QtWidgets.QTableWidgetItem()
 font = QtGui.QFont()
 font.setBold(True)
 font.setWeight(75)
 item.setFont(font)
 self.tableWidget.setHorizontalHeaderItem(3, item)
 item = QtWidgets.QTableWidgetItem()
 font = QtGui.QFont()
 font.setBold(True)
 font.setWeight(75)
 item.setFont(font)
 self.tableWidget.setHorizontalHeaderItem(4, item)
 self.fromtime = QtWidgets.QLineEdit(self.tab)
 self.fromtime.setGeometry(QtCore.QRect(700, 180, 331, 41))
 self.fromtime.setObjectName("fromtime")
 self.typeser = QtWidgets.QLineEdit(self.tab)
 self.typeser.setGeometry(QtCore.QRect(370, 180, 321, 41))
 self.typeser.setObjectName("typeser")
 self.colorser = QtWidgets.QLineEdit(self.tab)
 self.colorser.setGeometry(QtCore.QRect(30, 180, 331, 41))
 self.colorser.setObjectName("colorser")
 self.tabWidget.addTab(self.tab, "")
 self.tab_2 = QtWidgets.QWidget()
 self.tab_2.setObjectName("tab_2")
 self.frame_2 = QtWidgets.QFrame(self.tab_2)
 self.frame_2.setGeometry(QtCore.QRect(10, 10, 231, 411))
 self.frame_2.setFrameShape(QtWidgets.QFrame.StyledPanel)
 self.frame_2.setFrameShadow(QtWidgets.QFrame.Raised)
 self.frame_2.setObjectName("frame_2")
 self.horizontalLayout_3 =
QtWidgets.QHBoxLayout(self.frame_2)
 self.horizontalLayout_3.setObjectName("horizontalLayout_3")
 self.FilelistWidget = QtWidgets.QListWidget(self.frame_2)
 self.FilelistWidget.setObjectName("FilelistWidget")

48

 self.horizontalLayout_3.addWidget(self.FilelistWidget)
 self.Video_frame = QtWidgets.QFrame(self.tab_2)
 self.Video_frame.setGeometry(QtCore.QRect(250, 10, 481,
371))
 self.Video_frame.setFrameShape(QtWidgets.QFrame.StyledPanel)
 self.Video_frame.setFrameShadow(QtWidgets.QFrame.Raised)
 self.Video_frame.setObjectName("Video_frame")
 self.PlayPauseButton = QtWidgets.QPushButton(self.tab_2)
 self.PlayPauseButton.setGeometry(QtCore.QRect(250, 390, 61,
23))
 self.PlayPauseButton.setObjectName("PlayPauseButton")
 self.StopButton = QtWidgets.QPushButton(self.tab_2)
 self.StopButton.setGeometry(QtCore.QRect(320, 390, 61, 23))
 self.StopButton.setObjectName("StopButton")
 self.videohorizontalSlider = QtWidgets.QSlider(self.tab_2)
 self.videohorizontalSlider.setGeometry(QtCore.QRect(390,
390, 341, 22))

self.videohorizontalSlider.setOrientation(QtCore.Qt.Horizontal)

self.videohorizontalSlider.setObjectName("videohorizontalSlider")
 self.tabWidget.addTab(self.tab_2, "")
 self.tab_4 = QtWidgets.QWidget()
 self.tab_4.setObjectName("tab_4")
 self.label_2 = QtWidgets.QLabel(self.tab_4)
 self.label_2.setGeometry(QtCore.QRect(20, 20, 311, 151))
 self.label_2.setObjectName("label_2")
 self.label_3 = QtWidgets.QLabel(self.tab_4)
 self.label_3.setGeometry(QtCore.QRect(400, 20, 61, 21))
 self.label_3.setObjectName("label_3")
 self.label_4 = QtWidgets.QLabel(self.tab_4)
 self.label_4.setGeometry(QtCore.QRect(400, 50, 55, 16))
 self.label_4.setObjectName("label_4")
 self.label_5 = QtWidgets.QLabel(self.tab_4)
 self.label_5.setGeometry(QtCore.QRect(570, 20, 55, 16))
 self.label_5.setObjectName("label_5")
 self.label_6 = QtWidgets.QLabel(self.tab_4)
 self.label_6.setGeometry(QtCore.QRect(570, 40, 55, 16))
 self.label_6.setObjectName("label_6")
 self.label_7 = QtWidgets.QLabel(self.tab_4)
 self.label_7.setGeometry(QtCore.QRect(710, 20, 55, 16))
 self.label_7.setObjectName("label_7")
 self.label_8 = QtWidgets.QLabel(self.tab_4)
 self.label_8.setGeometry(QtCore.QRect(710, 40, 55, 16))
 self.label_8.setObjectName("label_8")
 self.label_9 = QtWidgets.QLabel(self.tab_4)
 self.label_9.setGeometry(QtCore.QRect(400, 100, 55, 16))
 self.label_9.setObjectName("label_9")
 self.label_10 = QtWidgets.QLabel(self.tab_4)
 self.label_10.setGeometry(QtCore.QRect(400, 130, 55, 16))

49

 self.label_10.setObjectName("label_10")
 self.label_11 = QtWidgets.QLabel(self.tab_4)
 self.label_11.setGeometry(QtCore.QRect(570, 100, 55, 16))
 self.label_11.setObjectName("label_11")
 self.label_12 = QtWidgets.QLabel(self.tab_4)
 self.label_12.setGeometry(QtCore.QRect(570, 120, 55, 16))
 self.label_12.setObjectName("label_12")
 self.label_13 = QtWidgets.QLabel(self.tab_4)
 self.label_13.setGeometry(QtCore.QRect(710, 100, 55, 16))
 self.label_13.setObjectName("label_13")
 self.label_14 = QtWidgets.QLabel(self.tab_4)
 self.label_14.setGeometry(QtCore.QRect(710, 120, 55, 16))
 self.label_14.setObjectName("label_14")
 self.tabWidget.addTab(self.tab_4, "")
 self.horizontalLayout_2.addWidget(self.tabWidget)
 VideoPlayer.setCentralWidget(self.centralwidget)
 self.menubar = QtWidgets.QMenuBar(VideoPlayer)
 self.menubar.setGeometry(QtCore.QRect(0, 0, 1920, 26))
 self.menubar.setObjectName("menubar")
 self.menuFile = QtWidgets.QMenu(self.menubar)
 self.menuFile.setObjectName("menuFile")
 VideoPlayer.setMenuBar(self.menubar)
 self.statusbar = QtWidgets.QStatusBar(VideoPlayer)
 self.statusbar.setObjectName("statusbar")
 VideoPlayer.setStatusBar(self.statusbar)
 self.actionOpen = QtWidgets.QAction(VideoPlayer)
 self.actionOpen.setObjectName("actionOpen")
 self.actionExit = QtWidgets.QAction(VideoPlayer)
 self.actionExit.setObjectName("actionExit")
 self.actionAdd_Channels = QtWidgets.QAction(VideoPlayer)
 self.actionAdd_Channels.setObjectName("actionAdd_Channels")
 self.menuFile.addAction(self.actionOpen)
 self.menuFile.addAction(self.actionAdd_Channels)
 self.menuFile.addAction(self.actionExit)
 self.menubar.addAction(self.menuFile.menuAction())

 self.retranslateUi(VideoPlayer)
 self.tabWidget.setCurrentIndex(0)
 QtCore.QMetaObject.connectSlotsByName(VideoPlayer)

 self.imgpath =
"E:/University/FYP/All_Codes/DEFENCE/do_model,W_O-
M,clear_GUI/data/1.jpg"

 self.timer = QtCore.QTimer()
 self.timer.setInterval(200)
 self.timer.timeout.connect(self.updateUI)
 self.pushButton.clicked.connect(self.setup_liveStreaming)
 self.actionOpen.triggered.connect(self.viewFilesList)

50

 self.actionExit.triggered.connect(self.exit)
 self.FilelistWidget.itemClicked.connect(self.OpenFile)
 self.PlayPauseButton.clicked.connect(self.PlayPause)

self.videohorizontalSlider.sliderMoved.connect(self.setPosition)
 self.StopButton.clicked.connect(self.Stop)
 self.pushButton_2.clicked.connect(self.searchh)

 def retranslateUi(self, VideoPlayer):
 _translate = QtCore.QCoreApplication.translate
 VideoPlayer.setWindowTitle(_translate("VideoPlayer", "Object
Detection and Count"))
 self.pushButton.setText(_translate("VideoPlayer", "Start
Live Streaming"))
 self.label_16.setText(_translate("VideoPlayer", "Number
Plate"))
 self.label_17.setText(_translate("VideoPlayer",
"Registration Number"))
 self.label_19.setText(_translate("VideoPlayer", "Type"))
 self.label_20.setText(_translate("VideoPlayer", "Color"))
 self.label_21.setText(_translate("VideoPlayer", "Speed"))
 self.label_22.setText(_translate("VideoPlayer", "Location"))
 self.label_23.setText(_translate("VideoPlayer", "Time"))
 self.label_15.setText(_translate("VideoPlayer", "Vehicle
Monitering System"))
 self.label_27.setText(_translate("VideoPlayer", "Type"))
 self.label_26.setText(_translate("VideoPlayer", "Color"))
 self.label_30.setText(_translate("VideoPlayer", "Location"))
 self.pushButton_2.setText(_translate("VideoPlayer",
"Search"))
 item = self.tableWidget.horizontalHeaderItem(0)
 item.setText(_translate("VideoPlayer", "Type"))
 item = self.tableWidget.horizontalHeaderItem(1)
 item.setText(_translate("VideoPlayer", "Color"))
 item = self.tableWidget.horizontalHeaderItem(2)
 item.setText(_translate("VideoPlayer", "No. Plate"))
 item = self.tableWidget.horizontalHeaderItem(3)
 item.setText(_translate("VideoPlayer", "Time"))
 item = self.tableWidget.horizontalHeaderItem(4)
 item.setText(_translate("VideoPlayer", "Location"))
 self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab),
_translate("VideoPlayer", "Live Streaming"))
 self.PlayPauseButton.setText(_translate("VideoPlayer",
"Play"))
 self.StopButton.setText(_translate("VideoPlayer", "Stop"))

self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_2),
_translate("VideoPlayer", "Tab 2"))
 self.label_2.setText(_translate("VideoPlayer", "TextLabel"))
 self.label_3.setText(_translate("VideoPlayer", "TextLabel"))

51

 self.label_4.setText(_translate("VideoPlayer", "TextLabel"))
 self.label_5.setText(_translate("VideoPlayer", "TextLabel"))
 self.label_6.setText(_translate("VideoPlayer", "TextLabel"))
 self.label_7.setText(_translate("VideoPlayer", "TextLabel"))
 self.label_8.setText(_translate("VideoPlayer", "TextLabel"))
 self.label_9.setText(_translate("VideoPlayer", "TextLabel"))
 self.label_10.setText(_translate("VideoPlayer",
"TextLabel"))
 self.label_11.setText(_translate("VideoPlayer",
"TextLabel"))
 self.label_12.setText(_translate("VideoPlayer",
"TextLabel"))
 self.label_13.setText(_translate("VideoPlayer",
"TextLabel"))
 self.label_14.setText(_translate("VideoPlayer",
"TextLabel"))

self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_4),
_translate("VideoPlayer", "Page"))
 self.menuFile.setTitle(_translate("VideoPlayer", "File"))
 self.actionOpen.setText(_translate("VideoPlayer", "Open"))
 self.actionExit.setText(_translate("VideoPlayer", "Exit"))
 self.actionAdd_Channels.setText(_translate("VideoPlayer",
"Add Channels"))

 def PlayPause(self):

 if self.mediaplayer.is_playing():
 self.mediaplayer.pause()
 self.PlayPauseButton.setText("Play")
 self.isPaused = True
 else:
 if self.mediaplayer.play() == -1:
 self.OpenFile()
 return
 self.mediaplayer.play()
 self.PlayPauseButton.setText("Pause")
 self.timer.start()
 self.isPaused = False

 def Stop(self):

 self.mediaplayer.stop()
 self.PlayPauseButton.setText("Play")

 def OpenFile(self, item):

52

 self.filename = self.path + "/" + item.text()

 if sys.version < '3':
 self.filename = unicode(self.filename)
 self.media = self.instance.media_new(self.filename)

 self.mediaplayer.set_media(self.media)

 self.media.parse()

 if sys.platform.startswith('linux'):
 self.mediaplayer.set_xwindow(self.Video_frame.winId())
 elif sys.platform == "win32":
 self.mediaplayer.set_hwnd(self.Video_frame.winId())
 elif sys.platform == "darwin":

self.mediaplayer.set_nsobject(int(self.Video_frame.winId()))
 self.PlayPause()

 def setPosition(self, position):

 self.mediaplayer.set_position(position / 1000.0)

 def updateUI(self):

self.videohorizontalSlider.setValue(self.mediaplayer.get_position()
* 1000)

 if not self.mediaplayer.is_playing():

 self.timer.stop()
 if not self.isPaused:

 self.Stop()

 def setup_liveStreaming(self):
 # self.capture = cv2.VideoCapture(0)
 # self.capture.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
 # self.capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
 # self.timer = QtCore.QTimer()
 # self.timer.timeout.connect(self.live_streaming)

53

 # self.timer.start(10)
 detection_graph, category_index =
backbone.set_model('model', 'label_map.pbtxt')
 is_color_recognition_enabled = 1
 total_passed_vehicle = 1
 speed = "waiting..."
 direction = "waiting..."
 size = "waiting..."
 color = "waiting..."
 counting_mode = "..."
 width_heigh_taken = True
 height = 0
 width = 0
 time.sleep(1)
 with detection_graph.as_default():
 with tf.Session(graph=detection_graph) as sess:

 image_tensor =
detection_graph.get_tensor_by_name('image_tensor:0')

 detection_boxes =
detection_graph.get_tensor_by_name('detection_boxes:0')

 detection_scores =
detection_graph.get_tensor_by_name('detection_scores:0')
 detection_classes =
detection_graph.get_tensor_by_name('detection_classes:0')
 num_detections =
detection_graph.get_tensor_by_name('num_detections:0')
 self.cap =
cv2.VideoCapture("E:/University/FYP/All_Codes/DEFENCE/do_model,W_O-
M,clear_GUI/Videos/DSC_1917(e).mp4")

 f=0
 queueu=[]

 while (self.cap.isOpened()):

 (ret, frame) = self.cap.read()

 if not ret:
 print("end of the video file...")
 break

 input_frame = frame

54

 image_np_expanded = np.expand_dims(input_frame,
axis=0)

 (boxes, scores, classes, num) = sess.run(
 [detection_boxes, detection_scores,
detection_classes, num_detections],
 feed_dict={image_tensor: image_np_expanded})

 font = cv2.FONT_HERSHEY_SIMPLEX

 #starttt=time.process_time()

 counter, csv_line, counting_mode =
vis_util.visualize_boxes_and_labels_on_image_array(
 self.cap.get(1),
 input_frame,
 1,
 is_color_recognition_enabled,
 np.squeeze(boxes),
 np.squeeze(classes).astype(np.int32),
 np.squeeze(scores),
 category_index,
 use_normalized_coordinates=True,
 line_thickness=4)

 #print(time.process_time() - starttt)

 if (len(counting_mode) == 0):
 cv2.putText(input_frame, "...", (10, 35),
font, 0.8, (0, 255, 255), 2, cv2.FONT_HERSHEY_SIMPLEX)
 else:
 cv2.putText(input_frame, counting_mode, (10,
35), font, 0.8, (0, 255, 255), 2,
 cv2.FONT_HERSHEY_SIMPLEX)

 input_frame = cv2.resize(input_frame, (797,
417))
 input_frame = cv2.cvtColor(input_frame,
cv2.COLOR_BGR2RGB)
 image = QtGui.QImage(input_frame,
input_frame.shape[1], input_frame.shape[0],
 input_frame.strides[0],
QtGui.QImage.Format_RGB888)

55

self.LiveVideStreamFrame.setPixmap(QtGui.QPixmap.fromImage(image))
 # print(image)

 global t
 global c
 global nom
 t = vis_util.typee
 c = vis_util.colorr
 nom = str(vis_util.n)

 self.imageee = QtGui.QImage(self.imgpath)
 self.pixmapimage =
QtGui.QPixmap.fromImage(self.imageee)
 self.label.setPixmap(self.pixmapimage)

 #global current_time
 #global Locationnn

 tim = time.localtime()
 current_time = time.strftime("%H:%M:%S", tim)

 Locationnn="Bahria University"

 if "car" in t:
 t="car"
 elif "truck" in t:
 t="truck"
 elif "bus" in t:
 t="bus"
 elif "motorcycle" in t:
 t="bike"

 queueu.append(nom)

 if len(queueu)>100:
 queueu.pop(0)

 #mostno=most_frequent(queueu)
 counter = 0
 num = queueu[0]

 for i in queueu:

56

 curr_frequency = queueu.count(i)
 if(curr_frequency> counter):
 counter = curr_frequency
 num = i

 mostno=num

 # print("pro",mostno)
 # print("num",nom)

 # dblist = myclient.list_database_names()

 # row_number=0
 # column_number=0

 # for alll in dblist:
 # #self.tabWidget.setTabText(row_number+1)
 # for dataa in alll:
 #
cell=QtWidgets.QTableWidgetItem(str(dataa))
 #
self.tabWidget.setTabText(row_number,alll)
 # column_number=column_number+1
 # row_number=row_number+1

 # print(dblist)
 # qt=QtWidgets.QTableWidgetItem(str(t))
 # qc=QtWidgets.QTableWidgetItem(str(c))
 # qnom=QtWidgets.QTableWidgetItem(str(nom))
 #vbox=QVBoxLayout()
 #rr=mydb.mycoll.count()

 # d=mycoll.find_one()
 # #pprint.pprint(d)
 # lii=[]
 # for dooo in d:
 # lii.append(dooo)

 # #print(lii)
 # yoo=0

 # for o in lii:
 #
self.tableWidget.setItem(1,yoo,QTableWidgetItem(str(lii(yoo+1))))
 # yoo=yoo+1

57

 #vbox.addWidget(tabWidget)

 # print(vis_util.noplatecropped)

 # if vis_util.noplatecropped != None:
 # print(vis_util.noplatecropped)
 # cv2.imshow("m",vis_util.noplatecropped)
 # iimage =
QtGui.QImage(vis_util.noplatecropped,
vis_util.noplatecropped.shape[1], vis_util.noplatecropped.shape[0],
 #
vis_util.noplatecropped.strides[0], QtGui.QImage.Format_RGB888)
 #
self.label.setPixmap(QtGui.QPixmap.fromImage(iimage))

 # else:
 # self.label.setText("no image")

 self.type.setText(t)
 self.color.setText(c)
 self.label_18.setText(nom)
 self.location.setText(Locationnn)
 self.time.setText(str(current_time))

 if t!="" and c!="" and nom!="" and
current_time!="" and Locationnn!="":
 mylist = [
 {
 "Type": t,
 "Color": c,
 "NoPlate": nom,
 "Time": current_time,
 "Location": Locationnn,

58

 }
]

 x = mycoll.insert_many(mylist)

 # self.tableWidget.setRowCount(3)
 #
self.tableWidget.setItem(1,0,QTableWidgetItem(str(t)))
 #
self.tableWidget.setItem(1,1,QTableWidgetItem(str(c)))
 #
self.tableWidget.setItem(1,2,QTableWidgetItem(str(nom)))

 if cv2.waitKey(1) & 0xFF == ord('q'):
 break

 def searchh(self):
 typedata=self.colorser.text()
 colordata=self.typeser.text()
 locationdata=self.fromtime.text()
 self.tableWidget.setRowCount(3)

 # imageg = QtGui.QPixmap(self.imgpath)
 # self.tableWidget.setItem(1, 5, QTableWidgetItem(imageg))
 lengthh=0
 down=1
 right=-1

 if typedata!="" and colordata=="" and locationdata=="":

 xx=mydb.db_vehcile.find ({ "Type" : typedata })
 #x2=xx
 ttt=[]
 for items in xx:
 lengthh=lengthh+1
 ttt.append(items)

 #print(ttt)

59

 self.tableWidget.setRowCount(lengthh)

 for itemss in ttt:

self.tableWidget.setItem(down,0,QTableWidgetItem(itemss["Type"]))

self.tableWidget.setItem(down,1,QTableWidgetItem(itemss["Color"]))

self.tableWidget.setItem(down,2,QTableWidgetItem(itemss["NoPlate"]))

self.tableWidget.setItem(down,3,QTableWidgetItem(itemss["Time"]))

self.tableWidget.setItem(down,4,QTableWidgetItem(itemss["Location"])
)
 # right=right+1
 down=down+1
 #self.tableWidget.setItem(1,0,QTableWidgetItem("type"))

 elif typedata=="" and colordata!="" and locationdata=="":

 xx=mydb.db_vehcile.find ({ "Color" : colordata })
 #x2=xx
 ttt=[]
 for items in xx:
 lengthh=lengthh+1
 ttt.append(items)

 #print(ttt)

 self.tableWidget.setRowCount(lengthh)

 for itemss in ttt:

self.tableWidget.setItem(down,0,QTableWidgetItem(itemss["Type"]))

self.tableWidget.setItem(down,1,QTableWidgetItem(itemss["Color"]))

self.tableWidget.setItem(down,2,QTableWidgetItem(itemss["NoPlate"]))

self.tableWidget.setItem(down,3,QTableWidgetItem(itemss["Time"]))

self.tableWidget.setItem(down,4,QTableWidgetItem(itemss["Location"])
)

60

 # right=right+1
 down=down+1

 elif typedata=="" and colordata=="" and locationdata!="":

 xx=mydb.db_vehcile.find ({ "location" :
locationdata })
 #x2=xx
 ttt=[]
 for items in xx:
 lengthh=lengthh+1
 ttt.append(items)

 #print(ttt)

 self.tableWidget.setRowCount(lengthh)

 for itemss in ttt:

self.tableWidget.setItem(down,0,QTableWidgetItem(itemss["Type"]))

self.tableWidget.setItem(down,1,QTableWidgetItem(itemss["Color"]))

self.tableWidget.setItem(down,2,QTableWidgetItem(itemss["NoPlate"]))

self.tableWidget.setItem(down,3,QTableWidgetItem(itemss["Time"]))

self.tableWidget.setItem(down,4,QTableWidgetItem(itemss["Location"])
)
 # right=right+1
 down=down+1

 elif typedata!="" and colordata!="" and locationdata=="":

 q={'$and': [{ 'Type' : typedata }, { 'Color' :
colordata}]}

 xx=mydb.db_vehcile.find(q)
 #x2=xx
 ttt=[]
 for items in xx:
 lengthh=lengthh+1
 ttt.append(items)

 #print(ttt)

61

 self.tableWidget.setRowCount(lengthh)

 for itemss in ttt:

self.tableWidget.setItem(down,0,QTableWidgetItem(itemss["Type"]))

self.tableWidget.setItem(down,1,QTableWidgetItem(itemss["Color"]))

self.tableWidget.setItem(down,2,QTableWidgetItem(itemss["NoPlate"]))

self.tableWidget.setItem(down,3,QTableWidgetItem(itemss["Time"]))

self.tableWidget.setItem(down,4,QTableWidgetItem(itemss["Location"])
)
 # right=right+1
 down=down+1

 elif typedata!="" and colordata=="" and locationdata!="":

 q={'$and': [{ 'Type' : typedata }, { 'Location' :
locationdata}]}

 xx=mydb.db_vehcile.find(q)
 #x2=xx
 ttt=[]
 for items in xx:
 lengthh=lengthh+1
 ttt.append(items)

 #print(ttt)

 self.tableWidget.setRowCount(lengthh)

 for itemss in ttt:

self.tableWidget.setItem(down,0,QTableWidgetItem(itemss["Type"]))

self.tableWidget.setItem(down,1,QTableWidgetItem(itemss["Color"]))

self.tableWidget.setItem(down,2,QTableWidgetItem(itemss["NoPlate"]))

self.tableWidget.setItem(down,3,QTableWidgetItem(itemss["Time"]))

self.tableWidget.setItem(down,4,QTableWidgetItem(itemss["Location"])
)
 # right=right+1

62

 down=down+1

 elif typedata=="" and colordata!="" and locationdata!="":

 q={'$and': [{ 'colordata' : colordata }, { 'Location' :
locationdata}]}

 xx=mydb.db_vehcile.find(q)
 #x2=xx
 ttt=[]
 for items in xx:
 lengthh=lengthh+1
 ttt.append(items)

 #print(ttt)

 self.tableWidget.setRowCount(lengthh)

 for itemss in ttt:

self.tableWidget.setItem(down,0,QTableWidgetItem(itemss["Type"]))

self.tableWidget.setItem(down,1,QTableWidgetItem(itemss["Color"]))

self.tableWidget.setItem(down,2,QTableWidgetItem(itemss["NoPlate"]))

self.tableWidget.setItem(down,3,QTableWidgetItem(itemss["Time"]))

self.tableWidget.setItem(down,4,QTableWidgetItem(itemss["Location"])
)
 # right=right+1
 down=down+1

 elif typedata!="" and colordata!="" and locationdata!="":

 q={'$and': [{ 'Type' : typedata }, { 'Color' :
colordata }, { 'Location' : locationdata}]}

 xx=mydb.db_vehcile.find(q)
 #x2=xx
 ttt=[]
 for items in xx:
 lengthh=lengthh+1
 ttt.append(items)

 #print(ttt)

63

 self.tableWidget.setRowCount(lengthh)

 for itemss in ttt:

self.tableWidget.setItem(down,0,QTableWidgetItem(itemss["Type"]))

self.tableWidget.setItem(down,1,QTableWidgetItem(itemss["Color"]))

self.tableWidget.setItem(down,2,QTableWidgetItem(itemss["NoPlate"]))

self.tableWidget.setItem(down,3,QTableWidgetItem(itemss["Time"]))

self.tableWidget.setItem(down,4,QTableWidgetItem(itemss["Location"])
)
 # right=right+1
 down=down+1

 def live_streaming(self):
 ret, frame = self.capture.read()
 frame = cv2.resize(frame, (695, 380))
 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
 image = QtGui.QImage(frame, frame.shape[1], frame.shape[0],
 frame.strides[0],
QtGui.QImage.Format_RGB888)

self.LiveVideStreamFrame.setPixmap(QtGui.QPixmap.fromImage(image))

 def viewFilesList(self):
 self.path = QtWidgets.QFileDialog.getExistingDirectory(None,
"Select Directory")
 fileNames = os.listdir(self.path)
 for items in fileNames:
 self.FilelistWidget.addItem(items)

 def exit(self):
 self.cap.release()
 cv2.destroyAllWindows()
 print("Vehicles")

if __name__ == "__main__":
 import sys
 app = QtWidgets.QApplication(sys.argv)
 VideoPlayer = QtWidgets.QMainWindow()
 ui = Ui_VideoPlayer()
 ui.setupUi(VideoPlayer)
 VideoPlayer.show()
 sys.exit(app.exec_())

