

CH AAZEEN AHMAD
01-1314191-010

Face-GAN: Face image enhancement
using Generative Adversarial Networks

Bachelor of Science in Computer Science

Supervisor: Mr. Abdur Rehman

Department of Computer Science
Bahria University, Islamabad

6th May, 2023

Ce r t i f i c a t e

We accept the work contained in the report titled “Face-GAN :Face image enhancement
using Generative Adversarial Networks”, written by Mr. Ch Aazeen Ahmad as a confirma-
tion to the required standard for the partial fulfillment of the degree of Bachelor of Science
in Computer Science.

Approved by . . . :

Supervisor:: Mr Abdul Rahman

Internal Examiner: Name of the Internal Examiner

External Examiner: Name of the External Examiner

Project Coordinator:: Ms.Maryam Khalid Multani

Head of Department:: Dr Arif ur Rehman

6st May, 2023

Abstract

The primary objective of this project is to construct a deep learning-based Generative
Adversarial Network. Super-resolution, the process of enhancing the resolution of low-
resolution images, has garnered significant attention in the field of computer vision. In
recent years, Generative Adversarial Networks (GANs) have emerged as a powerful tool
for achieving remarkable improvements in super-resolution tasks. This project focuses on
leveraging GANs and deep learning techniques to address the challenge of super-resolving
low-resolution images.The proposed approach involves training a GAN architecture con-
sisting of a generator and a discriminator. The generator network aims to transform low-
resolution images into high-resolution counterparts, while the discriminator network
learns to distinguish between generated high-resolution images and real high-resolution
images. This adversarial training setup fosters a competitive learning process, driving the
generator to produce increasingly realistic and visually appealing results. By leveraging
the outcomes from the first phase, I progressively refine the generator’s performance,
ultimately leading to superior results compared to its previous state. Despite significant
advancements in single image resolution through the use of fast and deep neural convolu-
tion networks, a central challenge remains unresolved: effectively preserving fine texture
details while accurately addressing substantial objects. In light of this, I propose SR-
GAN—an innovative Super-Resolution (SR) Generative Adversarial Network (GAN).The
results obtained demonstrate significant improvements over traditional interpolation-based
methods and state-of-the-art super-resolution techniques. Overall, the proposed approach
holds promise for various applications, including medical imaging, surveillance systems,
and digital entertainment, where high-resolution imagery plays a vital role.

i

Acknowledgments

In the name of Allah, the most beneficent and the most merciful. I am highly grateful to
the One who created us and blessed us with a privileged life. I like to thank our parents
who have always been a pillar of strength and support. I extend my heartfelt appreciation
to my supervisor, Mr. Abdur Rehman, for valuable guidance, support, encouragement
throughout our final year project. His insightful feedback and constructive criticism helped
me to stay on track and complete my project successfully. Thank you, Sir Abdul Rahman,
for being such an integral part of my journey and for helping me to grow and learn. I am
truly grateful for your support. Last but not the least, i would like to appreciate our friends
who make study and hard times less challenging. May Allah (SWT) guide me to the right
path.

CH AAZEEN AHMAD
Bahria University, Islamabad Pakistan

6th May, 2023

ii

Contents

Abstract

1 Introduction to Generative Adverserial Networks

i

1
1.1 Background . 2
1.2 Problem Description . 3

1.2.1 Why unsupervised Generative model for image super resolution . 3
1.3 Motivation . 4
1.4 Objective . 5
1.5 Project Scope . 6
1.6 Methodology . 6

1.6.1 Generator . 7
1.6.2 Discriminator . 7

1.7 Summary . 9

2 Literature Review 10
2.0.1 Related work . 10

2.1 Types of GANs: . 11
2.1.1 Super-Resolution Generative Adversarial Networks (SRGAN) . . 11
2.1.2 Wasserstein GAN (WGAN). 11
2.1.3 Deep Convolutional GAN (DC-GAN 11
2.1.4 GAN with interpolation and conditional latent space (GAN-INT-

CLS). 12
2.1.5 Progressively Growing GAN (PRO-GAN) 12
2.1.6 Gradient PROGAN (MSG-PROGAN) 12

2.2 Applications of GANS for image applications: 12
2.2.1 Image generation with enhanced quality 12
2.2.2 Image super resolution . 12
2.2.3 image inpainting . 13
2.2.4 Generation of anime character 13
2.2.5 Text to image transformation: 14

3 Requirements Specifications 15
3.1 Requirement Specifications: . 15

3.1.1 Purpose . 15
3.1.2 Intended Audience . 15
3.1.3 project scope . 15

3.2 Overall Description .

i

16

CONTENTS ii

3.2.1 Overview . 16
3.2.2 Machine Learning vs Deep Learning 16
3.2.3 Product Function . 16
3.2.4 Operating Environment . 17

3.3 Design and implementation . 18
3.4 Assumptions and Dependencies . 18
3.5 System Features . 18

3.5.1 Super Resolution . 18
3.5.2 Finer Texture Details . 19

3.6 Operational Requirements . 19
3.6.1 Generator and Discriminator Network 19
3.6.2 Utility Functions . 19
3.6.3 Non-Functional Requirements 19
3.6.4 Functional Requirements . 20

3.7 Use case Model . 20

4 System Design 23
4.1 System Architecture . 23
4.2 Machine Learning . 24

4.2.1 Types of Machine learning . 24
4.2.2 Reinforcement learning . 24
4.2.3 Deep Learning . 25
4.2.4 Perceptron and Artificial Neural Networks 25
4.2.5 Activation Function: . 26

4.3 Generative Adverserial Networks . 26
4.4 Design Constraints . 27
4.5 Personal computer . 27
4.6 Errors in code . 27

4.6.1 Errors while training networks 27
4.7 Design Methodology . 28

4.7.1 Dataset Acquiring . 28
4.7.2 Data Preprocessing . 28
4.7.3 Generator Network . 29
4.7.4 Discriminator Network . 29
4.7.5 ResNet . 29
4.7.6 Training . 29

4.8 High Level Design . 30
4.8.1 Generative Adverserial Network 30
4.8.2 Super Resolution Generative Adversarial Network 30
4.8.3 SRGAN Architecture . 31
4.8.4 Activation Function . 31
4.8.5 Batch Normalization Function 32
4.8.6 Sequence Diagram of Proposed System 33

CONTENTS iii

5 System Implementation 34
5.1 Introduction . 34

5.1.1 Batch Normalization . 34
5.1.2 Dense connection . 35
5.1.3 Pixel shuffle . 35
5.1.4 Generator Architecture . 35
5.1.5 VGG loss . 36
5.1.6 Discriminartor Architecture . 36

5.2 Tools and Technology used . 37
5.2.1 RAM . 37

5.3 5.3. Development Environment/Language Used 37
5.3.1 Python Language . 38
5.3.2 Google collab . 39
5.3.3 pycharm . 39

5.4 Convolutional Layer . 40
5.4.1 Pooling layer . 40
5.4.2 Max pooling . 40
5.4.3 Average pooling . 41
5.4.4 Sum pooling . 41
5.4.5 Fully connected layer . 41
5.4.6 Dropout layer . 42

5.5 Processing logics/Algorithms . 42
5.5.1 Dataset Acquisition . 42
5.5.2 Generator Network . 43
5.5.3 Discriminator Network . 49

6 System Testing and Evaluation 54
6.1 Quality Control . 54
6.2 Test cases . 54

6.2.1 TC-01 . 54
6.2.2 TC-02 . 55
6.2.3 TC-03 . 55
6.2.4 TC-04 . 56

6.3 Testing . 56
6.3.1 System testing . 56
6.3.2 Black box testing . 56
6.3.3 White box testing . 56
6.3.4 Performance Testing . 57

6.4 Testing Results . 57

7 Conclusions 58
7.1 Outcome . 58
7.2 Limitations . 59
7.3 Future work . 59

References 61

List of Figures

1.1 Generative Adversarial Network (GAN) Structure.. 1
1.2 What are GANS(www.youtube.com/watch?v=5g1eXmQtl0Et=391s).............. 2
1.3 1st column: Interpolated LR images, 2nd column:original HR images, 3rd

column: SRGAN image..5
1.4 Generator network.. 6
1.5 SRGAN results... 6
1.6 The structure of the residual blocks..7
1.7 Training discriminator.. 8
1.8 Training Generator..9
1.9 Training Generator..9

3.1 Generator and discriminator Network.. 19
3.2 Overview usecase diagram... 21
3.3 overview usecase description... 21
3.4 use case diagram...22
3.5 usecase diagram description... 22

4.1 Machine Learning Types.. 24
4.2 Performance Graph...25
4.3 Artificial Neural Network Structure... 25
4.4 Performance Graph...28
4.5 Architecture of generator and discriminator network.......................................31
4.6 Relu,leaky Relu and PReLU Comparison.. 32
4.7 Batch Normalization vs No normalization... 32
4.8 Sequence diagram of proposed system...33

5.1 Pixel shuffle..35
5.2 Generator Architecture(https://images.app.goo.gl/s2CFixE5hcN1EwDP7) 36
5.3 Discriminator Architecture(https://images.app.goo.gl/ceUvGpFgE7ByFFFt7) 37
5.4 Coding on kaggle code... 37
5.5 Convolution with kernel size of 3...40
5.6 Max pooling..40
5.7 Average pooling..41
5.8 Sum pooling..41
5.9 Fully connected layer..41
5.10 Dropout layer..42
5.11 Loading data into model... 42
5.12 Plotting of Generator model(1)...43

iv

http://www.youtube.com/watch?v=5g1eXmQtl0Et%3D391s)

LIST OF FIGURES v

5.13 Plotting of Generator model(2)...44
5.14 Plotting of Generator model(3)...45
5.15 Plotting of Generator model(4)...46
5.16 Plotting of Generator model(5)...47
5.17 Plotting of Generator model(6)...48
5.18 Plotting of discriminator model(1)... 50
5.19 Plotting of discriminator model(2)... 51
5.20 Plotting of discriminator model(3)... 52
5.21 Plotting of discriminator model(4)... 53
5.22 Plotting of discriminator model(5)... 53

6.1 Low quality images.. 57
6.2 Generated high quality images... 57
6.3 Real high quality images.. 57

7.1 Generator loss per epoch.. 59
7.2 Discriminator loss per epoch.. 60

List of Tables

2.1 GAN-synthesized images used for super-resolution.. 11

3.1 Design and implementation.. 18

5.1 Components of SRGAN... 34
5.2 Dataset.. 42

6.1 TC-01 . 55
6.2 TC-02 . 55
6.3 TC-03 . 55
6.4 TC-04 . 56

vi

Acronyms and Abbreviations

SRGAN Super-Resolution Generative Adversarial Networks
ANN Artificial Neural Network
CNN/ConvNet Convolutional Neural Network
ML Machine Learning
DL Deep Learning
GAN Generative Adverserial Networks
SR Super Resolution
AI Artificial Intelligence
ResNet Residual Network
PReLU Parametric Rectified Linear Unit
VGG Visual Geometry Group

vii

Chapter 1

Introduction to Generative Adverserial
Networks

Generative Adversarial Networks(GANs), an approach to generative modelling employing
deep learning techniques, such as convolutional neural networks, is called generative
adversarial networks (GANs).Generative modelling is a machine learning task that involves
automatically identifying and learning the regularities or patterns in input data so that the
model can be used to produce new examples that could have been reasonably derived from
the original dataset.

GAN are basically two neural networks fighting against each other. It consists of two
networks Generator and Discriminator . Generator generates specific data based on the
distribution of opportunities and the analyst tries to predict the weather data from the input
database or generator. Generator rather than trying to add generated data to deceive the
discriminator.

Figure 1.1: Generative Adversarial Network (GAN) Structure

Generative Adversarial Networks incorporates a family of ways to learn production
models where the way to use a computer is based on the concept of the game.A Generator
(G) capable of producing samples from data distribution is what GANs aims to accomplish,
with encrypted conversion vectors from lower-dimension latent (Z) space to high-resolution
data space (X). Normally, hidden carriers are sampled from Z using a uniform or standard
distribution. To G training, Discriminator (D) is trained to differentiate real training
samples from which the Generator produced the fake samples. Thus, Discriminator returns
the value D (x) [0,1] which can be defined as an opportunity that the input sample (x) is

1

Introduction to Generative Adverserial Networks 2

the actual sample from the data distribution. For this purpose, G is trained to block D by
making better samples of the actual training samples, while D is continuously pointed to
differentiate real from fake samples.

In extreme cases, G does not have direct access to real samples from the training set,
as it only reads in its interaction with D. If G can accurately match the actual px data
distribution, then D will be very confused, predicting 0.5 of all input samples Both D and
G using deep dividing networks, usually containing of many discussion layers, and fully
connected.

Figure 1.2: What are GANS(www.youtube.com/watch?v=5g1eXmQtl0Et=391s)

1.1 Background

GANs are a model architecture for training a generative model, and it is most common to
use deep learning models in this architecture.

The GAN architecture was first described in the 2014 paper by Ian Goodfellow, et al.
titled “Generative Adversarial Networks.”

A standardized approach called Deep Convolutional Generative Adversarial Networks,
or DCGAN, that led to more stable models was later formalized by Alec Radford, et al. in
the 2015 paper titled “Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks.

Generative adversarial networks represent a form of artificial intelligence algorithm
specifically devised to address the generative modelling quandary. The primary objective
of a generative model is to analyze a set of training instances and acquire knowledge about
the underlying probability distribution that gave rise to them. Subsequently, Generative
Adversarial Networks (GANs) possess the capability to produce additional instances by
leveraging the estimated probability distribution. Although generative models grounded
in deep learning are prevalent, GANs stand out as one of the most triumphant examples,
particularly due to their remarkable capacity to generate lifelike, high-resolution images.
GANs have demonstrated successful applications across a wide array of tasks, primarily in
research domains, yet they continue to present distinct challenges and avenues for further

http://www.youtube.com/watch?v=5g1eXmQtl0Et%3D391s)

1.2 Problem Description 3

investigation owing to their reliance on game theory, in contrast to the predominantly
optimization-based approaches found in other generative modelling methodologies.

1.2 Problem Description

The vast majority of prior work for this problem focus on how to increase the resolution of
low-resolution images which are artificially generated by simple bilinear down-sampling
(or in a few cases by blurring followed by down-sampling).We show that such methods fail
to produce good results when applied to real-world low-resolution, low quality images.

• Traditional image super-resolution techniques, such as bicubic interpolation or up-
sampling, can result in images that are blurry or lack fine details. These techniques
simply increase the size of the image without adding any additional information or
details, resulting in a loss of image quality and realism.

• traditional image super-resolution techniques may not be able to effectively handle
complex image features, such as textures or patterns.

• Traditional image super-resolution techniques may require manual intervention or
parameter tuning, which can be time-consuming and may not always result in optimal
performance.

To circumvent this problem, we propose a two-stage process which firstly trains a High-to-
Low Generative Adversarial Network (GAN) to learn how to degrade and downsample
high-resolution images requiring, during training, only unpaired high and low-resolution
images. Once this is achieved, the output of this network is used to train a Low-to-High
GAN for image super-resolution using this time paired low- and high-resolution images.
Our main result is that this network can be now used to efectively increase the quality of
real-world low-resolution images. We have applied the proposed pipeline for the problem
of face super-resolution where we report large improvement over baselines and prior work
although the proposed method is potentially applicable to other object categories.

1.2.1 Why unsupervised Generative model for image super resolution

Supervised learning often surpasses human accuracy in trained models, leading to its
integration into various products and services. However, the learning process itself falls
short of human abilities. It heavily relies on human supervisors to provide output examples
for each input, and existing approaches often require millions of training examples to out-
perform humans. To address these limitations, researchers focus on unsupervised learning,
particularly using generative models like generative adversarial networks (GANs). GANs
offer potential solutions and present core research problems related to convergence in

Introduction to Generative Adverserial Networks 4

games. Unsupervised learning encompasses various algorithms with different goals, such
as clustering and dimensionality reduction. Generative modeling is another approach where
a model aims to approximate an unknown data distribution as closely as possible. Tradi-
tional methods face challenges in designing tractable density functions or computationally
efficient approximations. GANs, an implicit generative model, generate samples directly
from the model distribution. Although GANs have excelled in generating high-quality
images, they continue to attract interest for their applications beyond straightforward
generation.

Model follows unsupervised learning model as a generative model when we talk about
adversarial the model will train in adversarial setting and network only means for the
training of model we use neural networks as artificial intelligence algorithms.In GANS
there is generator network that takes sample and generates sample of data and after this the
descriminator network decides weather the data is generated or taken from the real sample
using the binary classification problem with the help of the sigmoid function that gives
output as 0 or 1 the generative model analyses the data in such a way that after the training
phase the probability of descriminator making the mistake maximizes and descriminator
on the other hand baased on a model that will estimatethe probability that the sample is
coming from the real data or from the generator

We have training data which is given to give the real sample and generator network is
going to generate the sample from the random noise or the examples and then it will goes
to the descriminator network where it is going to check weather the sample that is oming
is real or fake,that is how GANS actually work.

1.3 Motivation

The motivation behind this project is to gain knowledge about Deep Learning and Artificial
intelligence and to help society by providing our product. This project will help different
markets like surveillance, security, medical diagnosis, space exploration. We have to learn
that how we trained a machine that can learn from experience. So, we opted this deep
learning which is sub part of machine learning field for project.

1.4 Objective 5

Figure 1.3: 1st column: Interpolated LR images, 2nd column:original HR images, 3rd column:
SRGAN image.

1.4 Objective

To design a model based on Super resolution GANs, that will super resolute the given
image from user using neural networks.

• Develop model from scratch to enhance images.

• Enchance the quality of given image to end confusion/blurriness.

• To develop application to generate high resolution images.

Numerous GAN-based techniques have been developed for manipulating data since the
development of GANs. Facial images GANs are able to produce more realistic faces when
compared to conventional algorithms, however most of them are unable to preserve the
identity of the individual being transformed.

Introduction to Generative Adverserial Networks 6

1.5 Project Scope

• This project is related to face only because descriminator is trained on high resolution
faces. So, it is limited to generate high resolution faces only.

• Collecting a dataset of low-resolution face images, Preprocessing the dataset, Train-
ing a GAN model, Evaluating the performance of the GAN model

• It is widely used in various fields of like image processing, Surveillance and security,
Gaming and animation etc

1.6 Methodology

Throughout the training process, a high-resolution (HR) image undergoes a transfor-
mation into a low-resolution counterpart. Subsequently, a Generative Adversarial
Network (GAN) is employed to enhance the low-resolution images and elevate them
to a super-resolution level. To achieve this, a discriminator is utilized to discern
between the high-resolution images and provide feedback to both the discriminator
and generator through adversarial network loss backpropagation. The network ar-
chitecture for both the generator and discriminator primarily consists of convolution
layers and parameterized Rectified Linear Units (ReLU). .

Figure 1.4: Generator network

Figure 1.5: SRGAN results

1.6Methodology 7

As shown above, SRGAN enhances visual appeal by incorporating additional intricate
elements when compared to a comparable design lacking GAN integration

1.6.1 Generator

The generator architecture employed in our approach consists of 16 residual blocks
with an identical layout. The structure of these residual blocks can be observed in
the Figure below. To enhance the generation of details, we propose utilizing dense
blocks instead. Our rationale behind this modification is driven by the fact that,
since the primary objective of this network is to generate super-resolution images,
employing conventional residual blocks alone proves insufficient. In the SR-ResNet,
16 residual blocks are combined into a larger block, with a skip connection that
connects the first and last blocks, aiming to improve gradient flow. However, this
approach may not fully exploit the benefits of skip connections. Our proposition is
to employ a novel network architecture called DenseNet. Differing from ResNet,
DenseNet employs concatenation rather than direct summation of feature maps.
Consequently, each layer receives the feature maps from all preceding layers as
input. This is represented by the equation: li = max (0, wi × [l1, l2, ..., li-1] + bi),
where [l1, l2, ..., li-1] denotes the concatenation of feature maps generated in the
previous convolutional layers 1, 2, ..., i-1. The structure of DenseNet establishes
short paths between each layer and all other layers, facilitating the smooth flow of
information within deep networks. Additionally, DenseNet exhibits the advantage of
parameter reduction through feature reuse, resulting in lower memory consumption
and computational requirements for achieving high performance. Consequently, we
employ dense blocks as the fundamental building blocks in our generator network..

Figure 1.6: The structure of the residual blocks

1.6.2 Discriminator

In addition to enhancing the structure of the generator, we have also made improve-
ments to the discriminator based on the spectral normalization GAN approach. The
objective is to train the discriminator network to differentiate between the generated

Introduction to Generative Adverserial Networks 8

super-resolution (SR) image and the original high-resolution (HR) image. The dis-
criminator architecture depicted in the above figure follows the design proposed by
SRGAN. It consists of eight convolutional layers, each utilizing a 3x3 filter kernel.
The number of filter kernels increases from 64 to 512 with a doubling rate. To
obtain the probability of sample classification, two dense layers and a sigmoid acti-
vation function are employed. Throughout the network, we utilize the LeakyReLU
activation with a slope of 0.2 and avoid the use of max-pooling. To enhance the
discriminator, we replace the standard discriminator with the spectral normalization
discriminator, denoted as DSN. Spectral normalization can be explained as follows:
We consider a simple discriminator constructed as a residual network with the input
x: f(x,) = F(x, Wi) + x, where = W1, W2, ..., Wi represents the set of learning
parameters. The function F(x, Wi) denotes the residual mapping to be learned, such
as F(W2h(W1x)), where h represents the activation function. For simplicity, we omit
the bias terms for each layer. The operation F(x) is performed using a shortcut con-
nection and element-wise addition. The final output of the discriminator is obtained
as D(x,) = H(f(x,)), where H corresponds to an activation function chosen by the
user based on the desired divergence or distance measure.

1.6.2.1 How to train

Taining happens in 2 phases:

In first phase we train discriminator and freeze the generator which means that the
training for the generator turns false and the network will only do the forward pass
and there will not be any back propagation,basically the discriminator is trained
in real Data and check if it can predict them correctly and same with fake data to
identify them fake.

Figure 1.7: Training discriminator

In second phase we train generator and freeze the discriminator, , we adopt a training
approach where the discriminator is frozen while focusing on training the generator.
we obtain results from the generator and utilize them to refine the model further,

1.7 Summary 9

aiming to deceive the discriminator more effectively and achieve improved output
quality.

Figure 1.8: Training Generator

To understand it better:

Figure 1.9: Training Generator

1.7 Summary

GANs are a type of generative model that operates based on principles from game
theory. They have demonstrated remarkable practical success in generating realistic
data, particularly in the realm of image generation. However, training GANs remains
a challenging task. On the other hand, Super-resolution (SR) imaging refers to a set of
techniques aimed at enhancing the resolution of an imaging system. These techniques
involve reconstructing a higher-resolution image or sequence from observed low-
resolution (LR) images. With over three decades of development, both multi-frame
and single-frame SR techniques have found significant applications in our daily
lives. SRGAN, a specific type of GAN, can be utilized to enhance the quality of our
images.

Chapter 2

Literature Review

In this chapter, we would be reviewing the work (similar to ours) of others extensively
and we would try to find gaps and/or shortcomings of those works. We would also
try to explain how our proposed application would fill those gaps by avoiding the
flaws existing on the current platforms.

Photographs record valuable moments of our life. With the popularization of mobile
phone cameras, users enjoy taking photographs even more. However, current cameras
have limitations. They have to reconstruct a complete and high-quality image from
a set incomplete and imperfect samples of the scene. The samples are often noisy,
incomplete in color and limited in the resolution and the dynamic range. Image
enhancement methods attempt to address the issues with color rendition and image
sharpness.

2.0.1 Related work

Image enhancement has been studied for a long time. Many operations and filters
have been proposed to enhance details, improve contrast and adjust colors. Wang et
al proposed a method for enhancing details while preserving naturalness. Aubry et al
proposed local Laplacian operator for enhancing details. Most of these operations
are algorithmic and based on heuristic rules. Bychkovsky et al. proposed a learning-
based regression method for approximating photographers’ adjustment skills. For
this purpose, they collected a dataset containing images before and after adjustments
by photographers. The convolutional neural networks (CNNs) have become a major
workhorse for a wide set of computer vision and image processing problems. They
have also been applied to the image enhancement problem. Yan et alproposed the
first deep-learning-based method for photo adjustment. Gharbi et al. proposed a fast
approximation for existing filters. Ignatov et al took a different approach by learning
the mapping between a mobile phone camera and a DSLR camera. They collected

10

2.1 Types of GANs: 11

the DPED dataset consisting of images of the same scene taken by different cameras.
A GANmodel was used for learning the mapping. Chen et al. approximated existing
filters using a fully convolutional network. It can only learn existing filters and cannot
do beyond what they can do. All these methods are supervised and require paired
images while ours is unpaired. The unpaired nature eases the process of collecting
training data.

Table 2.1: GAN-synthesized images used for super-resolution

GANModel Technique
1 MSGAN Lesion-Focused SR method
2 SRGAN Progressive upscaling method to generate true colors
3 ESRGAN Slices from 3 latitudes are used for SR
4 NESRGAN Noise and interpolated sampling
5 MedSRGAN Residual whole arbitary-scale super resolution
6 FPGAN Use a divide-and-conquer manner with multiple subbands in the wavelet domain
7 End to End GAN Uses a hierarchical structure

2.1 Types of GANs:

2.1.1 Super-Resolution Generative Adversarial Networks (SRGAN)

Super-resolution (SR) is upsampling a low-resolution image into a higher resolution
with minimal information distortion. Since researchers had access to machines strong
enough to compute vast amounts of data, significant progress has been made in the
super-resolution field, with bicubic resizing, efficient sub-pixel nets, etc

2.1.2 Wasserstein GAN (WGAN).

WGAN is another improvement to the family of generative adversarial networks
that improves model stability and defines a loss function that takes into account the
degree of difference between the probability distributions of real and fake images.
The critic is altered to produce a real/false score instead of the probability of being
real or fake

2.1.3 Deep Convolutional GAN (DC-GAN

DC-GAN is a GAN model that uses a deep CNN for each generator and discriminator
model. Using the Generator-Discriminator framework, this layout essentially uses a
CNN to provide snapshots from noisy data that belong to a particular distribution.

Literature Review 12

2.1.4 GAN with interpolation and conditional latent space (GAN-INT-CLS).

It is a GAN model that is trained on common text and image pairs, as well as for
each image, additional text embeddings are included to help the discriminator easily
distinguish whether it is real or fake.

2.1.5 ProgressivelyGrowing GAN (PRO-GAN)

This is an advance GAN helps in generating high-resolution images by constantly
adding new layers to the model and helping the generator and discriminator to train
gradually instead of learning everything at the same time. In PRO-GAN, Multi Scale

2.1.6 Gradient PROGAN (MSG-PROGAN)

This is an upgraded version of PRO-GAN that uses gradients along with a single
generator and discriminator that will use multi-level connections for better results.

2.2 Applications of GANS for image applications:

There are many image applications of GANS,some are discussed:

2.2.1 Image generation with enhanced quality

The primary focus of current GAN research has been on enhancing the quality and
usefulness of image generation capabilities. A notable advancement in this direction
is the extension of the LAPGAN model by incorporating a CNN cascade, allowing
for image generation within a Laplacian pyramid structure (Donahue et al., 2016).
Another significant development is the self-attention based GAN (SAGAN) intro-
duced by Zhang et al. (2019) for image generation tasks. SAGAN incorporates
attention mechanisms, enabling the modeling of long-range dependencies. Unlike
conventional convolutional GANs that rely on local points in lower-resolution fea-
ture maps to generate high-resolution details, SAGAN is intrigued by the potential
information that can be extracted from a combination of features across various
positions.

2.2.2 Image super resolution

The term "super resolution" encompasses a range of techniques used for upscaling
videos and images. These techniques involve training models with real image data

2.2 Applications of GANS for image applications: 13

and using it to generate high-resolution images from lower-resolution ones (Wang
et al., 2019). Wang et al. (2018) discovered that by combining three key aspects of
SRGAN - the structural network design, adversarial and perceptual loss - they could
enhance the visual effectiveness of SRGAN, resulting in an improved version called
ESRGAN. The primary building block used in constructing networks without batch
normalization was the residual dense block (RRDB). They also modified the rela-
tivistic GAN principle to enable the discriminator to predict relative realness instead
of absolute values. Additionally, they intensified the perception loss by activating
functionality before texture recovery and ensuring brightness consistency, which led
to improved texture reformation and consistency monitoring. The suggested ESR-
GAN demonstrates consistent visual quality with more practical and realistic textures
compared to SRGAN, and it secured first place in the PIRM 2018-SR Challenge
with the highest perceptual index.

2.2.3 image inpainting

Visual inpainting is a technique used to reconstruct missing sections of image data in
a way that conceals the fact that they have been restored. It is commonly employed to
remove unwanted artifacts from images or to restore deteriorated areas in historical
or artifact pictures. Nazeri et al. (2019) introduced Edge Connect, a two-stage adver-
sarial framework consisting of an image completion network and edge generators.
The edge generators generate both regular and irregular edge hallucinations, while
the image completion network utilizes these hallucinated edges as guidance to fill in
the missing regions.

2.2.4 Generation of anime character

The development and design of games and animations can be expensive due to
the need for a large number of artists to perform repetitive tasks. To address this,
Jin et al. (2017) introduced Automated Anime Characters, which utilizes a GAN
to generate and color anime characters. The model consists of a generator and a
discriminator system with various layers, batch normalization, ReLU activation, and
skip connections.

In a similar vein, Chen et al. (2018) presented a novel approach for transforming real-
world image graphs into cartoon-style visuals. Their proposed method, CartoonGAN,
employs a generative adversarial network (GAN) specifically designed for generating
cartoon-like images. This advancement holds promise for applications in computer
vision and graphics.

Literature Review 14

2.2.5 Text to image transformation:

The task of synthesizing text into meaningful images remains a challenge despite
advancements in performance. Existing techniques generate a basic outline of the
image but fail to capture the true essence of the text. Fedus et al. (2018) proposed the
concept of sample accuracy. By employing GANs, which are adversarial networks
known for their ability to generate high-quality models, they addressed the issue
of text-to-image synthesis. Their approach, called Actor Critic Conditional GAN
(CGAN), bridged the gap in capturing the intended meaning. Through qualitative
and quantitative analysis, they demonstrated that their method produces more natural
and faithful images compared to previous models.

Chapter 3

Requirements Specifications

3.1 Requirement Specifications:

Our system enables users to provide input to the model using images.. The GAN
analyzes image and gives output. This output will be super resolute enhance image.
The backbone of our model is a Generative Adversarial Network that is trained on a
calebA dataset containing 20000+ images.

3.1.1 Purpose

The most daring task of producing an image which have high pixels/resolutions
from its counterpart image having low resolutions which is mentioned to as super
resolution. From within the computer to understand and interpret the visual world
super resolution received considerable attention and has a large range of applications.

3.1.2 Intended Audience

This project work is for Developers, Testers, Engineers, Project Managers

3.1.3 project scope

Converting a LR into HR image is a difficult task, but however it is possible with the
use of image processing and deep learning algorithms

15

Requirements Specifications 16

3.2 Overall Description

3.2.1 Overview

The function of measuring the image of high resolution (HR) creates the equivalent
image of low resolution (LR). Recent work has focused on reducing the risk of square
reconstruction. Emerging ratings have very high signal-to-noise ratios (PSNR), but
they usually do not have high frequency data and are apparently unsatisfactory in a
way that they do not match the reliability at a high resolution which is expected.

The performance correction for these SR-monitored algorithms typically mean square
error (MSE) is minimize between the obtained HR image and ground reality. To this
end, we are proposing a highly competitive opposition network (SRGAN).

The artistic nature of computer to understand and interpret the visual world problems
is currently design by the specially sketch the architecture of CNNs. Taking pictures,
assigning value (readable and non-discriminatory metrics) to the various elements in
the picture is done by the CNN and be able to distinguish one from the other.

3.2.2 Machine Learning vs Deep Learning

Machine learning undergoes artificial intelligence. Model is trained in such a way
that the outputs given by the machine is similar to the one with the provided data
set. The machine learning model gives the output with greater accuracy. But after
multiple iterations the model gives same output for same input. In Deep learning, the
model is trained in such a way that after every iteration, the model trains itself and
gives more accurate performance. In deep learning the model learns and trains after
every input given to it. In order to enhance the ability of machine, we train it by some
sample data. Machine learns the data and then predicts the new data. After some
iterations the system is trained to give accurate outputs. Basic difference between
both of these is that deep learning models train after every iteration. Deep learning is
heavily inspired from human brain as human brain works with the help of neurons.
Same as deep learning works on complex ANN.

3.2.3 Product Function

Our project aims to achieve Super-Resolution from a low-resolution counterpart. The
main function is to estimate high quality image while retaining well-designed details
Performance management of SR-controlled algorithms often reduce the definition.

In this work we propose a highly critical opposition network (SRGAN) in which we
use a hidden residual network by disassembling connections and variations on the

3.3 Design and implementation 17

MSE as a single purpose. As seen from work done before this concept, we describe
the loss of understanding of the novel using high-level VGG network maps combined
with prejudice that promotes solutions with complex understanding that are difficult
to distinguish from HR reference images.

3.2.4 Operating Environment

It is necessary to think about the operating setting of the improved product. By doing
this the event team and user will handle the merchandise in an exceedingly positive
manner. a number of the wants for operational our system area unit as follows:

Operating system

– Minimum window 7 version

Hardware specifications:

– Processor minimum Core i5 (4th or 5th gen)

– Ram minimum 6 GB

– SSD

Framework and libraries

– Tensorflow

– keras

– Matplotlib

– Numpy

– pandas

– Open CV

Notebook used

– Kaggle console

– Google collab

IDE

– PyCharm

Requirements Specifications 18

Category Tools
System lenovo core i5,5 gen with 8 GB RAM and graphic card (intel HD 500)
Language python

Table 3.1: Design and implementation

3.3 Design and implementation

3.4 Assumptions and Dependencies

Complete structure of SRGAN. Next, Feature Map Input is a remnant of a non-
straightforward map model. The image is then reconstructed with a sample layer
and convolutional layer. Moreover, network releases restructuring effect.. And
then we include non-realistic and realistic Images with high resolution in a separate
discriminatory network, which is responsible for discriminating image authenticity.

We are using different layers from KERAS library to achieve our task. The main
concern or which we assume is the computational power can interrupt in our work so
will have to make sure it gets a high computational hardware such as a GPU.

Our algorithm performance depends on adversarial network, which includes discrim-
inator and pre-trained VGG19 network, which we will be importing form Keras built
in library.

3.5 System Features

3.5.1 Super Resolution

Currently, there are possibly two ways to enhance the image quality by editing
particularly. The first is to improve hardware devices which includes image sensors
and light but upgrading of hardware by this method is very difficult to promote in
operating systems and expensive. Other Images Super-Resolution Reconstruction
(ISRR) technology that integrates images having low resolutions and reproduces
images with high resolution using digital image processing technology and machine
learning algorithms.

Our program is designed to achieve Super-Resolution (SR) from a image with low
resolutions counterpart, using the Generative Adversarial Network (GAN).

3.6 Operational Requirements 19

3.5.2 Finer Texture Details

By this framework we inferred photo realistic natural image for 4x up scaling factor.
We can obtain finer texture details of image after passing through this network.

3.6 Operational Requirements

Functional requirements define the specific function of the system to be performed by
the system. It explains functions of a system and its components or its components.
Operational requirements are supported by non-functional requirements, which place
constraints on construction or use.

3.6.1 Generator and Discriminator Network

These two networks are the basis of the Generative Adversarial Network. Next,
Feature Map Input is a remnant of a non-straightforward map model. The image is
then reconstructed with a basic layer and a convolutional layer. Next, the network
releases the restructuring effect. Finally, we include non-realistic and realistic HR
images in a separate discriminatory network, which is accountable for discriminating
image originality .

Figure 3.1: Generator and discriminator Network

3.6.2 Utility Functions

These functions are used to plot, load test data, downscale or upscale images, calcu-
late losses and accuracy, and display progress.

3.6.3 Non-Functional Requirements

Nonfunctional requirement are requirements which shows the quality attribute of the
system.

Requirements Specifications 20

3.6.3.1 Honesty

The ability to maintain a defined performance level is what loyalty means.

3.6.3.2 Retention

Maintenance is one of the most common changes made after the program is com-
pleted. As time changes, so do needs.

3.6.3.3 Depression

Power is translated into various defined areas without the use of actions or means
other than those devoted to this purpose in the product.

3.6.4 Functional Requirements

3.6.4.1 Accuracy

Good accuracy is important in our system. This is because it is meant to reduce
manual work needed. It should not give too much false predictions because this can
result in increased manual work. The accuracy of the system should meet certain
threshold level.

3.6.4.2 Speed and efficiency

The speed of the system is important because it effects the number of images that can
be processed in a certain amount of time. The system should be optimized enough to
run on modest hardware as well.

3.6.4.3 Unauthorized person should not be able to use the system

The system should be secure and only available to authorized people. People who
are not authorized should not be able to use the system due to the nature of its
application.

3.7 Use case Model

The use case model encapsulates the necessities of the system. Usage cases square
measure some way of human activity with users and alternative shareholders con-
cerning what the system is meant to try to. The usage case diagram shows the

3.7 Use case Model 21

interaction between the system and external businesses. These external structures
square measure spoken as actors. Actors represent roles that will embody human
users, external hardware, or alternative programs. the employment case is one unit of
purposeful work. It offers a high-level read of behavior that’s visible to somebody or
one thing outside the system.

Figure 3.2: Overview usecase diagram

Use case description

Figure 3.3: overview usecase description

In below use case diagram, it is described how this application will work and
highlights the interaction between the user and the application to generate high
resolution image using GANs.

Requirements Specifications 22

Figure 3.4: use case diagram

Use case description

Figure 3.5: usecase diagram description

Chapter 4

System Design

In this chapter of System Design, which is all about defining component, inter-
faces, and data to reach to our specified requirements, we have a deeper look into
the development phases of our FACE-GAN. This chapter will discuss the system
architecture and provide details of the design methodology, constraints, models,
interaction between the system and the user.

4.1 System Architecture

This project is basically based on artificial intelligence. Allah has blessed us with
natural intelligent. Brain is main processing unit of human body. All calculations are
done by brain and all work which includes intelligence are processed by the brain.
So, machine trained by human being. Artificial based on computer vision.

Artificial intelligence (AI) is that the intellect displayed by machines, in distinction
to the natural intelligence displayed by humans and animals, which has data and
sympathy. The distinction between the previous paragraphs and therefore the last
paragraphs is typically indicated by the chosen outline. ’Strong’ AI is usually noted
as AGI whereas tries to mimic ’natural’ intelligence are referred to as ABI. AI’s
leading manuals describe the sector as a study of "intelligent agents": any device
that acknowledges its atmosphere and takes steps that increase its possibilities of
with success achieving its goals. In general, the term "artificial intelligence" is
usually accustomed describe intelligent devices that mimic "cognitive" tasks that
folks accompany the human mind, like "problem solving" and "learning”.

23

System Design 24

4.2 Machine Learning

Machine learning relies on algorithms that square measure designed on completely
different platforms like Python and MATLAB. It’s an area under artificial intelligence.

TMachine learning algorithms have revolutionized the capabilities of AI, enabling
it to surpass its predefined tasks. In the pre-mainstream era, AI programs were
primarily utilized for fundamental functions in business settings, such as intelligent
automation or rule-based decision making. These AI algorithms were confined to
the specific domains they were designed for. However, with the introduction of
machine learning, computers have transcended these limitations and have started to
evolve with each iteration, expanding their capabilities beyond initial expectations.
As mentioned, machine learning algorithms have the potential to boost themselves
through coaching. Today, cc algorithms square measure trained victimization 3 com-
pletely different ways. Here square measure 3 kinds of machine learning: supervised
reading, supervised reading, and advanced reading.

4.2.1 Types of Machine learning

Machine learning has usually comprises of three types.

Figure 4.1: Machine Learning Types

4.2.2 Reinforcement learning

Consolidation takes inspiration from however individuals learn from the information
in their lives. It introduces a self-reformation algorithmic rule and learns new
things victimization trial and error methodology. Positive outcomes are inspired,
or’strengthened’, and negative outcomes are discouraged or ’punished’.

4.2 Machine Learning 25

4.2.3 Deep Learning

Machine learning has a advanced classify as Deep learning that uses algorithms
impressed by the structure and brain known as artificial neural networks. It makes
computation of multilayers neural networks. It will handle high dimensional knowl-
edge. Machine learning algorithms train deep neural networks to attain higher
accuracy. Deep learning mimics the way as our brain performs i.e., it learns from
expertise.

Figure 4.2: Performance Graph

4.2.4 Perceptron andArtificial Neural Networks

Perceptron and ANN studies the essential unit of brain referred to as a somatic cell
or a baryon. Artificial somatic cell or a perceptron could also be a linear model used
binary classification. Modeling of neurons that has sets of inputs. a specific weight
is given to each input. The somatic cell calculates various functions on these inputs
having some weight and offers the output.

Figure 4.3: Artificial Neural Network Structure

It receives n inputs; inputs applies a transformation are then summed up and produce
an output. The human being brain is made up of neuron just like that multiple
perceptron build artificial neural network (ANN).

It has three important layers:

System Design 26

4.2.4.1 Input layer

It accepts input

4.2.4.2 Hidden layer

It is between input layer and output layer. It performs computations

4.2.4.3 Output layer

In the hidden layer of neural network, the inputs pass through the different functions.
At last, obtained output is delivered. The weight shows the usefulness of a particular
input, input implies a more impact on neural networks if has more weight.

4.2.4.4 Bias:

An extra parameter withinside the perceptron that is utilized to modify the output
in conjunction with weighted sum of the enter to the neuron which the version in a
manner that it may in shape pleasant for the given data. Transfer characteristic is
giver below F(x) = w.x+b – bias

w : weighted vector. x : input vector.

4.2.5 Activation Function:

It maps the inputs into the outputs. To produce the output threshold is used by these
functions.

– Identify or Linear

– Binary Step or Unit

– Logistic or sigmoid

– Tanh Function

– ReLU

– SoftMax

4.3 Generative Adverserial Networks

In generative adversarial networks there are two networks namely as generator
network and discriminative networks. They work against each other that’s why it

4.4 Design Constraints 27

is called adversarial networks. In both networks 16 residual blocks are connected
in series with each other. The data is processed through these blocks of generator
networks and SR image is obtained. After that this SR image with HR image fed
into discriminative network and processed through the blocks and probability will be
checked which is in between 0 and 1.

4.4 Design Constraints

In this project different kind of limitations are faced from staring of its implemen-
tations. They will be discussed below that what problems occurs and how these
problems are solved by critically analyzing all aspects being studied in whole engi-
neering. In life we often face hurdles in the way of progress. Now Designs constraints
are now discussed.

4.5 Personal computer

Firstly, the thing which hinders is memory issue in image processing. The image is
not fitting on the VRAM of GPU Secondly, for training the neural networks high
processing is needed for training. Our main purpose is to train the networks, but this
can be done in short time if and only on pc that has comparatively high processing
power.

4.6 Errors in code

Programming the algorithm of neural networks, sometime complexity faced because
of different errors. Errors occur in pre-processing the data and some occur due to
language syntax because we have to follow the syntax of Python.

4.6.1 Errors while training networks

Firstly, we load the dataset in python language for processing the data and then
networks algorithms are designed. So, after designing the networks we face some
hinders in training of generator and discriminative network. While training code get
to out of memory, and we do image reconfiguration again and again

System Design 28

4.7 Design Methodology

In designing of neural networks in generative adversarial network following method-
ology is applied. In this how the project will implement is described.

Figure 4.4: Performance Graph

4.7.1 Dataset Acquiring

In this project the dataset is consist of HR images as well as LR images. We
downloaded the Caleba dataset comprises of facial images.. Dataset contains 202,599
number of face images of various celebrities, 10,177 unique identities and 40 binary
attribute annotations per image.

We acquire the dataset from below directory from where it has been downloaded:
"https://www.kaggle.com/datasets/jessicali9530/celeba-dataset"

4.7.2 Data Preprocessing

After acquiring the dataset, the next step is to be preprocessing of data. In this we
import the different libraries like KERAS etc. Dataset is imported from directory in
python by which we train our networks. In this phase missing data also be handled.
Also, the dataset is split into two parts, one for testing and other for validation.

http://www.kaggle.com/datasets/jessicali9530/celeba-dataset

4.7 Design Methodology 29

4.7.3 Generator Network

After above two explained processes, we come in a stage that now generator network
is to be build. For making generator network we import activation functions like
PReLU, Batch Normalization and sigmoid. After importing these functions, we give
kernel size, strides for performing convolution. We do 2D convolution in generator
network along with up sampling.

4.7.4 Discriminator Network

After generator network, the next turn is of discriminative network. It will discrim-
inate between original image and fake image. It calculates the probability of two
images that is HR image and SR image, these both images fed into discriminative
network

4.7.5 ResNet

ResNet, short for Residual Network, is a neural network architecture specifically
designed to tackle the issue of vanishing gradients in deep neural networks. It
overcomes this challenge by incorporating shortcut connections between layers,
enabling the gradient to flow directly from the input of one layer to the output of a
subsequent layer, circumventing the intermediate layers. This effectively mitigates
the problem of vanishing gradients and enhances the network’s learning capability.

Comprising multiple residual blocks, each block consists of two convolutional
layers with a shortcut connection linking them. The input to the block undergoes
convolutional operations in the first layer, followed by the output of that layer passing
through a second convolutional layer. The output of the second layer is then added
to the input of the block, and the result is subjected to an activation function. This
structure empowers ResNet to effectively capture and propagate information through
the network, facilitating more efficient learning.

4.7.6 Training

Training of a neural network involves using a training database to update the model
instruments to create a good map of the output input.

This training process is solved using an optimization algorithm that searches the
space for potential weights of the neural network model of a set of weights that lead
to optimal performance in the training database.

System Design 30

4.8 High Level Design

System architecture of project is based on generative adversarial network and then
super resolution using GAN. In this ResNet pre trained network will also be used to
get better results.

4.8.1 Generative Adverserial Network

It is primarily based totally on deep learning generative model that is used for
unsupervised learning. It is a network where two networks are competing to produce
contrast in the data. It has generator network and discriminator network.Generative
adversarial networks (GOODFELLOW et al., 2014) framework learning production
models based on the concept of the game. . Proper Background training a G (z; (G))
producing network that produces almost identical data samples distribution, p data
(x), by converting the sound carrier z as x = G (z; (G)). Training the G signal is
provided by a discriminating D (x) network trained to distinguish samples from the
productive pG distribution from real data (from pdata distribution). A network that
produces and trains in such a way that the discriminator accepts the consequences as
that literally. The G and D networks are counter-intuitive using anticipated loss.

V (G,D) = Eypdata(y)[log(D(y))] + EzpZ(z)[log(1D(G(z))],
Where z is a random encoding on the latent space and y is the sample from the pdata
distribution. Then the optimal results for G and D will be achieved after doing

minG maxD V (G,D)

GANs, there may be a Generator network that takes a pattern and generates a pattern
of information, and after this, the Discriminator network makes a decision whether or
not the information is generated or taken from the actual pattern, the usage of a binary
Classification problem with the assist of a sigmoid feature that offers the output within
side the variety zero to 1.

4.8.2 Super Resolution Generative Adversarial Network

In this project super resolution of a single image is achieved by using GAN [5]. By this
method, a low-resolution image can be super resolved up to 4x. for example if an image
has pixels of 64x64, so after the passing through SRGAN [7] we reproduce an image
of 256x265 pixels. We feed the 64x64 pixel image into the generator network and it
regenerate the super-resolved image of 256x256 pixels. This is the great achievement by
using deep learning.

4.8 High Level Design 31

4.8.3 SRGANArchitecture

Figure shows the generator construction and discrimination.. K9n64s1 means a size 9
kernel, 64 channels and step 1. Remaining blocks are used in apartheid. Two new concepts
used in network design are P ReLU and Pixel Shuffler.

Figure 4.5: Architecture of generator and discriminator network

Both Network architectures consist of convolution layer, Parametric Rectified Linear
Unit (P ReLU) layer, batch normalization and pixel shuffler. B Residual blocks consist
of combination of convolution, batch normalization and PReLU. These all are types of
activation function which are being used in training of neural networks. There is used
a term called kernel size, channels, and steps. These define size of filter for doing the
convolution with how many steps. In fig 4.5 different blocks are shown that performs the
operations to obtain the super-resolved image and analyze whether the generated image is
fake or real.

4.8.4 Activation Function

Parametric Rectified Linear Unit (P ReLU) Function It is an activation function called
Parametric Rectified Linear Unit. From its name we came to know that it is a linear
function applied in deep learning algorithm. It has slop of negative values. It is successful
innovation in deep learning convolution neural networks. In a linear graph, the values with
negative slope are converted into positive values. It multiplies the negation value with
smallest value like 0.02 to make it positive. Like ReLU it does not eliminate the negative
value in the data.

The equations for P ReLU function are given below:

f(yi) = yi ; if yi >1 f(yi) = ai . yi ; if yi <1

For back propagation, its gradient is:

df(yi) 0, if yi>0

System Design 32

dai= yi ifyi<=0

Figure 4.6: Relu,leaky Relu and PReLU Comparison

4.8.5 Batch Normalization Function

Batch normalization is a function in deep learning that normalize the values for training
the data. It is batch normalization, so it normalizes each layers of input data. Training deep
neural networks through dozens of layers is challenging as it can be sensitive to random
initial weights and algorithm adjustment algorithm. It makes neural networks to work
faster. By this technique we can save our time in training the dataset. We import batch
normalization from KERAS library.

Figure 4.7: Batch Normalization vs No normalization

4.8.5.1 Leaky Rectified Linear Unit Function

It is a leaky model of ReLU. It is utilized in system gaining knowledge of for plotting the
date as authentic or false. It plots the output in among the ‘0’ and ‘1’. It is a try and clear
up the problem of demise ReLU Leaks assist growth the variety of ReLU work. Usually,
the price of a is 0.01, however. When non is 0.01 then its miles known as Randomized
ReLU. So, the scope of Leaky ReLU is (-infinity to infinity). Both profitable jobs and
Randomized ReLU paintings monotonic naturally. Also, what comes out of them is also
one nature.

4.8 High Level Design 33

4.8.5.2 Pixel Shuffer

Pixel Shuffling rearranges the shape (N, C, H, W) into (N, C / r * r, H * r, W * r) where
the r is the push element. It basically changes the depth (channel) of space (height and
width). In Generator, pixel shuffling is used to increase image size.System implementation
in this project is program the algorithms of neural networks in different platform like
Python and MATLAB etc. In this chapter we will discuss that how we implement the
whole system. Like what technologies are adopted, what kind of platform is chosen to
develop the algorithms of different networks. All these things are explained which involve
in the process of developing a well-known system which is now in the field of electrical
engineering. We will also discuss the system architecture thoroughly.

4.8.6 Sequence Diagram of Proposed System

Figure 4.8: Sequence diagram of proposed system

Chapter 5

System Implementation

5.1 Introduction

In system architecture we define the whole structure of super resolution generative adver-
sarial network. Usually, GAN consist of generator network and discriminative network as
discussed in previous chapters.

Sr no. Component Type
1 Batch Normalization Normalization
2 Dense Connections Feed Forward Network
3 Leaky ReLU Activation Function
4 Pixel Shuffle Miscellaneous Components
5 PReLU Activation Function
6 Residual Connections Skip Connection
7 Sigmoid Activation Activation Function
8 SRGAN Residual Blocks Skip Connection Loss
9 VGG Loss Loss Functions

Table 5.1: Components of SRGAN

5.1.1 Batch Normalization

Batch Normalization is a technique designed to mitigate the impact of internal covariate
shifts and facilitate faster training of deep neural networks. It accomplishes this by
introducing a normalization step that adapts the statistics and characteristics of the layer
input. On gradient flow through the network, Performing batch normalization implies a
positive effect by decreasing the trust of the slopes on the parameter scale or its initial
values. This allows for the use of very high levels of learning without the threat of
variability. In addition, batch making tends to model and reduces the need for Dropout.

34

5.1 Introduction 35

During training In our generative adversarial networks (GANs), training happening in
both the generator and the discriminator. The generator is trained to produce data that is
similar to the real data, while the discriminator is trained to distinguish between the real
data and the generated data. During training, the generator tries to fool the discriminator
by producing data that is indistinguishable from the real data, while the discriminator tries
to correctly classify the data as real or fake. This process continues iteratively until the
generator produces data that is similar enough to the real data to fool the discriminator.

5.1.2 Dense connection

A dense layer with 1 unit and the activation function ’sigmoid’ is applied to the output of
the last LeakyReLU layer using the Dense() function. This output represents the predicted
probability of the input image being real or fake (0 for fake and 1 for real) and is called the

"real vs fake patch".

In summary, The code utilizes a sequence of tailored dense blocks, accompanied by a fully
connected layer and a concluding dense layer, to determine whether a high-quality input
image is real or fake in the context of a GAN.

5.1.3 Pixel shuffle

Pixel Shuffle is a function used in super-resolution models to use active sub-pixel con-
volutions with stride. Specifically, it rearranges objects in shape tensor to shape tensor.
(*,Cxr2,H,W)

Figure 5.1: Pixel shuffle

5.1.4 Generator Architecture

Generator structure consists of a residual network in place of deep convolution networks
due to the fact the final networks are clean to educate and permit them to be very deep to

System Implementation 36

provide higher results. This is due to the fact the residual network makes use of a form of
connection referred to as skip connections

Figure 5.2: Generator Architecture(https://images.app.goo.gl/s2CFixE5hcN1EwDP7)

B (16) blocks left which are created by residual network. Inside the remaining block, two
convolutional layers are used, with 64 feature and standard batch layers follows the 3 × 3
small heads maps and as the activation function we use the Parametric ReLU

Adjustment of the input image is enhanced by two trained layers of sub-pixel convolution.

5.1.5 VGG loss

VGGLoss is a type of content loss used in the SRGAN. Another way to lose a smart pixel;
IVGG Loss is trying to get closer to understanding the similarities. For 19 pre-training
VGG network VGG oss is based on ReLU activation layers. By presenting the feature
map obtained by the solution (after operation) before the max pooling wire inside the
VGG19 network, which we think is provided. We then describe the loss of VGG as the
Euclidean distance between the presentation of the features of the reconstructed image and
the reference image.

Instead of using a fixed amount of rectifier (alpha) parameter such as Leaky ReLU the
generator structure uses the parametric ReLU as an activation function. Effectively reads
editor modifiers and improves accuracy with additional calculated costs that are ignored

5.1.6 Discriminartor Architecture

The function of discrimination is to distinguish between SR images and real HR images. It
uses leaky ReLU as function. The network consists of eight specification layers with 3 ×
3 filter elements, which increase in size from 2 to 64 and then 64 to 512 kernels. Image
correction is reduced by using the stable convolutions it doubled the number of elements
every time. Two dense layers follow the appeared 512 feature maps and a leaky ReLU used
during the final sigmoid opening function to determine the chance of sample separation.

5.2 Tools andTechnologyused 37

Figure 5.3: Discriminator Architecture(https://images.app.goo.gl/ceUvGpFgE7ByFFFt7)

5.2 Tools and Technology used

For programing the logarithms of neural networks in machine learning computer vision
technology is used. Personal computer is used for programming. In this project personal
we use kaggle code because of its powerful dual GPUs, keep in mind that kaggle code
is online notebook to run your code using their cloud based resources. Because for the
training of networks we need high processing power for this purpose so we used kaggle
code.

Figure 5.4: Coding on kaggle code

5.2.1 RAM

In this system 8 GB ram is installed in the group of 4Gb + 4GB.It is 1600MT/s DDR3L
Non ECC RAMMemory.

5.3 5.3. Development Environment/Language Used

The code is written in Python using TensorFlow and Keras libraries as a development
environment. The code uses the Tensor Flow library to load and preprocess image data

System Implementation 38

from a directory, and then maps a scaling function to the data to convert pixel values from
the range (0, 255) to (0, 1). The code also defines functions to process the input and target
images, and uses a convolutional neural network architecture to train the model.

Numpy is also used in this project because NumPy brings the computational power
of languages like C and Fortran to Python, a language much easier to learn and use
using NumPy in Python gives functionality comparable to MATLAB since they are both
interpreted and they both allow the user to write fast programs as long as most operations
work on arrays .

Developing environment of project is like to demonstrate an application of deep learning
in image processing that can be useful for tasks such as upscaling low-resolution images
for better visualization or analysis.

5.3.1 Python Language

Python language is used due to its compatibility in developing the neural networks. Because
for the machine leaning Python language is easier, it has built in libraries and directories.

Python is an interpreted, fine-quality, and common language of programming. The read-
ability of the code is emphasized by the Python architecture philosophy and its amazing
application of critical guidance. Its language-building and focused method intends to
support editors with writing clear, logical code for small and large projects.

Python typed hard and collected garbage. It supports many planning paradigms, including
programming (especially, process), object orientation and good performance. Python is
often described as a "battery-powered" language because of its common library.

Python provides short and readable code. While high-tech and versatile functionality
works after artificial intelligence AI and machine learning ML, simplicity of the Python
allows developers to write consistent programs. The developers found that they put all
their efforts into solving the ML problem instead of focusing on the nuances of language
technology.

Furthermore, Python is popular with many developers as it is easy to read. Codes of Python
are understandable to humans, making it easy to construct machine learning models.

Vast Selection of Frameworks Libraries Using of AI and ML algorithm requires a lot of
time and can be tricky. for Finding the best coding solutions for engineers, it is essential to
have a well-coordinated and well-tested environment The development time can be reduced,
if the programmers turned to many Python structures and libraries then the development
time can be reduced. A software library is a pre-written code used by an engineer to solve
a common task of programming. Python, with its own state-of-the-art stack of technology,

5.3 5.3. Development Environment/Language Used 39

has a comprehensive set of implants and machine learning libraries. Here are some of
them:

– Tensorflow

– Keras

– Numpy

– Matplotlib

– CV2

– math

Python allows easy and Powerful Implementation What makes Python one of the best
machine learning options is that it is easy to use and powerful. Beginners or learners
must be familiar with the language before they can use it for machine learning or artificial
intelligence.

This is not the case with Python. If you know the Python language, you can continue to use
it for machine learning due to the large number of libraries, resources, and tools available.
It takes longer to write code and debug in Python than in Java or C++. Machine learning
and artificial intelligence programmers generally prefer to spend time building algorithms
and heuristics rather than fixing syntax errors in their code.

5.3.2 Google collab

Some of the early development work of project is also done on Google Colaboratory,
popularly known as Colab, is a web IDE for python that was released by Google in
2017. Colab is an excellent tool for data scientists to execute Machine Learning and Deep
Learning projects with cloud storage capabilities.

5.3.3 pycharm

Frontend is developed using flask on a localhost 5000 and i prefer pycharm for it because
PyCharm is a powerful IDE specifically designed for Python development. It offers a
comprehensive set of features, such as code completion, debugging tools, project man-
agement, version control integration, and more. These features make it easier to write,
test, and debug Flask applications. PyCharm allows you to set up and configure a local
development environment on your machine.PyCharm runs on your local machine, which
means you don’t need an internet connection to develop Flask applications.

System Implementation 40

5.4 Convolutional Layer

The Convolutional layer in CNN extracts the features from the images. The Convolution
layer makes sure that the spatial relationship between pixels is intact. In this layer con-
volution is performed with a filter of size MxM. The filter slides over the image and dot
product is taken between image and filter with respect to the size of the Convolution filter.
The output from this layer is called feature map. This is then fed to other layers.

Figure 5.5: Convolution with kernel size of 3

5.4.1 Pooling layer

Pooling layer typically follows the convolution layer. . This layer is aimed at reducing
the computational costs by decreasing the size of convolved feature map. This is done by
decreasing the connections between layers. Convolution layer extracts the features while
pooling layer summarizes them. It combines each group of the outputs of the previous
layer into a single neuron. The Common variations of pooling operations: average pooling,
max pooling and sum pooling. We have used max pooling in our CNN.Max pooling is
used to help over-fitting by providing an abstracted form of the representation. It also
reduces the number of parameters to learn thus reducing computational cost.

5.4.2 Max pooling

Takes the largest element in the feature map.

Figure 5.6: Max pooling

5.4 Convolutional Layer 41

5.4.3 Average pooling

Takes the average element in the feature map.

Figure 5.7: Average pooling

5.4.4 Sum pooling

The sum of all the elements in the feature map.

Figure 5.8: Sum pooling

5.4.5 Fully connected layer

The fully connected layer has weights,biases and the neurons. It is used to connect the
neurons between two layers. The image is flattened and then fed to the Fully Connected
layer.

Figure 5.9: Fully connected layer

System Implementation 42

5.4.6 Dropout layer

In a dropout layer a few neurons are dropped during training of model. This is done
because due to fully connected layers overfitting can occur. Dropout is a technique that
operates by randomly deactivating connections between hidden units, setting their values
to 0 during each update of the training phase..

Figure 5.10: Dropout layer

5.5 Processing logics/Algorithms

5.5.1 Dataset Acquisition

Dataset
Name of Dataset Caleba

year Last updated on 2018
Number of face images 200000

Source Kaggle
Table 5.2: Dataset

In this code, the data acquisition is being done using the ‘glob ‘ function provided by
TensorFlow.

Figure 5.11: Loading data into model

5.5 Processing logics/Algorithms 43

5.5.2 Generator Network

Generator network defines a neural network model for enhancing the quality of low-quality
images. The model takes an input image of shape 64x64 pixels with 3 color channels. The
output of the final residual block is added to the output of the first convolutional layer and
passed through two more residual blocks with 256 filters.

Finally, the output of the last residual block is passed through a convolutional layer with 3
filters and a kernel size of 9x9. The output is then passed through a hyperbolic tangent
activation function to produce the final high-quality image output.

Figure 5.12: Plotting of Generator model(1)

System Implementation 44

Figure 5.13: Plotting of Generator model(2)

5.5 Processing logics/Algorithms 45

Figure 5.14: Plotting of Generator model(3)

System Implementation 46

Figure 5.15: Plotting of Generator model(4)

5.5 Processing logics/Algorithms 47

Figure 5.16: Plotting of Generator model(5)

System Implementation 48

Figure 5.17: Plotting of Generator model(6)

5.5 Processing logics/Algorithms 49

5.5.3 Discriminator Network

Discriminator defines a discriminator neural network model for distinguishing between
real and fake high-quality images. The model takes an input image of shape 256x256
pixels with 3 color channels.

The input image is passed through 8 custom convolutional layers, each with increasing
numbers of filters (64, 64, 128, 128, 256, 256, 512, 512) and alternating stride values of
1 and 2. Each convolutional layer is followed by batch normalization and a LeakyReLU
activation function with a negative slope of 0.2.

The output of the last convolutional layer is flattened and passed through a fully connected
layer with 1024 units, followed by a LeakyReLU activation function. The output of this
layer is then passed through a final fully connected layer with a single unit and a sigmoid
activation function, producing a real-vs-fake patch output that represents the discriminator’s
prediction of the input image being real or fake.

System Implementation 50

Figure 5.18: Plotting of discriminator model(1)

5.5 Processing logics/Algorithms 51

Figure 5.19: Plotting of discriminator model(2)

System Implementation 52

Figure 5.20: Plotting of discriminator model(3)

5.5 Processing logics/Algorithms 53

Figure 5.21: Plotting of discriminator model(4)

Figure 5.22: Plotting of discriminator model(5)

Chapter 6

System Testing and Evaluation

After training of networks next step is to test the network model. For this purpose, we load
the image into trained model of neural networks and then these trained networks give us
output results. In our project we have to achieve super resolution, so we feed face image
having low pixel values or resolution which in term Super-Resolved picture is obtained.

For the training and testing we have split the data set into two halves. One was used for
training the model and the other was used for testing.

6.1 Quality Control

For Quality control, we will ensure that the data is safe and secure first. Since Facial
images are private property so they should not be compromised neatly, testing at every
stage and level of the system will be ensured. These tests will help in figuring out the
state and performance level of the model. These tests will be used to further enhance the
capability of the software to outperform.

6.2 Test cases

6.2.1 TC-01

54

6.2 Test cases 55

Test case
Test case id TC-01

Function/need to test Last updated on 201Training model
Initial state Application must be installed on syste,

Input Dataset
Expected Output System should train on data
Actual Output Model trained sucessfully
Status pass

Table 6.1: TC-01

This test case refers to the training of the CNN. The dataset present in computer and goal
is to train CNN on this data. The expected output of this test case is a trained CNN ready
for testing and deployment.

6.2.2 TC-02

Test case
Test case id TC-02
Function/need to test Load Image
Initial State Image should be available
Input Image
Expected Output System should accept image
Actual Output Image is loaded
Status Pass

Table 6.2: TC-02

The function to be tested here is loading the image. The input will be an image. The image
that the user wishes to upload should be present on the computer, The expected output of
this test case is the successful uploading of the image.

6.2.3 TC-03

Test case
Test case id TC-03
Function/need to test Image Preview
Initial State Model is generating image
Input Image
Expected Output System should display selected image
Actual Output Image is displayed
Status Pass

Table 6.3: TC-03

System Testing and Evaluation 56

Preview of the selected image is important because it makes sure that the right image has
been selected. The expected output is preview of selected image and actual output was
also preview of selected image. So this test case is deemed pass.

6.2.4 TC-04

Test case
Test case id TC-04
Function/need to test Displaying ststus
Initial State generating
Input Image

Expected Output
System should generate and display out-

put
Actual Output HR image
Status Pass

Table 6.4: TC-04

This use case targets whether the violator is detected and output is displayed. The expected
output is prediction is displayed successfully and the actual output is according to the
expected output.

6.3 Testing

The following testing was done on the system.

6.3.1 System testing

After successful integration we combined all the components and then tested the whole
system. This made sure that everything was working as expected.

6.3.2 Black box testing

In black box testing we checked the output with respect to the functional specifications by
giving input.We checked whether the violators were being detected.

6.3.3 White box testing

We checked the performance of application internally from the perspective of end user.

6.4 Testing Results 57

6.3.4 Performance Testing

Performance Testing We checked the overall response time of the system. Like how much
time our mobile application takes to upload image and get result.

6.4 Testing Results

Some results from our trained model

low quality images given to model

Figure 6.1: Low quality images

Generated high quality images Real high quality images

Figure 6.2: Generated high quality images

Figure 6.3: Real high quality images

Chapter 7

Conclusions

Now a days, Deep learning is playing very important role in our lives as AI is now a part
of human life. The project Lower resolution to higher resolution is the project that is very
helpful in our personal life as well as in professional life. Most of the editors takes too
much time to enhance the image from lower resolution to higher resolution. This project is
the direct solution to the problem to fill attractive colors.

7.1 Outcome

The application of GAN-based methods to convert lower resolution image to higher
resolution using deep learning has shown promising results in generating realistic and
visually appealing images. The use of GANs allows for the generation of high-quality
images by training a generator model to produce images that are similar to the distribution
of real images. Additionally, the use of deep learning techniques such as CNNs has enabled
the model to learn complex features of face images and produce accurate results.

The use of super resolution GAN to convert LR to HR using deep learning in a android
application has opened up new possibilities for enhancing the user experience of face image
enhancement. By implementing this technology into a mobileapplication, it becomes more
accessible and user-friendly, allowing users to easily upload their lower resolution face
images and generate high resolution face images.

This technology has the potential to revolutionize the image enhancement process by
providing a fast and efficient way to produce high-quality images, without the need for
extensive manual editing. Additionally, the mobile application can also serve as a valuable
tool for editors and artists to enhance their creative output.

58

7.2 Limitations 59

7.2 Limitations

There are still some limitations to be addressed, such as the need for more diverse datasets
to improve the generalization of the model, this approach has the potential to significantly
improve the efficiency and quality of the image enhancement process.

7.3 Future work

Overall, the incorporation of SRGAN through deep learning into a web-based application
is a remarkable breakthrough in the realm of computer vision, holding immense potential
to transform the image enhancement industry. As the technology continues to evolve, we
can expect to see even more innovative and exciting applications in the near future.

Figure 7.1: Generator loss per epoch

Conclusions 60

Figure 7.2: Discriminator loss per epoch

References

[1] Bulat, A., Yang, J., Tzimiropoulos, G. To learn image super-resolution, use a gan to learn
how to do image degradation first. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 185–200, 2018.

[2] Ledig, C., Theis, L., Huszar, F., Caballero, J., Aitken, A., Tejani, A., Totz, J., Wang, Z., Shi,
W. Photo-realistic single image super-resolution using a generative adversarial network. In
2017 IEEE Conference on Computer Vision & Pattern Recognition 2017.

[3] Tong, T., Li, G., Liu, X., Gao, Q. Image super-resolution using dense skip connections. In
2017 IEEE International Conference on Computer Vision, 2017.

[4] Dong, C., Loy, C.C., Tang, X. Accelerating the super-resolution convolutional
neuralnetwork. In 2016 European Conference on Computer Vision, pages 391–407,
2016.

[5] Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K. Enhanced deep residual networks for
singleimage super-resolution In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 136–144, 2017.

[6] Salimans, T., Kingma, D.P. Weight normalization: a simple reparameterization to
acceleratetraining of deep neural networks. In Advances in Neural Information Processing
Systems, pages 901–909, 2016.

[7] Ian J. Goodfellow∗ , Jean Pouget-Abadie† , Mehdi Mirza, Bing Xu, David Warde-
Farley,Sherjil Ozair‡ , Aaron Courville, Yoshua Bengio§. Generative Adversarial Nets,
2014.

61

	Face-GAN: Face image enhancement using Generative
	Bachelor of Science in Computer Science

	List of Figures
	Introduction to Generative Adverserial Networks
	1.1Background
	1.2Problem Description
	1.2.1Why unsupervised Generative model for image

	1.3Motivation
	1.4Objective
	1.5Project Scope
	1.6Methodology
	1.6.1Generator
	1.6.2Discriminator

	1.7Summary

	Literature Review
	2.0.1Related work
	2.1.1Super-Resolution Generative Adversarial Networks (
	2.1.2Wasserstein GAN (WGAN).
	2.1.3Deep Convolutional GAN (DC-GAN
	2.1.4GAN with interpolation and conditional latent spac
	2.1.5Progressively Growing GAN (PRO-GAN)
	2.1.6Gradient PROGAN (MSG-PROGAN)
	2.2Applications of GANS for image applications:
	2.2.1Image generation with enhanced quality
	2.2.2Image super resolution
	2.2.3image inpainting
	2.2.4Generation of anime character
	2.2.5Text to image transformation:

	Requirements Specifications
	3.1Requirement Specifications:
	3.1.1Purpose
	3.1.2Intended Audience
	3.1.3project scope

	3.2Overall Description
	3.2.1Overview
	3.2.2Machine Learning vs Deep Learning
	3.2.3Product Function
	3.2.4Operating Environment
	Operating system
	Hardware specifications:

	3.3Design and implementation
	3.5System Features
	3.5.1Super Resolution
	3.5.2Finer Texture Details

	3.6Operational Requirements
	3.6.1Generator and Discriminator Network
	3.6.2Utility Functions
	3.6.3Non-Functional Requirements
	3.6.4Functional Requirements

	3.7Use case Model
	Use case description
	Use case description

	System Design
	4.1System Architecture
	4.2Machine Learning
	4.2.1Types of Machine learning
	4.2.2Reinforcement learning
	4.2.3Deep Learning
	4.2.4Perceptron and Artificial Neural Networks
	4.2.5Activation Function:

	4.3Generative Adverserial Networks
	4.4Design Constraints
	4.5Personal computer
	4.6Errors in code
	4.6.1Errors while training networks

	4.7Design Methodology
	4.7.1Dataset Acquiring
	4.7.2Data Preprocessing
	4.7.3Generator Network
	4.7.4Discriminator Network
	4.7.5ResNet
	4.7.6Training

	4.8High Level Design
	4.8.1Generative Adverserial Network
	4.8.2Super Resolution Generative Adversarial Network
	4.8.3SRGAN Architecture
	4.8.4Activation Function
	4.8.5Batch Normalization Function
	4.8.6Sequence Diagram of Proposed System

	System Implementation
	5.1Introduction
	5.1.1Batch Normalization
	5.1.2Dense connection
	5.1.3Pixel shuffle
	5.1.4Generator Architecture
	5.1.5VGG loss
	5.1.6Discriminartor Architecture

	5.2Tools and Technology used
	5.2.1RAM

	5.35.3. Development Environment/Language Used
	5.3.1Python Language
	5.3.2Google collab
	5.3.3pycharm

	5.4Convolutional Layer
	5.4.1Pooling layer
	5.4.2Max pooling
	5.4.3Average pooling
	5.4.4Sum pooling
	5.4.5Fully connected layer
	5.4.6Dropout layer

	5.5Processing logics/Algorithms
	5.5.1Dataset Acquisition
	5.5.2Generator Network
	5.5.3Discriminator Network

	System Testing and Evaluation
	6.1Quality Control
	6.2Test cases
	6.2.1TC-01
	6.2.2TC-02
	6.2.3TC-03
	6.2.4TC-04

	6.3Testing
	6.3.1System testing
	6.3.2Black box testing
	6.3.3White box testing
	6.3.4Performance Testing

	6.4Testing Results
	low quality images given to model
	Generated high quality images Real high quality im

	Conclusions
	7.1Outcome
	7.2Limitations
	7.3Future work

	References

