
i

Test Case Management & Analysis Engine

Group Members

Muhammad Saqib Aziz (01-131192-057)

Zain Ahmed (01-131192-037)

Supervisor

Dr. Tamim Ahmed

A final Year Project submitted to the Department of Software Engineering,

Faculty of Engineering Sciences, Bahria University, Islamabad in the partial

fulfillment for the award of degree in Bachelors of Software Engineering

June 2023

ii

DECLARATION
Certified that this project report “Test Case Management & Analysis Engine” is the bona fide

work of “Muhammad Saqib Aziz and Zain Ahmed” who carried out the project work under my

supervision.

(Signature of Supervisor)

iii

THESIS COMPLETION CERTIFICATE

Student Name: Muhammad Saqib Aziz Enrolment No: 01-131192-057

Student Name: Zain Ahmad Enrolment No: 01-131192-037

Programme of Study: Bachelor of Software Engineering

Project Title: Test Case Management & Analysis Engine

It is to certify that the above students’ project has been completed to my satisfaction and to my belief,

its standard is appropriate for submission for evaluation. I have also conducted plagiarism test of this

thesis using HEC prescribed software and found similarity index at 15% that is within the permissible

limit set by the HEC. I have also found the thesis in a format recognized by the department.

Supervisor’s Signature: __________________________

Date: ____02-June02023____________________ Name: ________ ____________________

iv

v

ACKNOWLEDGEMENT

I would like to take this opportunity to express my sincere gratitude to my supervisor, Dr.

Tamim Ahmed Khan, for his invaluable guidance, support, and encouragement throughout this

research project. His expertise, insightful feedback, and unwavering dedication have been

instrumental in shaping my research and helping me achieve my goals.

Dr. Tamim Ahmed Khan's unwavering commitment to excellence, his depth of knowledge in

the field, and his willingness to share his expertise and insights have been an inspiration to me.

I have learned a great deal from his guidance, and his mentorship has been instrumental in

developing my research skills.

I would like to express my sincere appreciation to Dr. Tamim Ahmed Khan for his support and

encouragement throughout this project. Without his guidance, this research would not have

been possible.

vi

ABSTRACT

The software testing industry is rapidly growing, with more and more companies relying on

the expertise of software testers to ensure the quality of their products. However, there is a lack

of platforms that effectively connect software testers with companies in need of their services.

We introduce a web application marketplace that offers remote testing job opportunities to

software testers. The platform allows testers to register and work on assigned projects, and they

are paid according to their progress. Companies in need of testing services can also register

and find suitable testers for their projects.

Front end development is in React.js whereas backend is node.js We used GIT repository for version

control and centralized code repository, and implemented CI/CD pipeline using GitHub actions written

using YAML. We prepare test cases for the front end using React JS unit testing and integration test

cases using Postman. We identified 50 test scenarios for acceptance testing and 101 test cases using

Selenium.

The application provides a wide range of services and also offers test case management and

traceability metrics to measure the testing process effectiveness. Our developed platform aims

to bridge the gap between software companies and testers by providing a centralized

marketplace that streamlines the testing process and offers remote job opportunities to testers

and can assist in attracting testing resources in an online manner reducing testing costs,

improving resulting quality and managing time.

vii

Table of Contents

DECLARATION ... ii

THESIS COMPLETION CERTIFICATE ... iii

ACKNOWLEDGEMENT .. v

ABSTRACT .. vi

1 Motivation ... 2

1.1 Problem Statement ... 2

1.2 Objectives.. 2

1.3 Contributions .. 3

1.4 Existing System.. 3

1.5 Proposed System .. 3

1.6 Project Execution .. 4

1.7 Report Organization .. 4

2 BACKGROUND/ LITERATURE REVIEW ... 6

2.1 Introduction .. 6

2.2 The Importance of Software Testing .. 6

2.3 Remote Testing ... 7

2.4 Competing Systems ... 8

2.5 Limitations in Existing Systems ... 8

2.6 Proposed Solution ... 9

2.7 Conclusion ... 10

3 SYSTEM REQUIREMENTS... 12

3.1 Functional Requirements .. 12

3.1.1 Functional Requirements #1: User Registration ... 12

3.1.2 Functional Requirements #2: User Login .. 12

3.1.3 Functional Requirements #3 Request Project .. 12

3.1.4 Functional Requirements #4 Monitor Progress .. 12

3.1.5 Functional Requirements #5 Provide Project Artifacts ... 13

3.1.6 Functional Requirements#6 Sign NDA .. 13

3.1.7 Functional Requirements #7 Manage Project Requests ... 13

3.1.8 Functional Requirements #8 Request Project Initiation ... 13

3.1.9 Functional Requirements #9 Make Payment .. 13

3.2 Use Cases .. 14

viii

3.3 Use Case Descriptions ... 14

3.3.1 User Management .. 15

3.3.2 Project Management .. 17

3.3.3 Test Case Management and Traceability .. 25

3.4 Non-Functional Requirements .. 28

3.4.1 Performance Requirements .. 28

3.4.2 Safety Requirements ... 28

3.4.3 Security Requirements .. 28

3.4.4 Software Quality Attributes .. 28

3.5 Resource Requirement ... 29

3.5.1 Client End .. 29

4 SYSTEM DESIGN .. 31

4.1 Sequence Diagrams ... 31

4.1.1 Login .. 32

4.1.2 Register ... 33

4.1.3 Monitor Progress .. 34

4.1.4 Manage Test Cases .. 35

4.1.5 Submit Test Report ... 37

4.1.6 Manage Project Request ... 38

4.1.7 Request Project ... 39

4.1.8 Request Project Initiation ... 40

4.1.9 Make Payment .. 40

4.2 Class Diagram .. 42

4.3 Component Diagram ... 43

4.4 Deployment Diagram .. 44

4.5 Process Workflow Diagram ... 44

4.6 Interface Design .. 46

4.6.1 Login .. 46

4.6.2 Register ... 47

4.6.3 Client Dashboard ... 48

4.6.4 Initiate Project ... 49

4.6.5 Progress Report ... 50

4.6.6 Log Test Suite .. 51

ix

4.6.7 Traceability .. 52

5 SYSTEM IMPLEMENTATION .. 54

5.1 Strategy ... 54

5.2 Tool Used .. 54

5.3 CI/CD Implementation .. 55

5.4 Methodologies .. 58

5.5 System Architecture .. 58

5.5.1 Data Layer ... 58

5.5.2 Processing Layer .. 59

5.5.3 Representation Layer .. 60

6 SYSTEM TESTING ... 62

6.1 Test Strategy ... 62

6.2 Unit Testing ... 62

6.3 Component Testing ... 62

6.4 Integration Testing .. 62

6.5 System Testing .. 64

6.5.1 Tester Login ... 66

6.5.2 Client Login .. 67

6.5.3 Admin Login .. 68

6.5.4 Tester Registration .. 69

6.5.5 Client Registration ... 70

6.5.6 Tester’s Portfolio ... 71

6.5.7 Tester Adds Test Case ... 73

6.5.8 Tester Adds bug .. 74

6.5.9 Tester’s Profile Updating... 75

6.5.10 Tester Downloads Project Artifact .. 75

6.5.11 Tester Submits Test Report ... 76

6.5.12 Tester Requests Test for Available Project ... 76

6.5.13 Tester Downloads Submitted Report .. 77

6.5.14 Tester Deletes bug from Traceability .. 77

6.5.15 Tester Deletes Test Case from Traceability... 78

6.5.16 Tester Updates Test Case .. 78

6.5.17 Client Initiates Project ... 79

x

6.5.18 Client Deletes Test Case from Progress .. 80

6.5.19 Client Deletes bug from Progress ... 81

6.5.20 Client Downloads Project Artifact ... 81

6.5.21 Client Downloads proof of test case ... 82

6.5.22 Client Profile Update ... 82

6.5.23 Client Contacts Admin ... 83

6.5.24 Client Downloads Submitted Report .. 84

6.5.25 Admin Accepts Client Request .. 85

6.5.26 Admin rejects Client Request .. 85

6.5.27 Admin Accepts Tester Request ... 85

6.5.28 Admin Rejects Tester Request .. 86

6.5.29 Admin deletes Client Account ... 86

6.5.30 Admin Deletes Tester Account.. 87

6.5.31 Admin Downloads Submitted Report ... 87

6.5.32 Admin Downloads Project Artifact .. 88

6.5.33 Admin Profile Update .. 88

6.5.34 Admin Deletes Test Case ... 89

6.5.35 Admin Deletes Bug .. 90

7 Conclusion ... 92

7.1 Conclusions ... 92

7.2 Outlook ... 92

References .. 93

Appendix A .. 93

Ethical Analysis .. 93

FYP Process Level .. 93

FYP Product Level .. 94

WBS (Work Break Down Structure) .. 95

xi

List of figures
Figure 3-1 use case diagram.. 14

Figure 4-1 login sequence ... 32

Figure 4-2 Client Signup sequence ... 33

Figure 4-3 Tester Signup sequence ... 33

Figure 4-4 Monitor Progress sequence ... 34

Figure 4-5 Add Test Case sequence .. 35

Figure 4-6 update test case sequence .. 36

Figure 4-7 delete test case sequence ... 36

Figure 4-8 Submit Test Report sequence .. 37

Figure 4-9 Manage Project Request sequence .. 38

Figure 4-10 Request Project sequence .. 39

Figure 4-11 Project Initiation sequence .. 40

Figure 4-12 Admin Payment sequence ... 40

Figure 4-13 Client Payment sequence .. 41

Figure 4-14 Class Diagram ... 42

Figure 4-15 Component Diagram ... 43

Figure 4-16 Deployment Diagram .. 44

Figure 4-17 Process Workflow Diagram .. 45

Figure 4-18 login interface .. 46

Figure 4-19 Tester Sign up interface... 47

Figure 4-20 client sign up interface .. 47

Figure 4-21 Client Dashboard interface .. 48

Figure 4-22 Initiate project interface .. 49

Figure 4-23 Test Case Traceability interface .. 50

Figure 4-24 Add test Case interface .. 51

Figure 4-25 Test Case Traceability interface .. 52

Figure 5-1 CI/CD pipeline for Frontend ... 57

Figure 5-2 CI/CD pipeline for Backend .. 57

Figure 6-1: Integreation level test case using Node.js .. 63

Figure 6-2: Output of Integration level test case using Node.js .. 63

Figure 6-3: Code example of Integration level test case using Node.js .. 63

Figure 6-4: Postman test case example ... 64

Figure 6-5: Acceptance level test case using Selenium for Admin Panel ... 65

Figure 6-6 Acceptance level test case using Selenium for Client Project Intiiation 65

Figure 8-1 Work Break Down Structure ... 95

1

CHAPTER - 1

INTRODUCTION

2

1 Motivation
The software testing industry is growing rapidly, and there is a need for a platform that

effectively connects software testers with companies in need of their services. Currently, there

is a lack of centralized marketplaces that provide support to testers and enable effective testing.

This project aims to bridge this gap and provide a solution that benefits both software testers

and companies.

In this document we will also compare our system with the traditional system. We present the

core features of this project and discuss its importance. We also cover the descriptive analysis

of these features and their benefits for the organizations and associated stakeholders.

1.1 Problem Statement
In the aftermath of Covid-19 and current prevailing tight financial situations, companies tend

to keep physical presence of human resources as less as possible. This leads to either hiring

human resources that are working from home of completing depending upon the outsourcing

models. We provide a centralized marketplace for software testing services so that the software

houses and IT companies find suitable testers for their projects who are working online or from

home and providing testing services. The purpose of this project is to develop a web application

marketplace that connects software testers with companies in need of their services. The

platform aims to offer remote job opportunities to software testers and streamline the testing

process for companies, resulting in improved product quality.

1.2 Objectives
The main goal of this project is to develop a web application marketplace that connects

software testers with companies in need of their services. The objectives of the project are:

 To provide remote job opportunities to software testers.

 To streamline the testing process for companies by providing a centralized marketplace.

 To enable effective testing through input test data generation, test case management, and

traceability metrics.

 To improve the quality of the final product by providing comprehensive testing services.

3

1.3 Contributions
This project offers the following contributions:

 A centralized marketplace for software testing services that benefits both software

testers and companies.

 Remote job opportunities for software testers, enabling them to work from anywhere.

 Support for effective testing through input test data generation, test case management,

and traceability metrics.

 Improved product quality through comprehensive testing services.

1.4 Existing System
The existing systems in the software testing industry are limited in their ability to connect

software testers with companies that need their services. While there are some job portals and

freelancer platforms available, they lack features specifically designed for software testers.

Additionally, many of these platforms do not offer support for test data generation, test case

management, and traceability metrics, which are critical for effective testing.

1.5 Proposed System
Our proposed web application marketplace offers several unique features that address the

existing gaps in the software testing industry.

 Remote Testing Job Opportunity: Our platform is designed exclusively for

software testers, offering them remote job opportunities that match their skill sets.

This specialization ensures that companies can find the right testers for their

projects, and testers can find suitable assignments that match their expertise.

 Input Test Data Generation: Our platform provides additional support to testers

through input test data generation, which enables them to generate relevant and

effective test data for their projects. This feature is particularly useful for complex

software systems that require a large amount of data to be tested comprehensively.

 Test Case Management: Our platform offers test case management and

traceability metrics, which provide testers with an efficient and organized way to

manage their testing activities. The test case management feature enables testers to

create, edit, and manage test cases, while the traceability metrics feature provides

an easy way to track the progress and coverage of test cases.

4

 Test Case Traceability: With our platform, both testers and clients have visibility

into the mapping of each requirement of the testing project to specific test cases.

This traceability ensures that all project requirements are adequately addressed and

tested. The clear mapping between requirements and test cases enhances

transparency and collaboration between testers and clients.

1.6 Project Execution
We conducted a detailed requirements identification, specification and preparation of design

specification of our proposed system. The system architecture of our web application follows

a standard Model-View-Controller (MVC) design pattern. In our system, the Model layer is

built using MongoDB, a NoSQL where the View layer is developed using React, and the

Controller layer is implemented using Node.js. The data layer is built on top of the Node.js

runtime environment and uses the Mongoose Object Data Modeling (ODM) library to interact

with the database. The processing layer of our system is built using Node.js, a JavaScript

runtime built on Chrome's V8 JavaScript engine. It provides an event-driven architecture and

non-blocking I/O capabilities, making it a good fit for building scalable and efficient server-

side applications. Finally, the representation layer is implemented using the React.JS library,

which is a popular JavaScript library for building user interfaces.

We implemented a Continuous Integration/Continuous Deployment (CI/CD) pipeline using

GitHub Actions. We defined separate workflows for the frontend and backend components of

our project. We automated the deployment process for our MERN stack application. We used

React JS unit testing environment for development of unit test cases and we used Postman and

Node JS libraries mocha and chai for the integration testing purposes. We developed 47 test

cases pertaining to our methods calls in frontend and backend. We prepared test scenarios and

conducted system testing creating test cases considering our test scenarios. We developed 101

test cases using Selenium during this process.

1.7 Report Organization
The rest of the document is organized as follows: We present Literature Review in Chapter 2

whereas the Requirements Specification is presented in Chapter 3. We present System Design

in Chapter 4 and the Implementation is presented in Chapter 5. Finally, System Testing is

presented in Chapter 6 and the Conclusions in Chapter 7 of this document.

5

CHAPTER - 2

BACKGROUND/ LITERATURE

REVIEW

6

2 BACKGROUND/ LITERATURE REVIEW

2.1 Introduction

Making software that satisfies corporate needs is a problem for the software industry. The fact

is we are to deliver software that is free of bugs. If they are not fixed prior to delivery, software

problems can result in significant losses for the IT and software organizations. Software testing

is a crucial component in creating software that is free of errors and flaws. Software testing is

carried out to assist quality control [1].

Despite the growing importance of software testing, there is a significant gap in the market for

platforms that effectively connect software testers with companies in need of their services.

Many software testing companies struggle to find the right testers with the necessary expertise

and skills to ensure high-quality software products. Additionally, companies often face

challenges in managing the testing process, tracking progress, and ensuring that their testing

efforts align with their business objectives. This gap in the market highlights the need for a

centralized platform that streamlines the testing process and connects software testers with

companies in need of their services.

2.2 The Importance of Software Testing

Software testing plays a vital role in the process of developing a high-quality software. Testing

is necessary because we all make mistakes. Some of those mistakes are unimportant but some

of them are expensive and dangerous. Therefore, there is a need to check everything that we

produce.[2]

Releasing faulty software can have negative consequences for software companies, including

financial losses, damage to reputation, and decreased user satisfaction. For example, a 2018

study by Tricentis found that software failures cost companies an average of $1.7 trillion in

lost revenue and productivity worldwide. Another study by IBM found that the cost of fixing

defects increases exponentially the later they are detected in the software development life

cycle.

In addition to financial losses, releasing faulty software can damage a company's reputation,

resulting in loss of trust from users and stakeholders. For instance, the 2019 Boeing 737 Max

7

crisis, which was caused by a software glitch that resulted in two plane crashes, led to

significant financial losses and reputational damage for Boeing.

These negative consequences underscore the importance of software testing in ensuring

software quality and preventing costly errors. Effective software testing can identify and

address potential issues before they become larger problems, saving companies time and

resources.

Furthermore, numerous studies demonstrate the importance of software testing in ensuring

software quality. For example, a 2017 report by Cap Gemini found that over 50% of software

defects could be prevented through proper testing. Additionally, a study by NIST found that

the cost of fixing software defects increased significantly when they were detected later in the

software development life cycle, underscoring the importance of testing throughout the

development process.

2.3 Remote Testing

Remote testing is a type of software testing that allows testers to work on software systems

from anywhere in the world, without being physically present in the same location as the

software development team. This differs from traditional testing methods, where testers are

typically co-located with the development team and testing is done on premise.

Advantages of Remote Testing

Remote testing offers several advantages over traditional testing methods, including:

On-Demand Testing:

Flexibility: Remote testing allows testers to work from anywhere, at any time, providing more

flexibility and convenience than traditional testing methods. This can result in increased

productivity and faster turnaround times for testing tasks.

Cost Savings: Remote testing can also result in cost savings, as companies do not need to

provide physical office space, equipment, or other resources to testers. Additionally, remote

testing can reduce travel expenses for both testers and development teams.

8

2.4 Competing Systems

There are several online marketplaces for software developers like Fiverr, upWork and Toptal

etc, but particularly for software testers, the options are limited. Some of them include:

Testlio: Testlio is a remote testing platform that provides a network of professional testers to

help companies test their software products. Testers are vetted and trained to ensure high-

quality testing, and the platform offers features such as bug tracking and test case management.

Rainforest QA: Rainforest QA is a remote testing platform that leverages crowdtesting to

provide on-demand testing services. The platform allows companies to submit testing tasks and

receive results within hours, leveraging a global network of testers.

uTest: uTest is a remote testing platform that provides a community of professional testers to

help companies test their software products. The platform offers a range of testing services,

including functional testing, usability testing, and security testing.

2.5 Limitations in Existing Systems
Following are the limitations and shortcomings of the existing systems in the software testing

marketplace. Understanding these limitations is crucial in identifying opportunities for

improvement and differentiation in our platform.

Lack of Test Case Traceability

One of the significant limitations of the existing systems is the absence of comprehensive test

case traceability. Testers and clients often struggle to track the mapping of requirements to

specific test cases, resulting in a lack of transparency and accountability in the testing process.

Lack of Test Case Proof of Concept

A significant limitation is the absence of a feature where testers can provide proof, such as

pictures, videos, or other forms of evidence, to validate the execution and outcomes of test

cases. This limitation affects the transparency, credibility, and clarity of the testing process for

both testers and clients.

Inadequate Input Test Data Generation

Many existing systems do not provide robust support for input test data generation. This

limitation can lead to a lack of comprehensive and diverse test scenarios, potentially impacting

the thoroughness and effectiveness of the testing process.

9

2.6 Proposed Solution

We overcame some of the issues highlighted in existing systems and our platform differs from

those in several ways.

Test Case Traceability

With our platform, both testers and clients have visibility into the mapping of each requirement

of the testing project to specific test cases. This traceability ensures that all project requirements

are adequately addressed and tested. The clear mapping between requirements and test cases

enhances transparency and collaboration between testers and clients.

Annotated Test Case Outputs

Our platform generates test case outputs in a format that can be utilized by AI systems. This

feature enables the generation of structured data sets and facilitates classification tasks. By

leveraging AI systems, clients can further analyze and interpret the test results, leading to more

efficient and accurate decision-making in the software testing process.

Remote Testing Focus

We exclusively focus on remote testing, expanding the pool of qualified testers available to

companies seeking testing services. By embracing remote testing, our platform provides

flexibility and accessibility to both testers and clients. Testers can work from anywhere, while

clients can tap into a global network of skilled testers, thereby increasing the chances of finding

the right expertise for their projects.

Test Case Management

Our platform offers robust test case management capabilities. Testers and clients can efficiently

create, assign, and track test cases throughout the testing process. The comprehensive test case

management system ensures that all necessary tests are executed, progress is monitored, and

potential issues are identified and addressed promptly.

Test Case Proof of Concept

In our platform, every time a tester logs a test case, they provide proof in the form of supporting

materials such as pictures, videos, or any other relevant evidence to confirm the validity of that

test case. This feature enhances the transparency and credibility of the testing process by

providing concrete evidence of the tests performed and their outcomes.

By allowing testers to attach visual or multimedia proof to each test case, clients can gain a

deeper understanding of the testing process and validate the results. This documentation serves

as a valuable resource for stakeholders, aiding in bug identification, analysis, and resolution.

10

The inclusion of a Test Case Proof of Concept feature adds an extra layer of assurance and

confidence in the testing process, enabling both testers and clients to have a comprehensive

overview and verification of the executed test cases.

2.7 Conclusion

Our proposed web application marketplace is designed to revolutionize the software testing

industry by exclusively offering remote testing job opportunities to software testers. By

leveraging the advantages of remote testing, we aim to provide a wider pool of qualified testers

to companies seeking their services, ensuring enhanced flexibility and accessibility. The

platform's key features include streamlined test case management and traceability, facilitating

efficient collaboration and fostering accountability between testers and clients. Our primary

objective is to improve the overall quality of the software testing process by ensuring thorough

testing and delivering high-quality software products to companies. Additionally, by offering

remote job opportunities, our platform provides testers with increased flexibility, enabling

them to work on projects from anywhere. This not only meets the market demand for remote

testing but also offers a seamless experience for both testers and clients. Through improved

communication, better project understanding, and effective decision-making, our solution aims

to connect testers with companies, elevate software quality, and create valuable job

opportunities in the software testing industry.

11

CHAPTER - 3

SYSTEM REQUIREMENT

SPECFICATION

12

3 SYSTEM REQUIREMENTS
We present functional and non-functional requirement in this section.

3.1 Functional Requirements

3.1.1 Functional Requirements #1: User Registration

User will be able to make his account on the platform in order to access the features provided.

Output:

The User credentials stored in database

Error:

The User Already exists.

3.1.2 Functional Requirements #2: User Login

User will be able to login to his account so that he can perform the operations related to his position.

Output:

User navigated to Dashboard/home screen.

Error:

Invalid Credentials.

3.1.3 Functional Requirements #3 Request Project

Tester will be able to make a request for a project from a list of projects maintained by Admin.

Output:

Project is marked requested in database

Error:

The project does not exist in Database.

3.1.4 Functional Requirements #4 Monitor Progress
Admin, tester and Clients will be able to see the progress of the project/system under test. The progress

may include test suites, their results and bugs encountered etc.

Output:

Progress of the project is shown in the form of tables, charts and PDF report.

Error:

No project is under progress.

13

3.1.5 Functional Requirements #5 Provide Project Artifacts

Client will provide Project Artifacts to Admin that will be used to test the system accordingly. The

artifacts may include executables, links, and documentation etc.

Output:

The artifact is stored in the files of the project.

Error:

User selects an unsupported file from device.

3.1.6 Functional Requirements#6 Sign NDA

Tester will sign an NDA while he is registering for the platform.

Output:

Tester can now officially request for project testing.

Error:

Tester did not agree to the terms and conditions.

3.1.7 Functional Requirements #7 Manage Project Requests

Admin will get requests made by testers for project allocation and clients for project initiation. Admin

will accept or reject the requests.

Output:

Project Request accepted or rejected.

Error:

The project doesn’t exist.

3.1.8 Functional Requirements #8 Request Project Initiation

Clients will ask admin to initiate a project. They will provide all the necessary information like project

name, start date, end date and budget etc.

Output:

Project initiation request saved in Database.

Error:

If Client left a field empty.

3.1.9 Functional Requirements #9 Make Payment

Admin will get payments from clients and make payments to testers.

14

Output:

Payment released.

Error:

Network issues.

3.2 Use Cases

Use Case Diagram

Figure 3-1 use case diagram

3.3 Use Case Descriptions
The use case descriptions for the use cases given in Figure 1 use case diagram are presented in this

section

15

3.3.1 User Management

3.3.1.1 User Registration

Name Register

Description Users who do not have an existing account will be able to

create a new account to access the platform's features.

Actors Tester, Client

Priority Medium

Pre-condition Not an existing user

Post-condition User credentials stored to database

Basic Flow User can register account if he is not an existing user.

Actor Action System Response

 1. System shows registration page

2. User Enters credentials

3. User presses Register

Button

4. Data saved into database

Alternate Course of Action

Actor Action System Response

 4.a If user is an existing user, error message is shown and user

stays at registration page (continue at step1).

4.b If any field is left empty, error message is shown and user

stays at registration page (continue at step1).

16

3.3.1.2 User Login

Name Login

Description User will be able to login to his account so that he can perform

the operations related to his position.

Actors Tester, Admin, Client

Priority medium

Pre-condition Valid User

Post-condition User navigated to Dashboard/home screen.

Basic Flow Authenticated user is able to login to his account.

Actor Action System Response

 1. System shows Login page

2. User enters his

credentials

3. User Presses Login

Button

4. System redirects user to home screen/dashboard.

Alternate Course of Actions

Actor Action System Response

3.a User entered invalid

credentials

 3b. “Invalid User” Error is shown and user stays at login

screen (continue at step 1).

17

3.3.2 Project Management

3.3.2.1 Project Request

Name Request Project

Description Tester will be able to make a request for a project from a

list of projects maintained by Admin.

Actors Tester

Priority medium

Pre-condition Tester is signed in

 Projects are available

Post-condition Project is marked requested in database

Basic Flow Tester makes project request if project is available.

Actor Action System Response

1. Tester selects Available

Projects option from Home

Screen

2. Tester is navigated to Available Projects Screen

and list of Projects available is Shown

3. Tester presses request project

button for a particular project

4. Project marked requested in database

Alternate Course of Actions

Actor Action System Response

 2.a If no project is available, nothing is shown

 3.a If tester doesn’t press any button, nothing happens

(continue at step 2)

18

3.3.2.2 Monitor Progress

Name Monitor Progress

Description Admin, tester and Clients will be able to see the progress

of the project/system under test. The progress may include

test suites, their results and bugs encountered etc.

Actors Admin, Client, Tester

Priority High

Pre-condition Project is under progress

 Tester has submitted test suites
Post-condition Progress of the project is shown

Basic Flow User can monitor progress of the project if the project is

under progress.

Actor Action System Response

1. User selects Monitor

Progress option from

Home Screen

2. User is navigated to Project Progress Screen

3. Data/Progress from database is shown

Alternate Courses

Actor Action System Response

 2.a If user doesn’t have a project under progress, “No

Project Available” Error is shown and user stays at home

screen (continue at step1)

3.a If Tester has not submitted test suites, a message is

shown "no record available” and user stays at same screen

(continue at step2).

19

3.3.2.3 Providing Project Artifacts

Name Provide Project Artifacts

Description Client will provide Project Artifacts to Admin that will be

used to test the system accordingly. The artifacts may include

executables, links, and documentation etc.

Actors Client

Priority Medium

Pre-condition NDA is signed

Post-condition Admin will enlist the project in database under category of

available projects.

Basic Flow Client comes to chat box and provides project artifacts to the

admin.

Actor Action System Response

1. User selects send artifacts
option from Dashboard

2. User is navigated to send artifacts form.

3. User selects clip icon (to
send project files)

4. User selects files from
Device.

5. User presses send button.

6. Project Files/Artifacts are sent to Admin.

Alternate Course of Actions

Actor Action System Response

4a. User selects an unsupported

file from device.

4b. “File not Supported” Error shown, continue from 3.

20

3.3.2.4 Sign NDA

Name Sign NDA

Description Tester will sign an NDA to be able to request

project.

Actors Tester

Priority Medium

Pre-condition none

Post-condition NDA is signed

Basic Flow User can tick the sign NDA form

Actor Action System Response

1. User presses Sign NDA Button

from Dashboard

2. A form Opens with terms and

Conditions

3. User ticks I agree check box

4. User clicks submit button

5. NDA signed Message shown

Alternate Course of Action

Actor Action System Response

3.a User does not tick check box 4a. Submit Button is not clickable.

21

3.3.2.5 Manage Project Requests

Name Manage Project Request

Description Admin will get requests made by testers for project

allocation and clients for project initiation. Admin will

accept or reject the requests.

Actors Admin

Priority Medium

Pre-condition Project is available to be tested

Post-condition Project Request accepted or rejected

Basic Flow Admin accepts or rejects the project requests.

Actor Action System Response

1. Admin selects Project

Requests option from home

screen

2. Admin is navigated to Project Requests Screen

 3. A list of project requests along with two buttons;

accept and reject is shown.

4. Admin presses accepts or

rejects button.

5. The project is marked accepted or rejected in

database

Alternate Course of Action

Actor Action System Response

 3.a If there is no project request, “No Requests” message is

shown.

4.a Admin presses no button 5.a Admin stays on the same screen (continue at sep3).

22

3.3.2.6 Request Project Initiation

Name Request Project Initiation

Description Clients will ask admin to initiate a project. They will provide

all the necessary information like project name, start date, end

date and budget etc.

Actors Client

Priority medium

Pre-condition Valid User

Post-condition Project initiation request saved in Database.

Basic Flow Client makes project request.

Actor Action System Response

1. Client selects request

project from Dashboard

2. Client is navigated to request project form.

3. Client enters information

about project

4. Client Enters Request

Project Button

5. Project initiation request saved in Database.

Alternate Course of Actions

Actor Action System Response

 3.a If Client left any field empty, Request Project Button is

not pressable.

4a. If Client does not press Request Project Button, nothing

happens.

23

3.3.2.7 Make Payment (Admin to Tester)

Name Make Payment

Description Admin will make payments to the testers according to their

contributions in the testing process.

Actors Admin

Priority Low

Pre-condition Project test report has been submitted

 Payment is received from client.

Post-condition Payment is made to testers.

Basic Flow Admin makes payment to tester.

Actor Action System Response

1. Admin Selects Payment

Option from Dashboard

2. Admin is navigated to Payment Screen

 3. A list of pending payments is shown.

4. Admin presses release

payment button against

tester.

5. The payment is made to tester.

6. The transaction is saved in database.

Alternate Course of Action

Actor Action System Response

 3.a If no tester has payment in pending, “No payment in

Pending” message is shown.

4.a If admin doesn’t press release payment button, nothing

happens and admin stays on the same screen (continue at

step3).

4b. If there is a network problem, “Network issue” message

is shown.

24

3.3.2.8 Make Payment (Client to Admin)

Name Make Payment

Description Client will make payment to the admin after the project is

tested and the test report is received.

Actors Client

Priority Low

Pre-condition Project test report has been submitted

Post-condition Payment is made to the Admin.

Basic Flow Client makes payment to Admin.

Actor Action System Response

1. Client Selects Payment

Option from Dashboard

2. Client is navigated to Payment Screen

 3. Pending payments are shown.

4. Client presses release

payment button against

tester.

5. The payment is made to Admin.

6. The transaction is saved in database.

Alternate Course of Action

Actor Action System Response

 3.a If there is no payment in pending, “No payment in

Pending” message is shown.

4.a If client doesn’t press release payment button, nothing

happens and client stays on the same screen (continue at

step3).

4b. If there is a network problem, “Network issue” message

is shown.

25

3.3.3 Test Case Management and Traceability

3.3.3.1 Log Test Suite

Name Log Test Suite

Description Tester will be able to log test suites and the

results of those test suites into the database.

That data will be used to produce test report at

the end of testing activity.

Actors Tester

Priority High

Pre-condition Tester is assigned a project.

Post-condition Test suit and result is stored into database.

Basic Flow Tester logs test suites and results into database

if he has a project assigned.

Actor Action System Response

1. Tester selects Log test suite option

from dashboard.

2. Tester is navigated to log test suite

screen

3. Tester enters test suite

4. Tester presses the log button

5. Test suite saved to database

Alternate Course of Actions

Actor Action System Response

 2.a If Tester is not already assigned a project,

error message is shown and tester stays at

home screen.

2.b If tester is assigned more than 1 project,

list of projects is shown and tester can select 1

(continue at step3)

 5.a If any field is left empty, an error message

is shown (continue at step2).

26

3.3.3.2 Test Report Submission

Name Submit Test Report

Description Tester will be able to submit test report after testing the

system under test. The report would include test suites

and their results, along with bugs encountered.

Actors Tester

Priority High

Pre-condition Tester is assigned a project

Post-condition Test report is stored into database

 Admin and client can see the report from

database

Basic Flow Tester submits test report to database if he is assigned a

project.

Actor Action System Response

1. Tester selects Submit Test

report option from

dashboard

2. Tester is navigated to Submit Test Report

screen

3. Tester Selects File to

submit

4. Tester presses the submit

button

5. Test Report is saved to database

Alternate Course of Actions

Actor Action System Response

 2.a If Tester is not already assigned a project, error

message is shown and tester stays at home screen.

2.b If tester is assigned more than 1 project, list of

projects is shown and tester can select 1 (continue at

step3).

 5.a If any field is left empty, an error message is shown

(continue at step3).

27

3.3.3.3 Manage Test Cases

Name Manage Test Cases

Description Tester will be able to manage test cases. Tester can

perform CRUD operations on test cases.

Actors Tester

Priority High

Pre-condition At least 1 project is under progress

Post-condition Operation is performed on test cases.

Basic Flow tester performs CRUD operations on test cases.

Actor Action System Response

1. Tester selects Manage Test

Cases option from home screen

2. tester is navigated to Manage Test Cases

Screen

3. Traceability matrices containing test cases

is shown

4. tester can perform CRUD

operations

5. Admin presses Update Button

6. Test cases are updated in database

Alternate Course of Action

Actor Action System Response

 3a. If no project is under progress, tester is only

shown a message “No Project Under Progress” and he

stays on the same screen.

3b. If there are more than 1 project under progress,

list of projects is shown and tester can select 1

(continue at step3).

6a. If tester doesn’t press update button, no change

happens.

28

3.4 Non-Functional Requirements

3.4.1 Performance Requirements

 System response should be fast.

 Execution time should be good for report generation.

 Storage Capacity should be enough to store test suites and reports.

3.4.2 Safety Requirements

 Payment module should be secure to make safe transactions.

 NDA is signed to make sure non-disclosure of the project artifacts.

3.4.3 Security Requirements

 Authorized Access to Users.

 Each User performs their own functionalities assigned.

 Payment transactions are secured by Banks.

3.4.4 Software Quality Attributes

Requirement #1:

Title: Robustness Description:

 The system should handle exceptions when the function / program fails.

Requirement #2:

Title: Usability Description:

The interaction of the system should be user friendly or more attractive.

• Requirement #3:

Title: Performance Description:

The system response time should be less than 3 seconds, so that the reports should be generated quickly

as per need.

• Requirement #4:

Title: System Reliability Description:

The system should perform exact functionalities all the time.

• Requirement #5:

Title: Application extensibility Description:

29

The application should be easy to extend. The code should be written in a way that it favors

implementation of new functions.

• Requirement #6:

 Title: Application testability Description:

Test environments should be built for the application to allow testing of the application’s different

functions.

 • Requirement #7:

Title: Application Portability Description:

The application should be portable with iOS and android. It should support all types of web browsers.

• Requirement #8:

Title: Communication Security Description:

 Security of the communication between the system and server.

 • Requirement #9: Title: Internet Connection Description:

The application should be connected to the Internet.

 • Requirement #10:

Title: System Availability Description:

The availability of the system when it is used

3.5 Resource Requirement

3.5.1 Client End

A web browser is required for the computer system to run this project. The system must have

Operating system running on it.

30

CHAPTER - 4

SYSTEM DESIGN

31

4 SYSTEM DESIGN

4.1 Sequence Diagrams

In the design phase, we have employed Sequence Diagrams to illustrate the flow of interactions

at the System Design Specification (SDS) level. These diagrams demonstrate the various use

cases identified in the initial Use Case Diagram.

To ensure a well-structured design, we have incorporated the Model-View-Controller (MVC)

architectural pattern in the Sequence Diagrams. This pattern separates the application logic into

three components: the Model, View, and Controller.

The Model represents the data and business logic of the application. It stores and manages the

data, ensuring consistency and integrity throughout the system.

The View represents the user interface through which users interact with the application. It

presents the data to the user and captures user input.

The Controller, as the central component, takes responsibility for handling user input and

coordinating the interactions between the View and Model. It receives input from the user

(View), queries the Model for necessary data or updates, and updates the View accordingly.

This ensures a clear separation of concerns and promotes maintainability and flexibility in the

design.

By employing the MVC pattern in our Sequence Diagrams, we have established a structured

and organized approach to handle user interactions, data retrieval, and updates. This design

promotes modularity, extensibility, and reusability, enhancing the overall quality and

maintainability of the software system. This is presented in Figure 2-14

32

4.1.1 Login

Figure 4-1 login sequence

33

4.1.2 Register

Figure 4-2 Client Signup sequence

Figure 4-3 Tester Signup sequence

34

4.1.3 Monitor Progress

Figure 4-4 Monitor Progress sequence

35

4.1.4 Manage Test Cases

4.1.4.1 Add test case

Figure 4-5 Add Test Case sequence

36

4.1.4.2 Update Test Case

Figure 4-6 update test case sequence

4.1.4.3 Delete Test Case

Figure 4-7 delete test case sequence

37

4.1.5 Submit Test Report

Figure 4-8 Submit Test Report sequence

38

4.1.6 Manage Project Request

Figure 4-9 Manage Project Request sequence

39

4.1.7 Request Project

Figure 4-10 Request Project sequence

40

4.1.8 Request Project Initiation

Figure 4-11 Project Initiation sequence

4.1.9 Make Payment

Figure 4-12 Admin Payment sequence

41

Figure 4-13 Client Payment sequence

42

4.2 Class Diagram

In the Class Diagram, we have identified and depicted the various model classes that represent

the data and business logic of the application. These classes encapsulate the essential functions

and properties required to manage and manipulate the data effectively.

Additionally, the Class Diagram includes the controller class, which acts as the central

component responsible for coordinating the interactions between the View and Model. The

controller class encapsulates the necessary functions to handle user input, query the Model for

data, and update the View accordingly.

The Class Diagram and Sequence Diagrams in our system demonstrate a strong alignment,

showcasing the implementation of the Model-View-Controller (MVC) architectural pattern.

By mapping the Class Diagram and Sequence Diagrams onto each other, we ensure a cohesive

and consistent design. The alignment emphasizes the clarity and organization of the system's

structure and functionality, showcasing how the MVC architectural pattern is effectively

implemented. This is presented in Figure 15

Figure 4-14 Class Diagram

43

4.3 Component Diagram

The Component Diagram in our system provides a comprehensive overview of the different

components and technologies employed in our application.

At the core of our design, we have utilized the Model-View-Controller (MVC) architectural

pattern, which divides the application into three primary components: Model, View, and

Controller. This architectural approach promotes separation of concerns, modularity, and code

reusability.

The Model component represents the data and business logic of the application. It includes the

model classes depicted in the Class Diagram, which encapsulate data management and

manipulation operations. Additionally, our chosen database technology is MongoDB, which

serves as the persistent storage for the application's data.

The View component encompasses the user interface (UI) part of the application. We have

employed JavaScript and React, a popular JavaScript library, to build interactive and dynamic

UI components. React's component-based approach allows for efficient UI development,

reusability, and a seamless user experience.

The Controller component acts as the intermediary between the Model and View, facilitating

the flow of data and user interactions. It receives input from the View, processes it, interacts

with the Model to retrieve or update data, and updates the View accordingly. This enables

effective communication and coordination between the different components. This is presented

in Figure 16

Figure 4-15 Component Diagram

44

4.4 Deployment Diagram

The Deployment Diagram illustrates the physical deployment of our system's components and

technologies. It provides an overview of how the system is distributed across different nodes

or servers.

In our deployment configuration, the frontend components, developed using React and

JavaScript, are deployed on a web server. React enables the creation of dynamic and interactive

user interfaces, while JavaScript enhances the functionality and interactivity of the frontend.

On the other hand, the database, implemented using MongoDB, is deployed on a separate

server or cluster. MongoDB is a popular NoSQL database that offers flexibility, scalability,

and efficient data storage and retrieval.

The Deployment Diagram shows the connection between the frontend components and the

database, representing the flow of data between them. The frontend communicates with the

MongoDB database for retrieving and storing data, ensuring seamless integration between the

user interface and the underlying data storage. This is presented in Figure 17

Figure 4-16 Deployment Diagram

4.5 Process Workflow Diagram

The Process Workflow Diagram illustrates the step-by-step workflow of our system involving

the client, admin, and tester. This diagram demonstrates the sequence of actions and

interactions among the different users throughout the process.

The workflow begins with the client initiating a test project request, providing the necessary

details and requirements for the project. The request is then received by the admin, who

evaluates and decides whether to accept or reject the request based on various criteria such as

resource availability and project feasibility.

45

If the admin accepts the request, the workflow moves forward, and the tester, who is qualified

and available, requests to acquire the project for testing. The admin then assigns the project to

the tester, providing them with the necessary information and access.

The tester proceeds with the testing process, making test cases, and documenting the test

results. Once the testing is complete, the tester submits the test report, which includes details

of the test cases and identified issues.

Finally, the client is notified that the test report is available. The client can then access and

download the test report. This is presented in Figure 18

Figure 4-17 Process Workflow Diagram

46

4.6 Interface Design

4.6.1 Login

Figure 4-18 login interface

47

4.6.2 Register

Tester

Figure 4-19 Tester Sign up interface

Client

Figure 4-20 client sign up interface

48

4.6.3 Client Dashboard

Figure 4-21 Client Dashboard interface

49

4.6.4 Initiate Project

Figure 4-22 Initiate project interface

50

4.6.5 Progress Report

Figure 4-23 Test Case Traceability interface

51

4.6.6 Log Test Suite

Figure 4-24 Add test Case interface

52

4.6.7 Traceability

Figure 4-25 Test Case Traceability interface

53

CHAPTER - 5

SYSTEM IMPLEMENTATION

54

5 SYSTEM IMPLEMENTATION

5.1 Strategy

Our web application project followed a well-planned strategy for successful implementation.

We divided the effort into two main components, namely software development and project

management.

Before starting the actual development, we created a detailed plan for the complete project

lifecycle, including a work breakdown structure using Microsoft Project. We also utilized

GitHub for efficient collaboration among group members, and Microsoft Visual Code IDE to

manage and sync our code seamlessly.

The initial phase of the project was the system architecture design, which we found to be crucial

for the success of the project. We carefully planned the design, ensuring it met all project

requirements. Although we faced some challenges in identifying the best design approach, we

were able to overcome them through consulting with our project supervisor.

The second phase of the project was the actual implementation of the design. We started by

creating a database design and proceeded to build the web application's software components.

To maintain quality, we broke down the development process into smaller, manageable units

and conducted various unit tests.

Once all the software components were built and tested, we integrated them into a single

module and conducted multiple test cases for quality control and to check performance. We

followed an iterative model throughout the development cycle to maintain quality and improve

the workflow of the project.

5.2 Tool Used

During the development of our web application, we used a variety of tools and technologies to

ensure the successful implementation of the project. These included:

 Visual Studio Code (VS Code) as our Integrated Development Environment (IDE) for

code editing, debugging, and testing.

 Node.js as the server-side runtime environment and runtime engine.

 MongoDB as our NoSQL database for storing and managing data.

 React for building the user interface and components on the client-side.

 Amazon Web Services (AWS) for hosting and deploying the application.

55

 Postman for testing and validating APIs.

 GitHub as our primary code repository for centralized code sharing and version control.

5.3 CI/CD Implementation

We successfully implemented a Continuous Integration/Continuous Deployment (CI/CD)

pipeline using GitHub Actions. This CI/CD pipeline played a crucial role in automating the

build, testing, and deployment processes for both the frontend and backend components of our

MERN stack project. To ensure efficient collaboration and version control, we chose GitHub

as the hosting platform for our project's source code. GitHub Actions, the integrated CI/CD

solution provided by GitHub, served as the foundation for automating our development

workflow.

In our CI/CD pipeline, we defined separate workflows for the frontend and backend

components of our project. This approach allowed us to manage and test each component

independently, ensuring a more granular and efficient development process.

Within the frontend workflow, we utilized npm, the package manager for JavaScript, to run the

unit tests for our frontend codebase. By including the appropriate commands, such as npm run

test, in the workflow configuration file, GitHub Actions automatically executed these tests

whenever changes were made to the frontend repository. This enabled us to validate the

functionality and integrity of our frontend codebase.

Similarly, in the backend workflow, we again employed npm to run the unit tests for our

backend code. By including the necessary test scripts, such as npm run test, in the workflow

configuration file for the backend repository, GitHub Actions executed the tests upon detecting

changes. This ensured that our backend code was thoroughly tested for any potential issues or

bugs.

As part of the CI/CD pipeline, we also automated the deployment process for our MERN stack

application. Once the unit tests passed successfully, GitHub Actions initiates the deployment

of our application. The deployment of our application is on AWS (amazon web services).

56

CI/CD workflow:

1. Setup Job: In this step, the CI/CD workflow sets up the job configuration,

specifying the necessary environment and resources required for the subsequent

steps.

2. Checkout Code: The workflow checks out the source code from the repository,

ensuring that the latest version of the code is obtained for further processing.

3. Setup Node.js 16.x: To ensure compatibility and consistency, the workflow sets

up the Node.js environment with version 16.x, which is required for running the

backend and frontend components.

4. Install Frontend/Backend Dependencies: The workflow installs the necessary

dependencies for both the frontend and backend components. This step ensures

that all required libraries, modules, and packages are available for building and

testing the code.

5. Run Backend/Frontend Tests: The workflow executes the unit tests for both the

backend and frontend components. This step verifies the functionality,

correctness, and reliability of the code, ensuring that any issues or bugs are

identified and addressed.

6. Setup CLI Environment for AWS: In order to deploy the application on AWS

(Amazon Web Services), the workflow sets up the Command Line Interface

(CLI) environment, ensuring that the necessary AWS credentials and

configurations are in place for the deployment process.

7. Deployment on AWS: After the tests have passed successfully, the workflow

triggers the deployment process on AWS. This step involves uploading the built

artifacts and deploying the application to the specified AWS environment,

ensuring its availability for end-users.

8. Post Setup Node.js 16.x: This step performs any necessary post-configuration

tasks related to the Node.js environment after the tests and deployment have

been completed. It ensures that the environment is properly cleaned up and

prepared for subsequent CI/CD workflows or stages.

57

9. Post Checkout Code: After the deployment and post-configuration steps are

complete, this final step performs any required post-processing tasks related to

checking out the code. It ensures that the code repository and workspace are in

a consistent state for future development and testing.

Below are the screen shots of CI/CD pipeline.

Frontend:

Figure 5-1 CI/CD pipeline for Frontend

Backend:

Figure 5-2 CI/CD pipeline for Backend

58

5.4 Methodologies

The system is developed using iterative model of Software development cycle. The main

objective during the development was to build the project in chunks and test that chunks again

and again to get high performance. The focus was on real time syncing and key performance

elements which take lot of time. Several versions of the project are built, and each latest version

add new key features to previous one.

Then module testing is also performed as the module is completed the test cases were

performed and the bug report is generated. Then integration of these chunks results in the whole

product.

5.5 System Architecture

The system architecture of our web application follows a standard Model-View-Controller

(MVC) design pattern, with a client-server architecture. This approach separates the application

into three distinct layers: the Model, which handles data storage and retrieval; the View, which

presents data to the user in a user-friendly format; and the Controller, which acts as an

intermediary between the Model and the View, processing user inputs and updating the Model

accordingly.

In our system, the Model layer is built using MongoDB, a NoSQL database that allows for

efficient and scalable storage and retrieval of large amounts of data. The View layer is

developed using React, a popular front-end JavaScript library that enables the creation of

dynamic, interactive user interfaces. The Controller layer is implemented using Node.js, a

JavaScript runtime that allows for fast and efficient server-side processing of user inputs and

application logic.

5.5.1 Data Layer

The data layer of the system is responsible for managing the persistent storage and retrieval of

data. The system uses MongoDB as its primary database technology, which provides a NoSQL

document-based storage system. This technology was selected because it provides a flexible

and scalable solution for managing the large volumes of data generated by the system.

59

The data layer is built on top of the Node.js runtime environment and uses the Mongoose Object

Data Modeling (ODM) library to interact with the database. The Mongoose ODM provides a

simple and intuitive way to define the data schema and query the database, which reduces the

amount of code required to perform CRUD (Create, Read, Update, Delete) operations on the

data.

5.5.2 Processing Layer

The processing layer of the system is responsible for the logic and business rules of the

application. This layer communicates with the data layer to retrieve and manipulate data, and

with the presentation layer to send the processed data to the user interface.

The processing layer of our system is built using Node.js, a JavaScript runtime built on

Chrome's V8 JavaScript engine. It provides an event-driven architecture and non-blocking I/O

capabilities, making it a good fit for building scalable and efficient server-side applications.

To manage the business logic of the application, we used the Model-View-Controller (MVC)

architecture. This architecture separates the application logic into three interconnected

components: the model, which represents the data and business logic; the view, which displays

the data to the user; and the controller, which handles user input and updates the model and

view accordingly.

The processing layer includes the implementation of these three components. The controller

component handles the incoming requests and delegates them to the appropriate model and

view components. The model component handles the data and business logic, and the view

component renders the response to the user.

60

5.5.3 Representation Layer

The representation layer of the system is responsible for presenting data and functionalities to

the end-users through the user interface. It is implemented using the ReactJS library, which is

a popular JavaScript library for building user interfaces.

The representation layer is designed to be responsive, user-friendly, and easily navigable. The

system provides a modern and intuitive user interface, which is consistent across all the pages.

The layout of the pages is designed to be simple and straightforward, allowing users to quickly

find what they are looking for.

61

CHAPTER - 6

SYSTEM TESTING

62

6 SYSTEM TESTING

6.1 Test Strategy

The testing is the important part of system or a software completion as it controls quality and

assured quality engineering. Different strategies can be applied to the test the quality of

software. Testing must be done before system deployment and it make the system bug free and

become easy to use. It also becomes trust worthy. We applied unit testing on each part while

building and then we applied component or module testing. And after integration of the system,

we applied a complete testing mechanism by declaring some test cases and then applied it on

our system and create a report for that.

6.2 Unit Testing

Unit testing is an essential aspect of software development, involving the writing of tests for

small code units. In our project, we utilized the React.js environment and the Jest test library

to write and run these unit tests. By testing individual units within the React.js framework, we

could ensure the accuracy of our code and identify any logical errors or issues related to

business logic. This approach allowed us to validate the behavior of our software components

in an isolated and controlled manner, enabling early detection and resolution of potential

problems. We identified 22-unit test cases and ran these on react.js environment using jest

library.

6.3 Component Testing

When all the units are created then the units are testing with each other this create a component

or module. Testing of such system leads to component testing. It is easier task and short in

length.

6.4 Integration Testing

In integration of a system, several components are joined together to complete the project. The

testing at the time of combining these components is called as integration test. We used

Postman and Node JS libraries mocha and chai for the integration testing purposes. We

identified 9 integration test cases. Some of the screen shots are shown in Figure 27 - 30

63

Figure 6-1: Integreation level test case using Node.js

Figure 6-2: Output of Integration level test case using Node.js

Figure 6-3: Code example of Integration level test case using Node.js

64

Figure 6-4: Postman test case example

6.5 System Testing

System testing is a crucial phase in the software testing process that focuses on evaluating the entire

system as a whole. It involves testing the system's functionalities, interactions, and performance to

ensure its compliance with the specified requirements and to identify any potential defects or issues.

In our project, we conducted thorough system testing using Selenium, a widely-used automation

framework for web application testing. Selenium allowed us to simulate user interactions and validate

the system's behavior across different browsers and platforms.

During system testing, we followed a structured approach to validate the system's functionalities and

ensure its reliability, stability, and compatibility. This involved executing a series of test scenarios that

covered a wide range of scenarios and user interactions. We identified 50 test scenarios for acceptance

testing and 101 test cases using Selenium. Some of the screen shots are shown in Figure 31 - 32

65

Figure 6-5: Acceptance level test case using Selenium for Admin Panel

Figure 6-6 Acceptance level test case using Selenium for Client Project Intiiation

66

Test Case Scenarios:

6.5.1 Tester Login

T Sen ID TS-001 T C ID TC-001

T C Desc Tester login positive

test case

T Prior High

Pre Valid User Account Post Tester Logged in

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Enter valid email

and password and

press login button.

Email:

ayesha@gmail.com

Password:

12345

Login Successful Login Successful Pass

T Sen ID TS-001 T C ID TC-002

T C Desc Tester login negative

test case

T Prior High

Pre Invalid User Account Post Login Unsuccessful

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Enter invalid

email and

password and

press login button.

Email:

sadfr

Password:

1234

Login unsuccessful Login unsuccessful Pass

mailto:ayesha@gmail.com
mailto:ayesha@gmail.com

67

6.5.2 Client Login

T Sen ID TS-002 T C ID TC-003

T C Desc Client login positive

test case

T Prior High

Pre Valid User Account Post Client Logged in

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Enter valid email

and password and

press login button.

Email:

anza@gmail.com

Password:

9999

Login Successful Login Successful Pass

T Sen ID TS-002 T C ID TC-004

T C Desc Client login negative

test case

T Prior High

Pre Invalid User Account Post Login Unsuccessful

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Enter invalid

email and

password and

press login button.

Email:

aefh@gmail.com

Password:

68uf

Login unsuccessful Login unsuccessful Pass

68

6.5.3 Admin Login

T Sen ID TS-003 T C ID TC-005

T C Desc Admin login positive

test case

T Prior High

Pre Valid User Account Post Admin Logged in

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Enter valid email

and password and

press login button.

Email:

admin@tester-

online.live

Password:

12345

Login Successful Login Successful Pass

T Sen ID TS-002 T C ID TC-006

T C Desc Admin login negative

test case

T Prior High

Pre Invalid User Account Post Login Unsuccessful

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Enter invalid

email and

password and

press login button.

Email:

abcd@gmail.com

Password:

Abc123

Login unsuccessful Login unsuccessful Pass

69

6.5.4 Tester Registration

T Sen ID TS-004 T C ID TC-007

T C Desc Tester Registration positive

test case

T Prior High

Pre Not a User Post Tester Account Created

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Enter name,

phone, email,

password and

press register

button.

Name: ayesha

Phone: 1234567

Email:

ayesha@gmail.com

Password: 12345

Registration

Successful

Registration Successful Pass

T Sen ID TS-004 T C ID TC-008

T C Desc Tester Registration

negative test case

T Prior High

Pre Not a User Post Tester Account Not

Created

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Enter name,

phone, email,

password and

press register

button.

Name: asdfg

Phone: 1234

Email: 12345

Password: 12345

Show Error Error shown Pass

70

6.5.5 Client Registration

T Sen ID TS-005 T C ID TC-009

T C Desc Client Registration positive

test case

T Prior High

Pre Not a User Post Client Account Created

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Enter name,

phone, email,

password and

press register

button.

Name: anza

Phone: 123476

Email: anza@gmail.com

Password: 1234

Registration

Successful

Registration Successful Pass

T Sen ID TS-005 T C ID TC-010

T C Desc Client Registration

negative test case

T Prior High

Pre Not a User Post Client Account Not

Created

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Enter name,

phone, email,

password and

press register

button.

Name: ali

Phone: 1234

Email: okh78

Password: 12345

Show Error Error shown Pass

71

6.5.6 Tester’s Portfolio

T Sen ID TS-006 T C ID TC-011

T C Desc Add personal projects in

tester’s portfolio

T Prior medium

Pre Tester logged in Post Project added

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Enter project

name in input

field and press

Add button.

Web app testing Project Added

Successfully

Project Added

Successfully

Pass

T Sen ID TS-006 T C ID TC-012

T C Desc Add skill in tester’s

portfolio

T Prior medium

Pre Tester logged in Post Skill added

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Enter skill name

in input field and

press Add button.

Integration Testing Skill Added

Successfully

Skill Added

Successfully

Pass

72

T Sen ID TS-006 T C ID TC-013

T C Desc Add experience in tester’s

portfolio

T Prior medium

Pre Tester logged in Post Experience added

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Slide experience

slider.

10 years Experience Added

Successfully

Experience Added

Successfully

Pass

T Sen ID TS-006 T C ID TC-014

T C Desc Write description and

delivery in tester’s

portfolio

T Prior low

Pre Tester logged in Post Description and delivery

added

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Input Description

in description

field and delivery

in delivery field

Description: Hi I am a

Tester.

Delivery: I deliver Test

reports

Description and

delivery added

Successfully

Description and delivery

added Successfully

Pass

T Sen ID TS-006 T C ID TC-015

T C Desc Upload Resume/CV in

tester’s portfolio

T Prior low

Pre Tester logged in Post Resume Added

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Press upload

button, choose

file from device

and press enter.

Select file from device Resume Added

Successfully

Resume Added

Successfully

Pass

73

6.5.7 Tester Adds Test Case

T Sen ID TS-007 T C ID TC-016

T C Desc Tester Adds test case

positive test case

T Prior High

Pre Tester logged in and tester

has a project assigned

Post Test Case Added

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Select Project,

select

requirement,

input intent,

inputs, expected

outcome, pre-

condition, post -

condition and

status.

Select proof file

from device.

Press Add test

case button

Project: ortho website testing

Requirement: Pages

Intent: check pages are

working

Inputs: abc

expected outcome: bcd

pre-condition: efg

post -condition: hij

status: pass

file selected: img.jpg

Test case added

successfully

Test case added

successfully

Pass

74

T Sen ID TS-007 T C ID TC-017

T C Desc Tester Adds test case

negative test case

T Prior High

Pre Tester logged in and tester

has a project assigned

Post Test Case not Added

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Select Project,

select

requirement,

input intent,

inputs, expected

outcome, pre-

condition, post -

condition and

status.

Not Select proof

file from device.

Press Add test

case button

Project: ortho website testing

Requirement: Pages

Intent: check pages are

working

Inputs: abc

expected outcome: bcd

pre-condition: efg

post -condition: hij

status: pass

file selected: none.

Error Shown Error Shown Pass

6.5.8 Tester Adds bug

T Sen ID TS-008 T C ID TC-018

T C Desc Tester Adds bug T Prior High

Pre Tester logged in and tester

has a project assigned

Post Bug Added

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Select Project,

select

requirement,

Enter Bug

description, select

bug severity and

press Add Bug

button.

Project: ortho website testing

Requirement: Pages

Bug Description: Page

not found

Severity: High

Bug Added

Successfully

Bug Added Successfully Pass

75

6.5.9 Tester’s Profile Updating

T Sen ID TS-008 T C ID TC-019

T C Desc Tester updates his profile T Prior medium

Pre Tester logged in Post Profile Updated

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Change Input

field you want to

update.

Press Update

button.

Before:

Name: amna

After:

Name: ali

Profile Update

Successfully

Profile Update

Successfully

pass

6.5.10 Tester Downloads Project Artifact

T Sen ID TS-009 T C ID TC-020

T C Desc Tester Downloads Project

Artifact

T Prior High

Pre Tester logged in and Tester

is assigned a project

Post Artifact downloaded

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Click Project

Name.

Click file icon.

Project Name: ortho

website testing

File Downloaded

Successfully

File Downloaded

Successfully

pass

76

6.5.11 Tester Submits Test Report

T Sen ID TS-010 T C ID TC-021

T C Desc Tester Submits Test Report T Prior High

Pre Tester logged in and Tester

is assigned a project

Post Report Submitted

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Select Project and

Press Submit Test

Report Button.

Select Project:

ortho website testing

Report Submitted

Successfully

Report Submitted

Successfully

Pass

6.5.12 Tester Requests Test for Available Project

T Sen ID TS-011 T C ID TC-022

T C Desc Tester Requests for

Available Project

T Prior Medium

Pre Tester logged in and

project is not already

requested by same tester

Post Test Project Requested

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Click Request

button on

available project.

NA

Requested

Successfully

Requested Successfully Pass

77

6.5.13 Tester Downloads Submitted Report
T Sen ID TS-012 T C ID TC-023

T C Desc Tester downloads

submitted report

T Prior Medium

Pre Tester logged in and test

report is submitted

Post Report Downloaded

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Select Project and

Press download

Test Report

Button.

Select Project:

ortho website testing

Report downloaded

Successfully

Report downloaded

Successfully

Pass

6.5.14 Tester Deletes bug from Traceability

T Sen ID TS-013 T C ID TC-024

T C Desc Tester deletes bug from

traceability

T Prior Medium

Pre Tester logged in and bug is

in traceability

Post Bug deleted

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Select Project,

Select

Requirement

and Press delete

Button in front of

bug.

Select Project:

ortho website testing

requirement: buttons

Bug deleted

successfully

Bug deleted successfully Pass

78

6.5.15 Tester Deletes Test Case from Traceability

T Sen ID TS-014 T C ID TC-025

T C Desc Tester deletes test case

from traceability

T Prior Medium

Pre Tester logged in and test

case is available in

traceability

Post Test Case deleted

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Select Project,

Select

Requirement

and Press delete

Button in front of

test case.

Select Project:

ortho website testing

requirement: buttons

Test Case deleted

successfully

Test Case deleted

successfully

Pass

6.5.16 Tester Updates Test Case
T Sen ID TS-015 T C ID TC-026

T C Desc Tester Updates test case T Prior High

Pre Tester logged in and test

case is available

Post Test Case updated

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Select Project,

select

requirement,

Click T C ID.

Update the field

desired.

Project: ortho website testing

Requirement: Pages

Before:

Intent: check pages are

working

After:

Intent: check pages are

not working.

Test case updated

successfully

Test case updated

successfully

Pass

79

6.5.17 Client Initiates Project

T Sen ID TS-016 T C ID TC-027

T C Desc Client initiates project

positive test case

T Prior High

Pre Client logged in Post Project Initiation

Requested

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Enter Project

Name, Project

Description,

Requirements to

Test, expected

budget, startDate,

endDate, message

and select file

from device.

Project Name:

ortho website testing

Project Description: test

functionality of all

buttons and pages

Requirements to be

Tested: buttons, pages

Expected Budget: 150000

Message to Admin: Hi

startDate: 23/6/2023

endDate: 27/7/2023

file: SRS.docx

Project Initiated

Successfully

Project Initiated

Successfully

Pass

80

T Sen ID TS-016 T C ID TC-028

T C Desc Client initiates project

positive test case

T Prior High

Pre Client logged in Post Project not Initiation

Requested

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Enter, Project

Description,

Requirements to

Test, expected

budget, startDate,

endDate, message

and select file

from device.

(no project name)

Project Description: test

functionality of all

buttons and pages

Requirements to be

Tested: buttons, pages

Expected Budget: 150000

Message to Admin: Hi

startDate: 23/6/2023

endDate: 27/7/2023

file: SRS.docx

Project Can’t be

Initiated

Project Can’t be

Initiated

Pass

6.5.18 Client Deletes Test Case from Progress

T Sen ID TS-017 T C ID TC-029

T C Desc Client deletes test case

from Progress

T Prior Medium

Pre Client logged in and test

case is available in progress

Post Test Case deleted

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Select Project,

Select

Requirement

and Press delete

Button in front of

test case.

Select Project:

ortho website testing

requirement: buttons

Test Case deleted

successfully

Test Case deleted

successfully

Pass

81

6.5.19 Client Deletes bug from Progress

T Sen ID TS-018 T C ID TC-030

T C Desc Client deletes bug from

traceability

T Prior Medium

Pre Client logged in and bug is

available in progress.

Post Bug deleted

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Select Project,

Select

Requirement

and Press delete

Button in front of

bug.

Select Project:

ortho website testing

requirement: buttons

Bug deleted

successfully

Bug deleted successfully Pass

6.5.20 Client Downloads Project Artifact

T Sen ID TS-019 T C ID TC-031

T C Desc Client Downloads Project

Artifact

T Prior Medium

Pre Client logged in Post Artifact downloaded

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Click Project

Name.

Click file icon.

Project Name: ortho

website testing

File Downloaded

Successfully

File Downloaded

Successfully

pass

82

6.5.21 Client Downloads proof of test case

T Sen ID TS-020 T C ID TC-032

T C Desc Client downloads proof of

test case

T Prior High

Pre Client logged in and proof

is available in progress.

Post Proof downloaded

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Select Project,

Select

Requirement

and Press

download Button

in front of test

case.

Select Project:

ortho website testing

requirement: buttons

Proof Downloaded

successfully

Proof Downloaded

successfully

Pass

6.5.22 Client Profile Update

T Sen ID TS-021 T C ID TC-033

T C Desc Client updates his profile

positive test case

T Prior medium

Pre Client logged in Post Profile Updated

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Change Input

field you want to

update.

Press Update

button.

Before:

Name: Sarah

After:

Name: Zoha

Profile Update

Successfully

Profile Update

Successfully

pass

83

T Sen ID TS-021 T C ID TC-034

T C Desc Client updates his profile

negative test case

T Prior medium

Pre Client logged in Post Profile not Updated

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Change Input

field you want to

update.

Press Update

button.

Before:

Email: zoha@gmail.com

After:

Email: Zoha

Error Shown Error Shown pass

6.5.23 Client Contacts Admin

T Sen ID TS-022 T C ID TC-035

T C Desc Client Contacts Admin

positive test case

T Prior medium

Pre Client logged in Post Message sent

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Enter Name,

Email, Select

Project, write

message, select

file and press

submit button.

Name: Saqib

 Email: saqib@gmail.com

Select Project: Project1

write message: Hi

select file: srs.docx

Message Sent Message Sent pass

84

T Sen ID TS-021 T C ID TC-036

T C Desc Client Contacts Admin

negative

T Prior medium

Pre Client logged in Post Message not sent

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Enter Name,

Email, Select

Project, write

message and

press submit

button.

(Not selecting

file)

Name: Saqib

 Email: saqib@gmail.com

Select Project: Project1

write message: Hi

Error Shown Error Shown pass

6.5.24 Client Downloads Submitted Report

T Sen ID TS-023 T C ID TC-037

T C Desc Client downloads

submitted report

T Prior High

Pre Client logged in and test

report is submitted

Post Report Downloaded

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Select Project and

Press download

Test Report

Button.

Select Project:

ortho website testing

Report downloaded

Successfully

Report downloaded

Successfully

Pass

85

6.5.25 Admin Accepts Client Request

T Sen ID TS-024 T C ID TC-038

T C Desc Admin Accepts Client

Request

T Prior medium

Pre Admin logged in. Post Request Accepted

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Click Accept

Button

NA Request Accepted Request Accepted pass

6.5.26 Admin rejects Client Request

T Sen ID TS-025 T C ID TC-039

T C Desc Admin Rejects Client

Request

T Prior medium

Pre Admin logged in. Post Request Rejected

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Click Reject

Button

NA Request Reject Request Reject pass

6.5.27 Admin Accepts Tester Request

T Sen ID TS-026 T C ID TC-040

T C Desc Admin Accepts Request T Prior medium

Pre Admin logged in. Post Request Accepted

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Click Accept

Button

NA Request Accepted Request Accepted pass

86

6.5.28 Admin Rejects Tester Request

T Sen ID TS-027 T C ID TC-041

T C Desc Admin Rejects Tester

Request

T Prior medium

Pre Admin logged in. Post Request Rejected

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Click Reject

Button

NA Request Reject Request Reject pass

6.5.29 Admin deletes Client Account

T Sen ID TS-028 T C ID TC-042

T C Desc Admin deletes client

account

T Prior medium

Pre Admin logged in and client

account is there to be

deleted.

Post Account deleted

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Click delete icon

from Clients

table.

NA Client Deleted Client Deleted pass

87

6.5.30 Admin Deletes Tester Account

T Sen ID TS-029 T C ID TC-043

T C Desc Admin deletes Tester

account

T Prior medium

Pre Admin logged in and tester

account is there to be

deleted.

Post Account deleted

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Click delete icon

from tester table.

NA Tester Deleted Tester Deleted pass

6.5.31 Admin Downloads Submitted Report

T Sen ID TS-030 T C ID TC-044

T C Desc Admin downloads

submitted report

T Prior Medium

Pre Admin logged in and test

report is submitted

Post Report Downloaded

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Select Project and

Press download

Test Report

Button.

Select Project:

ortho website testing

Report downloaded

Successfully

Report downloaded

Successfully

Pass

88

6.5.32 Admin Downloads Project Artifact

T Sen ID TS-031 T C ID TC-045

T C Desc Admin Downloads Project

Artifact

T Prior Medium

Pre Admin logged in Post Artifact downloaded

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Click Project

Name.

Click file icon.

Project Name: ortho

website testing

File Downloaded

Successfully

File Downloaded

Successfully

pass

6.5.33 Admin Profile Update

T Sen ID TS-032 T C ID TC-046

T C Desc Admin updates his profile

positive test case

T Prior medium

Pre Admin logged in Post Profile Updated

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Change Input

field you want to

update.

Press Update

button.

Before:

Name: Admin

After:

Name: Zoha

Profile Update

Successfully

Profile Update

Successfully

pass

89

T Sen ID TS-032 T C ID TC-047

T C Desc Admin updates his profile

negative test case

T Prior medium

Pre Admin logged in Post Profile not Updated

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Change Input

field you want to

update.

Press Update

button.

Before:

Email: admin@tester-

online.live

After:

Email: Admin

Error Shown Error Shown pass

6.5.34 Admin Deletes Test Case

T Sen ID TS-033 T C ID TC-048

T C Desc Admin deletes test case

from Progress

T Prior Medium

Pre Admin logged in and test

case is available in progress

Post Test Case deleted

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Select Project,

Select

Requirement

and Press delete

Button in front of

test case.

Select Project:

ortho website testing

requirement: buttons

Test Case deleted

successfully

Test Case deleted

successfully

Pass

90

6.5.35 Admin Deletes Bug

T Sen ID TS-034 T C ID TC-049

T C Desc Client deletes bug from

traceability

T Prior Medium

Pre Client logged in and bug is

available in progress.

Post Bug deleted

Test Execution Steps:

Sno. Action Inputs Expected Outcome Actual Outcome Test Result

1 Select Project,

Select

Requirement

And Press delete

Button in front of

bug.

Select Project:

ortho website testing

requirement: buttons

Bug deleted

successfully

Bug deleted successfully Pass

91

CHAPTER - 7

CONCLUSION AND OUTLOOK

92

7 Conclusion
We present conclusion and outlook in this chapter.

7.1 Conclusions

Our web application marketplace represents a significant step towards addressing the

challenges facing the software testing industry. Through the platform, software testers can

register and access remote testing job opportunities, while companies can find suitable testers

for their projects. This approach will improve the efficiency and quality of testing services

while providing a centralized marketplace for both testers and companies.

Additionally, the platform offers several unique features such as input test data generation, test

case management, and traceability metrics, which will enhance the testing process and enable

effective testing. The platform will play an instrumental role in reducing the gap between

software companies and testers, making it easier for companies to access quality testing

services while offering job opportunities to testers.

As the software testing industry continues to grow, our web application marketplace will play

a vital role in connecting software testers with companies in need of their services. We look

forward to seeing how this platform will contribute to the future of software testing and the

broader software industry.

7.2 Outlook
As a future direction, automated test case generation using AI methods such as use of

reinforcement learning, and a mechanism that allows test case prioritization. [3]–[5]

93

References
[1] H. Tahbildar and B. Kalita, “Automated Software Test Data Generation: Direction of

Research,” International Journal of Computer Science & Engineering Survey, vol. 2, no. 1, pp.

99–120, Feb. 2011, doi: 10.5121/ijcses.2011.2108.

[2] A. Anand and A. Uddin, “Importance of Software Testing in the Process of Software

Development Load Balancing In Cloud Computing View project Deployment of DataBase-as-

a-Service and connecting it with the Local Server View project Importance of Software

Testing in the Process of Software Development,” 2019. [Online]. Available: www.ijsrd.com

[3] E. Ashraf, K. Mahmood, T. A. Khan, and S. Ahmed, “Value based PSO Test Case

Prioritization Algorithm,” 2017. [Online]. Available: www.ijacsa.thesai.org

[4] F. S. Ahmed, A. Majeed, and T. A. Khan, “Value-Based Test Case Prioritization for

Regression Testing Using Genetic Algorithms,” Computers, Materials and Continua, vol. 74,

no. 1, pp. 2211–2238, 2023, doi: 10.32604/cmc.2023.032664.

[5] F. S. Ahmed, A. Majeed, T. A. Khan, and S. N. Bhatti, “Value-based cost-cognizant test case

prioritization for regression testing,” PLoS One, vol. 17, no. 5 May, May 2022, doi:

10.1371/journal.pone.0264972.

Appendix A

Ethical Analysis
When we talk about ethics it means all the ethical concerns to be considered. To define it in

more precisely we categorize it into two parts.

• FYP Process Level

• FYP Product Level

FYP Process Level

By Process Level we mean the ethical concerns that we face or to be considered while developing

product. It includes the inside management and inside problems.

Honesty

It is micro ethics based on individualism we both partners remain honest and loyal to each other in

developing this project.

Integrity

We keep all the engineering ethics in our mind while developing this product and we remain loyal to

engineering code of ethics. We remain honest to society as our product does not provide any harm to

public.

94

Fairness

We make all the things clean and clear to ourselves and to the supervisor. There is no ambiguity between

any of the instance of this project.

Conflict Resolution

We have clearly defined the process and terms and conditions for resolving the conflict that may arise

during product development.

Morality

Some of the basic ethics are set as standard to be follow like the communication process, weekly

meetings standards etc. and ethics like Don’t Cheat, Don’t Lie.

Right Ethics

All the right ethics are considered to be follow and adopt during the product development.

This includes Privacy, Faithfulness, Respect, Honesty etc.

FYP Product Level

When we say product level, we mean the concerns that will be developed after the product is in market,

Launched or on launching pad. We have prepared ourselves also for that and all the ethical concerns

that we considered will be discussed here.

As the project is market viable product so we have to be more careful about its launching and

operability.

Following are the ethical concerns about our project that we considered important to be discussed.

1. Fair treatment of testers

 Avoiding discrimination in job opportunities and pay rates.

 Ensuring fair treatment of all testers, regardless of gender, race, or other factors.

 Providing equal opportunities for all testers, regardless of their circumstances or

disabilities.

2. Privacy and security of user information

 Safeguarding personal and sensitive information from unauthorized access or breaches.

 Transparency in data collection practices.

 Obtaining user consent before collecting any personal information.

3. Quality of testing process and results

 Ensuring that testers are appropriately qualified for assigned projects.

95

 Promoting ethical standards and industry best practices.

 Avoiding rushed or incomplete testing due to underpayment or overwork.

4. Fair and competitive marketplace

 Ensuring that companies do not use the platform to undercut market rates or exploit

testers.

 Preventing collusion among testers to artificially inflate rates.

 Promoting a fair and competitive marketplace for both testers and companies.

5. Accessibility for all users

 Designing the platform with accessibility in mind.

 Ensuring that testers with disabilities can access and complete testing projects without

barriers.

 Providing equal opportunities for all testers, regardless of disabilities or accessibility

needs.

WBS (Work Break Down Structure)

Figure 0-1 Work Break Down Structure

96

