
Design and Implementation of
RISC-V Processor with ML

Accelerator

By

Faizan Ahmad

Enrollment No. 01-133192-030

Sawera Aslam

Enrollment No. 01-133192-123

Hamna Shakil

Enrollment No. 01-133192-037

Supervised By

Dr. Atif Raza Jafri

Session 2019-23

This Report is submitted to the Department of Electrical

Engineering, Bahria University, Islamabad.

In partial fulfillment of requirement for the degree of BS(EE).

Certificate

We accept the work contained in this report as a confirmation to the

required standard for the partial fulfillment of the degree of BS(EE).

.

Head of Department Supervisor

.

Internal Examiner External Examiner

i

Dedication

We express our gratitude to our family, friends, and mentors who have

been a constant source of support and encouragement throughout our

dissertation journey. Our parents, in particular, have played a significant

role in motivating us to persevere through challenges. We extend our

heartfelt thanks to our supervisors for their guidance and assistance in

developing our skills, which will undoubtedly prove valuable in our future

endeavors. This dissertation is dedicated to all those who have helped us

along the way.

ii

Acknowledgments

We would like to express our gratitude to our Creator Allah S.W.T. who

primarly helped in each and every step of achieving any progress in this

project. We can say with full and complete confidence that without His

blessings and help we would never be able to accomplish such a huge

project and InshaAllah He will always be there for us. Secondly He gave

us such good and helping friends and supervisors who also guided us

whereever we were stuck. Thank you Dr. Atif Raza Jafri and Mr.

Muhammad Ali for being supportive and an encouragement for us in this

project.

iii

Abstract

We are currently witnessing the dawn of a new industrial revolution,

characterized by the rapidly changing industrial landscape. In this revolu-

tion, RISC-V has emerged as a widely used term to describe the develop-

ment of custom processors designed to meet the power and performance

requirements of newer workloads for AI, ML, and IoT. RISC-V is an open

standard ISA that is built on RISC principles and plays a critical role in

linking software and hardware layers of computer abstraction. The primary

drivers of this product include building custom processors, boosting speed,

reducing costs, enhancing security, developing a platform for new students

in this field, promoting innovation and skills, and competing with other

companies such as Intel (x86), ARM (ARM ISA), and others.

This project presents the implementation of a RISC-V processor on

FPGA with an integrated accelerator for machine learning (ML) applica-

tions. The processor used in this project is VexRiscv with ztachip acceler-

ator. The main objective of this project is to develop a hardware system

with high performance and efficiency for ML applications. To achieve this

objective, the VexRiscv processor is modified to transfer tensor instructions

to ztachip for accelerating ML computations.

The implementation of this integrated system is carried out on an

FPGA platform, which allows for flexibility and easy reconfiguration. The

design is verified using debugging tools and is tested on various ML appli-

cations. The results show that the designed processor with the integrated

accelerator outperforms traditional processors and accelerators in terms

of both speed and energy efficiency. The tensor instructions of ztachip for

ML computations also provide significant speedup compared to standard

RISC-V instructions.

Overall, the project demonstrates the feasibility and effectiveness of

implementing a RISC-V processor with an integrated accelerator for ML

applications. This work has implications for the development of high-

performance and energy-efficient RISC-V accelerators for various appli-

cations, particularly in the field of ML.

iv

Contents

1 Introduction 1

1.1 Project Background . 3

1.2 Project Overview . 4

1.2.1 Keypoints about RISC-V 4

1.3 Problem Statements . 8

1.4 Project Objectives . 12

1.5 Project Scope . 14

1.5.1 RISC-V . 14

1.5.2 Machine Learning 20

2 Literature Review 22

2.1 Introduction . 23

2.2 Purpose of the Review . 24

2.3 RISC-V based Pakistan’s first processor 24

2.4 UC Berkeley made RISC-V Chips 26

2.5 Power Management Integrated RISC-V Processor SoC Op-

erating at Submicrosecond Timescales 27

2.6 RISC-V Processor Designed for Space Systems 28

2.7 RISC-V and PULP . 28

2.7.1 Ibex Core . 29

2.7.2 Zeroriscy Core . 31

2.8 RISC-V Accelerator for Post-Quantum Cryptography . . . 39

2.9 RISC-V Accelerator designed for Ascon 40

3 RISC-V Processor 42

v

3.1 Introduction . 43

3.2 VexRiscv . 44

3.2.1 Performance Score Comparison 45

4 RISC-V Accelerator for ML Applications 47

4.1 Introduction . 48

4.2 Ztachip as DSA . 49

4.2.1 Limitations . 50

4.3 Ztachip Software Stacks . 51

4.4 Hardware Architecture . 52

5 Integration of RISC-V Processor with ML Accelerator

on FPGA 60

5.1 Introduction . 61

5.2 Advantages of using FPGA forIimplementation 61

5.2.1 Genesys 2 . 62

5.3 Steps of Integration . 65

5.4 Integrated Design Architecture 66

5.5 Process Flow . 75

5.6 Hardware Setup . 75

6 Conclusion 78

6.1 Summary and Implications 79

6.2 Abilities . 80

6.3 Result . 81

6.4 Performance . 85

References 87

vi

List of Figures

1.1 Layers of Abstraction of Computer Architecture 2

1.2 RISC-V Logo . 4

1.3 Descrption of RISC-V ISA 5

1.4 Open Source RISC-V ISA [?] 6

1.5 Open-Source vs. Closed . 7

1.6 Pakistan Imports of Electrical, and Electronic Equipment -

2022 . 8

1.7 Electronic Devices based on Microprocessor 10

1.8 50 Years of Technology Scaling 11

1.9 NASA selects RISC-V for Space Exploration 15

1.10 Description of four Distinct Processor Families of SiFive

Core IP Portfolio based on the RISC-V ISA 16

1.11 Specification of Alibaba Roma RISC-V Laptop 17

1.12 Google selected SiFive . 18

1.13 China showing interest in RISC-V 19

1.14 Machine Learning, Its Importance, Types, and Applications 20

2.1 NUST developed Pakistan’s First Processor based on RISC-V 24

2.2 Ibex Core Block Diagram 29

2.3 The Distribution of Power among the Three Core Units

while Running Coremark at a Frequency of 100MHz and

a Voltage of 1.2V . 32

2.4 The Total Area Occupied by all the Core Units in KGE

(thousands of square millimeters) 33

2.5 Block Diagram of zeroriscy Core 34

vii

4.1 Methodology . 52

4.2 ztachip Hardware Architecture 54

5.1 Genesys 2 FPGA Board . 64

5.2 Integrated System Block Diagram 67

5.3 Hardware System . 76

6.1 Object Detection of Person and Keyboard 81

6.2 Object Detection of A.C. Remote 82

6.3 Object Detection of Umbrella 82

6.4 Edge Detection of Person and Keyboard 83

6.5 Point of Interest on Person and Keyboard 83

6.6 Motion Detection on Keyboard 84

6.7 All Four ML Algorithms running in Parallel 84

List of Tables

2.1 Specifications of NTiny-E 25

2.2 Comparison of Different PULP Cores 31

2.3 Instruction Fetch Signals . 36

2.4 LSU Signals . 38

3.1 Benchmark Score Comparison of Different Processors 46

4.1 VLIW Instruction Format 57

6.1 Benchmark Score Comparison of ztachip with Nvidia 86

viii

Abbreviations

A Atomic Instructions

ADC Analog to Digital Converter

AEAD Authenticated Encryption with Associated Data

AI Artificial Intelligence

ALU Arithemetic and Logic Unit

AMD Advanced Micro Devices

APB Advanced Peripheral Bus

ARM Advanced RISC Machines

ASIC Application Specific Integrated Circuit

ATSC Advanced Television Systems Committee

ix

AXI Advanced eXtensible Interface

B Bit Manipulation

BOOM Berkeley Out of Order Machine

C Compressed Instructions

CEO Chief Executive Officer

CHIPS Common Hardware for Interfaces, Processors and Systems

CISC Complex Instruction Set Architecture

CLB Configurable Logic Block

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

CSR Control and Status Register

DC Direct Current

DDR Dual Data Rate

DFA Differential Fault Attacks

DLX Deluxe

DMA Direct Memory Access

DMIPS Dhrystone Million Instructions per Second

DMR Dual Modular Redundancy

DPA Differential Power Attacks

DSA Domain Specific Architecture

x

DSL Domain Specific Language

DVD Digital Video Disc

E Embedded

ECC Error Correcting Codes

EECS Electrical Engineering and Computer Science

EEES Energy Efficient Embedded Systems

ETH Eidgenössische Technische Hochschule

EX Execution

F Single-Precision Floating Point

FIFO First In First Out

FMA Fused Multiplication and Addition

FMS Fused Multiplication and Subtraction

FPGA Field Programmable Gate Arrays

FPS Frames Per Second

G General

GCC GNU Compiler Collection

GDB GNU Debugger

GFLOPS Giga Floating-Point Operations per Second

GHz Giga Hertz

GOPS Giga Operations Per Second

xi

GPIO General Purpose Input Output

GPR General Purpose Register

GPU Graphic Processing Unit

GUI Graphical User Interface

HDL Hardware Description Language

HDMI High Definition Multilmedia Interface

HPC High Performance Computing

HPSC High Performance Spaceflight Computer

HS Horizontal Sync

I Integer Base ISA

IBM International Business Machines

ID Instruction Decode

IEEE Institute of Electrical and Electronics Engineers

IF Instruction Fetch

IIS Integrated Systems Laboratory

INT Integer

IoT Internet of Things

IP Intellectual Property

ISA Instruction Set Architecture

JTAG Joint Test Action Group

xii

K Kilo

KB Kilo Byte

kGE Kilo Gate Equivalent

LSU Load and Store Unit

M Multiplication and Division

MAC Multiplication and Accumulation

Mbps Mega Bits Per Second

MHz Mega Hertz

MIG Memory Interface Generator

mm Milli Meter

mW Milli Watt

MXU Matrix Multiplication Units

NASA National Aeronautics and Space Administration

NESCOM National Engineering and Scientific Commission

NUST National University of Science and Technology

OCD On Chip Debugger

OTP One Time Programmable

OV Omni Vision

PC Personal Computer

PGC Programmable Gain Control

xiii

PQC Post Quantum Cryptography

PULP Parallel Ultra Low Power

PWDN Power Down

PWM Pulse Width Modulation

QSPI Quad Serial Peripheral Interface

RGB Red Green Blue

RISC Reduced Instruction Set Architecture

RISC-V Reduced Instruction Set Computer Five

RTL Register Transfer Level

RV RISC-V

SA Systolic Arrays

SDRAM Synchronous Dynamic Random Access Memory

SFA Statistical Fault Attacks

SHL Shift Left

SHR Shift Right

SIFA Statistical Ineffective Fault Attacks

SoC System on Chip

SOI Silicon On Insulator

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

xiv

SSD Single Shot Detection

symbol description

TPU Tensor Processing Units

UART Universal Asynchronous Receiver Transmitter

UC University of California

US United States

USB Universal Serial Bus

V Volts

VCR Videocassette Recorder

VDMA Video Direct Memory Access

VGA Video Graphics Array

VHDL VHSIC Hardware Description Language

VLIW Very Long Instruction Word

VS Vertical Sync

W Watt

YAML Yet Another Markup Language / YAML Ain’t Markup Language

xv

Chapter 1

Introduction

Design and Implementation of RISC-V Processor with ML Accelerator 1

Our project is “Implementation of RISC-V based processor on FPGA

kit with integrated accelerator for ML algorithms”. It is the initial and sig-

nificant step towards innovation and improvement. Software and hardware

interface is the important abstraction layer in the computer system. RISC-

V is distinctive, innovative, because it is a common, free, open-source ISA

to which software can be interfaced, hardware can be design, and proces-

sors can be built to support it.

Figure 1.1: Layers of Abstraction of Computer Architecture

Source: Secplicity

As this figure shows different layers in an architecture of computer in

order. The most important of them all is the middle most layer named

as Instruction Set Architecture. It links the software and the hardware of

any computer or processor based system i.e. laptops, cellphones, electronic

devices etc.

Design and Implementation of RISC-V Processor with ML Accelerator 2

https://www.secplicity.org/2018/09/19/understanding-the-layers-of-a-computer-system/

1.1 Project Background

RISC-V, which is based on RISC architecture and pronounced as ”risk-

five,” was created at the University of California, Berkeley. The concept of

simpler and more effective computers had been around since the 1980s, but

the design principles were not yet fully understood. There was academic

interest in computers with high power and the ability to execute multiple

instructions per cycle. DLX, a RISC processor architecture, was designed

by John L. Hennessy and David A. Patterson with a focus on education

and research. Later, David Patterson contributed to the development of

RISC-V. Although researchers created DLX using field programmable gate

arrays, it was not intended for commercial use.

The earlier versions of ARM CPUs that utilized RISC architecture

had an instruction set that was available in the public domain and is

still supported by the GNU Compiler Collection (GCC), a widely used

free software. GCC can compile code, manage library dependencies, and

convert high-level programming languages such as C/C++ into assembly

code, which can then be transformed into executable files. While there

were three open-source core designs based on this instruction set, they were

never actually manufactured. OpenRISC is an open-source instruction set

architecture (ISA) that is based on DLX and can be supported by GCC

and Linux implementations, although there have been very few commercial

implementations to date. Krste Asanovic, along with some of his graduate

students, embarked on a brief three-month project in 2010 with the goal of

creating a design that would appeal to both academic and industrial users.

David Patterson, the creator of Berkeley RISC, also joined the project,

which became known as RISC-V and was the fifth generation of his RISC-

based research projects. Despite its initial brief timeline, the project had

Design and Implementation of RISC-V Processor with ML Accelerator 3

Figure 1.2: RISC-V Logo

Source: RISC-V Foundation

significant impact and was successful in achieving its objectives.

1.2 Project Overview

This chart shows some of the descrption of RISC-V ISA. It comes with

three variants i.e. 32, 64 and 128 bits. It has various optional extensions

e.g. M extension contains instructions related to multiplication and divi-

sion, F extension means that it will support single precision floating points

of different width depending on the variant being used and many other

extensions. It also contains 16 or 32 general purpose registers again de-

pending on the extension being used either I (32) or E (16). It supports

little endian while reading or writing in memory.

1.2.1 Keypoints about RISC-V

� The RISC-V instruction set architecture is a free and open ISA

that draws on three decades of RISC architecture development. It

is designed to be simple and easy to understand, with a reduced in-

struction set suitable for both lower-power embedded systems and

high-performance computers. RISC-V’s open nature and simplified

instruction set make it accessible for anyone to use freely and con-

tribute their skills and work towards its development.

� RISC-V has flexible nature, which means that it can be used for

Design and Implementation of RISC-V Processor with ML Accelerator 4

https://riscv.org/

Figure 1.3: Descrption of RISC-V ISA

Source: Wikipedia, The Free Encyclopedia

embedded applications as well as for high end computations. This is

possible due to its feature of allowing optional extensions. It’s base

extension, although, has all the instructions required to compile a C

program but there are also optional extensions e.g., for multiplication

or atomic operations or vector operations etc. If RISC-V is being used

by an individual or a small-scale industry which require it to perform

low end computations or want to use less hardware, then they can use

the base extensions or any other optional extension along with it. But

Design and Implementation of RISC-V Processor with ML Accelerator 5

https://en.wikipedia.org/wiki/RISC-V

Figure 1.4: Open Source RISC-V ISA [?]

Source: Microcontroller Tips

if RISC-V is being used by a very large organization and applications

required are high end and need to perform a lot of computations

or being used in a PC or laptop then RISC-V can have all other

required extensions to perform those complex operations in no time.

No wonder NASA and Google are also start using RISC-V in their

space missions and data centers respectively.

� RISC-V ISA is more secure and reliable as compared to other ISA’s

because when we will build our own processors using RISC-V ISA we

will surely be knowledgeable about the algorithms and logic inside

of that processor so there will be probably zero possibility of data

thieving. If we talk about other processor providers or ISAs, then

Intel and ARM are on the top of the list. Intel, as we all know, doesn’t

allow access to its ISA i.e., 8086 or x86 etc. Whereas ARM has its

ISA named as ARMISA and a lot of companies make processors

for cellphones based on ARMISA e.g., Qualcomm or Snapdragon

etc. But ARM doesn’t allow the access to its ISA for free. It gives

license to their customers, and which can be pretty out of range for

Design and Implementation of RISC-V Processor with ML Accelerator 6

https://www.microcontrollertips.com/risc-v-vs-arm-vs-x86-whats-the-difference/

small scale companies. It erects a barrier to the commercialization of

successful research ideas.

� RISC-V uses simple instructions in its instruction set as compared

to other ISAs which uses complex instructions both in form of no.

of operations as well as size of the instructions which is not same

for all instructions. Intel ISA x86 was traditionally built as a CISC

(Complex Instruction Set Computer) ISA, while ARM was built as

RISC (Reduced Instruction Set Computer). Originally, CISC ma-

chine’s goals to execute fewer, more complex instructions and do

more computation in single instruction. RISC based on simpler in-

structions that are easier and faster to execute and only execute one

instruction per cycle.

Figure 1.5: Open-Source vs. Closed

Source: Bluespec

� RISC-V will support both proprietary and open implementations.

Another aspect of RISC-V which makes it different from other ISAs

is that it allows, and in fact, encourage custom extension. Adding

custom extensions is a feature which can bring innovation to the

the computer industry. It means that anyone can add any self-made

instruction into the ISA of RISC-V for their own use as well as others

Design and Implementation of RISC-V Processor with ML Accelerator 7

https://bluespec.com/2020/04/01/risc-v-vs-arm-and-intel-risc-v-proving-a-dangerous-competitor/

which will be useful for any specific work load. This is a new way of

getting things faster.

1.3 Problem Statements

� Pakistan doesn’t make its own processors whenever we require a pro-

cessor, we import it from foreign countries.

Figure 1.6: Pakistan Imports of Electrical, and Electronic Equipment -
2022

Source: Trading Economics

As we can see in this bar graph the import of Pakistan of electronic

products is increasing every year. Most of these products have a

processor in their core doing all the working and computations. So

the lack of processor is one of the major issues due to which we are

unable to develop our own electronic products.

� Now to make any processor one should have access to any ISA. But

unfortunately, we don’t have access to the ISAs of other processors

(for free) like Intel’s ISA x86, ARM’s ISA ARMISA and many others.

So, there is a need to explore and implement an ISA to develop our

Design and Implementation of RISC-V Processor with ML Accelerator 8

https://tradingeconomics.com/pakistan/imports/electrical-electronic-equipment

own processor or to develop our own ISA but it is not a simple task

to do.

� Another major issue of using imported foriegn country made pro-

cessors is of security. We don’t know what kind of algorithms are

used inside those processors and there is a chance of data stealing or

hacking. Such issues are very critical especially in those areas where

we need tight securities for example in military areas, NESCOM etc.

Any individual would also not like that his or her personal data may

be accessed by any unknown person so this issue is also crucial in

cloud computing, business purposes, import and export, personal in-

formation and so on.

� In the field of processor designing, Pakistan lags behind due to the

lack of a suitable platform for engineers in this domain. This is unfor-

tunate, as processors are a crucial component in both computer and

electronics industries. Most daily-use products such as home appli-

ances, cars, planes, medical devices, and security systems incorporate

microprocessors in some way.

Despite this, it is rare for electrical or electronics engineers to have

knowledge about processor designing. The importance of micropro-

cessors is evident in the wide range of products that rely on them,

from televisions, VCRs, and DVD players to elevators, computer

servers, and even some doors with automatic entry. Raising awareness

about processor design can help bridge the gap and enable Pakistan

to keep up with global advancements in this domain.

� Moore’s law, proposed by Gordon Moore in 1965, predicted that the

number of transistors on semiconductor chips would double approx-

imately every 18 months. This implied that computing capabilities

Design and Implementation of RISC-V Processor with ML Accelerator 9

Figure 1.7: Electronic Devices based on Microprocessor

Source: VectorStock

would become significantly faster, smaller, and more efficient over

time. However, chip densities are no longer doubling every 18 months.

As we can see in this graph that although transistor size are almost

going ideal but the clock frequency has kind of stopped at almost 5

GHz. Clock frequency is one of the major factors on which compu-

tational speed of a processor depends. Now to overcome this issue

more number of cores are being implemented in a single processor

but the issue in this method is one that number of cores per chip

cannot exceed after a certain limit and the other is that it consumes

more power. Power consumption is also a big hurdle in going advance

in computer technology. So there is a need of an energy efficient and

powerful processor or computer system (RISC based).

� Machine Learning is widely used nowadays to achieve artificial in-

Design and Implementation of RISC-V Processor with ML Accelerator 10

https://www.vectorstock.com/royalty-free-vector/electronics-devices-and-digital-gadgets-vector-21884909

Figure 1.8: 50 Years of Technology Scaling

Source: Data Center Knowledge

telligence. There are a lot of applications of AI nowadays such as

image recognition, object detection, image classification, in medical

and military fields and a lot more. Normally PCs are use to achieve

desire output. And nowadays CPUs and GPUs (Graphic Processing

Units) are used in PCs. If we use CPU to do the required computa-

tions, then it takes a lot of time which most users don’t like. On the

other hand, GPUs are not affordable by small scale industries or in-

dividuals working on a project. Other than that, for space constraint

applications like security camera in a military or sensitive area. The

system for the computations needs to be placed near the security

camera to detect the presence of any intruder. These applications

require embedded platforms to do the computations in less time and

Design and Implementation of RISC-V Processor with ML Accelerator 11

https://www.datacenterknowledge.com/supercomputers/after-moore-s-law-how-will-we-know-how-much-faster-computers-can-go

using less space. So there is also a need for domain specific acceler-

ator to run the ML algorithms faster than CPU and costs less than

GPU.

1.4 Project Objectives

1. First objective is design and implementation of RV32IMC processor

on FPGA. The HDL (hardware desciption language) used for this

purpose is SpinalHDL. SpinalHDL is a language to describe digital

hardware. It is used to generated VHDL/Verilog files. It is much more

powerful than VHDL, Verilog, and SystemVerilog in its syntax and

features Much less verbose than VHDL, Verilog, and SystemVerilog.

It allows you to use Object-Oriented Programming and Functional

Programming to elaborate your hardware and verify it. In this RISC-

V processor descrption, RV32I is base instruction set, M extension is

for multiplication and division instructions and C is for compressed

instructions. Compressed instructions actually mean that instead of

32 bit of instruction size, most commonly used instructions will be

of 16 bit width so that they occupy less instruction memory. RISC-V

has many optional extensions but we are using only two extensions

which are enough for our general-purpose processor design. We will

test the processor by making software application in C language, then

we can clearly see the result if our processor will show the results for

exact same implementations which we will give in C language. The

core we are using is named as VexRiscv and was developed by same

developer as of SpinalHDL and is available on GitHub [1].

2. The second objective of the project is to implement a specialized ma-

chine learning accelerator for different ML applications, which will

Design and Implementation of RISC-V Processor with ML Accelerator 12

increase the computational speed of those algorithms and provide

faster results. The accelerator will take on ML related tasks from

the processor and expedite the process, delivering results back to the

processor with minimal delay. One example of a RISC-V accelerator

designed for vision and AI edge applications is ztachip, which can op-

erate on low-end FPGA devices or custom ASICs, making it a highly

efficient and low-power solution for embedded systems. Compared to

a non-accelerated RISC-V implementation, ztachip can provide ac-

celeration capabilities of up to 20-50x for many vision and AI tasks.

It even surpasses the performance of a RISC-V processor that has

a vector extension. One of ztachip’s standout features is its innova-

tive tensor processor hardware, which enables it to accelerate a wide

range of different tasks, including edge detection, optical flow, mo-

tion detection, color conversion, and the execution of TensorFlow AI

models. This sets it apart from other accelerators that are limited

to accelerating a narrow range of applications, such as convolutional

neural networks.

3. In the last objective of our project, we aim to integrate the VexRiscv

processor and ztachip (hardware accelerator) on an FPGA kit. One

of the significant advantages of using an FPGA is its reconfigurabil-

ity, even after the synthesis of a circuit. Moreover, an FPGA requires

less board space and is more energy-efficient compared to an equiv-

alent discrete circuit or ASIC (Application Specific Integrated Cir-

cuits). The kit used for this project is Genesys 2 Kintex-7 (xc7k325t-

2ffg900C). Then the results generated by the integrated system will

be compared with other accelerators out there in terms of speed,

performance and memory usage.

Design and Implementation of RISC-V Processor with ML Accelerator 13

1.5 Project Scope

1.5.1 RISC-V

RISC-V has bright future. RISC-V is now using in companies and compa-

nies are taking benefit from it to build custom processors for newer tech-

nologies’ power and performance, for example ML (Machine Learning), AI

(Artificial Intelligence), and IoTs (Internet of Things).

RISC-V is now using for edge computing to cloud servers and HPC

(High-Performance Computing). However, companies are slowly going to-

wards RISC-V for general-purpose processors which can be used in dash-

tops, laptops, and data centers. According to the RISC-V International

Foundation, they expect the adoption of RISC-V over the entire CPU spec-

trum by 2025. Several companies and academic institutions are currently

developing RISC-V-based processors that are expected to be released in the

coming years, including ATSC, Cambridge, Esperanto Technologies, ETH

Zurich, NVIDIA, and more. While current RISC-V technologies can’t cur-

rently compete with x86 offerings from AMD and Intel, there’s enough

momentum for the open-source instruction set architecture to produce

competitive hardware soon.

NASA and RISC-V:

Nowadays NASA is planning to use RISC-V power space computer for

future space missions. SiFive, a well-known manufacturer of electronic de-

vices based on RISC-V architecture, has signed an agreement with NASA

to supply custom RISC-V based processors for the space agency’s High-

Performance Spaceflight Computer (HPSC). This product is made with

the collaboration of SiFive with Microchip and contains 12 cores based on

Design and Implementation of RISC-V Processor with ML Accelerator 14

RISC-V ISA and they are expected to offer 100 times more performance

than NASA’s previously used processor BAE RAD750. [2]

Figure 1.9: NASA selects RISC-V for Space Exploration

Source: EENews

This is a huge step up for the space industry and will allow us to ex-

plore the universe and discover many things in a more efficient way and

much faster than before. The reason for the growing interest in RISC-V

processors is due to their power-efficient design, which follows the same

principles as ARM’s proprietary cores. However, unlike ARM processors

that require royalty payments each time they are incorporated into a chip,

RISC-V offers a royalty-free alternative. On the other hand, we all know

that RISC-V is a free, open-source ISA and is also flexible in nature. No

wonder it is being used from embedded platforms to now in space explo-

ration!

RISC-V with SiFive:

SiFive was established by the creators of RISC-V, who have been work-

ing on the RISC-V instruction Set Architecture (ISA) since 2010. Their

goal is to empower big and small companies to innovate with the next

Design and Implementation of RISC-V Processor with ML Accelerator 15

https://www.eenewseurope.com/en/nasa-selects-risc-v-cpu-for-next-gen-spaceflight-processor/

generation of high-performance processors based on RISC-V. They enable

the development of application-specific silicon faster than ever. SiFive has

the capability to fully leverage the potential of the open-source RISC-V

architecture on a large scale. [3]

Figure 1.10: Description of four Distinct Processor Families of SiFive Core
IP Portfolio based on the RISC-V ISA

Source: SiFive

SiFive is working on core IPs and have divided them into four families

based on their specifications and necessities.

RISC-V based Laptops:

It is encouraging to see the increasing adoption and software compatibility

of RISC-V processors. The fact that this open-source architecture is now

being utilized in tangible products is a positive development. One such

product is the Alibaba Roma RISC-V laptop [4], which was announced in

the summer and has now become available. This laptop features a quad-

core processor and a range of capabilities that are commonly found in Intel

Design and Implementation of RISC-V Processor with ML Accelerator 16

https://www.sifive.com/about

and AMD computers. The news was reported by CNX Software.

Figure 1.11: Specification of Alibaba Roma RISC-V Laptop

Source: Alibaba.com

Below is some description of RISC-V based laptop available for sale on

Alibaba

RISC-V and Google:

As we all know that Google requires much computation power for their

datacenters. According to SiFive they can fulfill their demand by provid-

ing a processor from their intelligence family. The processor of interest

here is Intelligence X280 which is a multicore processor based on RISC-V

ISA along with vector extensions. This processor is optimized for AI/ML

applications and the datacenters of Google also used Machine Learning

so this may be a good decision to use this processor. It can be combined

with MXU (matrix multiplication units) which are used in the Google’s

TPUs (Tensor Processing Units). SiFive claims that it will deliver greater

flexibility for programming and running machine learning workloads. [5]

Design and Implementation of RISC-V Processor with ML Accelerator 17

https://www.alibaba.com/product-detail/DC-ROMA-RISC-V-Development-Laptop_1600610157163.html

Figure 1.12: Google selected SiFive

Source: The Register

It has been heard that Google has placed its custom acceleration units

in the same chip of SiFive (multicore X280) and it is directly connected

to the Google designed MXU blocks. These RISC-V core complex chips

are being used in the datacenters, according to SiFive, to speed up the

machine learning work.

Additionally, it has been discovered that an all-encompassing software

stack was necessary for handling the accelerator, and consumers came to

the realization that they could address this concern by employing an X280

core complex in close proximity to their sizeable accelerator. The RISC-V

CPU cores are responsible for supervising and executing maintenance and

operation code, accomplishing mathematical operations that the large ac-

celerator is incapable of performing, and furnishing diverse other functions.

In essence, the X280 has the potential to function as a managerial hub for

Design and Implementation of RISC-V Processor with ML Accelerator 18

https://www.theregister.com/2022/09/23/google_using_sifive_riscv_cores/

the accelerator.

RISC-V and China:

ARM recently stated that RISC-V poses no threat to them in datacenters,

but China’s interest in RISC-V could prove otherwise. Due to trade bans

and restrictions imposed by the US on China, the country has been banned

from importing chips from other countries, including x86 processors and

AI kit from Intel, AMD, and Nvidia. [6]

Figure 1.13: China showing interest in RISC-V

Source: The Register

Chinese companies are increasingly adopting RISC-V as a means to

quickly develop their own architecture, bypassing the need for propri-

etary solutions. This trend is reflected in the fact that a significant portion

of RISC-V members are Chinese-based, and that the government-backed

Academy of Sciences is actively engaged in developing high-performance,

open-source RISC-V processors.

Design and Implementation of RISC-V Processor with ML Accelerator 19

https://www.theregister.com/2022/10/05/china_riscvv_arm_datacenter/

1.5.2 Machine Learning

Machine learning is a powerful tool nowadays and everyone use it such as

Amazon, Netflix, Facebook, and so on. Machine learning is so versatile we

can take unpredictable benefit from it.

In machine learning we don’t need to remember anything, machine

learning itself can memorize anything through experiences and trails. Ma-

chine learning is an application of Artificial Intelligence, create computer

program and assist computer to memorize without the help of human in-

teraction.

Figure 1.14: Machine Learning, Its Importance, Types, and Applications

Source: FORE School of Management

Machine learning plays a crucial role in the field of businesses as it

allows entrepreneurs to understand customers’ requirements and business

functioning behavior. Nowadays many famous companies such as Ama-

Design and Implementation of RISC-V Processor with ML Accelerator 20

https://www.fsm.ac.in/blog/an-introduction-to-machine-learning-its-importance-types-and-applications/

zon, Google, Facebook, and many more are professionally exploiting these

technologies, and machine learning becoming a core operational part of

functionality. The future of machine learning is quite bright and exciting.

Every common field is powered by machine learning applications, some

of them are search engine, healthcare, digital marketing, and education.

Machine learning is being so noticeable and leading in our lives today, it’s

challenging and difficult to imagine a future without it.

Design and Implementation of RISC-V Processor with ML Accelerator 21

Chapter 2

Literature Review

Design and Implementation of RISC-V Processor with ML Accelerator 22

2.1 Introduction

RISC-V, an open and modular Instruction Set Architecture (ISA), has the

potential to revolutionize the Internet of Things (IoT), Artificial Intelli-

gence (AI), and Machine Learning (ML) industries due to its clean design

and open nature. Although RISC-V is not the first open processor imple-

mentation, it is associated with two keywords - freedom and innovation

- as it offers users the freedom to use the cores however they wish. The

emergence of RISC-V coincides with other industry events, such as the

slowing of Moore’s Law and the growth of machine learning, leading to the

question of whether the timing is right for RISC-V’s success.

Simon Davidmann, CEO and founder of Imperas Software, believes

that the RISC-V architecture has gained popularity due to the need for

flexibility in the hardware design process. Today’s electronic products are

defined by their functionality, much of which is dependent on software

running on processors. As machine learning becomes increasingly impor-

tant across all industries, the demand for computing power has skyrock-

eted, leading to a need for numerous processors configured in a customized

manner. Standard off-the-shelf technologies are not sufficient to meet this

demand for customization. Therefore, there is a growing demand for the

freedom to design chips and processors, as well as the fabrics of processors

that go into these chips.

RISC-V is gaining popularity among universities, with many creating

open cores and incorporating the RISC-V ISA into their courses. For in-

stance, the University of California, Berkeley has developed Rocket cores

using RISC-V and is teaching the architecture to students in their EECS

department. Likewise, ETH Zurich has created power-efficient cores like

ibex, zero-riscy, micro-riscy, and others using their PULP platform. Several

Design and Implementation of RISC-V Processor with ML Accelerator 23

industry collaboration groups such as CHIPS Alliance, OpenHW Group,

and SiFive are working together with both industry and academia to build

open-source cores and make them widely available to the community.

2.2 Purpose of the Review

The purpose of this literature review is to let the readers know about the

advancements to RISC-V in industrial area as well as in educational and

innovational region. Also, we are going to compare a few examples of RISC-

V ISA being used nowadays in many applications with our processor and

accelerator and have a detailed discussion on their uses.

2.3 RISC-V based Pakistan’s first processor

NUST [7] has Developed Pakistan’s First Self-Developed Embedded Mi-

croprocessor NTiny-E. Electronic devices and consumer appliances rely

heavily on semiconductor chips. In 2021, global semiconductor sales ex-

ceeded $556 billion. However, Pakistan has yet to tap into this lucrative

market.

Figure 2.1: NUST developed Pakistan’s First Processor based on RISC-V

Source: propakistani

Design and Implementation of RISC-V Processor with ML Accelerator 24

https://propakistani.pk/2022/06/13/nust-develops-pakistans-first-self-developed-embedded-microprocessor/

In pursuit of its objective to promote applied research and innovation,

the National University of Sciences and Technology (NUST) initiated an

effort to make Pakistan self-sufficient in semiconductor technology. As a

result of this endeavor, researchers at NUST have accomplished compre-

hensive functional testing of the NTiny-E microprocessor, which is the

first-ever domestically developed microprocessor in the country, based on

the RISC-V ISA. This microprocessor has been fabricated by Taiwan Semi-

conductor Manufacturing Company, Limited using a 65nm process node,

and is aimed towards the market for embedded systems, consumer elec-

tronic products, and IoT devices.

Following is the table containing some of its specifications:

Feature Description

CORE BASE RV32I 32-Bit Integer Base

Extensions
M Integer Multiplication and Division

F IEEE Single-Precision Floating Point

Memory
IMEM Instruction Memory 32KB

DMEM Data Memory 8KB

Peripherals

UART Universal Async. Receiver Transmitter

I2C Inter Integrated Circuit

SPI Serial Peripheral Interface

GPIO General Purpose I/O - 16

Timer 32-Bit 1x Timer

PWM Pulse Width Modulation-2x

JTAG IEEE complaint JTAG support for in-system programming

Debug OpenOCD Debug support

Table 2.1: Specifications of NTiny-E

Source: propakistani

Design and Implementation of RISC-V Processor with ML Accelerator 25

https://propakistani.pk/2022/06/13/nust-develops-pakistans-first-self-developed-embedded-microprocessor/

2.4 UC Berkeley made RISC-V Chips

As we all know RISC-V was a project of UC Berkeley, California. They

have also designed many open source cores but in we will be talking about

a few of them which are prominent.

Rocket Chip is an open-source System-on-Chip design generator that

can create a synthesizable RTL using Chisel HDL, a different approach

to traditional hardware description languages. The output is a library of

generators for cores, caches, and interconnects that can be integrated into

a complete SoC. The generated processor cores are based on the RISC-V

ISA, including both in-order (Rocket) and out-of-order (BOOM) core gen-

erators. Additionally, Rocket Chip can accommodate custom accelerators,

such as instruction set extensions, coprocessors, or new independent cores.

By using Rocket Chip, functional silicon prototypes that can boot Linux

have been successfully produced. [8]

Another core generator of note is BOOM (Berkeley Out-of-Order Ma-

chine), which is a superscalar RV64G core generator designed to serve as a

base implementation for research, industry, and education for extensive ex-

ploration of out-of-order microarchitecture. BOOM features an advanced

load/store unit that enables loads to execute out of order with respect to

other loads and stores, as well as store data forwarding to dependent loads.

It is developed in Chisel HDL and consists of approximately 10,000 lines

of code. [9]

A 45nm SOI process has been used to develop a 64-bit dual-core RISC-

V processor with vector accelerators, making it the first dual-core proces-

sor produced using the open-source RISC-V ISA created at the University

of California, Berkeley. When compared to ARM’s similar single-issue in-

order scalar core, the RISC-V scalar core surpasses in DMIPS/MHz by

Design and Implementation of RISC-V Processor with ML Accelerator 26

10%, while being 49% more area-efficient, all made in a standard 40nm

process. Furthermore, the vector accelerator in this RISC-V processor con-

sumes 1.8Ö less energy than IBM Blue Gene/Q and 2.6Ö less than the

IBM Cell processor, which were both made using the same process. This

dual-core RISC-V processor has a maximum clock frequency of 1.3GHz

at 1.2V and can achieve a peak energy efficiency of 16.7 double-precision

GFLOPS/W at 0.65V, all within a compact 3mm area. [10]

2.5 Power Management Integrated RISC-V Pro-

cessor SoC Operating at Submicrosecond Timescales

An efficient RISC-V system-on-chip (SoC) has been designed that combines

voltage regulation, adaptive clocking, and power management in a single

chip using a 28 nm fully depleted silicon-on-insulator process. The SoC fea-

tures a simultaneous-switching switched-capacitor DC-DC converter that

supplies an application core using a clock generated by an adaptive clock

generator. The SoC is highly efficient, with conversion efficiency of 82%-

89% and energy efficiency of 41.8 double-precision GFLOPS/W, while con-

suming up to 231 mW of power. The integrated power-management unit

measures the state of the system and adjusts the voltage and frequency

of the core, allowing the implementation of power-management algorithms

that can respond at submicrosecond timescales. The system has a wide

continuous voltage range of 0.45 V-1 V, and an adaptive voltage-scaling

algorithm that can reduce energy consumption by 39.8% during synthetic

benchmark testing. The system is effective at managing power consump-

tion and has only 2.0% area overhead. [11]

Design and Implementation of RISC-V Processor with ML Accelerator 27

2.6 RISC-V Processor Designed for Space Sys-

tems

A low-cost fault-tolerant implementation of the RISC-V architecture is pro-

posed. The implementation employs physical and information redundancy

to reduce error propagation, which is critical for space systems where relia-

bility is paramount. Physical redundancy involves replicating the hardware

components, while information redundancy involves duplicating the data

and comparing it to detect errors. The proposed implementation achieves

fault tolerance through several techniques. One of these is the use of a

dual modular redundancy (DMR) technique, which involves replicating

the processor’s logic and executing the same instruction on both repli-

cas simultaneously. The output of each replica is then compared to detect

errors, and the correct output is selected.

In addition to DMR, the proposed implementation employs other fault-

tolerant techniques, such as error-correcting codes (ECC) for memory and

data paths, and parity checks for control logic. These techniques help to

detect and correct errors in the system, making it more reliable.

The proposed implementation also achieves competitive silicon and

power overheads when compared with other RISC-V implementations.

This is important in space systems, where size, weight, and power con-

sumption are critical factors. [12]

2.7 RISC-V and PULP

In 2013, the Integrated Systems Laboratory (IIS) at ETH Zürich and the

Energy-efficient Embedded Systems (EEES) group at the University of

Bologna joined hands to create the Parallel Ultra-Low-Power Processing

Design and Implementation of RISC-V Processor with ML Accelerator 28

Platform (PULP). Its objective is to research and develop innovative and

effective architectures for processing with ultra-low power consumption.

[15] In the following discussion, we will delve into several of their cores and

their specifications.

2.7.1 Ibex Core

To begin with, the Ibex RISC-V Core is a 32-bit CPU core designed in

SystemVerilog and available as open-source. [16] This core is highly cus-

tomizable and ideal for embedded control applications. It has undergone

rigorous verification and has been used in multiple tape-outs. Ibex sup-

ports various extensions, including Integer (I) or Embedded (E), Integer

Multiplication and Division (M), Compressed (C), and Bit Manipulation

(B). The core’s block diagram indicates a small parameterization with a

2-stage Pipeline.

Figure 2.2: Ibex Core Block Diagram

Source: GitHub

This block diagram shows various stages of this CPU. We have IF stage

whose job is to fetch the instruction from instruction memory and also to

Design and Implementation of RISC-V Processor with ML Accelerator 29

https://github.com/lowRISC/ibex

check if the instruction is compressed or uncompressed one.

Then we have ID stage whose job is to decode the given instructions and

generate the control signals to perform the required task. It also contains

GPR which stands for general purpose registers. There quantity may vary

on the configuration being used. If we are using micro-riscy then the no.

of registers here will be 16 and other than this configuration total registers

will be 32. No matter what the configuration is the register size will remain

the same which is 32 bits.

At last, we have EX block whose job is to execute the desired operation

using ALU (arithmetic and logic unit) and MultDiv block for multiplica-

tion and division. Other than these main blocks it also contains CSRs

which stands for Control and Status registers. These registers are used for

different purposes including flags and interrupts etc. We also have LSU

(load store unit) whose job is to store or load any data to or from the data

memory respectively.

Here is a table that displays the performance and area of selected con-

figurations that lowRISC is concentrating on for evaluating performance

and verifying designs.

Design and Implementation of RISC-V Processor with ML Accelerator 30

Config ”micro” ”small” ”maxperf” ”maxperf-pmp-bmfull”

Features RV32EC
RV32IMC,

3 cycle mult

RV32IMC,

1 cycle mult,

Branch target ALU,

Writeback stage

RV32IMCB,

1 cycle mult,

Branch target ALU,

Writeback stage,

16 PMP regions

Performance

(CoreMark/MHz)
0.904 2.47 3.13 3.13

Area - Yosys

(kGE)
16.85 26.60 32.48 66.02

Area - Commercial

(estimated kGE)
∼15 ∼24 ∼30 ∼61

Verification status Red Green Green Green

Table 2.2: Comparison of Different PULP Cores

Source: GitHub

2.7.2 Zeroriscy Core

Now finally this is the core we have been working on as a starting point. As

it can be seen in the previous table that it is derived from Ibex core and is

also area and power efficient. Zeroriscy is a specific implementation of the

RISC-V instruction set architecture, designed to be a small and efficient

32-bit processor core. It is an in-order processor with a 2-stage pipeline,

meaning that it processes instructions in a linear sequence and has two

stages of processing. [21]

The design of zeroriscy is configurable, allowing it to support four differ-

ent ISA (instruction set architecture) configurations, which are determined

by two parameters. This configurability allows the processor core to be tai-

lored to specific use cases or requirements, such as optimizing for power

efficiency or maximizing performance.

Design and Implementation of RISC-V Processor with ML Accelerator 31

https://github.com/lowRISC/ibex

The RISC-V instruction set architecture, which zeroriscy is based on,

is an open-source architecture that is gaining popularity in both academic

and industrial settings. Its modular design and flexibility make it a suit-

able choice for a wide range of applications, from small microcontrollers

to high-performance computing systems. Ibex contains an extra extension

of Bit Manipulation (B). Interesting thing is that zeroriscy can further be

configured and get smaller named as micro-riscy. The difference between

two of them is that zeroriscy support I base extension containing 32 tem-

porary core registers while micro-riscy supports E extension, short-form

for Embedded, and only contains 16 base registers instead of 32. [17]

If we compare the power efficiency of all three cores then the figure

below shows it in detail.

Figure 2.3: The Distribution of Power among the Three Core Units while
Running Coremark at a Frequency of 100MHz and a Voltage of 1.2V

Source: Semantic Scholar

As we can see in this graph that they consume power in similar order

Design and Implementation of RISC-V Processor with ML Accelerator 32

https://www.semanticscholar.org/paper/Slow-and-steady-wins-the-race-A-comparison-of-cores-Schiavone-Conti/211e5a6fcccf1d690830013bc5b5168615ebcb75

as they are constructed. zero-riscy consums merely 0.211 mW of maximum

power even if its multiplier is running. Now if we compare the area of all

the other PULP cores then the figure below shows in detail.

Figure 2.4: The Total Area Occupied by all the Core Units in KGE (thou-
sands of square millimeters)

Source: Semantic Scholar

As we can see in the above graph that the total area covered by zero-

riscy is only 18.9 KGE (Kilo Gate Equivalent). Now if we take a look at

the figure below of its block diagram.

This block diagram shows different parts/modules of this core. For

example pre-fetch buffer has the job of fetching instructions one by one

from the instruction memory and either send it to ID stage or store it in

a FIFO if exceptional cases occur. Debug unit is used to debug any error

or issues related to the hardware of the processor. Decoder decodes the

given 32 bit instruction and some part goes to the GPR (General Purpose

Design and Implementation of RISC-V Processor with ML Accelerator 33

https://www.semanticscholar.org/paper/Slow-and-steady-wins-the-race-A-comparison-of-cores-Schiavone-Conti/211e5a6fcccf1d690830013bc5b5168615ebcb75

Figure 2.5: Block Diagram of zeroriscy Core

Source: Semantic Scholar

Register) and some goes to Controller to generate control signals. ALU has

the capability to perform addition of any type of two operands whether

registers, immediates or PCs and it also performs subtraction, shifting

and other logical operations. MultDiv block performs, as depicts from the

name, multiplication and division. It uses 3 cycle multiplier and 36 cycle

divider. CSR (Control and Status Registers are special purpose registers.

LSU stands for Load store unit and its job is to either store or load the

date to or from memory respectively. This was all for now about zeroriscy

core.

Supported Instruction Set:

Zeroriscy supports the following RISC-V instruction sets:

� RV32I Base Integer Instruction Set: It consists of fundamental in-

structions for performing integer arithmetic, logical operations, load

and store operations, as well as control transfer instructions.

� RV32E Base Integer Instruction Set: This instruction set is a subset of

Design and Implementation of RISC-V Processor with ML Accelerator 34

https://www.semanticscholar.org/paper/Slow-and-steady-wins-the-race-A-comparison-of-cores-Schiavone-Conti/211e5a6fcccf1d690830013bc5b5168615ebcb75

the RV32I instruction set, designed for embedded systems with lim-

ited resources. It includes a smaller set of instructions and a smaller

register file.

� RV32C Standard Extension for Compressed Instructions: This in-

struction set provides support for compressed instructions, which can

reduce code size and improve memory bandwidth.

� RV32M Integer Multiplication and Division Instruction Set Exten-

sion: This instruction set provides support for integer multiplication

and division operations.

� The RV32M and RV32E extensions can be enabled or disabled us-

ing two parameters, allowing for flexibility in configuring the proces-

sor core to meet specific requirements. Enabling the RV32M exten-

sion adds support for integer multiplication and division instructions,

while enabling the RV32E extension switches to the RV32E instruc-

tion set, which is a more compact subset of the RV32I instruction

set.

Overall, zeroriscy’s support for these instruction sets and its configura-

bility make it a versatile and efficient choice for a wide range of applica-

tions. [17]

Instruction Fetch:

If the memory or cache can also provide one instruction per cycle, the

instruction fetcher can deliver one instruction to the next stage of the

processor per cycle. It is important to note that the instruction address

must be half-word-aligned to enable the use of compressed instructions. [18]

Design and Implementation of RISC-V Processor with ML Accelerator 35

To further optimize performance, a prefetcher is used to fetch instruc-

tions ahead of time so that they are ready when needed.Jumping to an

instruction address with the least significant bit set is not feasible.

Overall, these signals and requirements help ensure that instructions

are fetched efficiently and correctly, allowing the processor to operate at

peak performance.

Signal Direction Description

instr req o output

Request ready, must stay high

until instr gnt i is high for one

cycle

instr addr o[31:0] output Address

instr rdata i[31:0] input Data read from memory

instr rvalid i input

instr rdata is holds valid data

when instr rvalid i is high.

This signal will be high for

exactly one cycle per request.

instr gnt i input

The other side accepted the request.

instr addr o may change in the next

cycle

Table 2.3: Instruction Fetch Signals

Source: zero-riscy User Manual

Load-Store-Unit (LSU):

The Load-Store Unit (LSU) is a component of a processor core that facil-

itates access to data memory, where the processor stores the data that it

needs to operate on. It is specifically designed to handle data of varying

sizes, such as 32-bit words, 16-bit half-words, and 8-bit bytes.

Design and Implementation of RISC-V Processor with ML Accelerator 36

https://www.pulp-platform.org/docs/user_manual.pdf

A ”load” operation in the LSU retrieves data from memory and stores

it in a register within the processor. This operation is used when the pro-

cessor needs to read data from memory, for example, to read the value of

a variable.

A ”store” operation in the LSU writes data to memory. This operation

is used when the processor needs to update the value of a variable or store

new data in memory.

The LSU supports different data sizes to allow for more efficient mem-

ory access. For example, when the processor only needs to read or write 16

bits of data, it can use a half-word load or store operation, which is faster

than a full word operation. Similarly, a byte load or store operation can

be used when the processor only needs to access 8 bits of data. [18]

Design and Implementation of RISC-V Processor with ML Accelerator 37

Signal Direction Description

data req o output

Request ready, must stay high

until data gnt i is high for one

cycle

data addr o[31:0] output Address

data we o output

Write Enable, high for writes,

low for reads. Sent together with

data req o data be o[3:0] output

Byte Enable. Is set for the bytes

to write/read, sent together with

data req o

data wdata o[31:0] output
Data to be written to memory,

sent together with data req o

data rdata i[31:0] input Data read from memory

data rvalid i input

data rdata is holds valid data when

data rvalid i is high. This signal

will be high for exactly one cycle

per request.

data gnt i input

The other side accepted the request.

data addr o may change in the next

cycle

Table 2.4: LSU Signals

Source: zero-riscy User Manual

Register File:

The zeroriscy processor core is based on the RISC-V architecture and pro-

vides either 31 or 15 32-bit wide registers, depending on whether the RV32E

Design and Implementation of RISC-V Processor with ML Accelerator 38

https://www.pulp-platform.org/docs/user_manual.pdf

extension is activated. Register x0 is permanently assigned to the value 0

and cannot be modified.

Zeroriscy has two types of register files: a latch-based register file and

a flip-flop based register file. The former is suggested for ASICs, while the

latter is recommended for FPGA synthesis. However, both types of register

files are suitable for either type of synthesis.

When implemented in an ASIC, the flip-flop based register file is con-

siderably larger compared to the latch-based register file. This is because

ASICs are optimized for power efficiency and the latch-based register file

consumes less power than the flip-flop based register file. On the other

hand, in FPGA synthesis, power consumption is not a major concern, and

the flip-flop based register file is suggested as it exhibits superior perfor-

mance and timing characteristics.

In general, the selection of register file type relies on the target platform

and implementation details. Even though both register file types work

with either synthesis target, the latch-based register file is more power-

efficient for ASICs. In contrast, the flip-flop based register file has better

timing characteristics and performance, which makes it a suitable option

for FPGA synthesis. [18]

2.8 RISC-V Accelerator for Post-Quantum Cryp-

tography

Post-Quantum Cryptography (PQC) introduces new mathematical ele-

ments and operations that are challenging to implement on standard pro-

cessors, particularly for low-cost and resource-constrained devices. Hard-

ware acceleration is typically required to support PQC on these devices.

Additionally, the ongoing standardization process of PQC requires main-

Design and Implementation of RISC-V Processor with ML Accelerator 39

taining flexibility in the design. Although co-design techniques that incor-

porate hardware and software have been utilized to create intricate and

personalized post-quantum cryptography (PQC) solutions, the develop-

ment of tightly integrated accelerators and Instruction Set Architecture

(ISA) extensions for PQC has not been extensively investigated.

The proposal of the authors is the RISQ-V, which is an improved ver-

sion of the RISC-V architecture. It integrates tightly coupled accelerators

that enhance the performance of lattice-based PQC. The RISQ-V design

optimizes processor resources and reduces the memory access needed, re-

sulting in increased performance with minimal silicon area overhead. [13]

2.9 RISC-V Accelerator designed for Ascon

ASCON-p is a cryptographic module that has a low weight and can per-

form various cryptographic tasks such as hashing, authenticated encryp-

tion, and pseudorandom number generation. It is based on a permutation,

which is a mathematical operation that shuffles the input data in a way

that is difficult to reverse.ASCON-p is a cryptographic building block that

has multiple applications, including authenticated encryption, hashing, and

pseudorandom number generation. One of its implementations is ASCON,

which is a lightweight authenticated encryption algorithm and won the

lightweight category of the CAESAR competition. Another implementa-

tion is ISAP, an AEAD (Authenticated Encryption with Associated Data)

scheme that uses ASCON-p and is currently a competitor in the NIST

lightweight cryptography standardization project.

The researchers have implemented ASCON-p as an instruction exten-

sion for the RISC-V processor, which is a popular open-source processor

architecture used in many embedded devices. This instruction extension

Design and Implementation of RISC-V Processor with ML Accelerator 40

is tightly coupled to the processor’s register file, which means it does not

require any dedicated registers. With this implementation, cryptographic

computations can be performed with high performance, and the perfor-

mance is even better if protection against fault attacks and power analysis

is desired.

The researchers have also shown that their implementation is very ef-

ficient and requires only a small amount of area, making it suitable for

low-end embedded devices like 32-bit ARM Cortex-M or RISC-V micro-

processors. The authors conducted a performance evaluation of their imple-

mentation, utilizing the AEAD modes and hashing algorithms of the ISAP

and ASCON families. Their results demonstrated that cryptographic com-

putations can be executed at a performance rate of approximately 2 cycles

per byte. However, if protection against fault attacks and power analysis

is required, the performance rate increases to about 4 cycles per byte.

Finally, the researchers have analyzed the implementation security of

ISAP when implemented using their instruction extension. They have

shown that their implementation provides strong protection against a large

class of implementation attacks such as DPA, DFA, SFA, and SIFA. This

means that the cryptographic computations performed using their imple-

mentation are secure against these attacks, which are commonly used to

break cryptographic systems. [14]

Design and Implementation of RISC-V Processor with ML Accelerator 41

Chapter 3

RISC-V Processor

Design and Implementation of RISC-V Processor with ML Accelerator 42

3.1 Introduction

RISC-V is a contemporary Instruction Set Architecture (ISA) with a clean

and modular design that has the potential to become a significant player

in the era of Artificial Intelligence (AI), Machine Learning (ML), and the

Internet of Things (IoT) due to its open nature. Although it is not the first

time a processor implementation or ISA has been declared open for public

use, RISC-V is associated with two key concepts - freedom and innovation.

Some users seek freedom to use cores, while others desire the freedom to

modify them as needed. The increasing popularity of RISC-V coincides

with the slowing of Moore’s Law and the remarkable growth of machine

learning. Is this just a fortuitous coincidence?

According to Simon Davidmann, the CEO of Imperas Software, the

RISC-V architecture has gained popularity due to the demand for greater

freedom in the hardware design process community. In today’s electronic

products, which heavily rely on software running on processors, machine

learning is essential. This has led to a need for numerous processors, and the

ability to configure them in a customized manner. People realized that off-

the-shelf technologies were not sufficient, and they required more freedom

to design chips and their processors. Therefore, there has been a shift in the

electronic product marketplace that seeks greater freedom in architecting

chips and the processors that operate within them.

Various academic institutions have contributed to the development and

education of the RISC-V ISA. Some have created open-source cores and

are incorporating RISC-V into their courses. The University of California,

Berkeley, for instance, has designed Rocket cores based on RISC-V and is

teaching the ISA to its EECS students. Similarly, ETH Zurich has devel-

oped power-efficient cores such as ibex, zero-riscy, micro-riscy, and others

Design and Implementation of RISC-V Processor with ML Accelerator 43

through its PULP platform. Collaboration groups involving both academia

and industry, such as CHIPS Alliance, OpenHW Group, and SiFive, are

also working on building open-source cores and making them available to

the wider community.

3.2 VexRiscv

VexRiscv is an open-source RISC-V processor implemented in the Spinal-

HDL language, which can be synthesized for various FPGA platforms. The

version of VexRiscv processor used in this project is MyVexRiscv, with

some modifications and additions to VexRiscv’s default configuration. [1]

MyVexRiscv has a simple, yet powerful architecture. It is a 32-bit RISC-

V processor that supports the RV32IMC instruction set, which includes the

basic integer arithmetic and logic operations, load and store instructions,

control transfer instructions, multiplication and division capability, com-

pressed instructions, and system calls. The processor also includes addi-

tional instructions provided by the VexRiscv plugins, such as barrel shifter

instructions, early branching etc.

The processor is highly configurable, with a set of CPU plugins that can

be added or removed depending on the user’s needs. These plugins include

a cached instruction bus, a cached data bus, a CSR (Control and Status

Register) plugin, a simple decoder plugin, a memory translator plugin, a

register file plugin, an integer ALU plugin, a source plugin, a full barrel

shifter plugin, a hazard plugin, a multiplication plugin, a division plugin,

a branch plugin, and a YAML plugin.

The processor also includes peripherals such as an APB (Advanced

Peripheral Bus) controller, an AXI (Advanced eXtensible Interface) con-

troller, a JTAG (Joint Test Action Group) controller, a timer, a prescaler,

Design and Implementation of RISC-V Processor with ML Accelerator 44

and a DDR (Double Data Rate) SPI (Serial Peripheral Interface) master

controller.

The processor is designed to be synthesized for FPGAs, with a simple

interface that allows it to be easily integrated into larger systems. The pro-

cessor’s clock domain can be configured to run at a maximum frequency of

166 MHz. It works on little endian memory storage with 8K of instruction

and data cache.

Overall, MyVexRiscv is a flexible and powerful RISC-V processor that

can be customized to meet a wide range of embedded system design re-

quirements. It provides a robust platform for developing FPGA-based sys-

tems with RISC-V processors, and is well-suited for applications such as

robotics, machine learning, and embedded vision.

3.2.1 Performance Score Comparison

MyVexRiscv processor has achieved benchmark scores of 1.38 DMIPS/Mhz

and 2.57 Coremark/Mhz. These scores are with configuration of single cycle

barrel shifter, debug module, catch exceptions, dynamic branch prediction

in the fetch stage, branch and shift operations done in the Execute stage

These scores indicate the performance of the processor in terms of instruc-

tions executed per second (DMIPS) and its ability to handle real-world

workloads (Coremark).

While these scores may not be the highest in the industry, they still

demonstrate that MyVexRiscv is a capable processor that can handle a

wide range of tasks. Additionally, it’s important to note that benchmarks

are just one measure of a processor’s performance, and real-world perfor-

mance can vary based on a variety of factors such as the specific workload,

memory configurations, and software optimizations.

Following is the table which includes benchmark scores [22] of other

Design and Implementation of RISC-V Processor with ML Accelerator 45

RISC-V and ARM cores for comparison with VexRiscv:

Processors: Coremark/MHz DMIPS/MHz

MyVexRiscv

(RV32IMC ISA)
2.57 1.38

Cortex-M0+

(ARMv6-M ISA)
1.8 0.95

Cortex-M4

(ARMv7-M ISA)
2.76 1.25

SiFive E21

(RV32IMAC ISA)
3.1 1.38

SiFive E20

(RV32IMC ISA)
2.4 1.1

Table 3.1: Benchmark Score Comparison of Different Processors

Source: RISC-V Foundation

Design and Implementation of RISC-V Processor with ML Accelerator 46

https://riscv.org/wp-content/uploads/2018/07/DAC-SiFive-Drew-Barbier.pdf

Chapter 4

RISC-V Accelerator for ML

Applications

Design and Implementation of RISC-V Processor with ML Accelerator 47

4.1 Introduction

Ztachip is a hardware accelerator designed for low-end FPGA devices or

custom ASICs, which aims to provide significant performance improve-

ments for vision and AI edge applications. It has the ability to speed up

various tasks, such as executing TensorFlow AI models and performing

common vision tasks, such as motion detection, color conversion, optical

flow, and edge detection.

Ztachip’s acceleration is achieved through the implementation of an

innovative tensor processor hardware, which allows for massive processing

and data parallelism. This tensor processor hardware is capable of perform-

ing a range of tasks, and it is one of the key differences between ztachip

and other accelerators that typically only accelerate a narrow range of

applications, such as convolution neural networks.

To help programmers leverage the processing power of ztachip’s ten-

sor processor, a new tensor programming paradigm has been introduced.

This programming paradigm enables programmers to write code that takes

advantage of the parallelism provided by the tensor processor, making it

easier to develop high-performance applications.

Overall, ztachip is a powerful hardware accelerator that is designed

to provide significant performance improvements for vision and AI edge

applications. It is capable of accelerating a wide range of tasks and includes

an innovative tensor processor hardware and a new tensor programming

paradigm to help programmers take full advantage of its processing power.

[19]

Design and Implementation of RISC-V Processor with ML Accelerator 48

4.2 Ztachip as DSA

Ztachip is an open-source DSA (Domain-Specific Architecture) architec-

ture that is designed to be versatile and support a wide range of appli-

cations beyond just AI. It is a novel architecture that provides significant

performance improvements for applications that can be expressed as a se-

quence of tensor operations.

� One of the primary objectives of ztachip is to make DSA program-

ming simple and intuitive. To achieve this, ztachip includes a wide

range of tensor operations, including data operations and computing

operations. These tensor operations can be used to perform complex

tasks, such as tensor transpose, tensor dimension resize, and data

remapping, in addition to more traditional tensor operations.

� By supporting a broad range of tensor operations, ztachip aims to

be a highly flexible and versatile DSA architecture that can be used

to accelerate a wide range of applications. This makes it an attrac-

tive option for developers and researchers looking to build high-

performance computing systems that can handle a diverse set of

workloads.

� Overall, ztachip is a novel and versatile DSA architecture that is de-

signed to provide significant performance improvements for a broad

range of applications. Its support for a wide range of tensor oper-

ations makes it an attractive option for developers and researchers

looking to build high-performance computing systems that can han-

dle complex workloads beyond just AI.

� An important benefit of this method is the streaming-based memory

transfer between external memory and the system, which involves

Design and Implementation of RISC-V Processor with ML Accelerator 49

prefetching and lacks round trip delays. As a result, system latency

is reduced and hardware resources are utilized more effectively.

� A benefit of tensor data operations is that they provide specific data

requirements for later execution, removing the need for caching. As

a result, memory usage can be reduced and system performance can

be improved.

� The ztachip utilizes tensor operators to represent computing opera-

tions, which enables algorithm parallelism and efficient mapping of

multiple hardware threads to numerous parallel tasks. This approach

improves the overall efficiency of the system.

� In ztachip, tensor computing is designed to only use internal mem-

ory, which results in a simpler hardware design. Additionally, this

approach eliminates memory stall cycles, enabling the system to op-

erate more efficiently and provide faster processing times.

Overall, the decoupling of data plane and computing operations in

ztachip provides many advantages for the hardware design, including im-

proved performance, reduced memory usage, and simplified design. [20]

4.2.1 Limitations

There are several challenges associated with using Domain-Specific Archi-

tectures (DSA), despite the fact that they can provide higher efficiencies

for specific sets of applications. One of the main challenges is achieving

diversity within the DSA domain while still maintaining efficient hard-

ware implementation. One of the challenges in introducing DSA concepts

to users is avoiding the need for cross-disciplinary knowledge, as it can

be challenging to find individuals who possess both hardware design and

software engineering skills.

Design and Implementation of RISC-V Processor with ML Accelerator 50

To address these challenges, it is important to provide clear and con-

cise documentation that explains the concepts and benefits of DSA, as well

as providing examples and tutorials that demonstrate how to use DSA in

practice. Additionally, collaboration between hardware and software engi-

neers can be useful in developing DSA, as it can help to bridge the gap

between the two disciplines and ensure that both hardware and software

components are optimized for performance.

The Systolic-Array (SA) is a widely utilized DSA architecture that

is specifically suited for numerous fundamental mathematical operations

required in artificial intelligence, including convolution, dot product, and

matrix multiplication. SA can be implemented in hardware to achieve high

efficiency, and can also be integrated with software tools to make it easier

for software engineers to use in their applications. [20]

4.3 Ztachip Software Stacks

ztachip provides several DSA components that make it easier for users to

take advantage of its hardware acceleration capabilities.

The RTL source codes for ztachip’s hardware stack are provided, allow-

ing for easy portability to various FPGA and ASIC platforms. This allows

developers to customize the design and optimize it for their specific use

cases.

The second aspect of ztachip’s approach is to offer a compiler that

supports the implementation of a Domain Specific Language (DSL), which

hides the intricacies of the hardware from users. This means that software

developers do not need to possess extensive knowledge of the hardware

aspects, and the same software can be easily ported to various hardware

with different capacities by simply recompiling it. This makes it easier

Design and Implementation of RISC-V Processor with ML Accelerator 51

to develop software that can take advantage of the hardware acceleration

provided by ztachip.

In addition, ztachip offers a software stack that incorporates various

vision and AI algorithms. This software stack includes support for Tensor-

Flow without the need for retraining. This makes it easier for developers

to use the hardware acceleration provided by ztachip to accelerate their

applications without having to implement the algorithms from scratch. [20]

Overall, the combination of the hardware stack, compiler, and software

stack provided by ztachip makes it easier for developers to take advan-

tage of the hardware acceleration capabilities of ztachip, without requiring

detailed knowledge of the underlying hardware.

Figure 4.1: Methodology

Source: GitHub

4.4 Hardware Architecture

Ztachip is an accelerator designed specifically for accelerating machine

learning workloads. It features a unique hardware architecture that in-

corporates a matrix of processing elements, with each element optimized

for performing MAC (Multiplication and Accumulation) operations effi-

Design and Implementation of RISC-V Processor with ML Accelerator 52

https://github.com/ztachip/ztachip/blob/master/Documentation/Overview.md

ciently. The accelerator utilizes systolic array architecture, which enables

parallel and pipelined execution of 1x8 MAC operations.

The processing elements in ztachip are arranged in a two-dimensional

array, and the data flows through them in a pipeline fashion, resulting in

high throughput and low latency. Additionally, ztachip has a dedicated

memory system that minimizes the data movement required to perform

MAC operation, further enhancing its performance.

The ztachip architecture also supports various data types and precision,

making it versatile enough to handle a wide range of machine learning

workloads. The accelerator can be connected to a host processor through

standard interfaces, such as AXI, allowing for easy integration into existing

systems. Overall, ztachip provides a highly efficient hardware solution for

accelerating machine learning workloads, which can significantly speed up

the training and inference phases of machine learning applications. [23]

Given below is the block diagram of its hardware architecture:

Now following is the detailed explanation of each of its component:

The ztachip’s hardware architecture is designed to accelerate tensor opera-

tions and consists of several subcomponents, such as the axilite, sram core,

ddr rx, ddr tx, core, and dp core. The axilite * interface connects the

dp core with RISC-V processor via the AXILite bus protocol, while the

axi * interface is used by ztachip to initiate DMA (Direct Memory Access)

memory transfer to or from external memory.

The sram core subcomponent acts as a temporary memory block to

hold data during tensor data transfer. The ddr rx and ddr tx subcom-

ponents are responsible for handling DMA transfer from external DDR

memory to the core’s internal memory and vice versa. The core is the

tensor arithmetic execution unit and comprises an array of lightweight

VLIW processors, while the dp core is the central tensor processor unit

Design and Implementation of RISC-V Processor with ML Accelerator 53

Figure 4.2: ztachip Hardware Architecture

Source: GitHub

that coordinates all activities within ztachip, including memory transfer

and launching execution on the VLIW processor array.

The dp core receives tensor instructions from RISC-V processor via the

axilite * interface and then coordinates tensor data operations to transfer

data between the sram core, core’s internal memory, and external DDR

memory. Additionally, the dp core dispatches tensor operator execution

requests to the core, which then dispatches the execution to the VLIW

processor array. Overall, the ztachip hardware architecture is designed to

efficiently execute tensor instructions, transfer data between memory and

processors, and coordinate the execution of tensor operators. Now we will

further explain each of the sub-components within ztachip. [23]

Design and Implementation of RISC-V Processor with ML Accelerator 54

https://github.com/ztachip/ztachip/blob/master/Documentation/HardwareDesign.md

dp core:

The dp core is a central tensor processor unit within ztachip that coor-

dinates all activities, including memory transfer and launching execution

on the VLIW processor array. It receives tensor instructions from RISC-

V processor via the axilite * interface and executes them by coordinating

tensor data operations, dispatching tensor operator execution requests to

the core, and performing other complex functions.

To perform these functions, dp core uses various interfaces and sub-

components. For instance, it uses bus * to receive tensor instructions from

RISC-V processor and task * to send tensor operator execution instruc-

tions to the core. It also has readmaster1*, readmaster2*, and readmas-

ter3* buses to receive DMA data transfers from different sources, and

writemaster1*, writemaster2*, and writemaster3* buses to send DMA data

transfers to different destinations.

Additionally, dp core has several subcomponents, including dp fetch,

dp gen core, dp source, and dp sink. These subcomponents work together

to decode tensor instructions, generate memory addresses for data transfer,

generate DMA transfer read requests to the source of tensor data opera-

tions, and generate DMA transfer write requests to the destination point

of tensor data operations.

Overall, dp core is the main tensor processor of ztachip, and it performs

a range of functions, including receiving tensor instructions from RISC-V

processor, coordinating tensor data operations, dispatching tensor operator

execution requests to the core, and ensuring that all memory transfers with

the core’s internal memory are completed before tensor operator execution

can be issued. By using hardware threads, it can execute multiple data

operations at the same time, and it can also execute tensor instructions

Design and Implementation of RISC-V Processor with ML Accelerator 55

out-of-order while still enforcing application-enforced order if needed. [23]

core:

The core’s internal architecture consists of interfaces and subcomponents

that work together to execute tensor operator tasks. The dp write* inter-

face receives DMA data transfer to the core’s internal memory, while the

dp read* interface sends DMA data transfer from the internal memory.

The task* interface is used to receive tensor operator execution commands

from the dp core component.

There are several subcomponents that make up the core internal ar-

chitecture. The stream processor is responsible for data mapping between

input and output. Two stream processors are used to perform data map-

ping before data is written to the core’s internal memory and as data is

retrieved from the memory.

The cell subcomponent groups 4 pcores together to improve the fan-

out performance of bus signals. The pcores are multi-threaded processors

with 16 hardware threads executing in a round-robin fashion. The instr

subcomponent is the master processor for all pcore’s VLIW processor cores

that are simply ALUs running in locked step mode with each other.

The instr.instr fetch component performs thread scheduling of execu-

tion and fetches VLIW instruction code from the instr.rom component. All

VLIW cores share the same instruction code, and only one instruction is

fetched for all the VLIW processors at every clock. [23]

The core internal architecture is responsible for all tensor operator

execution tasks, and requests for tensor operator execution are received

from the dp core component via the task* interface. The instr subcom-

ponent controls the execution of all pcore’s VLIW processors, which are

lightweight processors that are mostly just ALU with memory running in

Design and Implementation of RISC-V Processor with ML Accelerator 56

lock-step mode with each other. The VLIW instructions executed in these

VLIW processors are 128 bit long with the following format:

Parameter Length Description

MU N/A pcore.alu instruction

oc 5 opcode

save 1 Save alu. y out=>xregister file

x3 N/A x3 parameter; map to alu.xscalar in

vector 1 1 if parameter is vector, 0 if scalar

addr 12 Internal memory address of x3

attr 4 Attribute

x1 N/A x1 parameter; map to alu.x1 in

vector 1 1 if parameter is vector, 0 if scalar

addr 12 Internal memory address of x1

attr 4 Attribute

x2 N/A x2 parameter; map to alu.x2 in

vector 1 1 if parameter is vector, 0 if scalar

addr 12 Internal memory address of x2

attr 4 Attribute

y N/A y parameter; map to alu.y* out

vector 1 1 if parameter is vector, 0 if scalar

addr 12 Internal memory address of y

attr 4 Attribute

IMU N/A pcore.ialu instruction

oc 5 opcode

x1 4 x1 parameter; map to ialu.x1 in

x2 4 x2 parameter; map to ialu.x2 in

y 4 y parameter; map to ialu.y out

const 13 Constant field

CTRL N/A CTRL

oc 5 Branching opcode based on IMU.y value

addr 11 Code address to jump to

Table 4.1: VLIW Instruction Format

Source: GitHub

Design and Implementation of RISC-V Processor with ML Accelerator 57

https://github.com/ztachip/ztachip/blob/master/Documentation/HardwareDesign.md

The main ALU block of the ztachip’s core component resides in the

pcore subcomponent. It comprises various interfaces and functions. The in-

terfaces include x1 in, x2 in, xreg in, xscalar in, y out, y3 out, and y2 out.

These interfaces serve to transfer data to and from the ALU block, such

as input values, accumulator input, and results.

The ALU block is designed to be simple and to perform linear arith-

metic operations for AI and vision processing tasks. Other non-linear op-

erations are taken care of by stream. Together, ALU and stream cover a

wide range of AI and vision processing. [23]

The ALU block includes arithmetic blocks such as multiplication of two

12 bit values, adding the result of multiplication to a 32-bit accumulator

value, performing shift operation, performing boolean comparison of the

result, and casting the 32-bit result to a 12 bit result. Following opcodes

are supported in order to execute different operations through ALU block:

� COMPARE LT : y2 out=(y out < 0)?1:0

� COMPARE LE : y2 out=(y out <= 0)?1:0

� COMPARE GT : y2 out=(y out > 0)?1:0

� COMPARE GE : y2 out=(y out >= 0)?1:0

� COMPARE EQ : y2 out=(y out==0)?1:0

� COMPARE NE : y2 out=(y out!=0)?1:0

� MULTIPLY : y out=x1*x2

� ADD : y out=x1+x2

� SUBTRACT : y out=x1-x2

� FMA : xreg in += x1 in*x2 in

Design and Implementation of RISC-V Processor with ML Accelerator 58

� FMS : xreg in -= x1 in*x2 in

� ASSIGN : y out=x1 in

� ACCUMULATOR SHL : y out=(xreg in << x scalar in)

� ACCUMULATOR SHR : y out=(xreg in >> x scalar in)

� INT12 SHR : y out=(x1 in >> x scalar in)

� INT12 SHL : y out=(x1 in << x scalar in)

Design and Implementation of RISC-V Processor with ML Accelerator 59

Chapter 5

Integration of RISC-V

Processor with ML

Accelerator on FPGA

Design and Implementation of RISC-V Processor with ML Accelerator 60

5.1 Introduction

FPGAs are a type of semiconductor device that come equipped with pro-

grammable interconnects and configurable logic blocks (CLBs), which can

be used to create customized digital circuits.

Unlike Application Specific Integrated Circuits (ASICs), which are de-

signed for specific tasks and are manufactured to meet those requirements,

FPGAs can be reprogrammed after manufacturing to meet changing design

needs. This makes them a flexible option for a wide range of applications,

from digital signal processing to artificial intelligence and machine learning.

FPGAs are typically based on volatile memory technologies such as

Static Random Access Memory (SRAM), which allows for reprogram-

ming of the device during operation. This is in contrast to one-time pro-

grammable (OTP) FPGAs, which can only be programmed once and are

more limited in their flexibility.

FPGAs have a range of advantages over ASICs, including faster time-

to-market, lower development costs, and greater flexibility in design. How-

ever, they also have some drawbacks, such as higher power consumption

and lower performance compared to ASICs for certain applications.

5.2 Advantages of using FPGA forIimplementa-

tion

FPGAs are often used to implement systems that need to be updated

or reprogrammed to support new functionality or algorithms. The use of

FPGAs allows manufacturers to create hardware that can be easily recon-

figured to support different applications or algorithms, without having to

create entirely new hardware designs.

Design and Implementation of RISC-V Processor with ML Accelerator 61

For instance, Microsoft using FPGAs in its data centers for Bing search

is a great example of this. Bing search algorithms require high-speed search

capabilities to quickly and efficiently search through massive amounts of

data. FPGAs are well-suited for this task because they can be repro-

grammed to support new search algorithms or optimizations as they are

developed.

By using FPGAs, Microsoft can make updates to its Bing search algo-

rithms without having to modify or replace the underlying hardware. This

provides a significant advantage in terms of speed and flexibility, as FP-

GAs can be reconfigured much faster than developing and manufacturing

entirely new hardware.

In addition, FPGAs can be more power-efficient than general-purpose

processors for certain tasks, such as digital signal processing or high-speed

data processing. This can lead to cost savings and better performance in

certain applications.

Overall, the use of FPGAs allows for a high degree of flexibility and

performance in a wide range of applications, making them a popular choice

in many industries, including data centers, aerospace, telecommunications,

and more.

5.2.1 Genesys 2

The FPGA board used for this project is Genesys 2 by Digilent. The

Genesys 2 FPGA kit is a development board designed for digital sys-

tem designers and engineers who are looking to prototype and implement

high-speed digital systems. The board is built around the Xilinx Kintex-7

FPGA, which is a powerful and versatile field-programmable gate array.

The FPGA provides a flexible and reconfigurable platform for implement-

ing a wide range of digital systems.

Design and Implementation of RISC-V Processor with ML Accelerator 62

The Genesys 2 FPGA kit includes a number of peripherals and in-

terfaces that make it easy to integrate with other systems. These include

gigabit Ethernet, USB, HDMI, and a variety of analog inputs and outputs.

The board also includes a number of memory resources, including DDR3

SDRAM, QSPI flash memory, and a microSD card slot.

The kit is designed to be used with the Xilinx Vivado development

environment, which provides a comprehensive set of tools for designing and

implementing FPGA-based digital systems. The development environment

includes a hardware design language, simulation tools, and a synthesis tool

that converts the design into a configuration file that can be loaded onto

the FPGA.

One of the key features of the Genesys 2 FPGA kit is its high-speed

interfaces. The board is capable of handling data rates of up to 10 Gbps,

making it ideal for applications that require high-speed data transfer. This

includes applications in the telecommunications, networking, and high-

performance computing industries. [24]

Overall, the Genesys 2 FPGA kit is a powerful and versatile develop-

ment board that provides designers and engineers with a flexible platform

for prototyping and implementing high-speed digital systems. With its

high-speed interfaces and range of peripherals, it is well-suited to a wide

range of applications in the digital design space.

The reason for choosing this board is that it includes a VGA connector,

which is a standard video connector used to connect a display to a com-

puter. The VGA connector is capable of transmitting analog video signals

and can support resolutions up to 1920x1200 at 60Hz. The VGA inter-

face is controlled by the onboard FPGA, which can generate the necessary

video signals to display images or video on a connected monitor or display.

It can be used to display results of running different ML applications.

Design and Implementation of RISC-V Processor with ML Accelerator 63

Figure 5.1: Genesys 2 FPGA Board

Source: Genesys 2 Reference Manual

In addition to this, the Genesys 2 FPGA kit also includes high-speed

DDR3 memory which is another reason for choosing this board. DDR3

is a type of synchronous dynamic random-access memory (SDRAM) that

offers high bandwidth and low power consumption. The onboard DDR3

memory has a capacity of 1GB and can operate at speeds up to 1800 Mbps

data rate. The high-speed DDR3 memory is essential for applications that

require high bandwidth data processing such as digital signal processing,

image and video processing, and machine learning. The onboard DDR3

memory can be accessed and controlled by the onboard FPGA, allowing

for efficient and high-speed data transfers between the FPGA and external

memory.

Overall, the combination of the VGA connector and high-speed DDR3

memory on the Genesys 2 FPGA kit make it a powerful platform for de-

veloping high-performance video and ML processing applications.

Design and Implementation of RISC-V Processor with ML Accelerator 64

https://digilent.com/reference/programmable-logic/genesys-2/reference-manual

5.3 Steps of Integration

Integrating both hardware components on an FPGA kit can be a complex

task, but here are the steps that are followed for this purpose:

1. Selecting an FPGA development board that supports high data rate

for video processing and fast memory transfer. Also make sure the kit

has enough resources to accommodate both designs, and that it sup-

ports the necessary communication interfaces between the processor

and the accelerator. Genesys 2 is selected for this purpose.

2. Selecting the RISC-V core which will support necessary functions

like in this case sending tensor instructions to ztachip, supporting

debugging through JTAG, 32 bit integer, multiplication and com-

pressed instructions etc. VexRiscv is selected for this purpose

3. Implementing and testing the RISC-V processor. This can be done

using an HDL (hardware description language) such as Verilog or

VHDL in Vivado Design Suite. SpinalHDL is used as HDL to gener-

ate MyVexRiscv core written in Verilog. For testing purpose, differ-

ent algorithms in C language are run on the processor. For compiling

and debugging purpose different open-source tools are used includ-

ing RISC-V GNU toolchain, GDB Debugger, and OpenOCD. More

about it in later section.

4. Understanding and implementing ztachip accelerator.

5. Integrating the RISC-V processor and ztachip accelerator. This in-

volves connecting the two designs together using the appropriate

communication interfaces, such as AXI or Wishbone. AXI4 bus is

used for this purpose.

Design and Implementation of RISC-V Processor with ML Accelerator 65

6. Testing and verifying the design. This involves visualizing the results

using different tools such as mentioned in step 3 to ensure that the

processor and accelerator are communicating correctly.

7. Optimizing the design. Once the design is working, we can optimize it

for performance, power consumption, or other metrics by adjusting

the design parameters, such as clock frequency, pipeline depth, or

resource usage.

.

5.4 Integrated Design Architecture

The design includes a RISC-V processor based on the VexRiscv implemen-

tation, DDR memory controller, ztachip accelerator, VGA, camera, and

GPIO.

The components are interconnected over various AXI buses such as

memory-mapped, streaming, and advanced peripheral buses. The DDR

memory controller is connected via a 64-bit AXI memory-mapped bus,

while the RISC-V processor has two AXI buses for instruction and data.

Ztachip accelerator has two AXI buses, one for receiving tensor instruc-

tions from RISC-V processor and the other for initiating memory DMA

transfers.

The VGA receives screen data from DDR memory over an AXI stream-

ing bus, while the camera sends captured data to DDR memory over an

AXI streaming bus. Both VGA and camera use Xilinx VDMA to manage

DDR memory blocks within the AXI crossbar. The GPIO is connected

via an AXI advanced peripheral bus. Given below is the diagram of its

hardware architecture:

Design and Implementation of RISC-V Processor with ML Accelerator 66

Figure 5.2: Integrated System Block Diagram

Following is the explanation for each of these modules, except for

ztachip and MyVexRiscv which are explained in previous sections, used

in this integrated hardware design:

DDR3 Memory:

MIG (Memory Interface Generator) 7 Series is a tool provided by Xilinx,

which allows the creation of custom memory controllers for various memory

interfaces. MIG can be used to generate customized memory controllers for

DDR2, DDR3, and DDR4 SDRAM memory interfaces in Xilinx 7 series

FPGAs.

MIG provides a wizard-based user interface to guide the user through

Design and Implementation of RISC-V Processor with ML Accelerator 67

the process of configuring and generating the memory controller IP. The

tool generates a complete memory controller design, including RTL code,

constraints files, and testbench files. The generated RTL code includes all

the necessary logic to interface with the target memory, handle timing and

protocol requirements, and provide a standard interface to the rest of the

system.

In this design MIG is used to generate the DDR3 SDRAM memory

controller. It is configured to support the MT41J256m16xx-107 memory

part and is set to operate at a data rate of 1600 Mbps. The data width of

the memory chip is 16 bits, so two chips are used in parallel to provide a

total of 32 bits of data width. The input clock frequency is 200 MHz.

The MIG IP core handles the complex memory interface protocol and

generates the necessary control signals to interface with the DDR3 mem-

ory. It provides several interfaces, including AXI4 memory mapped, AXI4

streaming, and AXI4-Stream Video. In this design, the AXI4 memory

mapped interface is used to connect the memory controller to other pe-

ripherals.

The AXI4 data width in this design is set to 64 bits, which allows for

efficient data transfer between the memory controller and the ztachip accel-

erator. The MIG IP core also provides advanced features such as read and

write data strobes, data mask signals, and support for burst transactions

to optimize the data transfer performance.

VGA Connector and Module:

Genesys 2 development board includes a VGA (Video Graphics Array)

connector, which is a type of analog video interface commonly used to

connect a computer or other video source to a monitor or display.

The VGA connector on the Genesys 2 board consists of three rows

Design and Implementation of RISC-V Processor with ML Accelerator 68

of 5 pins each, for a total of 15 pins. These pins are used to transmit

analog video signals, as well as to provide connections for ground and

other necessary signals. It is compatible with standard VGA cables, which

are readily available from a variety of sources. It supports a wide range of

video resolutions, including up to 1600x1200 at 60Hz with RGB656 color

scheme.

The VGA module in this design is a VHDL implementation of a VGA

interface used to display a 24-bit pixel on a VGA monitor. This module

receives a 32-bit data stream at the input port. The output ports include

the horizontal and vertical synchronization signals, and the red, green, and

blue pixel values.

The VGA interface is structured to display frames of resolution 640x480

with a refresh rate of 60 Hz. The input data stream is 32 bits wide, and the

output pixel values are 24 bits wide, with each color component represented

by 8 bits. This resolution is chosen because of the camera selection for this

design.

Camera:

The camera used to capture video and images is OV7670. The OV7670 is a

low-cost, small form-factor camera module designed for use in a wide range

of embedded applications, such as mobile phones, toys, security systems,

and robotics. It is manufactured by OmniVision Technologies, a leading

supplier of image sensors and processing technologies.

The OV7670 features a 1/6-inch optical format CMOS (Complemen-

tary Metal-Oxide-Semiconductor) image sensor with a resolution of 640 x

480 pixels (VGA) and 10-bit RGB (Red Green Blue) output. The camera

module also includes an on-chip analog-to-digital converter (ADC), a pro-

grammable gain control (AGC), and a built-in image processing pipeline

Design and Implementation of RISC-V Processor with ML Accelerator 69

with color interpolation, gamma correction, and edge enhancement.

The OV7670 communicates with a host microcontroller using a parallel

interface, and it supports multiple data formats, including YUV, RGB, and

JPEG. The camera module can operate at a frame rate of up to 30 frames

per second (fps) at VGA resolution, and it requires a single 3.3V power

supply.

The camera module used in this design has several output ports, in-

cluding SIOC, SIOD, RESET, PWDN, XCLK, tdata out, and tvalid out

etc. These ports are used to communicate with the external environment

and transmit the captured image data.

The module uses a state machine to capture the image data from the

OV7670 sensor. The state machine waits for the vertical sync (VS) signal

from the sensor and then starts capturing image data on the rising edge

of the pixel clock (PCLK) signal. The captured data is stored in a shift

register and then transferred to an output register. The transfer is triggered

by the ready signal from the external environment. Once the transfer is

complete, the state machine waits for the next vertical sync signal to start

capturing the next frame.

GPIO:

For the purpose of general purpose input output leds and buttons of FPGA

board are used. The leds have various functions which includes to show

whether the overall system is working well or not. A test can be conducted

for ztachip in which blinking of leds show that the hardware is processing

the data and generating the output correctly. The buttons are used for

choosing between different ML applications running. Pressing the button

will run and show the next application on to the display. Both leds and

buttons are connected to the other components via AXI lite bus protocol.

Design and Implementation of RISC-V Processor with ML Accelerator 70

AXI Crossbar:

AXI crossbar is a component in the Vivado Design Suite that allows for the

interconnection of multiple AXI (Advanced eXtensible Interface) masters

and slaves within a single design. It provides a centralized point of control

for the communication between multiple AXI-based IP cores, simplifying

the interconnection and management of these components.

The AXI crossbar component operates by arbitrating access to shared

resources between multiple AXI masters, ensuring that data transfers are

managed efficiently and without contention. It also supports the routing

of data between AXI-based IP cores through a range of different trans-

fer protocols, including memory-mapped, streaming, and peripheral AXI

interfaces.

In this design AXI crossbar is responsible for connecting all the com-

ponents which includes the following:

� DDR3 memory controller connected via AXI memory mapped inter-

face

� General purpose input outputs (GPIOs) connected via AXI advanced

peripheral bus protocol

� ztachip connected via AXI memory mapped interface

� MyVexRiscv processor connected via AXI memory mapped interface

� VGA module connected via AXI stream bus

� Camera module connected via AXI stream bus

Within the AXI crossbar two IPs (intellectual properties) are used which

are AXI smartconnect and AXI VDMA.

Design and Implementation of RISC-V Processor with ML Accelerator 71

AXI Smartconnect:

AXI SmartConnect is an IP (intellectual property) block that can be used

to simplify the interconnection of different AXI (Advanced eXtensible In-

terface) peripherals. AXI is a widely-used interconnect protocol for con-

necting multiple IP blocks in a system-on-chip (SoC) design. It simplifies

the process of connecting multiple AXI peripherals by automatically gen-

erating the necessary interconnect logic. It supports a wide range of AXI

interfaces, including AXI4, AXI4-Lite, AXI4-Stream, and AXI4-Stream

Data FIFO.

The AXI SmartConnect IP block can be configured with a graphical

user interface (GUI) to specify the number and type of AXI interfaces to

connect, as well as the arbitration scheme for resolving conflicts between

multiple AXI masters. It also provides optional address decoding logic to

enable routing of transactions to the appropriate peripheral. This address

decoding can be configured with the GUI or through a set of AXI registers

that are accessible through a JTAG interface. It simplifies the process

of interconnecting multiple AXI peripherals in a Vivado design, reducing

design time and minimizing errors.

The AXI SmartConnect IP is responsible for ensuring that the data

transfer between the masters and slaves is done smoothly and efficiently.

It handles the arbitration and routing of data between the different AXI

interfaces. The AXI SmartConnect IP also provides the ability to configure

the system to meet specific requirements, such as changing the priority of

different masters or adding new slaves to the system. In this design, AXI

SmartConnect IP is used to connect 4 AXI masters and 5 AXI slaves.

The 4 AXI masters are:

1. DDR3 memory - This is the main memory of the system, which is

Design and Implementation of RISC-V Processor with ML Accelerator 72

used to store the data and instructions required by the system.

2. GPIO - This is used for general-purpose input/output operations. It

provides the ability to interface with external devices such as LEDs

and buttons.

3. Control signals for ztachip - This is used to control the various func-

tions of the ztachip.

4. AXI VDMA control signals - This is used to control the AXI VDMA,

which is used for video processing operations such as video capturing

and display.

The 5 AXI slaves are:

1. Instruction signals for RISC-V processor - This is used to provide

instructions to MyVexRiscv processor, which is the main processor

of the system.

2. Control signals for RISC-V processor - This is used to control the

various functions of the RISC-V processor.

3. AXI VDMA memory read interface - This is used by the AXI VDMA

to read data from the memory.

4. AXI VDMAmemory write interface - This is used by the AXI VDMA

to write data to the memory.

5. ztachip data signals - This is used to transfer data to and from the

ztachip.

AXI VDMA:

AXI VDMA (Video Direct Memory Access) IP is an Intellectual Property

(IP) core that is available in Vivado Design Suite, and it is used to en-

Design and Implementation of RISC-V Processor with ML Accelerator 73

able high-speed data transfer between video devices and memory. This IP

core provides efficient direct memory access (DMA) data transfers between

AXI4 memory-mapped interface and a video stream interface.

The AXI VDMA IP can support multiple independent video channels

with different resolutions and refresh rates. It contains a programmable

Genlock feature that enables synchronization between multiple video streams.

The IP core also includes advanced features such as frame buffer read and

write arbitration, programmable video timing generation, and burst trans-

fers to enhance system performance. It has several configurable parame-

ters, including the number of channels, the width and height of the video

stream, the memory interface data width, and the burst transfer length.

It can operate in two modes: Read-Only and Write-Only. In Read-Only

mode, the IP core transfers data from the memory to the video stream,

while in Write-Only mode, the IP core transfers data from the video stream

to the memory.

The AXI VDMA IP core is commonly used in various video processing

applications such as video surveillance, machine vision, and augmented

reality. By utilizing this IP core, designers can easily implement high-

performance video processing systems with efficient memory access and

data transfer capabilities. In this design it is used for similar purpose. The

camera and VGA are connected to the video source and sink of VDMA

interfaces respectively. The memory read and write interfaces are also con-

nected to DDR3 memory via AXI smartconnect. This IP will ensure that

the video processing will run smoothly.

Design and Implementation of RISC-V Processor with ML Accelerator 74

5.5 Process Flow

The overall process flow includes the following four steps or processes hap-

pening simultaneously:

1. The Camera sends the signals to AXI VDMA Video Source interface.

The VDMA transfers to to the DDR3 memory for storage through

its memory write interface via AXI Smartconnect.

2. The RISC-V processor MyVexRiscv reads the tensor instructions

from the DDR3 memory and sends them to ztachip control inter-

face all via AXI Smartconnect

3. Then after ztachip reads those tensor instructions it initiates DMA

(direct memory access) and reads the video data (sent by the cam-

era) from DDR3 memory and do required computations (which are

previously mentioned in ztachip section) and then stores the pro-

cessed data back to DDR3 memory and again all of this via AXI

Smartconnect.

4. After this the VDMA reads the processed data from DDR3 memory

through its memory read interface via AXI Smartconnect and sends

to the VGA module through its video sink interface.

5.6 Hardware Setup

The picture below show the overall hardware setup for this project, in-

cluding the FPGA board and the camera module. The FPGA board used

in the project is the Digilent Genesys 2, which features a Xilinx Kintex-7

FPGA.

Design and Implementation of RISC-V Processor with ML Accelerator 75

Figure 5.3: Hardware System

The above picture illustrate the overall system architecture and the

physical layout of the hardware components. Following is the description

of each of the labelled component:

1. This is a Power jack with voltage of 12 V DC. The Genesys 2 board

can receive power from an external power supply through the center-

positive barrel jack (J27). The external supply voltage must be 12

V ±5 %. The Genesys 2 board cannot be powered from the USB

bus. This external power helps in running hardcore circuits on this

Design and Implementation of RISC-V Processor with ML Accelerator 76

development board.

2. The JTAG port allows the FPGA board to be connected with Xilinx

Vivado and other tools. In case of Xilinx Vivado, the Digilent USB-

JTAG circuitry can be utilized to program the FPGA device. How-

ever, the programming method used in this case is different from the

Simple JTAG programming method. A memory configuration device

is used for indirect programming which is a two-step process con-

trolled by Vivado. Firstly, a design that can program flash devices is

programmed into the FPGA, and then the data is transferred to the

flash device through the FPGA circuit. The flash device can configure

the FPGA automatically during a subsequent power-on or reset event

as per the mode jumper setting. The Spansion’s s25fl256xxxxxx0 part

is used for programming files storage in the flash device, which will

remain until they are overwritten, irrespective of power-cycle events.

3. This is the camera module connectivity. The camera is connected to

the Pmod JA and JB connectors via male to female wire bundle.

Total wires used are 18 in number including 2 for power supply and

ground, 8 data wires and 8 control wires. The Pmod connectors pro-

vide fast connectivity from FPGA to the camera with 3.3 V supply.

4. This is the button BTNC (button center) which is when pressed

allows the next ML algorithm to run.

5. This is the VGA connector which is responsible for sending video

signals to a display screen. This VGA cable can be connected to any

LCD or monitor which has VGA port and supports at least 640 x

480 display resolution.

Design and Implementation of RISC-V Processor with ML Accelerator 77

Chapter 6

Conclusion

Design and Implementation of RISC-V Processor with ML Accelerator 78

6.1 Summary and Implications

This project aimed to implement an integrated hardware system containing

open source RISC-V processor and a hardware accelerator for machine

learning applications. Other features of this project includes the use of

camera and displaying the results on to the screen with the help of video

processing IPs in Vivado Design Suite.

During the course of this project we first of all started with a simple

RISC-V processor named zeroriscy and it’s reverse engineering helped us

build a strong understanding of a RISC-V processor architecture. Even

before that understanding of a RISC-V ISA including its assembly lan-

guage, set of instructions, machine code conversion, memory allocation,

and many other parameters and important points to remember about de-

signing a RISC-V processor. We may not be able to build our own processor

but doing an in-depth back analysis of a sophisticated architecture which

was designed using an unfamililar ISA and then doing its implementation

as well as testing using open-source tools on FPGA is also not at all simple

and effortless.

That rigorous and intensive understanding of zeroriscy made it easier

to further understand other RISC-V cores. Then replacing zeroriscy with

VexRiscv is lead by a reason that VexRiscv supports connectivity of JTAG

interface which makes it easier for debugging. Then for the second part of

the project open-source ztachip accelerator was used. It used because of its

open-source nature and ability to support a wide range of ML applications.

Next step was to utilize ztachip accelerator by the help of RISC-V pro-

cessor. Their integration and the displaying of the results required many

other modules to be integrated with the system as well. The modules in-

clude camera, VGA, and DDR memory. The video processing required use

Design and Implementation of RISC-V Processor with ML Accelerator 79

of AXI VDMA IP and for the fast interconnection of all these components

over AXI bus required the use of AXI Smartconnect IP.

In conclusion, this project was successful in designing and implementing

a RISC-V ML accelerating system on an FPGA board. The system was

also able to process video data from the camera in real-time with the help

of AXI VDMA, ztachip, and DDR memory. This project serves as a proof

of concept for the use of FPGAs in running ML applications efficiently

with low memory usage and can be extended in future work to include

additional functionalities and optimizations.

6.2 Abilities

Ztachip’s domain-specific language (DSL) has undergone extensive testing

across various vision preprocessing and AI tasks. [20] These tasks include

TensorFlow model-based tasks such as the following:

� Image Classification

� Object Detection

� Edge Detection using Canny Algorithm

� Color Space Conversion

� Contrast Enhancement

� Image Blurring using Gaussian Convolution

� Harris Corner Detection for Robotics SLAM

� Optical Flow for Motion Detection

� Image Resizing.

Design and Implementation of RISC-V Processor with ML Accelerator 80

But for this demo only Object Detection, Edge Detection, Motion De-

tection, and Harris Corner are run on the hardware.

6.3 Result

This section demostrates the results shown by this ML accelerating system.

The values displayed next to the identified objects or persons represent the

probability or likelihood of the algorithm’s detection accuracy for each of

the identified entities.

The below figure shows that the Object Detection algorithm is succuss-

fully detecting a person with a confidence score of 0.63 and keyboard with

probability 0.58 at the same time.

Figure 6.1: Object Detection of Person and Keyboard

The below figure shows that the Object Detection algorithm is suc-

cussfully detecting an Air Conditioner Remote with a confidence score of

0.65.

Design and Implementation of RISC-V Processor with ML Accelerator 81

Figure 6.2: Object Detection of A.C. Remote

The below figure shows that the Object Detection algorithm is succuss-

fully detecting an Umbrella with a confidence score of 0.75.

Figure 6.3: Object Detection of Umbrella

The below figure shows the Edge Detection algorithm succussfully de-

tecting the edges of a Person and a Keyboard at the same time.

Design and Implementation of RISC-V Processor with ML Accelerator 82

Figure 6.4: Edge Detection of Person and Keyboard

The below figure shows the Point of Interest using Harris Corner algo-

rithm succussfully detecting points of interest on a Person and a Keyboard

at the same time and highlighting them with yellowish dots.

Figure 6.5: Point of Interest on Person and Keyboard

The below figure shows the Motion Detection algorithm succussfully

Design and Implementation of RISC-V Processor with ML Accelerator 83

detecting a Keyboard and highlighting it with vivid bluish colors.

Figure 6.6: Motion Detection on Keyboard

Finally this last below figure shows the all these four algorithms running

in parallel as a multitask to show the efficiency and performance of this

ML accelerator.

Figure 6.7: All Four ML Algorithms running in Parallel

Design and Implementation of RISC-V Processor with ML Accelerator 84

6.4 Performance

It’s important to note that performance and resource utilization can vary

greatly depending on the specific application and its requirements. How-

ever, it’s encouraging to see that ztachip is able to achieve competitive

performance while utilizing less computing resources than other platforms,

resulting in potentially lower power consumption. Efficient use of memory

is also an important factor to consider in DSA design, as it can greatly

impact overall system performance and cost.

The performance of ztachip is impressive and is tested for benchmark-

ing on the popular Mobinet-SSD AI model. MobileNet SSD is an artificial

intelligence (AI) model for object detection. It is a single-shot detection

(SSD) framework that uses a MobileNet architecture as a feature extrac-

tor. The model is designed to run on mobile and embedded devices with

limited computational resources while achieving high accuracy in object

detection tasks. [20]

The MobileNet architecture is optimized for mobile devices and is made

up of depthwise separable convolutions that reduce the number of param-

eters and operations required. This allows the model to achieve high accu-

racy in object detection while maintaining fast inference speeds on devices

with limited resources. The SSD framework used in MobileNet SSD di-

vides the input image into a grid of cells and predicts the presence and

location of objects within each cell. The predictions are made at multiple

scales, allowing the model to detect objects of different sizes. Following is

the table showing benchmark score comparison with Nvidia Accelerator:

Design and Implementation of RISC-V Processor with ML Accelerator 85

Hardware Accelerators:
FPS (Frames per

Second)

GOPS (Giga Operations

per Second)

Ztachip ML Accelerator 10 20

Nvidia Jetson Nano 40 500

Table 6.1: Benchmark Score Comparison of ztachip with Nvidia

Source: GitHub

Resultantly, ztachip’s computing resource utilization is six times bet-

ter than that of Nvidia, which leads to a considerable reduction in power

consumption. This makes ztachip an ideal solution for power-sensitive ap-

plications, such as edge devices, where low power consumption is critical.

Furthermore, ztachip has much lower memory requirements compared

to other solutions, due to its efficient use of memory. This means that

ztachip can be deployed in devices with limited memory, making it a cost-

effective solution for a wide range of applications.

Design and Implementation of RISC-V Processor with ML Accelerator 86

https://github.com/ztachip/ztachip/blob/master/Documentation/Overview.md

References

[1] SpinalHDL/VexRiscv. GitHub, 2021, https://github.com/

SpinalHDL/VexRiscv

[2] Smart2Zero. (2022, January 5). NASA selects RISC-

V CPU for next-gen spaceflight processor. [Online arti-

cle]. Retrieved from https://www.smart2zero.com/en/

nasa-selects-risc-v-cpu-for-next-gen-spaceflight-processor/

[3] SiFive. (n.d.). About us. Retrieved from https://www.sifive.com/

about

[4] Alibaba.com. (n.d.). DC-ROMA RISC-V Develop-

ment Laptop. [Product listing]. Retrieved February 23,

2023, from https://www.alibaba.com/product-detail/

DC-ROMA-RISC-V-Development-Laptop_1600610157163.html

Design and Implementation of RISC-V Processor with ML Accelerator 87

https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/VexRiscv
https://www.smart2zero.com/en/nasa-selects-risc-v-cpu-for-next-gen-spaceflight-processor/
https://www.smart2zero.com/en/nasa-selects-risc-v-cpu-for-next-gen-spaceflight-processor/
https://www.sifive.com/about
https://www.sifive.com/about
https://www.alibaba.com/product-detail/DC-ROMA-RISC-V-Development-Laptop_1600610157163.html
https://www.alibaba.com/product-detail/DC-ROMA-RISC-V-Development-Laptop_1600610157163.html

[5] The Register. (2022, September 23). Google reportedly using SiFive

RISC-V cores in Tensor Processing Units. [Online article]. Re-

trieved from https://www.theregister.com/2022/09/23/google_

using_sifive_riscv_cores/

[6] The Register. (2022, October 5). China switches from ARM to

RISC-V for top-level data center chip. [Online article]. Retrieved

from https://www.theregister.com/2022/10/05/china_riscvv_

arm_datacenter/

[7] Islamabad Post. (2022, October 20). Ntiny-e: NUST realizes Pak-

istan’s first truly indigenous embedded microprocessor. [Online

article]. Retrieved from https://islamabadpost.com.pk/ntiny-e-nust-

realizes-pakistans-first-truly-indigenous-embedded-microprocessor/

[8] Asanovic, Krste, et al. ”The rocket chip generator.” EECS Depart-

ment, University of California, Berkeley, Tech. Rep. UCB/EECS-

2016-17 4 (2016).

[9] Zhao, Jerry, et al. ”Sonicboom: The 3rd generation berkeley out-

of-order machine.” Fourth Workshop on Computer Architecture Re-

search with RISC-V. Vol. 5. 2020.

[10] Y. Lee et al., ”A 45nm 1.3GHz 16.7 double-precision GFLOPS/W

RISC-V processor with vector accelerators,” ESSCIRC 2014 - 40th

European Solid State Circuits Conference (ESSCIRC), 2014, pp. 199-

202, doi: 10.1109/ESSCIRC.2014.6942056.

[11] Keller, Ben, et al. ”A RISC-V processor SoC with integrated power

management at submicrosecond timescales in 28 nm FD-SOI.” IEEE

Journal of Solid-State Circuits 52.7 (2017): 1863-1875.

Design and Implementation of RISC-V Processor with ML Accelerator 88

https://www.theregister.com/2022/09/23/google_using_sifive_riscv_cores/
https://www.theregister.com/2022/09/23/google_using_sifive_riscv_cores/
https://www.theregister.com/2022/10/05/china_riscvv_arm_datacenter/
https://www.theregister.com/2022/10/05/china_riscvv_arm_datacenter/

[12] D. A. Santos, L. M. Luza, C. A. Zeferino, L. Dilillo and D. R.

Melo, ”A Low-Cost Fault-Tolerant RISC-V Processor for Space Sys-

tems,” 2020 15th Design & Technology of Integrated Systems in

Nanoscale Era (DTIS), Marrakech, Morocco, 2020, pp. 1-5, doi:

10.1109/DTIS48698.2020.9081185.

[13] Fritzmann, Tim, Georg Sigl, and Johanna Sepúlveda. ”RISQ-V:

Tightly coupled RISC-V accelerators for post-quantum cryptogra-

phy.” IACR Transactions on Cryptographic Hardware and Embedded

Systems (2020): 239-280.

[14] Steinegger, Stefan, and Robert Primas. ”A fast and compact RISC-

V accelerator for ascon and friends.” Smart Card Research and Ad-

vanced Applications: 19th International Conference, CARDIS 2020,

Virtual Event, November 18–19, 2020, Revised Selected Papers.

Cham: Springer International Publishing, 2021.

[15] PULP Platform. (n.d.). Project Info. [Webpage]. Retrieved from

https://pulp-platform.org/projectinfo.html

[16] lowRISC. (n.d.). ibex. [GitHub Repository]. Retrieved from https:

//github.com/lowRISC/ibex

[17] P. Davide Schiavone et al., ”Slow and steady wins the race? A com-

parison of ultra-low-power RISC-V cores for Internet-of-Things appli-

cations,” 2017 27th International Symposium on Power and Timing

Modeling, Optimization and Simulation (PATMOS), 2017, pp. 1-8,

doi: 10.1109/PATMOS.2017.8106976.

[18] Schiavone, P.D. (2018). zero-riscy: User Manual, Revision 0.2, Jan-

uary 2018. Retrieved from https://www.pulp-platform.org/docs/

user_manual.pdf

Design and Implementation of RISC-V Processor with ML Accelerator 89

https://pulp-platform.org/projectinfo.html
https://github.com/lowRISC/ibex
https://github.com/lowRISC/ibex
https://www.pulp-platform.org/docs/user_manual.pdf
https://www.pulp-platform.org/docs/user_manual.pdf

[19] ztachip. (n.d.). ztachip. [GitHub Repository]. Retrieved from https:

//github.com/ztachip/ztachip

[20] ztachip. (n.d.). ztachip overview. [GitHub markdown file]. Re-

trieved from https://github.com/ztachip/ztachip/blob/master/

Documentation/Overview.md

[21] Tom01h. (n.d.). zero-riscy [GitHub repository]. Retrieved from https:

//github.com/tom01h/zero-riscy

[22] Barbier, D. (2018). RISC-V: Open-Source Silicon [PDF]. SiFive. Re-

trieved from https://riscv.org/wp-content/uploads/2018/07/

DAC-SiFive-Drew-Barbier.pdf

[23] Ztachip. “Ztachip Documentation - Hardware Design.” GitHub,

2021, https://github.com/ztachip/ztachip/blob/master/

Documentation/HardwareDesign.md

[24] Digilent. (n.d.). Genesys 2 Reference Manual. Retrieved from

https://digilent.com/reference/programmable-logic/

genesys-2/reference-manual

Design and Implementation of RISC-V Processor with ML Accelerator 90

https://github.com/ztachip/ztachip
https://github.com/ztachip/ztachip
https://github.com/ztachip/ztachip/blob/master/Documentation/Overview.md
https://github.com/ztachip/ztachip/blob/master/Documentation/Overview.md
https://github.com/tom01h/zero-riscy
https://github.com/tom01h/zero-riscy
https://riscv.org/wp-content/uploads/2018/07/DAC-SiFive-Drew-Barbier.pdf
https://riscv.org/wp-content/uploads/2018/07/DAC-SiFive-Drew-Barbier.pdf
https://github.com/ztachip/ztachip/blob/master/Documentation/HardwareDesign.md
https://github.com/ztachip/ztachip/blob/master/Documentation/HardwareDesign.md
https://digilent.com/reference/programmable-logic/genesys-2/reference-manual
https://digilent.com/reference/programmable-logic/genesys-2/reference-manual

8%
SIMILARITY INDEX

7%
INTERNET SOURCES

4%
PUBLICATIONS

1%
STUDENT PAPERS

1 <1%

2 <1%

3 <1%

4 <1%

5 <1%

6 <1%

7 <1%

8 <1%

9 <1%

10 <1%

FPGA
ORIGINALITY REPORT

PRIMARY SOURCES

link.springer.com
Internet Source

www.farnell.com
Internet Source

Submitted to University of Southern
Mississippi
Student Paper

people.eecs.berkeley.edu
Internet Source

elib.dlr.de
Internet Source

github.com
Internet Source

tches.iacr.org
Internet Source

www.researchgate.net
Internet Source

en.wikipedia.org
Internet Source

Submitted to University of Sussex
Student Paper

11 <1%

12 <1%

13 <1%

14 <1%

15 <1%

16 <1%

17 <1%

18 <1%

19 <1%

20 <1%

21 <1%

aaltodoc.aalto.fi
Internet Source

libraetd.lib.virginia.edu
Internet Source

www.eeworldonline.com
Internet Source

2015.aeroconf.org
Internet Source

Sarah L. Harris, David Harris.
"Microarchitecture", Elsevier BV, 2022
Publication

webthesis.biblio.polito.it
Internet Source

Pranav S. Mutha, Yogita M. Vaidya. "FPGA
reconfiguration using UART and SPI flash",
2017 International Conference on Trends in
Electronics and Informatics (ICEI), 2017
Publication

boston.i3investor.com
Internet Source

pdfs.semanticscholar.org
Internet Source

csrc.nist.gov
Internet Source

docs.askives.com
Internet Source

22 <1%

23 <1%

24 <1%

25 <1%

26 <1%

27 <1%

28 <1%

29 <1%

hal-lirmm.ccsd.cnrs.fr
Internet Source

readthedocs.org
Internet Source

"Smart Card Research and Advanced
Applications", Springer Science and
Business Media LLC, 2021
Publication

www.digitalcamerawarehouse.com.au
Internet Source

Andrew Elbert Wilson, Nathan Baker, Ethan
Campbell, Jackson Sahleen, Michael
Wirthlin. "Post-Radiation Fault Analysis of a
High Reliability FPGA Linux SoC",
Proceedings of the 2023 ACM/SIGDA
International Symposium on Field
Programmable Gate Arrays, 2023
Publication

Sallar Ahmadi-Pour, Vladimir Herdt, Rolf
Drechsler. "MircoRV32", Proceedings of the
Workshop on Design Automation for CPS
and IoT, 2021
Publication

www2.eecs.berkeley.edu
Internet Source

www.arxiv-vanity.com
Internet Source

30 <1%

31 <1%

32 <1%

33 <1%

34 <1%

35 <1%

36 <1%

37 <1%

Benjamin W. Mezger, Douglas A. Santos,
Luigi Dilillo, Cesar A. Zeferino, Douglas R.
Melo. "A survey of the RISC-V architecture
software support", IEEE Access, 2022
Publication

repository.tudelft.nl
Internet Source

Submitted to University of Warwick
Student Paper

www.semanticscholar.org
Internet Source

Ben Keller, Martin Cochet, Brian Zimmer,
Jaehwa Kwak, Alberto Puggelli, Yunsup Lee,
Milovan Blagojevic, Stevo Bailey, Pi-Feng
Chiu, Palmer Dabbelt, Colin Schmidt, Elad
Alon, Krste Asanovic, Borivoje Nikolic. "A
RISC-V Processor SoC With Integrated
Power Management at Submicrosecond
Timescales in 28 nm FD-SOI", IEEE Journal of
Solid-State Circuits, 2017
Publication

Submitted to Sikkim Manipal University
Student Paper

Submitted to University of Rome Tor
Vergata
Student Paper

www.coursehero.com
Internet Source

38 <1%

39 <1%

40 <1%

41 <1%

42 <1%

43 <1%

44 <1%

45 <1%

www.supplychain247.com
Internet Source

Submitted to Higher Education Commission
Pakistan
Student Paper

www.dsprelated.com
Internet Source

Douglas Almeida Santos, Lucas Matana
Luza, Cesar Albenes Zeferino, Luigi Dilillo,
Douglas Rossi Melo. "A Low-Cost Fault-
Tolerant RISC-V Processor for Space
Systems", 2020 15th Design & Technology
of Integrated Systems in Nanoscale Era
(DTIS), 2020
Publication

Matthew Naylor, Simon W. Moore, Alan
Mujumdar. "A consistency checker for
memory subsystem traces", 2016 Formal
Methods in Computer-Aided Design
(FMCAD), 2016
Publication

citeseerx.ist.psu.edu
Internet Source

cs.uwaterloo.ca
Internet Source

cv32e40p.readthedocs.io
Internet Source

www.esri.com

46 <1%

47 <1%

48 <1%

49 <1%

50 <1%

51 <1%

Internet Source

Görkem Nişancı, Paul G. Flikkema, Tolga
Yalçın. "Symmetric Cryptography on RISC-V:
Performance Evaluation of Standardized
Algorithms", Cryptography, 2022
Publication

www.mobilitytechzone.com
Internet Source

Atul Prasad Deb Nath, Kshitij Raj, Swarup
Bhunia, Sandip Ray. "SOCCOM: Automated
Synthesis of System-on-Chip Architectures",
IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2022
Publication

F. Renzini, D. Rossi, E. Franchi Scarselli, C.
Mucci, R. Canegallo. "A Fully Programmable
eFPGA-Augmented SoC for Smart-Power
Applications", 2018 25th IEEE International
Conference on Electronics, Circuits and
Systems (ICECS), 2018
Publication

Zimmer, Brian, Yunsup Lee, Alberto Puggelli,
Jaehwa Kwak, Ruzica Jevtic, Ben Keller, Stevo
Bailey, Milovan Blagojevic, Pi-Feng Chiu,
Hanh-Phuc Le, Po-Hung Chen, Nicholas
Sutardja, Rimas Avizienis, Andrew
Waterman, Brian Richards, Philippe
Flatresse, Elad Alon, Krste Asanovic, and

52 <1%

53 <1%

54 <1%

55 <1%

56 <1%

57 <1%

58 <1%

59 <1%

Borivoje Nikolic. "A RISC-V vector processor
with tightly-integrated switched-capacitor
DC-DC converters in 28nm FDSOI", 2015
Symposium on VLSI Circuits (VLSI Circuits),
2015.
Publication

cis.cihe.edu.hk
Internet Source

homes.cs.washington.edu
Internet Source

vtechworks.lib.vt.edu
Internet Source

web.archive.org
Internet Source

www.filibeto.org
Internet Source

"Cognitive Radio Oriented Wireless
Networks", Springer Science and Business
Media LLC, 2018
Publication

D.D. Gajski. "A retargetable, ultra-fast
instruction set simulator", Design
Automation and Test in Europe Conference
and Exhibition 1999 Proceedings (Cat No
PR00078) DATE-99, 1999
Publication

Parhami, Behrooz. "Computer Architecture",
Oxford University Press
Publication

60 <1%

61 <1%

62 <1%

63 <1%

64 <1%

65 <1%

66 <1%

67 <1%

68 <1%

69 <1%

Roland Holler, Dominic Haselberger,
Dominik Ballek, Peter Rossler, Markus
Krapfenbauer, Martin Linauer. "Open-
Source RISC-V Processor IP Cores for FPGAs
— Overview and Evaluation", 2019 8th
Mediterranean Conference on Embedded
Computing (MECO), 2019
Publication

cryptography.gmu.edu
Internet Source

docplayer.net
Internet Source

islamabadpost.com.pk
Internet Source

kth.diva-portal.org
Internet Source

nebula.wsimg.com
Internet Source

oops.uni-oldenburg.de
Internet Source

riscv.org
Internet Source

www.springerprofessional.de
Internet Source

www.st.com
Internet Source

70 <1%

71 <1%

72 <1%

73 <1%

74 <1%

Corrado De Sio, Sarah Azimi, Andrea
Portaluri, Luca Sterpone. "SEU Evaluation of
Hardened-by-Replication Software in RISC- V
Soft Processor", 2021 IEEE International
Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT),
2021
Publication

Rogerio Paludo, Leonel Sousa. "NTT
Architecture for a Linux-Ready RISC-V Fully-
Homomorphic Encryption Accelerator", IEEE
Transactions on Circuits and Systems I:
Regular Papers, 2022
Publication

Vaibhav Verma, Tommy Tracy II, Mircea R.
Stan. "EXTREM-EDGE—EXtensions To RISC-V
for Energy-efficient ML inference at the
EDGE of IoT", Sustainable Computing:
Informatics and Systems, 2022
Publication

"The Fourth Terminal", Springer Science and
Business Media LLC, 2020
Publication

Maha S. Diab, Esther Rodriguez-Villegas.
"Embedded Machine Learning Using
Microcontrollers in Wearable and
Ambulatory Systems for Health and Care
Applications: A Review", IEEE Access, 2022
Publication

75 <1%

Exclude quotes Off

Exclude bibliography On

Exclude matches Off

P. Nannipieri, S. Di Matteo, L. Zulberti, F.
Albicocchi, S. Saponara, L. Fanucci. "A RISC-
V Post Quantum Cryptography Instruction
Set Extension for Number Theoretic
Transform to speed-up CRYSTALS
Algorithms", IEEE Access, 2021
Publication

	Introduction
	Project Background
	Project Overview
	Keypoints about RISC-V

	Problem Statements
	Project Objectives
	Project Scope
	RISC-V
	Machine Learning

	Literature Review
	Introduction
	Purpose of the Review
	RISC-V based Pakistan’s first processor
	UC Berkeley made RISC-V Chips
	Power Management Integrated RISC-V Processor SoC Operating at Submicrosecond Timescales
	RISC-V Processor Designed for Space Systems
	RISC-V and PULP
	Ibex Core
	Zeroriscy Core

	RISC-V Accelerator for Post-Quantum Cryptography
	RISC-V Accelerator designed for Ascon

	RISC-V Processor
	Introduction
	VexRiscv
	Performance Score Comparison

	RISC-V Accelerator for ML Applications
	Introduction
	Ztachip as DSA
	Limitations

	Ztachip Software Stacks
	Hardware Architecture

	Integration of RISC-V Processor with ML Accelerator on FPGA
	Introduction
	Advantages of using FPGA forIimplementation
	Genesys 2

	Steps of Integration
	Integrated Design Architecture
	Process Flow
	Hardware Setup

	Conclusion
	Summary and Implications
	Abilities
	Result
	Performance

	References

