
NOMAN KHALID

01-235161-080

Image Forgery Detection

Bachelor of Science in Information Technology

Supervisor: Dr. Samabia Tehseen

Department of Computer Science
Bahria University, Islamabad

December 2019

c© Noman Khalid, December 2019

C e r t i f i c a t e

We accept the work contained in the report titled “Image Forgery Detection”, written by
Noman Khalid as a confirmation to the required standard for the partial fulfillment of the
degree of Bachelor of Science in Information Technology.

Approved by . . . :

Supervisor: Dr. Samabia Tehseen (Associate Professor)

Internal Examiner: Dr. Arif ur Rahman (Associate Professor)

External Examiner: Dr. Anwar Ghani (Associate Professor)

Project Coordinator: Dr. Muneeb Gohar (Associate Professor)

Head of the Department: Dr. Muhammad Muzammal (Sr. Associate Professor)

December 13th, 2019

Abstract

Technological development in digital world has led to a huge increase in the popularity
of digital images in all domains of life. However, sophisticated and easy to use photo
editing software tools have made manipulation of images very easy. Thus there is a need
to authenticate images especially in legal matters. The field of image authentication and
forgery detection has gained huge popularity lately. A key domain in this regard is copy-
move forgery detection. Copy move forgery involves copying a portion of an image and
pasting it to a different location in same image, with a purpose to conceal facts. The main
objective of this project is to design and develop a desktop application to detect image
forgery in digital images.

i

ii

Acknowledgments

First of all I would like to thank Al-Mighty Allah, the most beneficial and the most merciful.
He gave me the strength to complete this major milestone of my degree program. I am also
very thankful to my teachers, parents and friends who supported me both technically and
morally at every stage of this project. I would like to express my gratitude to my supervisor
Dr. Samabia Tehseen. Her technical guidance and support helped me complete this project
and achieve its objective.

NOMAN KHALID
Islamabad, Pakistan

December 2019

iii

iv

“Everybody should learn to program a computer,
because it teaches you how to think.”

Steve Jobs

v

vi

Contents

1 Introduction 1
1.1 Problem Description . 2
1.2 Project Objective . 2
1.3 Project Scope . 3
1.4 Benefits . 3

2 Literature Review 5
2.1 Related Works . 5

2.1.1 Exhaustive Search Technique 5
2.1.2 Block Match Technique . 6
2.1.3 Exact Match Technique . 6
2.1.4 Robust Match Technique . 6

2.2 Conclusion . 7

3 Requirement Specifications 9
3.1 Existing System . 9
3.2 Proposed System . 9
3.3 Requirements Specification . 9
3.4 Functional Requirements . 10
3.5 Non-Functional Requirements . 10

3.5.1 Usability . 10
3.5.2 Privacy . 10
3.5.3 Reliability . 10
3.5.4 Security . 10
3.5.5 Availability . 10
3.5.6 Space Requirement . 10

3.6 Use Cases . 11
3.6.1 Use Case: Run Application . 12
3.6.2 Use Case: Open Image File . 12
3.6.3 Use Case: Display Masked Image 13
3.6.4 Use Case: Save Masked Image 13
3.6.5 Use Case: Exit Application . 14

4 Design 15
4.1 System Architecture . 15

4.1.1 Presentation Layer . 15
4.1.2 Logical Layer . 15

vii

viii CONTENTS

4.2 Design Methodology . 16
4.3 Low Level Design . 16

4.3.1 Sequence Diagram . 16
4.4 High Level Design . 22
4.5 Database Design . 23

4.5.1 Introduction . 23
4.5.2 Forgery method . 23
4.5.3 Postprocessing methods . 24

4.6 GUI Design . 24

5 System Implementation 27
5.1 Methodology . 27

5.1.1 Image Acquisition . 27
5.1.2 Pre-Processing . 27
5.1.3 Block Tiling . 27
5.1.4 Feature Extraction . 28
5.1.5 Matching . 28
5.1.6 Output . 28

5.2 Tools and Technology Used . 29
5.2.1 Python . 29
5.2.2 PyCharm . 29
5.2.3 OpenCV2 . 29
5.2.4 NumPy . 29
5.2.5 PyQt5 . 29
5.2.6 Microsoft Visio . 29
5.2.7 Microsoft Excel . 30
5.2.8 Microsoft Word . 30
5.2.9 TeXstudio . 30

6 System Testing and Evaluation 31
6.1 Graphical User Interface Testing . 31
6.2 Usability Testing . 31
6.3 Software Performance Testing . 31
6.4 Compatibility Testing . 32
6.5 Load Testing . 32
6.6 Test Cases . 32

6.6.1 Test Case: Run Application . 32
6.6.2 Test Case: Open Image File . 32
6.6.3 Test Case: Display Masked Image 33
6.6.4 Test Case: Save Masked Image 33
6.6.5 Test Case: Exit Application . 33

6.7 Performance Measures . 34
6.8 Test Results . 36

6.8.1 Pixel Level Evaluation Testing 36
6.8.2 Image Level Evaluation Testing 36

CONTENTS ix

7 Conclusions 39
7.1 Future Improvements . 39

7.1.1 Better GUI . 39
7.1.2 Multiple Platforms . 39
7.1.3 Larger Dataset . 40

Index 41

x CONTENTS

List of Figures

1.1 Copy-Move Forgery. Original (left), Forged (right) 2

3.1 Use Case Diagram . 11

4.1 Main Sequence Diagram . 17
4.2 Run Application Sequence Diagram . 18
4.3 Open Image File Sequence Diagram . 19
4.4 Save and Display Masked Image Sequence Diagram 20
4.5 Exit Application Sequence Diagram . 21
4.6 Workflow of CMFD . 22
4.7 Main screen on startup . 25
4.8 Main screen after forgery detection . 26

xi

xii LIST OF FIGURES

List of Tables

3.1 Use Case 1: Run Application . 12
3.2 Use Case 2: Open Image File . 12
3.3 Use Case 3: Display Masked Image . 13
3.4 Use Case 4: Save Masked Image . 13
3.5 Use Case 5: Exit Application . 14

6.1 Test Case 1: Run Application . 32
6.2 Test Case 2: Open Image File . 32
6.3 Test Case 3: Display Masked Image . 33
6.4 Test Case 4: Save Masked Image . 33
6.5 Test Case 5: Exit Application . 33
6.6 Pixel Level Evaluation Results . 37
6.7 Image Level Evaluation Results . 38

xiii

xiv LIST OF TABLES

Acronyms and Abbreviations

CMFD Copy Move Forgery Detection
DCT Discrete Cosine Transform
FN False Negative
FP False Positive
GUI Graphical User Interface
IDE Integrated Development Environment
RAD Rapid Application Development
TN True Negative
TP True Positive

xv

xvi Acronyms and Abbreviations

Chapter 1

Introduction

In the age of social media journalism, the importance of identification rather an image is
legit or tampered has increased. Due to state-of-the-art technologies available for image
editing such as Photoshop which makes it very easy to make image forgeries and it is
getting harder to identify that an image is forged or not forged, and these images are one
of the main sources of fake news which cause chaos in society. To define the integrity
and authenticity of an image, a lot of research is done in the last few years to identify
image forgery [1] [2]. Before any action must be taken on these fake images verifying the
authenticity of these fake images is necessary.

There are two types of techniques to find out the image forgery. Active techniques
and Passive (Blind) techniques [3]. In the Active method, there are two ways to find image
forgery such as Digital Signature and Digital Watermarking both techniques depend on the
information embedded at the time of image creation hence this method is not useful when
dealing with images from unknown sources which will limit its applications. In the Passive
method, no prior information of the image is required. There are many techniques each
can detect special forgery in its own way. One of which is copy-move forgery detection. In
copy-move forgery, a part of an image is copied and placed in another location within the
same image to duplicate something of importance or to hide some information behind it
that does not need to be displayed. You can see an example in Fig. 1.

1

2 Introduction

Figure 1.1: Copy-Move Forgery. Original (left), Forged (right)

To make it look more authentic often the image forger performs a series of post-
processing after the manipulation of an image. Some examples of this post-processing are
sharpening, blurring, JPEG compression and noise addition.

The purpose of this project is to determine whether a digital image has been tampered
or not.

1.1 Problem Description

The purpose behind this project is to create an application which will use passive (blind)
forensic technique such as copy-move forgery detection to determine whether an image
has been tempered or not.

1.2 Project Objective

The main objective of this project is to design and develop a desktop application to detect
image tampering in a digital image.

1.3 Project Scope 3

1.3 Project Scope

The primary objectives of developing this system are: The main scope of this application is
to determine whether a digital image has been tampered using Passive forensic techniques
such as copy-move forgery detection.

This project will not focus on Active forensic techniques.

1.4 Benefits

This project has real value for the following industries and domains which can benefit from
it:

• Online Lenders and Banking Institutions

• Insurance Companies

• Social Media Companies

• Government and Local Authorities

• Recruitment Companies

This project can help the above domains in the image recognition for its integrity and
authenticity.

4 Introduction

Chapter 2

Literature Review

In this chapter all the concepts, methods and theories that are related with copy-move
forgery detection and other applications will be discussed.

2.1 Related Works

Copied regions can be detected by using two techniques such as block-based and key
point-based detection. The difference between these two techniques is that key point-based
methods extract feature points only on particular regions from an image without any
subdivisions of an image, therefore, it has few computational steps but cannot produce
highly accurate results. The block-based methods subdivide the image into rectangular
regions. A feature vector is computed for every region and similar feature vectors are
subsequently matched for forgery detection, therefore, it has more computational steps and
gives highly accurate results. Block-based techniques will be discussed in this chapter.

2.1.1 Exhaustive Search Technique

It is an easy-going approach to detecting copy-move forgery. A digital image is a rep-
resentation of a real image as a set of numbers called pixels. Pixels can be stored and
handled by a digital computer. For each pixel, the imaging device records a number that
describes some property of this pixel such as the intensity of light or its color. The idea
is to match each pixel value with other pixel values, starting from the top left corner of
the image to the bottom right corner and mark the duplicated pixel [4]. Exhaustive search
uses circularly shifted versions of a forged image to match with other parts. It reduces the
computational complexity as a pixel value is matched twice with other pixel values, so half
of the comparisons are reduced.

5

6 Literature Review

2.1.2 Block Match Technique

A good technique for detecting copy-move forgery is to verify if a set of blocks of pixels
in a region of the image matches with another in a different region of the image. That is,
the image is divided into n non-overlapping blocks, and each block is compared with the
remaining ones. But, selecting the size of the block is difficult. If the size of the block
is larger than the forged area, an exact match of the blocks does not result. If the size
of the block is smaller, the forged area may cross the boundaries of adjacent blocks and
then also exact matches would not result. If the size of the block size is made very small,
the matching process becomes computationally intensive, particularly with large images.
Also, uniform areas in the original image will be shown as duplicates. This kind of block
matching can be termed as non-overlapped block matching.

2.1.3 Exact Match Technique

A better alternative is to select overlapping blocks. Blocks of size b x b pixels are selected
from the top-left corner, moving right and down, to the bottom-right corner one pixel at a
time along with the image. For each block, the pixel values are extracted by columns into
a row of a two-dimensional array A with (M–b+1) (N–b+1) rows and b x b columns. Two
identical rows in the matrix A correspond to two identical b x b blocks. To recognize the
identical rows easily and quickly, the rows of the matrix A are lexicographically sorted.
Matching rows can be easily searched by going through the rows of the ordered matrix A
and looking for two successive rows that are identical.

2.1.4 Robust Match Technique

The best alternative to detect copy-move forgery is Robust Match where instead of matching
the pixel representation of blocks, their robust representations are matched. One of the
robust representations is the quantized DCT (Discrete Cosine Transform) coefficients. The
advantage of DCT is that when it is applied on an image block it will give us quantized
DCT coefficients and the signal energy is concentrated on first few coefficients of this
image block whereas most other coefficients are negligibly small. Therefore the changes
that occur in high frequencies due to the operations such as compression, retouching and
noise addition do not affect these first few coefficients greatly.

2.2 Conclusion 7

2.2 Conclusion

Every technique has its own pros and cons, but performance evaluation of specific technique
is based on the parameters like the size of a cloned region in pixels, type of transformation
applied on image and compression ratio of an input image. Therefore, none of the
techniques has a robust detection way of the cloned region. In this system modified robust
match technique will be used to save as much execution time as possible while giving
satisfactory results [5]. In this technique, the quantized coefficients of DCT of blocks
are used as block features. Here the length of the feature of the blocks is reduced which
reduces the execution time without affecting the quality of the result. Reduction in the
length of the feature vector is possible, because, when the quantization of DCT coefficients
of the blocks is done, there are many long run zeros. These are high-frequency DCT
coefficients, which do not contribute to the quality of the image and therefore they can
be omitted. The quantized DCT coefficients are read in zigzag order so only quantized
low-frequency coefficients are taken. This algorithm is as efficient as a robust match while
detecting a forgery in an image, but it will save 25 percent of execution time.

8 Literature Review

Chapter 3

Requirement Specifications

3.1 Existing System

There are some existing image forgery detection systems available on the internet, but
all the tools ask you to upload the image online and it processes the operation on an
image online and provides the resultant output to the user. These tools are very useful but
sometime the user does not have the internet connection to detect the forgery in an image
online or the user does not want to share the images online because of privacy issues.

3.2 Proposed System

The proposed system is going to be a desktop application that can run on windows operating
system. The proposed system will detect the forgery in an image and display the results to
the user. After starting the application, the user will select an image from the hard drive.
The detection engine running in the background will detect the forged part in an image and
display the result on screen in the form of masked image.

3.3 Requirements Specification

Requirement specifications will provide both the functional and non-functional require-
ments of the application.

9

10 Requirement Specifications

3.4 Functional Requirements

The functional requirements of the application are as follows.

• User should be able to run the application.

• User should be able to open an image.

• System should be able to display masked image after performing operation on forged
image.

• System should be able to save the created masked image in order to avoid loss.

• User should be able to exit the application.

3.5 Non-Functional Requirements

3.5.1 Usability

The system is very user friendly which will allow its users to access every functionality of
system from single screen.

3.5.2 Privacy

The information of user will not be shared with anyone in public under any circumstances.

3.5.3 Reliability

The system will be reliable enough to allow user to access information without any errors.

3.5.4 Security

The system will keep the data of user secure from unauthorized access.

3.5.5 Availability

The system will be running at all time so that user can access information anytime.

3.5.6 Space Requirement

The system will manage hardware resources efficiently.

3.6 Use Cases 11

3.6 Use Cases

Use cases of the system are described in this section. Figure 3.1 shows the high level use
case diagram of the whole system with actors as well as functionalities.

Figure 3.1: Use Case Diagram

12 Requirement Specifications

3.6.1 Use Case: Run Application

Use Case ID CMFD-01
TITLE Run Application
PRIMARY ACTOR User
DESCRIPTION User may want to run the application from operating system
PRE-CONDITION The application must be installed on operating system
POST-CONDITION The application must be compatible with operating system

BASIC FLOW 1)User started the application by clicking the application icon
2)Application is ready to be used

ALTERNATIVE FLOW 1)Application stops responding
2)Application crashed

STIMULUS User clicked the application icon from the operating system

Table 3.1: Use Case 1: Run Application

3.6.2 Use Case: Open Image File

Use Case ID CMFD-02
TITLE Open Image File
PRIMARY ACTOR User
DESCRIPTION To start forgery detection process user must open an image
PRE-CONDITION Application must be installed on the device
POST-CONDITION Image is opened in image block

BASIC FLOW

1)The application must be installed on device
2)User opens the application
3)User is prompted to open an image
4)User select desired option and proceeds

ALTERNATIVE FLOW User exits the application without opening a file to proceed with
STIMULUS User clicking on load image button
RESPONSE A new or an existing file is either opened or application is exited

Table 3.2: Use Case 2: Open Image File

3.6 Use Cases 13

3.6.3 Use Case: Display Masked Image

Use Case ID CMFD-03
TITLE Display Masked Image
PRIMARY ACTOR System
DESCRIPTION Whatever the system has predicted in an image must be displayed on the screen
PRE-CONDITION An image is created by the by system
POST-CONDITION An image is displayed in image block

BASIC FLOW 1)System create the image
2)System displays the image in image block

ALTERNATIVE FLOW If desired image is not created than show an error message
STIMULUS Creation of an image by system
RESPONSE Display masked image or error message

Table 3.3: Use Case 3: Display Masked Image

3.6.4 Use Case: Save Masked Image

Use Case ID CMFD-04
TITLE Save Masked Image
PRIMARY ACTOR System

DESCRIPTION After performing, operations on image system must save image in order
to avoid the loss

PRE-CONDITION System have made changes on an Image by performing operation on it
POST-CONDITION Image is saved

BASIC FLOW 1)System give save command after doing some manipulation
2)Data or file is saved in device designated directory

ALTERNATIVE FLOW Image is unable to be save due to some error
STIMULUS Save command by system
RESPONSE Image is either saved or it is not saved

Table 3.4: Use Case 4: Save Masked Image

14 Requirement Specifications

3.6.5 Use Case: Exit Application

Use Case ID CMFD-05
TITLE Exit Application
PRIMARY ACTOR User

DESCRIPTION User may want to exit application; this must be
done in a processed manner

PRE-CONDITION Application is opened and running
POST-CONDITION User exits the system or application

BASIC FLOW

1)The user started the application.
2)User may or may not have used the application
3)User clicks on exit button or give exit command with keys
4)User exit the application or system

ALTERNATIVE FLOW
1)User has chosen not to exit application
2)User may return to the application without closing it on exit application prompt
3)Application stops responding

STIMULUS User clicked on exit application button
RESPONSE User clicked on exit application button

Table 3.5: Use Case 5: Exit Application

Chapter 4

Design

In this chapter, system design, architecture, modules, interfaces and data for a system will
be discussed.

4.1 System Architecture

Two-tier architecture will be used to build this application. The first tier is the system with
which the user interacts through a graphical user interface. The second tier is the logical
layer which handles processing and errors.

4.1.1 Presentation Layer

This layer is the interface of the application, with which the user is going to interact with
the application.

4.1.2 Logical Layer

This layer handle all the functionalities and logical working of system such as it performs
all the operations on data which is an image in our system and returns the result back
to presentation layer so user can view the results. It also handles overall behavior of
application such as responds to events that user initiate from presentation layer as well as
loading, processing, displaying and saving of data which are images in this system.

15

16 Design

4.2 Design Methodology

To design this application RAD (Rapid Application Development) methodology is used
because the goal of this project is to produce a working version of the application as
quickly as possible and improve if further in iterations after that. The application gets more
refined and better as each iteration is completed. The early version of application is very
rough but give a picture of what can be built. Each continuous iteration then looks more
like the finished product.

4.3 Low Level Design

4.3.1 Sequence Diagram

Sequence Diagram defines exact flow of system with respect to time. It shows interaction
between different classes of system and shows dynamic behavior of system.

4.3 Low Level Design 17

4.3.1.1 Main Sequence Diagram

It shows all main actions that must be done to detect forgery in an image. It include all
necessary actions like opening application, loading an image, detecting forgery, saving
masked image, displaying forged image, showing forgery results and closing application.

Figure 4.1: Main Sequence Diagram

18 Design

4.3.1.2 Run Application Sequence Diagram

Running application is the first step of this system. It shows all the main action required to
run this application.

Figure 4.2: Run Application Sequence Diagram

4.3 Low Level Design 19

4.3.1.3 Open Image File Sequence Diagram

User must load an image by browsing from hard drive to detect forgery in an image. It
shows all the main actions required to load an image and display it in graphical user
interface.

Figure 4.3: Open Image File Sequence Diagram

20 Design

4.3.1.4 Save and Display Masked Image Sequence Diagram

System must save the masked image to show the forged region and results to the user.
After saving this predicted forged region masked image it is displayed to user in graphical
user interface. It shows all the main actions required to save and display masked image.

Figure 4.4: Save and Display Masked Image Sequence Diagram

4.3 Low Level Design 21

4.3.1.5 Exit Application Sequence Diagram

Exiting application is the last step of this system if user want to exit application. It shows
all the main action required to exit this application.

Figure 4.5: Exit Application Sequence Diagram

22 Design

4.4 High Level Design

This section describe the high level design of this system. It show how the overall
application will work as it shows the flow of application from input image to output results.
The steps of copy-move forgery detection (CMFD) technique used in this application are
shown in Fig. 4.1.

Figure 4.6: Workflow of CMFD

All these steps are explained in chapter 5 system implementation.

4.5 Database Design 23

4.5 Database Design

4.5.1 Introduction

In this project the database I used is a database called CoMoFoD [6]. CoMoFoD is an
image database for Copy-Move forgery detection and it has 200 images of resolution [512
x 512]. Images are categorized in 5 categories according to applied transformation. Also,
six different postprocessing methods are applied to images in all categories.

4.5.2 Forgery method

Images are forged by copying a part of an original image and pasting it on a different
location in the same image. The main goal was to embed the copied region into the original
image content without leaving any visible traces of tampering. In some cases, copied part
was transformed before changing its location. Several types of transformations are applied
on these images, and grouped images in 5 categories according to applied transformation.

• Translation

It is a process where only a region is copied and translated to the new location in an
image without performing any transformation.

• Rotation

It is a process where a region is copied and then translated and rotated to another
location in an image.

• Scaling

It is a process where a region is copied, and scaling is applied on it and translated to
another location in an image.

• Distortion

It is a process where a region is copied, and distortion is applied on it and translated
to another location in an image

• Combination

It is a process where two or more transformation are applied on a region that is copied
before moving it to another location in an image.

24 Design

Size of copied region differ from image to image. Smallest copied part in 512 x 512
images is 0.14 percent of image size. Biggest copied region in 512 x 512 images is 14.32
percent of image size.

In this application only translation transformation category is used for testing purpose.

4.5.3 Postprocessing methods

There are many different types of post processing methods that are applied to forged
images with the aim of hiding tampering traces in this database. Post processing methods
applied on all forged and original images are:

• JPEG compression.

• Contrast adjustments.

• Brightness change.

• Image blurring.

• Noise adding.

• Color reduction.

In this application all those images are used for testing purpose that have above post
processing method applied on them.

4.6 GUI Design

Graphical user interface of this application is very simple and user friendly so it can be
used by almost any user. Main screen of this application is shown in Fig. 4.2 and Fig. 4.3
below.

4.6 GUI Design 25

Figure 4.7: Main screen on startup

26 Design

Figure 4.8: Main screen after forgery detection

Chapter 5

System Implementation

In this chapter system implementation techniques are discussed in details as well as the
tools and technologies that are used to develop this application.

5.1 Methodology

To structure this application different digital image processing techniques are used to detect
forgery in an image.

5.1.1 Image Acquisition

In this step the user is asked to input an image when the image is acquired than next step
in algorithm is followed.

5.1.2 Pre-Processing

The pre-processing applied here is to convert the color image into gray scale image.

5.1.3 Block Tiling

In the block tiling whole image is divided into small regions and feature information is
extracted for each block and compared. The grayscale image is divide into overlapping
blocks of size (b x b). It will be divided into (M-b+1)*(N-b+1) blocks. In this application
b = 8.

27

28 System Implementation

5.1.4 Feature Extraction

For each block compute the DCT coefficients as the features. DCT is applied to the blocks
in order to be resistant to compression, then apply the zigzag scan to the conclusion of the
DCT and extracted the low frequency region. The purpose of this is to obtain a meaning-
ful low-frequency segment in the image and obtain a vector of (1x64) after zigzag scanning.

After applying these operations to all blocks the vectors representing each block are
listed one by one to obtain a matrix. The size of this matrix is 16 x blocks. To reduce the
cost of comparing the vectors reorder these matrix columns by using lexicographic sorting
(according to dictionary order). Now the similar vectors are close to each other, and also
to avoid losing which block represents which vector, we added the initial coordinates of
the blocks to the end of each (1x16) vector. Now the vector size is 1x18, but these two
columns are not taken into account when sorting.

5.1.5 Matching

The similarities of the vectors with neighboring vectors are examined by applying Eu-
clidean. If the calculated value is closer to 0 the two vectors are similar. The Euclidean
threshold is a set to 3.5 in this application to get good results.

The vectors that cross the similarity threshold pass through the distance threshold 100.
This purpose is not to associate the nearby areas. This process is done with Euclidean, but
this time the initial coordinates of the blocks represented by vectors are used instead. In
this process, if the distance between the two blocks is not sufficiently high, the minimum
distance between the two vectors is 100 pixels. In this application good results are observed
even in images with very similar regions such as desert and sky.

The directions of two vectors passing the distance threshold are calculated. The value of
this direction is increased in direction space by 1, finally there is the greatest direction
value in direction space and the blocks represented by the vectors in this direction are
marked by white color in a blank image and this predicted binary mask image is saved on
hard drive.

5.1.6 Output

First opening operation is performed on predicted binary mask image that is created in
the last step to remove noise and isolate pixels that does not belong to the forged region.
Next area of the two largest objects is calculated in pixels and compared by taking absolute
difference of area for these largest two objects. If the absolute difference is less than 20

5.2 Tools and Technology Used 29

pixels and there are less than 4 objects in this predicted binary mask image than the image
is forged otherwise it is not forged. Next masked image is created by taking and operation
of input image and predicted binary mask image that is updated in this step. Output of the
program will be this masked image that shows the forged region in image if the image is
forged image otherwise this masked image is not displayed on screen. A message is also
displayed on screen if image is forged or not.

5.2 Tools and Technology Used

This application is developed in python version 3.7 by using PyCharm 2019.2.3 (Profes-
sional Edition) IDE. For image processing and other operations OpenCV2 and NumPy is
used. GUI is designed in PyQt5. All the diagrams are made by Microsoft Visio. All image
dataset results are compiled in Microsoft Excel. This Report is written in Microsoft Word.
This report is converted into LaTeX by using TeXstudio.

5.2.1 Python

Python is an interpreted, high-level, general-purpose programming language.

5.2.2 PyCharm

PyCharm is an integrated development environment used in computer programming,
specifically for the Python language.

5.2.3 OpenCV2

OpenCV is a library of programming functions mainly aimed at real-time computer vision.

5.2.4 NumPy

NumPy is a library for the Python programming language, adding support for large, multi-
dimensional arrays and matrices, along with a large collection of high-level mathematical
functions to operate on these arrays.

5.2.5 PyQt5

Python bindings for the Qt cross platform UI and application toolkit

5.2.6 Microsoft Visio

Microsoft Visio is a diagramming and vector graphics application.

30 System Implementation

5.2.7 Microsoft Excel

Microsoft Excel is a spreadsheet which is used for calculation, graphing tools, pivot tables,
and a macro programming language called Visual Basic for Applications.

5.2.8 Microsoft Word

Microsoft Word is a word processor.

5.2.9 TeXstudio

TeXstudio is a full-featured LaTeX editor. The objective of TeXstudio is to make writing
LaTeX documents as easy and convenient as possible. Some of the outstanding features
of TeXstudio are a PDF viewer integrated with (almost) word level synchronization, live
online preview, advanced syntax highlighting, live reference verification, citations, latex
commands, spelling and grammar .

Chapter 6

System Testing and Evaluation

In this chapter performance testing and evaluation of the system will be discussed. Testing
of the whole project is done by using the Manual Based Testing approach. Each component
of the system has been tested manually. Application evaluation is done by using various
tools and techniques on database. If this phase gives results according to the requirements
than the testing is said to successful.

6.1 Graphical User Interface Testing

Graphical user interface testing is a process to evaluate how easily a user can interact with
the application using the interface. The graphical user interface should be user friendly so
that the user with can easily understand how to use the application by simply reading the
text or images on buttons.

6.2 Usability Testing

The usability testing is done so that almost any user will be able to use this application
very easily.

6.3 Software Performance Testing

Software performance testing is done to verify all the non-functional requirements of the
system.

31

32 System Testing and Evaluation

6.4 Compatibility Testing

Compatibility testing deals with the platform on which the application can be loaded. Since
this application is desktop application so it should be run on a device containing windows
operating system.

6.5 Load Testing

Load testing deals with the response time of the application. In this application the load
testing is performed to measure the time this application takes to perform operations on an
image and return results.

6.6 Test Cases

6.6.1 Test Case: Run Application

Test Case ID T-01
Function To Be Tested Run application
Initial State The application must be installed on operating system
Input User double click the application icon from the operating system
Expected Output The application should be running successfully
Status Pass

Table 6.1: Test Case 1: Run Application

6.6.2 Test Case: Open Image File

Test Case ID T-02
Function To Be Tested Open Image File
Initial State Application must be running on operating system
Input User click on load image button
Expected Output Image should be opened in image block
Status Pass

Table 6.2: Test Case 2: Open Image File

6.6 Test Cases 33

6.6.3 Test Case: Display Masked Image

Test Case ID T-03
Function To Be Tested Display Masked Image
Initial State An image must be created by the by system
Input Creation of an image by system
Expected Output An image should be displayed in image block
Status Pass

Table 6.3: Test Case 3: Display Masked Image

6.6.4 Test Case: Save Masked Image

Test Case ID T-04
Function To Be Tested Save Masked Image
Initial State System must have made changes on an Image by performing operation on it
Input Prediction of forged region in image by the system
Expected Output Image should be saved
Status Pass

Table 6.4: Test Case 4: Save Masked Image

6.6.5 Test Case: Exit Application

Test Case ID T-05
Function To Be Tested Exit Application
Initial State Application must be running on operating system
Input User click on exit application button and select yes when prompted
Expected Output Application should be closed
Status Pass

Table 6.5: Test Case 5: Exit Application

34 System Testing and Evaluation

6.7 Performance Measures

The performance evaluation of a forgery detection algorithm can be done at two levels: at
image level, where the focus is on the ability to detect if there is a forgery or not and at
pixel level, where the accuracy of detecting the tampered regions. In this project both pixel
level and image level evaluation is done.

At pixel level evaluation the important parameters are:

• True Positive

These are correctly detected forged pixels. It is denoted as TP.

• True Negative

These are correctly detected non-forged pixels. It is denoted as TN.

• False Positive

These are pixels that have been falsely detected as forged. It is denoted as FP.

• False Negative

These are forged pixels that are falsely missed. It is denoted as FN.

6.7 Performance Measures 35

At image level evaluation the important parameters are:

• True Positive

These are correctly detected forged images.

• True Negative

These are correctly detected non-forged images.

• False Positive

These are images that have been falsely detected as forged.

• False Negative

These are forged images that are falsely missed.

The performance of the algorithm is evaluated using following metrics:

• Precision

It is the probability that a detected forgery is truly a forgery and it is computed as:

Precision = (TP) / (TP + FP)

• Recall

It is the probability that a forged image is detected and it is computed as:

Recall = (TP) / (TP + FN)

• F1 Score

Both Precision and Recall is combined in a single value. It is also known as F1
Measure. It is computed as:

F1 Measure = 2 * (Recall * Precision) / (Recall + Precision)

• Accuracy

Accuracy is the ratio of correctly predicted observation to the total number of obser-
vations. It is computed as:

Accuracy = (TP +TN) / (TP + FP + FN + TN)

Precision, recall, f1-mesure and accuracy evaluation matric scores will be used to report
copy move forgery detection performance.

36 System Testing and Evaluation

6.8 Test Results

6.8.1 Pixel Level Evaluation Testing

In order to test the application, tests were performed on different type of 540 forged images
that have different post processing method applied on them. The performance results are
listed in Table 6.1.

6.8.2 Image Level Evaluation Testing

In image level evaluation, a total of 570 images are considered out of which 540 were
forged 30 were not forged (Original Images). The performance results are listed in Table
6.2.

6.8 Test Results 37

Postprocessing method Average
precision

Average
recall

Average
f1-measure

Average
accuracy

Images with
f1-mesure > 0.5

No
postprocessing 0.8506 0.8794 0.8485 0.9906 30

Brightness change,
range (0.01, 0.95) 0.8532 0.8774 0.8465 0.9906 29

Brightness change,
range (0.01, 0.9) 0.8630 0.8750 0.8465 0.9910 30

Brightness change,
range (0.01, 0.8) 0.8465 0.8377 0.8196 0.9908 27

Color adjustments,
range (0.01, 0.95) 0.8473 0.8795 0.8439 0.9898 29

Color adjustments,
range (0.01, 0.9) 0.8428 0.8722 0.8373 0.9894 28

Color adjustments,
range (0.01, 0.8) 0.8203 0.8768 0.8277 0.9882 28

Color reduction,
32 intensity levels 0.8578 0.8809 0.8524 0.9907 30

Color reduction,
64 intensity levels 0.8520 0.8911 0.8515 0.9903 29

Color reduction,
128 intensity levels 0.8515 0.8906 0.8509 0.9904 30

Image blurring,
3x3 averaging filter 0.8342 0.8592 0.8222 0.9886 27

Image blurring,
5x5 averaging filter 0.8127 0.8518 0.8082 0.9870 29

JPEG compression,
quality factor 50 0.8812 0.8349 0.8363 0.9902 29

JPEG compression,
quality factor 60 0.8582 0.8432 0.8272 0.9885 29

JPEG compression,
quality factor 70 0.8666 0.8560 0.8408 0.9906 30

JPEG compression,
quality factor 80 0.8585 0.8739 0.8425 0.9904 30

JPEG compression,
quality factor 90 0.8535 0.8652 0.8396 0.9903 29

JPEG compression,
quality factor 100 0.8531 0.8595 0.8363 0.9904 30

Overall
Dataset Results 0.8504 0.8659 0.8370 0.9898 523

Table 6.6: Pixel Level Evaluation Results

38 System Testing and Evaluation

Postprocessing method Total Images Correctly Detected Images Image Level Accuracy
Original images 30 27 90%

No postprocessing 30 27 90%
Brightness change, range (0.01, 0.9) 30 27 90%
Brightness change, range (0.01, 0.8) 30 25 83%

Color adjustments, range (0.01, 0.95) 30 27 90%
Color adjustments, range (0.01, 0.9) 30 25 83%
Color adjustments, range (0.01, 0.8) 30 25 83%
Color reduction, 32 intensity levels 30 28 93%
Color reduction, 64 intensity levels 30 28 93%
Color reduction, 128 intensity levels 30 24 80%
Image blurring, 3x3 averaging filter 30 26 87%
Image blurring, 5x5 averaging filter 30 24 80%
JPEG compression, quality factor 50 30 26 87%
JPEG compression, quality factor 60 30 25 83%
JPEG compression, quality factor 70 30 28 93%
JPEG compression, quality factor 80 30 27 90%
JPEG compression, quality factor 90 30 28 93%

JPEG compression, quality factor 100 30 28 93%
Noise adding, variance = 0.0005 30 27 90%

Overall Dataset Results 570 502 88%

Table 6.7: Image Level Evaluation Results

Chapter 7

Conclusions

Image forgery detection application will allow the user to enter data in the form of an
image and get the result in the form of image mask that highlights the copy move forged
region in input image. It also show a message if whether image is forged or not. This
application is completed to the best of my abilities and has been a great learning point for
me. It can be improved greatly.

7.1 Future Improvements

This is the first version of this application with simple GUI and minimal functionalities
because of time constraint. In future this system can be improved as follows.

7.1.1 Better GUI

GUI can be improved to make it more modern looking by adding multiple themes and other
options so it can be used by all type of users because each user has different preferences.
Some users like dark themes and some like light themes.

7.1.2 Multiple Platforms

The application is currently only developed for Windows Operating System. It will be
released for other operating systems in the future.

39

40 Conclusions

7.1.3 Larger Dataset

The application is only tested on one dataset and only one type of transformation with
multiple post processing methods applied over this single transformation. In the future, it
can be tested over other transformations from this dataset and other dataset as well.

It is only possible by integrating multiple copy move forgery detection algorithms and
techniques so it can handle almost any type of copy move forgery.

Bibliography

[1] Babak Mahdian and Stanislav Saic. A bibliography on blind methods for identifying
image forgery. Signal Processing: Image Communication, 25(6):389–399, 2010.
Cited on p. 1.

[2] Judith A Redi, Wiem Taktak, and Jean-Luc Dugelay. Digital image forensics: a booklet
for beginners. Multimedia Tools and Applications, 51(1):133–162, 2011. Cited on

p. 1.

[3] Tanzeela Qazi, Khizar Hayat, Samee U Khan, Sajjad A Madani, Imran A Khan,
Joanna Kołodziej, Hongxiang Li, Weiyao Lin, Kin Choong Yow, and Cheng-Zhong
Xu. Survey on blind image forgery detection. IET Image Processing, 7(7):660–670,
2013. Cited on p. 1.

[4] Sevinc Bayram, Husrev Taha Sencar, and Nasir Memon. A survey of copy-move
forgery detection techniques. In IEEE Western New York Image Processing Workshop,
pages 538–542. Citeseer, 2008. Cited on p. 5.

[5] Yanping Huang, Wei Lu, Wei Sun, and Dongyang Long. Improved dct-based detection
of copy-move forgery in images. Forensic science international, 206(1-3):178–184,
2011. Cited on p. 7.

[6] Dijana Tralic, Ivan Zupancic, Sonja Grgic, and Mislav Grgic. Comofod—new database
for copy-move forgery detection. In Proceedings ELMAR-2013, pages 49–54. IEEE,
2013. Cited on p. 23.

41

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Description
	1.2 Project Objective
	1.3 Project Scope
	1.4 Benefits

	2 Literature Review
	2.1 Related Works
	2.1.1 Exhaustive Search Technique
	2.1.2 Block Match Technique
	2.1.3 Exact Match Technique
	2.1.4 Robust Match Technique

	2.2 Conclusion

	3 Requirement Specifications
	3.1 Existing System
	3.2 Proposed System
	3.3 Requirements Specification
	3.4 Functional Requirements
	3.5 Non-Functional Requirements
	3.5.1 Usability
	3.5.2 Privacy
	3.5.3 Reliability
	3.5.4 Security
	3.5.5 Availability
	3.5.6 Space Requirement

	3.6 Use Cases
	3.6.1 Use Case: Run Application
	3.6.2 Use Case: Open Image File
	3.6.3 Use Case: Display Masked Image
	3.6.4 Use Case: Save Masked Image
	3.6.5 Use Case: Exit Application

	4 Design
	4.1 System Architecture
	4.1.1 Presentation Layer
	4.1.2 Logical Layer

	4.2 Design Methodology
	4.3 Low Level Design
	4.3.1 Sequence Diagram

	4.4 High Level Design
	4.5 Database Design
	4.5.1 Introduction
	4.5.2 Forgery method
	4.5.3 Postprocessing methods

	4.6 GUI Design

	5 System Implementation
	5.1 Methodology
	5.1.1 Image Acquisition
	5.1.2 Pre-Processing
	5.1.3 Block Tiling
	5.1.4 Feature Extraction
	5.1.5 Matching
	5.1.6 Output

	5.2 Tools and Technology Used
	5.2.1 Python
	5.2.2 PyCharm
	5.2.3 OpenCV2
	5.2.4 NumPy
	5.2.5 PyQt5
	5.2.6 Microsoft Visio
	5.2.7 Microsoft Excel
	5.2.8 Microsoft Word
	5.2.9 TeXstudio

	6 System Testing and Evaluation
	6.1 Graphical User Interface Testing
	6.2 Usability Testing
	6.3 Software Performance Testing
	6.4 Compatibility Testing
	6.5 Load Testing
	6.6 Test Cases
	6.6.1 Test Case: Run Application
	6.6.2 Test Case: Open Image File
	6.6.3 Test Case: Display Masked Image
	6.6.4 Test Case: Save Masked Image
	6.6.5 Test Case: Exit Application

	6.7 Performance Measures
	6.8 Test Results
	6.8.1 Pixel Level Evaluation Testing
	6.8.2 Image Level Evaluation Testing

	7 Conclusions
	7.1 Future Improvements
	7.1.1 Better GUI
	7.1.2 Multiple Platforms
	7.1.3 Larger Dataset

	Index

