
SUBMITTED BY
Saqib-Ur-Rehman

01-235192-091
Hira Majeed

01-235192-029

Underwater Object Detection

Bachelor of Science in Computer Science

Supervisor: Ms. Maryam Khalid Multani

Department of Computer Science
Bahria University, Islamabad

May 2023

C e r t i f i c a t e

We accept the work contained in the report titled “Underwater Object Detection”, written
by Mr. Saqib-Ur-Rehman AND Ms. Hira Majeed as a confirmation to the required standard
for the partial fulfillment of the degree of Bachelor of Science in Computer Science.

Approved by . . . :

Supervisor: Ms. Maryam Khalid Multani (Assistant Professor)

Internal Examiner: Name of the Internal Examiner (Title)

External Examiner: Name of the External Examiner (Title)

Project Coordinator: Ms. Zubaria Inayat (Sr. Lecturer)

Head of the Department: Dr. Arif ur Rahman (Sr. Associate Professor)

May 3rd , 2023

Abstract

Robotics are very expensive nowadays so every new researcher who wants to explore the
underwater environment cannot afford such expensive robots, sonars, and remote vehicles
in order to detect the underwater species. The underwater environment is one of the
most challenging conditions for object detection because the underwater environment is
harsh due to the amount of light present in the underwater. The images captured in an
underwater environment are probably blurry, and low contrast due to this it is difficult for
the human eye to detect the underwater objects/species. This project aims to provide a
platform for new researchers to explore the underwater environment. With the help of this
application, researchers upload captured image underwater and the application provides
enhance image remove low contrast and blur issues, and provide a clear image to the user
along with the detected objects or species. This application also provides a description of
the species. This application uses a deep learning model which helps to accurately identify
underwater objects. This Underwater object detection application provide a valuable tool
for researchers to better understand the underwater environment.

i

ii

Acknowledgments

In the name of Allah Almighty, the Most Gracious and the most merciful, All praises
to ALLAH for the strengths and the blessings. We would like to declare our deeper
acknowledgment and gratitude towards Mr.Abdul Hanan for his expert guidance, provision
of detailed information regarding the project. His motivations to work hard and not to given
up really inspired us and we are honored to have him at our side. There is no alternate to the
prayers, affections, resignation of Parents. Even in tough circumstance their prayers were
always with us. we are also thankful to our Supervisor Ms.Maryam Khalid Multani and
the FYP project coordinator Ms.Zubaria Inayat for the exchange of information regarding
project milestones and meetings.

SAQIB-UR-REHMAN
HIRA MAJEED
Islamabad, Pakistan

May 2023

iii

iv

“Don’t feel entitled to anything you didn’t sweat and struggle for.”

Marian Wright Edelman

v

vi

Contents

Abstract i

1 Introduction 1
1.1 Project Background/ overview . 1
1.2 Problem Description . 2
1.3 Project Objective . 3
1.4 Project Scope . 3

2 Literature Review 4
2.1 Related Work . 4
2.2 Underwater Image Processing and Analysis 4

2.2.1 Underwater Image Enhancement 4
2.2.2 Underwater Noise Reduction . 5
2.2.3 Underwater Noise Defogging 6
2.2.4 Underwater Image Segmentation 6
2.2.5 Underwater Saliency Detection 6
2.2.6 Color Constancy and Correction 6
2.2.7 Underwater Image Restoration 7

2.3 Region- Based CNN(CNN) . 7
2.3.1 Pre-trained Convolutional Neural Network (CNN) 7
2.3.2 Feature Extraction . 8
2.3.3 Regional Proposal Generation 8
2.3.4 Feature Pooling . 8
2.3.5 Classification . 8
2.3.6 Object Localization . 8
2.3.7 Non-Maximum Suppression (NMS) 8

2.4 Faster RCNN . 8
2.5 Networks based on YOLO (You Only Look Once) framework 9

3 Requirement Specifications 10
3.1 Existing System . 10

3.1.1 Picture Fish . 10
3.1.2 Sound Navigation and Ranging (SONAR) 11
3.1.3 Remotely Operated Vehicles . 11

3.2 Proposed System . 12
3.3 Requirement Specification . 12

3.3.1 Functional Requirement . 12

vii

viii CONTENTS

3.3.2 Non-functional Requirements 13
3.3.3 Availability . 13
3.3.4 Reliability . 13
3.3.5 Security . 13
3.3.6 Performance . 14
3.3.7 Maintainability . 14
3.3.8 Compatibility . 14

3.4 Use Cases . 14
3.4.1 Sign-up Usecase . 15
3.4.2 Sign-up Usecase Table . 15
3.4.3 Login Usecase . 17
3.4.4 Login Usecase Table . 17
3.4.5 Upload and View Image Usecase 19
3.4.6 Upload Image Usecase Table . 19
3.4.7 Detected and Save Image Usecase 21
3.4.8 Detected Image Usecase Table 21
3.4.9 View Detail Usecase . 23
3.4.10 View detail Usecase Table . 23
3.4.11 Logout Usecase . 25
3.4.12 Logout Usecase Table . 25

4 Design 27
4.1 System Architecture . 27
4.2 Design Constraints . 28

4.2.1 Software Requirements constraints 28
4.2.2 Hardware Requirements constraints 28

4.3 Activity Diagram . 28
4.4 Sequential Diagram . 30

4.4.1 Sign-up Sequence Diagram . 30
4.4.2 Login Sequence Diagram . 31
4.4.3 Upload Image Sequence Diagram 31
4.4.4 Show Detected Image Sequence Diagram 33
4.4.5 Save Detected Image Sequence Diagram 34
4.4.6 Show Data of detected objects 35
4.4.7 Logout Sequence Diagram . 36

5 System Implementation 37
5.1 System Architecture . 37

5.1.1 Mobile Application . 37
5.2 System Internal Components . 38

5.2.1 User Information page . 38
5.2.2 Upload Image . 38
5.2.3 Enhance Image . 38
5.2.4 Object Detection . 38
5.2.5 Download Image . 38
5.2.6 Description of Object . 38

5.3 Tools and Technologies . 38

CONTENTS ix

5.3.1 Visual Studio Code . 38
5.3.2 Flutter and Dart . 38
5.3.3 Firebase . 39
5.3.4 Model Yolo v5 . 39
5.3.5 PostgreSQL . 39
5.3.6 Flask . 39

5.4 Processing Logic/Algorithms . 39
5.4.1 Model Selection . 39
5.4.2 Evaluation . 40

5.5 Development Environment/Languages Used 41
5.6 Methodology . 41

6 System Testing and Evaluation 42
6.1 Graphical User interface testing . 42

6.1.1 Splash Screen . 42
6.1.2 Main Screen . 44
6.1.3 Sign-Up . 45
6.1.4 Login . 46
6.1.5 Upload Image . 47
6.1.6 Detected Image . 48
6.1.7 Download Image . 49
6.1.8 Image save to Gallery . 50
6.1.9 View Detail . 51
6.1.10 Logout . 52

6.2 Usability Testing . 53
6.2.1 Feedback . 53
6.2.2 Visibility . 53
6.2.3 Mapping . 53
6.2.4 Inconsistency . 53
6.2.5 Affordance . 53
6.2.6 Effectiveness . 53
6.2.7 Efficiency . 53
6.2.8 Target Sizes . 54

6.3 Security Testing . 54
6.4 Load Testing . 54
6.5 Compatibility Testing . 54
6.6 Software Performance Testing . 54
6.7 Test Cases . 55

6.7.1 Register: Test Case 1 . 55
6.7.2 Login: Test Case 2 . 56
6.7.3 Upload Image : Test Case 3 . 57
6.7.4 Image enhancement: Test Case 4 58
6.7.5 Object detection : Test Case 5 59
6.7.6 Detected Objects description : Test Case 6 60
6.7.7 Show data : Test Case 7 . 61
6.7.8 Logout : Test Case 8 . 62

x CONTENTS

7 Conclusions 63
7.1 Conclusion . 63
7.2 Future Enhancements . 63

7.2.1 Communication and collaboration feature: 63
7.2.2 Expanding the number of species: 64

References 65

List of Figures

2.1 Underwater Image Processing and analysis 5

3.1 Picture fish Application . 10
3.2 Remotely Operated Vehicles . 11
3.3 Sign-up Usecase . 15
3.4 Use Case 2: Login . 17
3.5 Use Case 3: Upload and view image . 19
3.6 Use Case 4: Detected and save image 21
3.7 Use Case 5: View Detail . 23
3.8 Use Case 6: Logout . 25

4.1 System Architecture . 28
4.2 Activity Diagram . 29
4.3 Sign-up Sequence Diagram . 30
4.4 Login Sequence Diagram . 31
4.5 Upload Image Sequence Diagram . 32
4.6 Show Detected Image Sequence Diagram 33
4.7 Save Detected Image Sequence Diagram 34
4.8 Show Data Sequence Diagram . 35
4.9 Logout Sequence Diagram . 36

6.1 Splash Screen GUI . 43
6.2 Main Screen GUI . 44
6.3 Signup GUI . 45
6.4 Login GUI . 46
6.5 Upload Image GUI . 47
6.6 Detected Image GUI . 48
6.7 Download Image GUI . 49
6.8 Image Save to Gallery GUI . 50
6.9 View Detail GUI . 51
6.10 Logout GUI . 52

xi

xii LIST OF FIGURES

List of Tables

2.1 Yolo Versions . 9

3.1 Signup usecase table . 16
3.2 Login usecase table . 18
3.3 Upload image usecase table . 20
3.4 Detected Image usecase table . 22
3.5 View detail usecase table . 24
3.6 Logout usecase table . 26

5.1 Evaluation Metrics of Main Model . 40
5.2 Validation Metrics of Main Model . 40

6.1 Test case 1 . 55
6.2 Test case 2 . 56
6.3 Test case 3 . 57
6.4 Test case 4 . 58
6.5 Test case 5 . 59
6.6 Test case 6 . 60
6.7 Test case 7 . 61
6.8 Test case 8 . 62

xiii

xiv LIST OF TABLES

Acronyms and Abbreviations

FR Functional Requirement
GUI Graphical user interface
API Application Programming Interface
YOLO You Only Look Once
RDBMS Relational Database Management System
Max RGB Maximum Red, Green, Blue
CNN Convolutional Neural Networks
VGG Visual Geometry Group
SVM Support Vector Machines
RCNN Region-based Convolutional Neural Network
RPN Region Proposal Network
ROVs Remotely Operated Vehicles
ER Diagram Entity-Relationship Diagram
RAM Random Access Memory

xv

xvi Acronyms and Abbreviations

Chapter 1

Introduction

1.1 Project Background/ overview

The ocean covers a large part (about 70 percent) of the Earth’s surface and is home to
valuable natural resources. People have always been interested in exploring and using these
resources. With advances in technology, we can now study and exploit the ocean more
efficiently. However, exploring the ocean can be challenging. The underwater environment
is often rough and unpredictable. There are many factors that make it difficult to capture
clear images underwater for example, the water can be murky or cloudy which reduces
visibility. The lighting underwater is also uneven, either because of sunlight or artificial
sources making it hard to see clearly. Additionally, the colors underwater are not as vibrant
as on land which makes it harder to distinguish objects. The background underwater can
be complicated with corals, rocks, and plants which can confuse the camera or imaging
system.

The light attenuation in water makes it loss the energy rapidly which results in color
depletion. The presence of suspended organic and inorganic particles in water also con-
tributes to light beams randomly reflecting and deflecting before entering the camera
sensor resulting in a lower contrast image. Color shifting and degraded contrast make
the underwater image segmentation process more difficult and challenging. The amount
of light contained within the water is always less than the amount of light present on the
water’s surface. As a result, images obtained underwater have generally poor visual quality.
The lack of light underwater is typically caused by two unavoidable factors. One , light
loses its true intensity underwater and two, the chances of light scattering within the water
are quite high. The color distortion and illumination of the underwater scene visibility are
the immediate effects of this insufficient amount of light [1].

1

2 Introduction

The primary goal of the "Underwater Object Detection" project is to create a system
that can accurately identify various objects in the underwater environment, including
jellyfish, starfish, Stingray, and other aquatic animals. The underwater environment is one
of the most challenging conditions for object detection. The increasing demand for vision-
based applications enhances the importance of camera-based object detection methods
in underwater scenarios. The modern world is enclosed with gigantic masses of digital
visual applications. Many image analysis techniques exist to analyze and understand this
huge sea of visual information like image processing and deep learning. Deep learning is a
method that automatically detects the object needed to be detected or classified using the
provided raw data.

The researchers have underwater images and want to detect objects that are present
in the pictures. It will help them to identify and locate one or more effective targets
from an image. Secondly, it will also help to detect the objects captured by researchers or
photographers which are probably blurred, have uneven illumination, and have low contrast
due to harsh underwater environments. This application takes picture from the user then
enhance the picture first and detects the objects in it along with the description. We are
using image processing methods to improve the underwater image quality to satisfy the
requirements of the human visual system and machine recognition has gradually become a
hot issue. Although the ocean environment is complex, many unfavorable factors, such
as the scattering and absorption of light by water, and the underwater suspended particles
have serious interference with image quality [2]. Underwater object detection systems
that provide real-time detection like sonar and other technologies. For example, sonar is
used to detect objects and provide information about their location, while computer vision
is used to classify objects and provide more detailed information about their shape and
appearance.

1.2 Problem Description

Our application aims to assist underwater researchers in their efforts to study and conserve
marine species by providing an automated object detection system. The researchers are
often faced with the challenge of identifying and classifying various species in underwater
environments, which can be time-consuming and prone to human error. Therefore, our
goal is to develop an efficient and accurate solution that can aid in this process.

The specific problem we are addressing is the detection of underwater species/ object
in images captured during research expeditions. These species can include fish, jellyfish,
stingray, sharks, puffin, starfish and penguin. Currently, researchers rely heavily on manual
observation and identification, which can be subjective, labor-intensive, and hindered
by limited human capacity. We will train a model to recognize and localize different
species within images, allowing researchers to quickly identify species. The system will

1.3 Project Objective 3

provide bounding box annotations and class labels for each detected species, along with
the description of every detected species.

1.3 Project Objective

"To design an application for researchers where they could detect and get the information
of an underwater object by photo".

1.4 Project Scope

Our application takes only captured pictures from the gallery. For now, we will detect
seven Classes = [’fish’, ’jellyfish’, ’penguin’, ’puffin’, ’shark’, ’starfish’, ’stingray’] of
underwater objects and also provide description related to detected objects to help user to
understand them easily. We will use the aquarium-pretrained dataset as well [3]

Chapter 2

Literature Review

This chapter presents an overview of methods and techniques of previous work done related
to underwater object detection.

2.1 Related Work

Fish species identification is mainly performed by morphological identification of gross
anatomical features of the whole fish. However, the increasing presence on markets of
new little-known species makes morphological identification of species difficult. Fish
APP, a cloud-based infrastructure for fish species recognition. Fish APP is composed of a
mobile application developed for the Android operating system enabling the user to shot
pictures of a whole fish and submit them for remote analysis and a remote cloud-based
processing system that implements a complex image processing pipeline and a neural
network machine learning system able to analyze the obtained images and to perform
classification into predefined fish classes. [4].

2.2 Underwater Image Processing and Analysis

A review of existing relatively mature and representative underwater image processing
models, which are classified into seven categories: enhancement, fog removal, noise
reduction, segmentation, salient object detection, color constancy and restoration [5].

2.2.1 Underwater Image Enhancement

The primary objective of underwater image enhancement is to enhance the visual quality
and applicability of images captured in underwater environments. The ultimate goal is to

4

2.2 Underwater Image Processing and Analysis 5

Figure 2.1: Underwater Image Processing and analysis

improve the overall appearance of underwater images and highlight specific image charac-
teristics that are relevant to the intended application. To achieve this goal, various image
enhancement techniques are employed. These techniques may include both traditional
and machine learning-based approaches. Traditional techniques include methods such as
contrast adjustment, color correction, and sharpening. Machine learning-based techniques,
on the other hand, use advanced algorithms to learn the relationship between input images
and high-quality reference images.

2.2.2 Underwater Noise Reduction

During the process of capturing and transmitting underwater images, various noises
are commonly produced due to factors such as the camera/sensor equipment and harsh
underwater environments. These noises can significantly degrade the quality of the images,
making them difficult to interpret and analyze.The camera/sensor equipment used in
underwater imaging can produce electronic noise, which can appear as speckles or streaks
in the images. The harsh underwater environment can also contribute to noise in the form of
bubbles, particles, and other disturbances. Various traditional methods have been developed
to reduce noise in underwater images. Like filtering, in this technique it removes or reduces

6 Literature Review

unwanted frequencies present in the image. Another technique is denoising, which focuses
on eliminating random noise from the image. While these methods are frequently effective
in reducing noise levels, they may also result in a reduction of important image details.

2.2.3 Underwater Noise Defogging

Underwater noise defogging is a technique that aims to enhance the visibility of underwater
images by reducing the effect of haze, turbidity, and other distortions caused by light
scattering and absorption in the water. By reducing the effect of underwater noise and
improving the visual clarity of the image, underwater noise defogging can enable better
analysis and interpretation of underwater imagery, supporting a wide range of applications
in different fields such as oceanography, marine biology, and underwater exploration.

2.2.4 Underwater Image Segmentation

Underwater image segmentation is a technique used to extract meaningful information
from underwater images by dividing them into distinct regions or segments based on their
visual characteristics. The goal of underwater image segmentation is to identify and isolate
objects or regions of interest in the image, such as marine life, underwater structures,
or geological features. For example, you have an underwater image containing various
underwater animals and plants as well as some background scenery. By segmenting the
image, you can isolate the different regions, such as the animals and plants and analyze
them separately. This can help in identifying and studying specific marine species or
monitoring changes in the underwater environment over time [6].

2.2.5 Underwater Saliency Detection

Underwater saliency detection is used to identify the most visually prominent regions
or objects in an underwater image. The goal of underwater saliency detection is to help
identify and highlight the most important features or regions in an image, making it easier
to analyze and understand. In an underwater image, salient objects or regions could include
Underwater life, structures, or geological features that stand out from the background.
Underwater saliency detection algorithms typically rely on features such as color, texture,
and contrast to identify and highlight these prominent regions.

2.2.6 Color Constancy and Correction

Color constancy and correction are important in underwater image processing that help to
maintain color consistency and improve the visual quality of images captured in underwater
environments [7]. Color constancy refers to the ability to maintain color consistency in an
image despite changes in lighting conditions or other environmental factors. In underwater

2.3 Region- Based CNN(CNN) 7

imaging, the effects of light scattering and absorption can cause colors to shift, making
it difficult to accurately capture the true colors of objects in the scene. Color correction,
on the other hand, involves adjusting the colors in an image to more accurately reflect the
true colors of the objects in the scene. This is typically done by identifying a reference
color, such as the color of a white or gray object in the scene, and adjusting the colors in
the image based on that reference.

2.2.7 Underwater Image Restoration

Underwater image restoration is a process of recovering or reconstructing degraded images
that are caused by adverse factors in the complex underwater environment [8]. These
factors include camera and object motion, scattering of light, turbulence, distortion, spectral
absorption, and attenuation, among others.

2.3 Region- Based CNN(CNN)

Girshick presented the Regional Based Convolution Neural Network (RCNN) in 2014,
which is essentially a combination of the CNN Model and the Region Proposal Network.
RCNN creates a set of candidate regions, or "proposals," during the region proposal stage.
These proposals are then sent to the classification stage, where the network examines each
one to see if it contains an object of interest. The RCNN uses features extracted from
the proposals to classify the objects in the image and refine the bounding boxes around
the objects during the classification stage. If an object is discovered in a proposal, the
RCNN generates a label for the object as well as a refined bounding box around it. This
process is repeated for each proposal until all objects in the image have been identified
and localized. The RCNN architecture provides several benefits for underwater object
detection, including high accuracy, fast processing speed, and the ability to handle the
challenges of underwater imaging. The RCNN architecture can handle variations in object
scale and aspect ratio by generating multiple proposals and examining each one, making it
a powerful tool for underwater object detection. The RCNN model does not work on a
large number of regions because it would be computationally expensive and result in lower
accuracy. The region proposal stage’s goal is to generate a small set of high-quality regions
that are likely to contain objects, rather than a large number of regions that may contain
many false positives. The following are the steps taken in RCNN for object detection:

2.3.1 Pre-trained Convolutional Neural Network (CNN)

The RCNN begins with a CNN that has already learned to extract useful features from
images, such as VGG or ResNet[9].

8 Literature Review

2.3.2 Feature Extraction

The RCNN uses the pre-trained CNN to extract features from the image at this stage. The
features are then forwarded to the classification stage.

2.3.3 Regional Proposal Generation

The RCNN generates a set of candidate regions or "proposals" in the image that may
contain objects of interest during this stage. Typically, this step is carried out using
techniques such as Selective Search, Edge Boxes, or Faster RCNN.

2.3.4 Feature Pooling

The RCNN pools features from the pre-trained CNN for each region proposal at this stage.
The pooled features are then forwarded to the classification stage.

2.3.5 Classification

At this stage, the RCNN employs a classifier, such as Support Vector Machines (SVM) or
Logistic Regression, to categorize the objects in the image and refine the bounding boxes
around the objects. To learn the features that distinguish different objects from one another,
the RCNN network is trained on a large dataset of annotated images.

2.3.6 Object Localization

After classification, the RCNN generates a label for each object and refines the bounding
boxes around the objects. This stage is used to locate the objects in the image, and the
bounding boxes that result can be used for further analysis or tracking.

2.3.7 Non-Maximum Suppression (NMS)

Following object localization, the RCNN employs non-maximum suppression (NMS) to
eliminate overlapping bounding boxes and ensure that each object is detected only once.

2.4 Faster RCNN

Faster RCNN is another improvement over Fast RCNN and RCNN for object detection.
Faster RCNN, like Fast RCNN, integrates the region proposal generation and feature
extraction steps into a single network. Unlike Fast RCNN, however, the region proposals
are generated by a separate subnetwork called the Region Proposal Network (RPN), which
allows for more flexible and efficient region proposal generation. The same convolutional
neural network as in Fast RCNN is used for feature extraction and object classification.

2.5 Networks based on YOLO (You Only Look Once) framework 9

Faster RCNN has several advantages over Fast RCNN, including improved speed and ac-
curacy, as well as more flexible and efficient region proposal generation. Faster RCNN has
been widely adopted and is still one of the most widely used object detection frameworks,
particularly in applications where real-time performance is not required.

2.5 Networks based on YOLO (You Only Look Once) framework

YOLO is a real-time object detection system built on a single convolutional neural network.
In contrast to RCNN and Fast RCNN, YOLO divides the input image into a grid of cells,
each of which predicts multiple bounding boxes for potential objects. For each bounding
box, the network predicts the class probabilities, bounding box coordinates, and objectness
scores. This enables efficient real-time object detection and reduces the computational
overhead associated with the region proposal stage. YOLO performs better than RCNN and
Fast RCNN in terms of real-time performance, single-shot detection, and high accuracy.
However, YOLO has some drawbacks, including reduced accuracy for small objects and
sensitivity to hyper-parameter selection [10] Overall, YOLO is a well-known and widely
used framework for real-time object detection and it continues to be one of the most widely
used and researched frameworks in the field. The difference of Yolo version is shown in
table 2.1

Table 2.1: Yolo Versions

Features YOLO v1 YOLO v2 YOLO v3 YOLO v4
Object Detection
Approach

Single-Shot
Multi-Box De-
tection

Improved Ver-
sion of v1

Improved Ver-
sion of v2

Improved Ver-
sion of v3

Architecture Darknet-19 Darknet-19 Darknet-53 CSPNet
Anchor Boxes Yes Yes Yes Yes
Batch Normal-
ization

No Yes Yes Yes

Intersection Over
Union (IOU)

Used to deter-
mine accuracy

Used to deter-
mine accuracy

Used to deter-
mine accuracy

Used to deter-
mine accuracy

Training Speed Slow Faster than v1 Faster than v2 Faster than v3
Accuracy Lower Higher than v1 Higher than v2 Higher than v3
Memory Effi-
ciency

Lower Higher than v1 Higher than v2 Higher than v3

Chapter 3

Requirement Specifications

This chapter briefly introduces the existing systems followed by an overview of the
proposed system. Describe in detail the requirement specifications of the system.

3.1 Existing System

3.1.1 Picture Fish

Picture fish is a mobile application that use image recognition technology to assist users in
identifying various fish species. Anglers, divers, and other enthusiasts who want to learn
more about the fish they encounter in the wild may find this app useful. But the drawback
of using this application is that, in order to accurately identify fish species, it relies on clear
and detailed images. If the image of the fish is too blurry or unclear, the app may struggle
to make an accurate identification [4].

Figure 3.1: Picture fish Application

10

3.1 Existing System 11

3.1.2 Sound Navigation and Ranging (SONAR)

Sonar (Sound Navigation and Ranging) is used for underwater object detection. Sonar is
an acoustic imaging technology that uses sound waves to detect underwater objects. It
works by emitting a sound pulse into the water, which then travels through the water and
bounces off objects in its path. The reflected sound waves, or echoes, are then detected
by the sonar transducer and used to create an image of the underwater environment. The
sonar transducer emits a sound pulse into the water. The sound wave travels through the
water and bounces off any objects in its path. They provide real time underwater object
detection [11].

3.1.3 Remotely Operated Vehicles

Remotely Operated Vehicles (ROVs) are underwater robots that can be used for object
detection and a variety of other tasks. ROVs are equipped with cameras, lights, and
other sensors that can capture images, video, and data about the underwater environment.
They are controlled remotely from the surface and can be used to inspect ships, pipelines,
and other underwater structures. ROVs are especially useful for deep-water exploration,
where human divers are not practical. They can reach depths that would be dangerous for
divers and provide high-resolution images and data about the underwater environment.
Additionally, ROVs can be equipped with specialized sensors and tools for specific tasks,
such as collecting samples, performing repairs, and deploying instruments. They provide
real time detection in underwater environment [12].

In general, academic researchers and government agencies may be able to obtain
funding to buy or rent sonar and ROV equipment for research purposes. Smaller research
organisations or individual researchers, on the other hand, may have fewer resources and
thus cannot afford such research equipment.

Figure 3.2: Remotely Operated Vehicles

12 Requirement Specifications

3.2 Proposed System

The proposed system aims to develop an application in which user provide underwater pic-
tures which are probably blurred, low contrast and this application will help the researchers
to firstly enhance the pictures and then labelled the object present in the picture and then
generate the final outcome which will be cleared, and the object are properly labelled and
the user will easily download the final result and it also provide the description of labelled
objects/underwater species. This system is especially designed for the researcher. For
non-real-time underwater object detection, there are several image-based techniques that
can be used: These techniques can be combined with deep learning algorithms such as Yolo
to improve the accuracy and performance of object detection. Additionally, pre-processing
techniques such as color correction, denoising can be used to improve the quality of the
underwater images before feeding them into the object detection system.

3.3 Requirement Specification

3.3.1 Functional Requirement

Functional requirements specify what inputs are given to the system, what output is
produced, and how the system responds to input. Our system’s functional requirements are
as follows:

FR 1: Upload Image
The user should be able to upload the image by using the application’s "upload Image"

button. The system should allow the upload of common image file types like JPG and
PNG. If there is an issue with the upload process, such as a file size that exceeds the
maximum allowed limit or an unsupported file type, the system should display appropriate
error messages. The uploaded image should be displayed in the application’s appropriate
location.

FR 2 :Enhance Image
When user upload an image from the gallery then it will send to Yolo model for

detection but before detection image enhancement techniques will apply on image and
then send to Yolo model for detection.

FR 3: Download Image
The download image feature should be accessible to the user from a prominent location

within the application. The system should be able to download common image file
types such as JPG and PNG. The downloaded image should be securely stored and only
accessible to authorised users. If there is a problem with the download process, such
as a file that is no longer available or cannot be downloaded, the system should display
appropriate error messages.

FR 4: View Generated Image

3.3 Requirement Specification 13

When the Yolo model finally detected the objects in the image then it will send back to
application using Flask API and show it on the user screen so that user can view it and
download it into gallery.

3.3.2 Non-functional Requirements

Non-functional requirements are quality characteristics that you include in your system.
These specifications define the system’s performance. These are the critical parameters
for improving system performance. Our system has several non-functional requirements,
which are listed below.

3.3.3 Availability

• The application should be available 24/7 with minimal downtime or disruptions.

• The system should be scalable so that it can handle increased traffic and usage
without compromising availability.

• The system should have a maintenance schedule in place to reduce downtime and
user impact.

3.3.4 Reliability

• The application must be simple to maintain.

• Be available for as much time as possible and be dependable.

• All contents and components must be displayed correctly and in their designated
location on the application.

3.3.5 Security

• Mobile applications handle sensitive user data, including personal information. It is
crucial to prioritize user privacy and prevent unauthorized access by implementing
robust security measures in the application’s design.

• To protect user privacy and prevent unauthorised access, application must be designed
with strong security measures.

• The system must follow all the latest security standard, help safeguard sensitive
user data, maintain user privacy, and mitigate the risks associated with unauthorized
access or data breaches.

14 Requirement Specifications

3.3.6 Performance

• Mobile applications need to be responsive and perform well under various network
conditions and device specifications.

• This includes app startup and loading times, as well as responsiveness to user actions.

• The performance of a system can be influenced by the firebase and Yolo model on
which it runs.

3.3.7 Maintainability

• The application’s code should be modular and organized, facilitating ease of mainte-
nance and future enhancements.

• The application should have comprehensive and up-to-date documentation, including
technical specifications, APIs, and user guides.

• The application should be designed in a way that enables effective testing, including
unit testing, integration testing, and performance testing.

3.3.8 Compatibility

• Mobile applications must work with a wide variety of devices, operating systems,
and network conditions.

• It require testing and development to ensure that the app works properly across
multiple platforms and environments.

3.4 Use Cases

A use case is several actions or events which define the interaction between the system and
actors to achieve a desire goal. The actors in this use-cases are the persons/entities who
will be using the system.

3.4 Use Cases 15

3.4.1 Sign-up Usecase

Figure 3.3: Sign-up Usecase

3.4.2 Sign-up Usecase Table

Sign-up usecase table as shown in table 3.1.

16 Requirement Specifications

Table 3.1: Signup usecase table

Use Case ID UD001

Use Case Name Sign Up

Actor User

Data User registration details (name, email, company, researcher).

Precondition The user does not have an existing account on the system.

Steps/Description a. The user navigates to the registration page.
b. The system presents a registration form to the user.
c. The user fills in the required registration details, such as name,
email, company, researcher.
d. The user submits the registration form.
e. The system verifies the entered data for completeness and
validity.
f. If the data passes validation, the system creates a new user
account and stores the provided information.

Alternative Flow of Events • If the user enters an email address that is already associated with
an existing account:
a) The system displays an error message indicating that the email
is already in use.
b) The user is prompted to either log in with the existing account
or provide a different email address.
• If the user enters invalid or incomplete data:
a) The system highlights the fields with errors and displays error
messages specifying the issues.
b) The user corrects the errors and resubmits the registration form.

Post Condition The user successfully creates a new account and gains access to
the system.

Comment - - - - -

3.4 Use Cases 17

3.4.3 Login Usecase

Figure 3.4: Use Case 2: Login

3.4.4 Login Usecase Table

Login usecase table is shown in table 3.2

18 Requirement Specifications

Table 3.2: Login usecase table

Use Case ID UD002

Use Case Name Login

Actor User

Data User credentials (Email).

Precondition The user has registered an account on the system.

Steps/Description a. The user navigates to the login page.
b. The system presents a login form to the user.
c. The user enters his/her email into the respective field.
d. The user submits the login form.
e. The system verifies the provided credentials against the stored
user data.
f. If the credentials are valid, the system grants access to the user
and proceeds to the main page.

Alternative Flow of Events • If the credentials are invalid, the system displays an error message
indicating the login failure.
• If the user does not have an account:
a. The user clicks on the "Sign Up" button.
b. The system redirects the user to the registration page.
c. The user fills in the required registration details.
d. The user submits the registration form.
e. The system creates a new account for the user and proceeds to
the main page.

Post Condition The user is logged into the system and granted access to the main
functionality.

Comment - - - - - -

3.4 Use Cases 19

3.4.5 Upload and View Image Usecase

Figure 3.5: Use Case 3: Upload and view image

3.4.6 Upload Image Usecase Table

Upload Image Usecase table is shown in table 3.3.

20 Requirement Specifications

Table 3.3: Upload image usecase table

Use Case ID UD003

Use Case Name Upload an Image.

Actor User

Data Image file

Precondition The user is logged into the system.

Steps/Description a. The user navigates to the upload page or section.
b. The system presents an interface for uploading an image.
c. The user selects the image file from their local device using a
file picker.
d. The user confirms the selection.
e. The system verifies that the selected file is a valid image file
format (e.g., JPEG, PNG).
f. If the file passes validation, The system updates the user inter-
face to display the uploaded image.

Alternative Flow of Events • If the selected file is not a valid image file format:
a. The system displays an error message indicating that only
specific image file formats are allowed.
b. The user is prompted to select a different file.
• If the user cancels the image selection:
a. The user closes the file picker.
b. The system returns to the previous state without uploading an
image.

Post Condition The image is successfully uploaded and visible to user on the
screen.

Comment - - - - -

3.4 Use Cases 21

3.4.7 Detected and Save Image Usecase

Figure 3.6: Use Case 4: Detected and save image

3.4.8 Detected Image Usecase Table

Detected Image usecase table is shown in table 3.4.

22 Requirement Specifications

Table 3.4: Detected Image usecase table

Use Case ID UD004

Use Case Name Show Detected Image and Save It.

Actor User

Data Uploaded image, detected image with objects.

Precondition The user has uploaded an image and the YOLOv5 model should
be running properly.

Steps/Description a. The system receives the uploaded image and passes it to the
YOLOv5 model for object detection.
b. The YOLOv5 model processes the image and identifies the
objects present in the image.
c. The system receives the detected image from the YOLOv5
model.
d. The system displays the modified image with the detected
objects to the user on their screen.
e. The user has the option to save the displayed image with the
detected objects.
f. If the user chooses to save the image, the system provides a
"Save" button.
g. The user clicks on the "Save" button.
h. The system saves the displayed image with the detected objects
to a specified location.

Alternative Flow of Events • If the YOLOv5 model fails to detect any objects in the uploaded
image:
a. The system displays a message indicating that no objects were
detected.
b. The user can choose to upload a different image or proceed
without saving.
• If there is an error or exception during the image display or
saving process:
a. The system displays an error message indicating the issue.
b. The user can try again.

Post Condition The user is able to view the uploaded image with detected objects
and save it successfully.

Comment - - - - - - -

3.4 Use Cases 23

3.4.9 View Detail Usecase

Figure 3.7: Use Case 5: View Detail

3.4.10 View detail Usecase Table

View detail usecase table is shown in table 3.5.

24 Requirement Specifications

Table 3.5: View detail usecase table

Use Case ID UD005

Use Case Name View Details

Actor User

Data Uploaded image, detected objects, object details from the PostgreSQL
database.

Precondition The user has uploaded an image, the YOLOv5 model has successfully
detected objects in the image, and the object details are stored in a
PostgreSQL database.

Steps/Description a. The system receives the uploaded image and passes it to the YOLOv5
model for object detection.
b. The YOLOv5 model processes the image and identifies the objects
present in the image.
c. The system queries the PostgreSQL database using the detected object
information to fetch additional details about the objects.
d. The system retrieves the object details from the database.
e. The system displays the object details, along with the uploaded image
and the detected objects, on the user’s screen.

Alternative Flow of Events • If there is an error during the communication with the PostgreSQL
database or the data retrieval process:
a. The system displays an error message indicating the issue.
b. The user can try again.
• If there are no detected objects found by YOLOv5:
a. The system displays a message indicating that we are out of range.

Post Condition The user is able to view the uploaded image, the detected objects, and
the associated object details from the PostgreSQL database.

Comment - - - - - -

3.4 Use Cases 25

3.4.11 Logout Usecase

Figure 3.8: Use Case 6: Logout

3.4.12 Logout Usecase Table

Logout Usecase table is shown in table 3.6.

26 Requirement Specifications

Table 3.6: Logout usecase table

Use Case ID UC006

Use Case Name Logout

Actor User

Data None

Precondition The user is logged into the system.

Steps/Description a. The user navigates to the "Exit" option in the application.
b. The system verifies the user’s current login status.
c. The system terminates the user’s session and revokes their access to
protected functionality.
d. The system redirects the user to the logout confirmation dialog.
e. The user sees a confirmation message and if select the yes option then
user will successfully logout and redirect to login page .

Alternative Flow of Events • If the user attempts to access protected functionality after logging out:
a. The system detects the user’s logged-out state.
b. The system redirects the user to the login page or prompts them to log
in again.
• If the user cancels the logout process:
a. The user clicks on a "No" option during the logout confirmation step.
b. The system maintains the user’s current session and returns them to
their previous state.

Post Condition The user is successfully logged out of the system and redirect to login
page.

Comment - - - - - -

Chapter 4

Design

In this chapter of system design, we take a closer look at the development phases of
“Underwater object detection”, which is all about defining components, interfaces, and
data to meet our defined criteria. The chapter is divided into modules, each of which is
addressed in depth below.

A. System Architecture.
B. Activity Diagram.
C. Sequential Diagram.

4.1 System Architecture

System architecture refers to the conceptual structure of a system’s behavior and operation.
It concisely and clearly demonstrates how the system works, making it easier to understand
and enhance.This system architecture includes the initial stage to gather data, which could
be images, After gathering the data, it must be pre-processed to ensure it is in a format
suitable for the model. This includes cleansing the data, dealing with missing values, and
translating the data into a numerical representation that the model can understand. The
next stage after Pre-processing is feature extraction. This involves relevant characteristics
from data that will be utilized to train the model. In image classification, for example,
feature extraction may entail recognizing edges, forms, and colors in a picture.

After the features have been extracted, an algorithm can be used to train the model.
The algorithm will learn from the data by modifying its internal parameters so that the
differences between the expected and actual output are as little as possible. Testing can then
be used to evaluate the model’s performance. This involves providing it fresh, previously
unseen data and testing how well it predicts the correct outcome. Finally, the model
testing results will be examined to evaluate whether the machine learning model is accurate

27

28 Design

enough for the purpose it was created for. To increase the model’s performance, refine the
model or make changes to the data pre-processing and feature extraction stages.

Figure 4.1: System Architecture

4.2 Design Constraints

4.2.1 Software Requirements constraints

• The application must support specific operating systems, such as Android.

• The application’s user interface must be intuitive, user-friendly, and accessible to
users of varying needs and abilities.

4.2.2 Hardware Requirements constraints

• The hardware must be capable of supporting the application’s user interface, including
any 2D or 3D graphics.

• Specific network connectivity requirements, such as Wi-Fi, cellular, or Ethernet,
might require the use of specific hardware.

4.3 Activity Diagram

Activity diagram of our project is given below, which basically explains the graphical
representation of activities.

4.3 Activity Diagram 29

Figure 4.2: Activity Diagram

30 Design

4.4 Sequential Diagram

Sequence diagram shows the interaction between the objects of the system application.
The interaction between two lifelines is shown as a time-ordered sequence of events in the
sequence diagram.

4.4.1 Sign-up Sequence Diagram

If the user has provided the sign-up information in the right order, an account will be
established; otherwise, the system will show the user an error notice. The sign-up process
is depicted in the diagram below.

Figure 4.3: Sign-up Sequence Diagram

4.4 Sequential Diagram 31

4.4.2 Login Sequence Diagram

If the user has provided the correct login information means Email, the system will allow
them to access the application; otherwise, an error notice will be displayed.

Figure 4.4: Login Sequence Diagram

4.4.3 Upload Image Sequence Diagram

In order to detect the underwater objects user must upload an image. if the image is
successfully uploaded the model will start identifying the objects. if the image is not

32 Design

uploaded successfully it will show an error message.

Figure 4.5: Upload Image Sequence Diagram

4.4 Sequential Diagram 33

4.4.4 Show Detected Image Sequence Diagram

Image send to the model by applying deep learning model on the given image show the
detected image to the user either their is one object present in the image or two. If the
image is not related to the underwater environment it will display an error message.

Figure 4.6: Show Detected Image Sequence Diagram

34 Design

4.4.5 Save Detected Image Sequence Diagram

User can save the detected image in gallery. It provides users with the ability to save the
images that contain detected objects, which can be used for future reference or shared with
others.

Figure 4.7: Save Detected Image Sequence Diagram

4.4 Sequential Diagram 35

4.4.6 Show Data of detected objects

When the objects are detected successfully. This application displays the brief description
of detected objects in order to make it easy to know about the objects. User will easily get
to know the objects and its background.

Figure 4.8: Show Data Sequence Diagram

36 Design

4.4.7 Logout Sequence Diagram

Logout allows a user to securely sign out of their account and end their session. This
is important for security reasons, as it helps to prevent unauthorized access to the user’s
account and personal information.

Figure 4.9: Logout Sequence Diagram

Chapter 5

System Implementation

This chapter presents the implementation detail of a system in the following section;

5.1 System Architecture

System architecture refers to the conceptual structure of a system’s behavior and operation.
It concisely and clearly demonstrates how the system works, making it easier to understand
and enhance.. It becomes easier to identify the essential components and their relationships,
as well as challenges that must be addressed, by describing the system architecture. Overall,
system architecture acts as a road map for creating a system that satisfies the required goals
and specifications.

5.1.1 Mobile Application

The system architecture of the underwater object detection mobile application would
include numerous components that would work together to provide the desired functionality.
The application for mobile devices would serve as the front-end user interface, allowing
users to upload images and provide information about the object to be detected. The results
of the object detection process would also be displayed by the application. The machine
learning model would be trained on a collection of underwater photographs, using deep
learning techniques to recognise and name items in the photos.

Overall, the system architecture of the underwater object identification mobile applica-
tion would have a combination of front-end and back-end components that would work
together to deliver an effortless and successful user experience.

37

38 System Implementation

5.2 System Internal Components

5.2.1 User Information page

In this, User will give some specific information about themselves. Firstly user will provide
’Name’ then ’Email Address’ this email will also help in login credential then user will
answer about “ Are you a researcher”. After that user will enter organization Name.

5.2.2 Upload Image

User must upload an image. User can also crop the image while uploading image from
gallery.

5.2.3 Enhance Image

If image needs to be enhanced then the system will enhance it before detection.

5.2.4 Object Detection

Image will send to Yolov5 model for detection and model will return the detected objects.

5.2.5 Download Image

User can download the detected image.

5.2.6 Description of Object

Image display along with the short description of the object.

5.3 Tools and Technologies

5.3.1 Visual Studio Code

Visual Studio Code is an open-source code editor with a wide range of features meant to in-
crease productivity and make coding easier. It is compatible with a variety of programming
languages, including C++, Python, Java, and PHP. Intellisense, which provides intelligent
code completion and error highlighting, is one of its primary features, as is an integrated
terminal that allows you to run scripts and start debuggers without leaving the editor.

5.3.2 Flutter and Dart

Google’s Flutter is a mobile app development platform that uses the Dart programming
language. Flutter and Dart, when combined provide a number of features for developing

5.4 Processing Logic/Algorithms 39

high-performance, cross-platform mobile apps. Flutter also includes an extensive number
of pre-built widgets and frameworks, making it simple to design beautiful and useful user
interfaces for your project. Flutter also supports hot reloading, which enables rapid and
easy testing and debugging of your code without having to recompile the entire app.

5.3.3 Firebase

Firebase is a mobile and online application development platform that offers app developers
a variety of back-end services. It was created by Google and has a number of features that
make app development faster and easier. One of Firebase’s primary features is its real-time
database, which enables for real-time data synchronization between clients and the server.
This implies that changes to the database are reflected promptly in the app.

5.3.4 Model Yolo v5

Yolo v5 is an object detection model from the You Only Look Once (YOLO) model family.
The Yolo v5 model predicts bounding boxes and class probabilities for objects in an input
image using a single neural network. Overall, Yolo v5 is an advanced and adaptable object
recognition model that can be applied to a wide range of applications.

5.3.5 PostgreSQL

PostgreSQL is a powerful open-source relational database management system (RDBMS)
with several capabilities for data storage, organization, and manipulation. PostgreSQL also
provides a number of tools for database management and monitoring, such as PgAdmin, a
popular graphical user interface (GUI) for administering PostgreSQL databases.

5.3.6 Flask

Flask is a Python-based lightweight and flexible web framework. It includes a minimal set
of tools and libraries that allow developers to quickly get started and customize their appli-
cation as needed. Flask is also extremely flexible, with numerous third-party extensions
available to add additional functionality and features.

5.4 Processing Logic/Algorithms

5.4.1 Model Selection

The process of model selection involves choosing an appropriate algorithm or model
architecture based on the problem being solved and the characteristics of the dataset. In
our case, we choose the pretrained model Yolov5, YOLOv5 is a popular object detection

40 System Implementation

algorithm that has gained significant attention and adoption in computer vision tasks, it
achieves a good balance between accuracy and speed. It is designed for fast and efficient
object detection and YOLOv5 offers different model variants, including different sizes
(such as yolov5s, yolov5m, yolov5l, and yolov5x), which allow users to trade off between
speed and accuracy based on their specific requirements. To obtained a good accuracy we
selected and trained our dataset on YOLOv5x. The model trained for 20 epochs on the
training data with a validation split of 0.2%, making the training dataset of 0.8% and the
valdiation dataset of 0.2% of the entire dataset.

5.4.2 Evaluation

The model took almost 15-20 minutes to train and yielding a validation accuracy of 81.9%
with the rest of the details of the evalution shown in table 5.1 and in table 5.2 for the
validation metrics of our model.

Table 5.1: Evaluation Metrics of Main Model

Evaluation Metrics Value

Accuracy 81.8%

Precision 84.6%

Recall 74.6%

F1 Score 79.2%

Table 5.2: Validation Metrics of Main Model

Evaluation Metrics Value

Validation Accuracy 81.9%

Validation Precision 79.1%

Validation Recall 80%

Validation F1 Score 79.5%

5.5 Development Environment/Languages Used 41

5.5 Development Environment/Languages Used

Flutter dart and Python has been used as the development language while Visual Studio
code is the development environment.

5.6 Methodology

In order to implement this we proceed as follows, firstly we analyzed the functionality of
this system login/sign-up page, user authentication, upload the image , object detection
using yolov5 , database for data storage. In next step we design the system like how data is
flow between these components. We developed our front-end using Flutter and integrated
it with firebase. We used two features of firebase first one is user authentication and
second one is firestore database for storing the user’s data. Then developed our back-end
using python in which we used Yolov5 model for object detection and image processing
techniques for image enhancement and also used PostgreSQL database for storing the
description of the detected objects. We used Flask API for integration between front-end
and back-end.

When a person who is not yet registered wants to sign up for the application. An invalid
message will be shown. And when the user register, the user gets access to the application.
After logging in, he/she’ll will be redirected to main page where they can upload image
for detection when user will upload an image it will send to back-end for enhancement
then after enhancement it will be detected by Yolov5 model and fetch the data from the
PostgreSQL database and return to the flutter app and will show the user about object with
its short description.

Chapter 6

System Testing and Evaluation

After developing an application, the process of testing is there and testing of a system is
necessary to check the errors, bugs or requirements. To evaluate whether the requirements
are fulfilled or not, system testing is performed. This testing is done on a completed system.
The other tests will also be performed accordingly. We have mentioned the tests we are
applying to our application.

6.1 Graphical User interface testing

We perform system interface testing to ensure that the graphical user interface works
properly. In the GUI testing stage, we examined the visual design, functionality, color
scheme, buttons, the message shown, and alignments. GUI testing is critical since it
validates the client experience. GUI testing contributes in the delivery of good and user-
friendly applications. So, in our instance, our application works flawlessly. Our pages,
buttons, and color scheme all have a clear design and function. The text we used is
understandable. Buttons are the correct size. The color scheme is perfect.

6.1.1 Splash Screen

42

6.1 Graphical User interface testing 43

Figure 6.1: Splash Screen GUI

44 System Testing and Evaluation

6.1.2 Main Screen

Figure 6.2: Main Screen GUI

6.1 Graphical User interface testing 45

6.1.3 Sign-Up

Figure 6.3: Signup GUI

46 System Testing and Evaluation

6.1.4 Login

Figure 6.4: Login GUI

6.1 Graphical User interface testing 47

6.1.5 Upload Image

Figure 6.5: Upload Image GUI

48 System Testing and Evaluation

6.1.6 Detected Image

Figure 6.6: Detected Image GUI

6.1 Graphical User interface testing 49

6.1.7 Download Image

Figure 6.7: Download Image GUI

50 System Testing and Evaluation

6.1.8 Image save to Gallery

Figure 6.8: Image Save to Gallery GUI

6.1 Graphical User interface testing 51

6.1.9 View Detail

Figure 6.9: View Detail GUI

52 System Testing and Evaluation

6.1.10 Logout

Figure 6.10: Logout GUI

6.2 Usability Testing 53

6.2 Usability Testing

Usability testing adheres to several guidelines one of which is that the application should
be easy to understand and use. Each button’s purpose and function must be understood by
the user. Users were able to understand the purposes of buttons and how to perform them
in this application, and they were able to immediately enhance the objects based on their
preferences. The user interface should provide a pleasant experience. The color scheme
used in the application is simple but appealing.

6.2.1 Feedback

When buttons are pressed, their color changes to indicate that a certain action has been
taken.

6.2.2 Visibility

We choose blue and white color theme for our application’s text, buttons, and backdrop,
as well as appropriate button sizes, so that everything is more visible and the user has a
pleasant experience when using it.

6.2.3 Mapping

In the Home screen and other screens of application, proper mapping is employed.

6.2.4 Inconsistency

Our application is consistent and follows widely accepted procedures.

6.2.5 Affordance

Every action the user makes is accompanied by suggestions and help from the application.

6.2.6 Effectiveness

It is capable of fulfilling its functions and has cleared all the test case situations without
crashing.

6.2.7 Efficiency

It is highly fast and efficient, and opening or performing any operation takes no time.

54 System Testing and Evaluation

6.2.8 Target Sizes

In our application the sizes of the icons and the options for picking them are placed near
each other, visible, and easy to select.

6.3 Security Testing

With the use of security testing, risks to the application may be found and its possible
weaknesses can be assessed, allowing for threat resolution without the application being
unusable. There are no risks associated with our application. No unauthorized user has
access to the system and is not permitted to read or edit any user information or other
database data.

6.4 Load Testing

Load testing is a type of non-functional testing. It is used to forecast how the application
will perform under varying loads. A load test is a sort of performance test that determines
how the system performs while a high number of virtual users execute transactions con-
currently over an extended period of time. In other words, the test evaluates how well
systems handle tremendous amounts of heavy load. The primary purpose of load testing is
to evaluate the speed of the application. its rate of speed. Our application operates without
any issues on any of the devices we’ve tried, and we haven’t encountered any thus far. The
application loaded rapidly and responded to user input quickly.

6.5 Compatibility Testing

Compatibility testing is the process of determining whether or not an application is
compatible with a device. It ensures user satisfaction by determining whether or not the
application fits the user’s needs. Our application is system-compatible and loads swiftly.
It works perfectly. The tasks that our application will perform are as follow: 1. Upload
Image 2. Enhance Image 3. Download Image 4. Object Description

6.6 Software Performance Testing

Software performance testing is used to evaluate an application’s performance under a
variety of workloads. Our application is quick and has a short delay in responding, which
benefits users because they do not have to wait. It loads accurately and completely during
runtime and does not use a lot of storage or RAM. It works flawlessly.

6.7 Test Cases 55

6.7 Test Cases

We did test checks to verify that our application is working fine.

6.7.1 Register: Test Case 1

To Check if Underwater object Detection application registration page working correctly
shown in table 6.1 .

Table 6.1: Test case 1

Test Case 1: Register

ID Test case 1

Description To ensure that the sign-up form is functioning properly and that users
can successfully register for the service.

Pre-conditions Installing and launching an application is required.
• Internet connectivity should be accessible.

Test steps • Check that the required fields are present and appropriately labelled
(such as username and email).
• Check that sign-up page is properly loaded.
• Fill in all the relevant fields with accurate info.
• Make sure the email address is typed in the correct format.
• Verify that the user is taken to a home page after clicking the sign-up
button.

Expected result •The sign-up page loads successfully
• All required fields are present and labeled correctly.
• Valid data can be entered in all required fields.
• Email address entered in a valid format.
• Clicking on the sign-up button successfully redirects the user to a home
page.

Post-condition The user is successfully signed up and can access the service using the
provided credentials.

Test status Pass

56 System Testing and Evaluation

6.7.2 Login: Test Case 2

To Check if Underwater object Detection application Login page working correctly shown
in table 6.2.

Table 6.2: Test case 2

Test Case 2: Login

ID Test case 2

Description To ensure that the Login form is functioning properly and that users can
successfully login into the service.

Pre-conditions • Installing and launching an application is required. Internet connectivity
should be accessible.
• User should be registered already.

Test steps • Check that the required fields are present and appropriately labelled
(such as email).
• Check that login page is properly loaded.
• Enter valid and accurate email.
• Make sure the email address is typed in the correct format.
• Verify that the user is taken to a home page after clicking the login
button.
• Check that user should be able to use all features

Expected result • The login page loads successfully.
• All required fields are present and labeled correctly.
• Email address entered in a valid format.
• Clicking on the login button successfully redirects the user to a home
page.
• User able to access all features

Post-condition The user is successfully logged in and can access the service using the
provided credentials.

Test status Pass

6.7 Test Cases 57

6.7.3 Upload Image : Test Case 3

To Check if Underwater object Detection application upload image functionality working
correctly shown in table 6.3 .

Table 6.3: Test case 3

Test Case 3: Upload Image

ID Test case 3

Description To ensure that the upload image functionality is working properly and
that users can successfully upload an image.

Pre-conditions • Installing and launching an application is required. Internet connectivity
should be accessible.
• User should be logged in.

Test steps • Check that the upload image page is properly loaded.
• Check that the upload image button is labeled and present correctly.
• Verify that button is working properly.
• Verify that the image uploaded successfully

Expected result • The upload image page loads successfully.
• Upload image button is labeled and present correctly.
• Upload image button is working properly.
• Image uploaded and displayed successfully.

Post-condition The user is successfully uploaded an image and viewed the image.

Test status Pass

58 System Testing and Evaluation

6.7.4 Image enhancement: Test Case 4

To Check if Underwater object Detection application image enhancement functionality
working correctly shown in table 6.4 .

Table 6.4: Test case 4

Test Case 4: Image enhancement

ID Test case 4

Description To ensure that the image enhancement functionality is working properly.

Pre-conditions • Installing and launching an application is required. Internet connectivity
should be accessible.
• User should be logged in.
• Image uploaded successfully.

Test steps • Check that the next button is labeled and present correctly.
• Verify that the next button is working properly.
• After clicking the next button the image should go to back-end for
enhancement.
• Verify that image enhancement result before prediction

Expected result • Next button is labeled and present correctly.
• Image send to back-end properly.
• Image enhancement process completed successfully.

Post-condition The enhanced image will send to the yolov5 model for prediction.

Test status Pass

6.7 Test Cases 59

6.7.5 Object detection : Test Case 5

To Check if Underwater object Detection application object detection functionality working
correctly shown in table 6.5 .

Table 6.5: Test case 5

Test Case 5: Object detection

ID Test case 5

Description To ensure that the object detection functionality is working properly.

Pre-conditions • Installing and launching a application is required. Internet connectivity
should be accessible.
• User should be logged in.
• Image enhancement process completed successfully

Test steps • Check that the outcome after enhancement is successfully send to
Yolov5 model.
• Verify that yolov5 model is working properly.
• Verify that our model give good accuracy.
• Verify that it detects objects properly.

Expected result • Image enhancement result sends to model successfully.
• Model is working properly.
• Model gives good accuracy.
• It detects properly.

Post-condition Fetch data of detected objects and show it in the screen.

Test status Pass

60 System Testing and Evaluation

6.7.6 Detected Objects description : Test Case 6

To Check if Underwater object Detection application detected object functionality working
correctly shown in table 6.6.

Table 6.6: Test case 6

Test Case 6: Detected Objects description

ID Test case 6

Description To ensure that the functionality of fetching data from PostgreSQL is
working properly.

Pre-conditions • Installing and launching an application is required. Internet connectivity
should be accessible.
• User should be logged in.
• Model should already detect objects from the image.

Test steps • Check that PostgreSQL is working properly.
• Verify that PostgreSQL is connected successfully.
• Verify that retrieval data is accurate.

Expected result • PostgreSQL is working properly.
• PostgreSQL is connected successfully.
• Retrieval data is accurate.

Post-condition Show this data on the screen.

Test status Pass

6.7 Test Cases 61

6.7.7 Show data : Test Case 7

To Check if Underwater object Detection application show data functionality working
correctly shown in table 6.7.

Table 6.7: Test case 7

Test Case 7: Show data

ID Test case 7

Description To ensure that the functionality of displaying data on the screen is work-
ing properly.

Pre-conditions • Installing and launching an application is required. Internet connectivity
should be accessible.
• User should be logged in.
• Model should already detect objects from the image.
• Already fetched data from PostgreSQL.

Test steps • Check that the display data page is properly loaded.
• Verify that integration between front-end and back-end is done accu-
rately and completely.
• Check that API runs properly.
• Verify that Flask API returns data accurately.
• Verify that the application gets data from the API.
• Check that if data are shown in the application properly.

Expected result • Display data page loaded successfully.
• Integration is done completely and accurately.
• Flask API runs and return data.
• Application retrieve data properly.
• Data shown in the display page.

Post-condition User will log out

Test status Pass

62 System Testing and Evaluation

6.7.8 Logout : Test Case 8

To Check if Underwater object Detection application logout functionality working correctly
shown in table 6.8 .

Table 6.8: Test case 8

Test Case 8: Logout

ID Test case 8

Description To ensure that the functionality of logout is working properly.

Pre-conditions • Installing and launching an application is required. Internet connectivity
should be accessible.
• User should be logged in

Test steps • Check that the logout button is labeled and present correctly.
• Verify that the logout button is working properly

Expected result • Button is labeled and present correctly.
• Logout button is working properly.

Post-condition User will redirect to login page.

Test status Pass

Chapter 7

Conclusions

7.1 Conclusion

In this project, we created an application that allows researchers to easily identify objects
in the underwater environment. Images obtained under these conditions are usually blurry
and low contrast, making object recognition difficult. However, by uploading a picture and
providing necessary details, the model correctly recognizes the objects in the underwater
situation.

Creating this system was a difficult undertaking, but we approached it with a growth
mindset and gained valuable insights throughout the process. We utilized deep learning
models and trained them to meet the project’s requirements. We encountered different
obstacles during the project, which presented us with an opportunity to learn and grow.

We learned valuable skills such as gathering requirements, creating short-term ini-
tiatives, and implementing them throughout the project. These skills will be beneficial
for future projects and assist us in developing more efficient and effective systems. In
summary, this project was a valuable learning opportunity that taught us new methods and
techniques for creating machine-learning applications.

7.2 Future Enhancements

Functionalities we tend to add in the future are;

7.2.1 Communication and collaboration feature:

A potential improvement for the underwater object detection application would be to inte-
grate communication and collaboration features, which could greatly benefit researchers.

63

64 Conclusions

By enabling researchers to share images, research details, and results, they can collaborate
more effectively, potentially leading to new discoveries and insights.

The communication feature could also allow researchers to discuss specific species,
share observations or insights, and collaborate on research projects. Such exchanges
could promote the exchange of knowledge and ideas, leading to a more comprehensive
understanding of underwater ecosystems.

7.2.2 Expanding the number of species:

Improving the underwater object detection model’s ability to recognize distinct species
is a critical goal for future progress. At the moment, the model can only detect a few
underwater species, but it can be expanded to include a more variety of species. To achieve
this goal, additional data and photos of various underwater creatures must be collected and
integrated into the model’s training data set.

Increasing the model’s ability to recognize a broader range of species is an important
step toward developing a more comprehensive and efficient underwater item identification
system.

References

[1] P Srinivas Babu, B Prateek, P Punith, B Pramod, and M Nitin Patel. Underwater object
detection using image processing. International Journal of Research in Engineering,
Science and Management, 4(7):315–319, 2021. Cited on p. 1.

[2] Di Wu, Fei Yuan, and En Cheng. Underwater no-reference image quality assessment
for display module of rov. Scientific Programming, 2020:1–15, 2020. Cited on p.
2.

[3] Roboflow. Aquarium combined dataset. https://universe.roboflow.com/
brad-dwyer/aquarium-combined, feb 2023. visited on 2023-05-02. Cited
on p. 3.

[4] Francesco Rossi, Alfredo Benso, Stefano Di Carlo, Gianfranco Politano, Alessandro
Savino, and Pier Luigi Acutis. Fishapp: A mobile app to detect fish falsification
through image processing and machine learning techniques. In 2016 IEEE interna-
tional conference on automation, quality and testing, robotics (AQTR), pages 1–6.
IEEE, 2016. Cited on pp. 4 and 10.

[5] Risheng Liu, Xin Fan, Ming Zhu, Minjun Hou, and Zhongxuan Luo. Real-world
underwater enhancement: Challenges, benchmarks, and solutions under natural light.
IEEE Transactions on Circuits and Systems for Video Technology, 30(12):4861–4875,
2020. Cited on p. 4.

[6] Zhe Chen, Yang Sun, Yupeng Gu, Huibin Wang, Hao Qian, and Hao Zheng. Un-
derwater object segmentation integrating transmission and saliency features. IEEE
Access, 7:72420–72430, 2019. Cited on p. 6.

[7] Chongyi Li, Jichang Guo, and Chunle Guo. Emerging from water: Underwater image
color correction based on weakly supervised color transfer. IEEE Signal processing
letters, 25(3):323–327, 2018. Cited on p. 6.

[8] Wagner Barros, Erickson R Nascimento, Walysson V Barbosa, and Mario FM Cam-
pos. Single-shot underwater image restoration: A visual quality-aware method
based on light propagation model. Journal of Visual Communication and Image
Representation, 55:363–373, 2018. Cited on p. 7.

[9] Fenglei Han, Jingzheng Yao, Haitao Zhu, and Chunhui Wang. Underwater image
processing and object detection based on deep cnn method. Journal of Sensors, 2020,
2020. Cited on p. 7.

65

 https://universe.roboflow.com/brad-dwyer/aquarium-combined
 https://universe.roboflow.com/brad-dwyer/aquarium-combined

66 REFERENCES

[10] Sheezan Fayaz, Shabir A Parah, and GJ Qureshi. Underwater object detection: archi-
tectures and algorithms–a comprehensive review. Multimedia Tools and Applications,
81(15):20871–20916, 2022. Cited on p. 9.

[11] Aprameya Satish, Brendan Nichols, David Trivett, and Karim G Sabra. Passive under-
water acoustic markers for navigation and information encoding for high frequency
sound navigation and ranging (sonar) devices. The Journal of the Acoustical Society
of America, 142(4):2731–2731, 2017. Cited on p. 11.

[12] Yvan R Petillot, Gianluca Antonelli, Giuseppe Casalino, and Fausto Ferreira. Under-
water robots: From remotely operated vehicles to intervention-autonomous underwa-
ter vehicles. IEEE Robotics & Automation Magazine, 26(2):94–101, 2019. Cited
on p. 11.

	Front Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Project Background/ overview
	1.2 Problem Description
	1.3 Project Objective
	1.4 Project Scope

	2 Literature Review
	2.1 Related Work
	2.2 Underwater Image Processing and Analysis
	2.2.1 Underwater Image Enhancement
	2.2.2 Underwater Noise Reduction
	2.2.3 Underwater Noise Defogging
	2.2.4 Underwater Image Segmentation
	2.2.5 Underwater Saliency Detection
	2.2.6 Color Constancy and Correction
	2.2.7 Underwater Image Restoration

	2.3 Region- Based CNN(CNN)
	2.3.1 Pre-trained Convolutional Neural Network (CNN)
	2.3.2 Feature Extraction
	2.3.3 Regional Proposal Generation
	2.3.4 Feature Pooling
	2.3.5 Classification
	2.3.6 Object Localization
	2.3.7 Non-Maximum Suppression (NMS)

	2.4 Faster RCNN
	2.5 Networks based on YOLO (You Only Look Once) framework

	3 Requirement Specifications
	3.1 Existing System
	3.1.1 Picture Fish
	3.1.2 Sound Navigation and Ranging (SONAR)
	3.1.3 Remotely Operated Vehicles

	3.2 Proposed System
	3.3 Requirement Specification
	3.3.1 Functional Requirement
	3.3.2 Non-functional Requirements
	3.3.3 Availability
	3.3.4 Reliability
	3.3.5 Security
	3.3.6 Performance
	3.3.7 Maintainability
	3.3.8 Compatibility

	3.4 Use Cases
	3.4.1 Sign-up Usecase
	3.4.2 Sign-up Usecase Table
	3.4.3 Login Usecase
	3.4.4 Login Usecase Table
	3.4.5 Upload and View Image Usecase
	3.4.6 Upload Image Usecase Table
	3.4.7 Detected and Save Image Usecase
	3.4.8 Detected Image Usecase Table
	3.4.9 View Detail Usecase
	3.4.10 View detail Usecase Table
	3.4.11 Logout Usecase
	3.4.12 Logout Usecase Table

	4 Design
	4.1 System Architecture
	4.2 Design Constraints
	4.2.1 Software Requirements constraints
	4.2.2 Hardware Requirements constraints

	4.3 Activity Diagram
	4.4 Sequential Diagram
	4.4.1 Sign-up Sequence Diagram
	4.4.2 Login Sequence Diagram
	4.4.3 Upload Image Sequence Diagram
	4.4.4 Show Detected Image Sequence Diagram
	4.4.5 Save Detected Image Sequence Diagram
	4.4.6 Show Data of detected objects
	4.4.7 Logout Sequence Diagram

	5 System Implementation
	5.1 System Architecture
	5.1.1 Mobile Application

	5.2 System Internal Components
	5.2.1 User Information page
	5.2.2 Upload Image
	5.2.3 Enhance Image
	5.2.4 Object Detection
	5.2.5 Download Image
	5.2.6 Description of Object

	5.3 Tools and Technologies
	5.3.1 Visual Studio Code
	5.3.2 Flutter and Dart
	5.3.3 Firebase
	5.3.4 Model Yolo v5
	5.3.5 PostgreSQL
	5.3.6 Flask

	5.4 Processing Logic/Algorithms
	5.4.1 Model Selection
	5.4.2 Evaluation

	5.5 Development Environment/Languages Used
	5.6 Methodology

	6 System Testing and Evaluation
	6.1 Graphical User interface testing
	6.1.1 Splash Screen
	6.1.2 Main Screen
	6.1.3 Sign-Up
	6.1.4 Login
	6.1.5 Upload Image
	6.1.6 Detected Image
	6.1.7 Download Image
	6.1.8 Image save to Gallery
	6.1.9 View Detail
	6.1.10 Logout

	6.2 Usability Testing
	6.2.1 Feedback
	6.2.2 Visibility
	6.2.3 Mapping
	6.2.4 Inconsistency
	6.2.5 Affordance
	6.2.6 Effectiveness
	6.2.7 Efficiency
	6.2.8 Target Sizes

	6.3 Security Testing
	6.4 Load Testing
	6.5 Compatibility Testing
	6.6 Software Performance Testing
	6.7 Test Cases
	6.7.1 Register: Test Case 1
	6.7.2 Login: Test Case 2
	6.7.3 Upload Image : Test Case 3
	6.7.4 Image enhancement: Test Case 4
	6.7.5 Object detection : Test Case 5
	6.7.6 Detected Objects description : Test Case 6
	6.7.7 Show data : Test Case 7
	6.7.8 Logout : Test Case 8

	7 Conclusions
	7.1 Conclusion
	7.2 Future Enhancements
	7.2.1 Communication and collaboration feature:
	7.2.2 Expanding the number of species:

	References

