
INSHIRAH NASIR
01-235192-096

UMAMA UMRAN
01-235192-084

GROUP ID: IT-F22-05

Roman Urdu Chatbot
for Ecommerce

Bachelor of Science in Computer Science

Supervisor: Dr. Muhammad Asfand-e-Yar

Department of Computer Science
Bahria University, Islamabad

2023

C e r t i f i c a t e

We accept the work contained in the report titled “ ROMAN URDU CHATBOT FOR
ECOMMERCE ”, written by Ms. INSHIRAH NASIR (01-235192-096) AND Ms.
UMAMA UMRAN (01-235192-084) as a confirmation of the required standard for the
partial fulfillment of the degree of Bachelor of Science in Computer Science.

Approved by . . . :

Supervisor: Dr. Muhammad Asfand-e-Yar (Sr. Assistant Professor)

Internal Examiner:

External Examiner:

Project Coordinator:

Head of the Department:

nd ,

Abstract

Since chatbots were first developed in the 1960s, a lot has changed, and recent develop-
ments in Machine Learning and Natural Language Processing technology have greatly
enhanced both their usability and adoption. These sophisticated computer programmes can
simulate human speech and can communicate with users verbally or in writing. In a number
of industries, including e-commerce, healthcare, finance, and customer service, they have
shown to be a significant tool. Chatbots are an essential tool for organisations in the digital
age because they automate time-consuming jobs, offer 24/7 customer care, and boost user
engagement. The growth of e-commerce enterprises, however, might be hampered by
inadequate customer assistance and linguistic difficulties, particularly in nations where the
majority of the populace speaks a language other than English. E-commerce is a quickly
expanding sector in Pakistan, and more businesses are going online to access a larger
market. However, the growth of e-commerce enterprises in the nation may be hampered
by inadequate customer assistance and linguistic difficulties. The creation of a Roman
Urdu chatbot for e-commerce websites is crucial in this situation. Roman Urdu is a widely
spoken and understood language in Pakistan, and having a chatbot that can converse in
it can improve user interaction and boost client loyalty. Roman Urdu is written in both
Urdu and English, making it difficult to create a chatbot that can understand it. Though it
is now possible to create chatbots that can comprehend and reply to Roman Urdu queries
because to recent developments in deep learning and NLP technologies. In this project, we
developed a Roman Urdu chatbot for e-commerce websites using a Feed Forward Neural
Network model and Flask framework. The chatbot was trained on a large dataset of Roman
Urdu queries and responses using TensorFlow, Keras, and other major Python libraries. We
used transfer learning to fine-tune a pre-trained model for our task, as transfer learning has
shown promising results in NLP tasks. The chatbot’s architecture was designed to handle
queries and provide fast responses to users. The chatbot performed admirably, obtaining
over 90% accuracy on our test set. In order to test and enhance the chatbot continuously,
we also integrated it with e-commerce websites. HTML, CSS, and JavaScript were used to
create the chatbot’s GUI design, which offers a simple interface for users to communicate
with the chatbot. The design of the chatbot could be expanded in the future to include
more capabilities like sentiment analysis, entity recognition, and summarization. These
features can enhance the chatbot’s functionality and give users more value. The chatbot’s
performance can be improved by collecting more data to train it further, as more data
can help it better understand the intricacies of the language. Roman Urdu chatbots for
e-commerce websites have the power to revolutionise customer service in Pakistan by
addressing the linguistic difficulties that hinder e-commerce companies.

i

" HE WHO IS NOT COURAGEOUS ENOUGH TO TAKE RISKS,
WILL ACCOMPLISH NOTHING IN LIFE ”

Muhammad Ali, Professional Boxer

ii

Contents

1 Introduction 4
1.1 Introduction . 4
1.2 Problem Description . 5
1.3 Project Objectives . 6
1.4 Project Scope . 6

2 Literature Review 8
2.1 Daraz Chatbot . 8
2.2 Ali Express Chatbot . 9
2.3 Amazon Chatbot . 9

3 Requirement Specifications 11
3.1 Existing Systems . 11
3.2 Current Issues . 12

3.2.1 Language Barrier . 12
3.2.2 Queries . 12
3.2.3 Integration . 13
3.2.4 Existing Chatbot comparison . 13

3.3 Dataset . 14
3.4 Application Requirements . 14

3.4.1 Functional Requirements . 15
3.4.2 Non Functional Requirements 15

3.5 Functional Requirements Cases Models 16
3.5.1 Use cases Diagram . 16
3.5.2 Use case 1: Login . 17
3.5.3 Test case 2: Product Search . 18
3.5.4 Test case 3: Product Recommendation 19
3.5.5 Use case 4: Other Support . 20

4 Design 22
4.1 Proposed DL Model . 22
4.2 Data Collection . 23
4.3 Preprocessing . 23

4.3.1 Tokenization . 23
4.3.2 Stop Word Removal . 24
4.3.3 Stemming . 24
4.3.4 Normalization . 24

iii

CONTENTS iv

4.3.5 Cleaning . 24
4.4 Model Training . 24

4.4.1 Model Architecture . 25
4.4.2 Hyperparameter Selection . 25
4.4.3 Training and Evaluation . 26

4.5 Design Constraints . 27
4.6 Design Methodology . 27
4.7 Design Architecture . 28

4.7.1 User Interface . 28
4.7.2 Natural Language Processing 29
4.7.3 Deep Learning Model . 29
4.7.4 Backend APIs . 29
4.7.5 Database . 30

4.8 Design Process . 31
4.9 Physical Design . 32
4.10 System Flow . 33
4.11 Activity Diagram . 34
4.12 Entity Relationship Diagram . 35
4.13 Sequence Diagram . 36
4.14 Conceptual Design . 36

5 System Implementation 38
5.1 System architecture . 38
5.2 Tools and Technologies . 38
5.3 Libraries . 39
5.4 Development Environment/Languages Used 39
5.5 Processing Logic/Algorithms . 40

6 System Testing and Evaluation 41
6.1 GUI . 41
6.2 Software Performance Testing . 42

6.2.1 Unit testing . 42
6.2.2 Integration Testing . 42

6.3 Testing Cases . 43
6.3.1 Test Case 1: Login . 43
6.3.2 Test Case 2: Product Search . 43
6.3.3 Test Case 3: Product Suggestion 44
6.3.4 Test Case 4: Other support . 44

6.4 Selection between model . 44
6.5 Feedforward Neural Network . 45

7 Conclusions 46
7.0.1 Future works . 46

8 References 48

List of Figures

3.1 Usecase Diagram . 16
3.2 Login Usecase Diagram . 17
3.3 Search Usecase Diagram . 18
3.4 Recommend Usecase Diagram . 19
3.5 Other Usecase Diagram . 20

4.1 Design Methodology . 28
4.2 Overview of System Architecture . 30
4.3 Design Process . 31
4.4 Physical Design . 32
4.5 System Flow . 33
4.6 Activity Diagram . 34
4.7 ERD Diagram . 35
4.8 Sequence Diagram . 36
4.9 conceptual design . 37

6.1 GUI Design . 41
6.2 Model testing . 42
6.3 Performance testing Graph . 45

v

List of Tables

3.1 Comparison of Chatbot Providers . 13
3.2 Login . 17
3.3 Product Search . 18
3.4 Product Recommendation . 19
3.5 Other Support . 20

6.1 Login Testcase . 43
6.2 Product Search Testcase . 43
6.3 Product Suggestion Testcase . 44
6.4 Other searches Testcase . 44

vi

Acronyms and Abbreviations

ML Machine Learning
DL Deep Learning
TF TensorFlow
NLP Natural Language Processing
NLU Natural Language Understanding
IOT Internet of Things
VM Virtual Machine

vii

Acknowledgments

Firstly of all, Thanks to Almighty ALLAH, Our supervisor, Dr. Muhammad Asfand-E-Yar,
Sr. Assistant Professor at the Department of Computer Science, Bahria University Islam-
abad. Our utmost regard also goes to our parents, families, friends for their cooperation,
encouragement and constructive suggestions for the project completion from the beginning
till the end. We would also like to thank our courses teachers who taught us during the
degree because, without their contribution, this project would not have been achievable.

Inshirah Nasir
Umama Umran
Islamabad, Pakistan

2023

1

Abstract

Since chatbots were first developed in the 1960s, a lot has changed, and recent develop-
ments in Machine Learning and Natural Language Processing technology have greatly
enhanced both their usability and adoption. These sophisticated computer programmes can
simulate human speech and can communicate with users verbally or in writing. In a number
of industries, including e-commerce, healthcare, finance, and customer service, they have
shown to be a significant tool. Chatbots are an essential tool for organisations in the digital
age because they automate time-consuming jobs, offer 24/7 customer care, and boost user
engagement. The growth of e-commerce enterprises, however, might be hampered by
inadequate customer assistance and linguistic difficulties, particularly in nations where the
majority of the populace speaks a language other than English. E-commerce is a quickly
expanding sector in Pakistan, and more businesses are going online to access a larger
market. However, the growth of e-commerce enterprises in the nation may be hampered
by inadequate customer assistance and linguistic difficulties. The creation of a Roman
Urdu chatbot for e-commerce websites is crucial in this situation. Roman Urdu is a widely
spoken and understood language in Pakistan, and having a chatbot that can converse in
it can improve user interaction and boost client loyalty. Roman Urdu is written in both
Urdu and English, making it difficult to create a chatbot that can understand it. Though it
is now possible to create chatbots that can comprehend and reply to Roman Urdu queries
because to recent developments in deep learning and NLP technologies. In this project, we
developed a Roman Urdu chatbot for e-commerce websites using a Feed Forward Neural
Network model and Flask framework. The chatbot was trained on a large dataset of Roman
Urdu queries and responses using TensorFlow, Keras, and other major Python libraries. We
used transfer learning to fine-tune a pre-trained model for our task, as transfer learning has
shown promising results in NLP tasks. The chatbot’s architecture was designed to handle
queries and provide fast responses to users. The chatbot performed admirably, obtaining
over 90% accuracy on our test set. In order to test and enhance the chatbot continuously,
we also integrated it with e-commerce websites. HTML, CSS, and JavaScript were used to
create the chatbot’s GUI design, which offers a simple interface for users to communicate
with the chatbot. The design of the chatbot could be expanded in the future to include
more capabilities like sentiment analysis, entity recognition, and summarization. These

2

Abstract 3

features can enhance the chatbot’s functionality and give users more value. The chatbot’s
performance can be improved by collecting more data to train it further, as more data
can help it better understand the intricacies of the language. Roman Urdu chatbots for
e-commerce websites have the power to revolutionise customer service in Pakistan by
addressing the linguistic difficulties that hinder e-commerce companies.

Chapter 1

Introduction

1.1 Introduction

In recent years, the e-commerce industry has expanded significantly. Businesses are
working to enhance the customer experience as a result of the growing usage of digital
technology in order to stay competitive. Chatbots are one such technology that is gaining
popularity. Chatbots are computer programs that converse with people using natural
language processing (NLP)[1]. They can automate repetitive processes and answer to
consumer inquiries, making it possible to communicate with customers in a useful and
efficient way. In a number of industries, including e-commerce, healthcare, banking,
and customer service, among others, chatbots have shown to be a useful tool. They
boost user engagement, automate time-consuming processes, and offer 24/7 customer
assistance. Chatbots can handle orders, make customised product recommendations, and
offer assistance when there are problems with payments or deliveries in the e-commerce
industry. According to a survey by Grand View Research, the global chatbot industry is
projected to grow at a CAGR of 24.3% from 2019 to 2024, reaching USD 9.4 billion. As
more companies use chatbots to interact with customers, it is crucial to think about the
language in which they are created. Chatbots that can meet clients’ linguistic needs are
crucial in a country like Pakistan where many different languages are spoken[1]. Roman
Urdu is one of these languages that is widely spoken in Pakistan. In informal settings like
text messaging and social networking, it blends features of the Urdu language and Roman
script. However, the growth of e-commerce enterprises in the nation may be hampered by
a lack of appropriate customer assistance and linguistic obstacles. Consequently, a Roman
Urdu chatbot is required for e-commerce websites. By offering a linguistic interface that
clients are accustomed to, the Roman Urdu chatbot project for the e-commerce sector
hopes to improve the customer experience. The project also intends to create a chatbot

4

1.2 Problem Description 5

that can effectively respond to client inquiries and requests in Roman Urdu. Businesses
can strengthen their online reputation, develop client loyalty, and boost their brand image
by implementing a chatbot that can converse in Roman Urdu. The absence of sufficient
data sets to train the model is one of the difficulties in developing a chatbot that can
converse in Roman Urdu. By gathering a significant amount of Roman Urdu data and
utilising it to train the chatbot, this problem can be solved. Furthermore, it is crucial
to create a chatbot that can manage a high amount of requests and give users prompt
responses[1]. Convolutional Neural Network (CNN) models and Flask frameworks can
be used to accomplish this. It’s vital to understand that, while developing a Roman Urdu
chatbot for the e-commerce industry is an exciting and promising endeavour, it’s just the
beginning of a long journey towards improved customer engagement and service. The
chatbot will need to continuously develop and get better in order to react to changing client
and industry needs. Businesses that invest in the development and growth of a Roman
Urdu chatbot can give their customers a more tailored, efficient, and practical experience.

1.2 Problem Description

For organizations functioning in a multicultural and multilingual country like Pakistan,
language limitations can frequently be a serious obstacle. As more businesses venture
online to reach a larger audience, the e-commerce sector in Pakistan is growing quickly.
However, the growth of e-commerce enterprises in the nation may be hampered by a lack
of appropriate customer assistance and linguistic obstacles. Building a solid relationship
between businesses and their clients depends heavily on communication[3]. Offering
consumers a customized experience based on their requirements, preferences, and comfort
level is crucial. In nations like Pakistan where several languages are spoken, language
limitations might be a substantial obstacle to accomplishing this goal. Roman Urdu is a
frequently spoken language in Pakistan, especially in casual settings like text messaging
and social networking. There aren’t many chatbots that can converse in Roman Urdu,
though. For e-commerce businesses to meet the linguistic requirements of Urdu-speaking
customers in Pakistan, Roman Urdu chatbots are a necessity. Businesses can improve
their online reputation, increase client loyalty, and boost their brand image by offering
a chatbot that can communicate in Roman Urdu. Roman Urdu chatbots can automate
time-consuming chores, offer 24/7 customer support, and boost user interaction, all of
which raise customer satisfaction and boost sales[3]. A fascinating project that has the
potential to revolutionize customer service in Pakistan is the development of a Roman
Urdu chatbot for the e-commerce sector. Businesses can offer a more individualized and
efficient customer experience by offering a chatbot that can comprehend and reply to client
inquiries in Roman Urdu. This can therefore result in greater client retention, more revenue,
and a competitive edge over other national e-commerce companies. Therefore, creating a

Introduction 6

Roman Urdu chatbot for the Pakistani e-commerce sector is a crucial step towards offering
a more approachable and effective customer service system that satisfies clients’ linguistic
needs.

1.3 Project Objectives

By offering a linguistic interface that clients are accustomed to, the Roman Urdu chatbot
project for the e-commerce sector seeks to improve the customer experience. The goal
of the project is to create a chatbot that can effectively manage requests and inquiries in
Roman Urdu. The project hopes to accomplish this by reducing the workload of customer
care agents and giving customers a more efficient and personalized experience. The project
moreover attempts to get into the enormous Urdu-speaking market by providing a Roman
Urdu chatbot that companies can employ to grow their clientele, boost their revenue, and
outperform rivals. Businesses can strengthen their online reputation, develop client loyalty,
and boost their brand image by implementing a chatbot that can converse in Roman Urdu.
The initiative also intends to accomplish the following goals:
1. Create a chatbot that can accurately and quickly comprehend client inquiries and re-
quests in Roman Urdu.
2. To address client inquiries, train the chatbot using cutting-edge machine learning algo-
rithms and natural language processing methods.
3. Test the chatbot’s precision, and efficiency in responding to client inquiries and requests
in Roman Urdu.

1.4 Project Scope

The Roman Urdu chatbot project for the e-commerce industry seeks to give customers
an effective and individualized experience by lightening the strain on customer service
representatives. These specifics about the project scope are possible:
1. Language: The chatbot will be programmed to understand Roman Urdu and reply to
customer questions and requests. Roman Urdu is a language that is widely spoken in
Pakistan and is also used as a writing system for the Urdu language there. Roman Urdu,
which is widely spoken, will make it possible for the chatbot to interact effectively with
the majority of Pakistanis who may not be familiar with the English language.
2. Functionality: To comprehend and efficiently respond to a variety of consumer inquiries
and demands, the chatbot will be outfitted with cutting-edge machine learning algorithms
and natural language processing methods. These methods will allow the chatbot to
comprehend the meaning behind the phrases and give them appropriate responses that are
pertinent to their needs.[2]

1.4 Project Scope 7

3. Testing: To assure the chatbot’s correctness, efficiency, and efficacy in responding to
customer questions and requests in Roman Urdu, a thorough testing method will be used.
Before the chatbot is released, testing in various scenarios will be done to find any potential
problems and fix them.[2]
Overall, The idea of creating a Roman Urdu chatbot for the Pakistani e-commerce sector is
introduced in Chapter 1. The importance of chatbots in increasing the customer experience
and satisfying language requirements in a heterogeneous and multilingual nation like
Pakistan is emphasised in this chapter. It draws attention to the expanding e-commerce
market and the potential of chatbots to streamline procedures, offer round-the-clock
customer service, and increase user engagement. The problem description section discusses
the language barriers that organisations must overcome as well as the inadequate customer
support that results from these barriers. Roman Urdu chatbots are required to meet the
linguistic needs of Urdu-speaking clients in Pakistan, and the necessity of communication
in forging close relationships with customers is emphasized. The project’s goals are
outlined in the chapter, which also includes developing a chatbot that is proficient in
handling requests and inquiries in Roman Urdu, teaching the chatbot using machine
learning algorithms and natural language processing techniques, and evaluating its efficacy
and accuracy in handling customer inquiries. The project’s scope has been established, with
an emphasis on the language (Roman Urdu), functionality (understanding and responding
to consumer enquiries), and testing to verify the accuracy and efficiency of the chatbot.

Chapter 2

Literature Review

Due to their capacity for speedy and individualized client care, chatbots have grown
in significance in the e-commerce industry. For the purpose of comprehending and
responding to client questions and requests, these computer programs employ machine
learning and natural language processing techniques. They are a popular option for e-
commerce businesses because they are accessible 24/7 and have the capacity to manage
numerous questions and demands at once. Chatbots have already been used by a number
of e-commerce businesses in Pakistan, including Daraz and AliExpress. Customers may
ask inquiries and receive prompt answers using the chatbot function on Daraz, one of the
biggest e-commerce sites in the nation. A chatbot is also used by international e-commerce
company AliExpress to help clients with their questions.[5]

2.1 Daraz Chatbot

The biggest online marketplace in Pakistan is Daraz, and it has a chatbot in place to help and
support clients. The Daraz chatbot uses natural language processing and machine learning
algorithms to interpret and respond to client inquiries correctly and quickly. The fact that
this chatbot only supports the English language, however, is one of its main shortcomings
and presents a problem for users who are not fluent in English. This can result in a bad
consumer experience, which would result in lost sales and abandoned shopping carts.
A Roman Urdu chatbot for the e-commerce industry can be created to get through this
language barrier, allowing clients to communicate with the chatbot in a language they are
comfortable with. In Pakistan, Roman Urdu is a commonly spoken language, thus giving
customers the choice to speak in their own tongue can enhance their buying experience
overall and boost customer loyalty. Advanced machine learning algorithms and NLP
techniques can be used to create a Roman Urdu chatbot for the e-commerce industry that

8

2.2 Ali Express Chatbot 9

can comprehend and reply to consumer enquiries and requests with accuracy. To increase
accuracy and productivity, the chatbot can be trained on a sizable dataset of Roman Urdu
talks[5]. In order to give customers a seamless buying experience, the chatbot can also be
linked into the existing platforms utilised by e-commerce businesses, such as websites and
social media.

2.2 Ali Express Chatbot

One of the biggest e-commerce sites in the world, Ali Express offers customers a huge
selection of goods and services. The Ali Express chatbot can understand and reply to
client enquiries and requests in a variety of languages using NLP and machine learning
techniques. Customers can use the chatbot to track their orders, get product details, and
get assistance with customer support issues. The Ali Express chatbot may have trouble
understanding complex inquiries or requests, which could aggravate customers and provide
for a bad buying experience. The Roman Urdu chatbot for e-commerce can use cutting-
edge machine learning algorithms and NLP techniques to better understand and respond to
consumer enquiries and requests in order to solve this problem. Language hurdles can be
solved in the e-commerce industry by offering clients a chatbot that is proficient in Roman
Urdu, which would result in a more tailored and efficient customer experience. The chatbot
can increase customer happiness and assist businesses in gaining a competitive edge in the
rapidly expanding e-commerce market in Pakistan by precisely and swiftly comprehending
client enquiries and demands in Roman Urdu. The Roman Urdu chatbot can also provide a
more individualised and effective customer experience by lightening the strain on customer
service professionals [5]. The chatbot can free up customer service representatives to
handle more complicated and high-level customer service issues by having the capacity to
handle several enquiries and requests at once. For e-commerce enterprises, this might lead
to a more effective and economical customer care operation, which would eventually boost
client loyalty and revenue.

2.3 Amazon Chatbot

The popular AI chatbot Alexa from Amazon enables users to engage with the Amazon
platform by speaking commands. Using cutting-edge machine learning techniques and
natural language processing, Alexa can respond to a variety of client enquiries, including
those regarding product information, order tracking, and customer service. The chatbot has
streamlined the buying process for Amazon customers by providing prompt and accurate
answers to their questions. However, some users may find it difficult to navigate Alexa’s
different capabilities and functionalities, which can lead to confusion and frustration. Cus-
tomers might also have trouble finding all of Alexa’s features, including as voice-activated

Literature Review 10

music playback and connectivity with smart homes. This may result in a worse than ideal
consumer experience, which can prompt people to remove items from their shopping
carts. The Roman Urdu chatbot for e-commerce can offer clients a more user-friendly
interface that is suited to their interests in order to solve this problem. The chatbot can
swiftly comprehend and answer to client inquiries by utilising NLP and machine learning
algorithms. It can also help customers navigate the many features and functionalities of the
e-commerce site. Customers may be able to find new products thanks to this, get customer
care more quickly, and ultimately have a better platform buying experience.
In light of the evaluation, it is important to emphasise that chatbots in the e-commerce
industry can significantly improve customer experiences and increase sales. Chatbots
can raise customer satisfaction and loyalty by giving customers timely, individualised
responses. Chatbots can also respond to a number of enquiries and requests simultaneously,
freeing up human resources and speeding up response times. The ability of chatbots to
understand and effectively reply to customer inquiries is crucial to their success [5]. In
order for chatbots to effectively understand the intricacies of human language and un-
derstand requests, it is essential to incorporate cutting-edge NLP and machine learning
algorithms. Roman Urdu chatbots for e-commerce have the potential to be an effective
tool for enhancing customer experiences and increase sales. The Roman Urdu chatbot can
offer clients a streamlined and individualized interface by solving the linguistic obstacles
and challenges that current chatbot systems encounter and applying powerful NLP and
machine learning techniques. Increased consumer happiness, brand loyalty, and sales may
result from this, and it will also free up human resources for more difficult jobs.

The usage of chatbots in the e-commerce sector is thoroughly reviewed in this Chap-
ter with an emphasis on companies like Daraz, Ali Express, and Amazon. The evaluation
emphasizes how chatbots may improve customer service, offer round-the-clock assistance,
and handle numerous inquiries at once. The usefulness of current chatbots may be ham-
pered by linguistic restrictions and the challenges of comprehending complex questions.
In order to overcome linguistic hurdles and provide a customized client experience, the
evaluation emphasizes the need for Roman Urdu chatbots in the Pakistani e-commerce
industry. Roman Urdu chatbots can properly understand and answer client inquiries by
utilizing cutting-edge machine learning algorithms and natural language processing tech-
niques. Daraz, Ali Express, and Amazon are used as examples to show how chatbots
may increase consumer pleasure, brand loyalty, and overall revenue. The literature study
emphasises the significance of utilising cutting-edge NLP and machine learning algorithms
for creating chatbots that can comprehend the subtleties of human language. Roman Urdu
chatbots have the potential to improve the e-commerce sector’s consumer experiences, free
up human resources, and overcome linguistic challenges.

Chapter 3

Requirement Specifications

The prerequisites for creating the Roman Urdu chatbot for the e-commerce sector are
described in the chapter on required specifications. The dataset needed for the construction
of the chatbot is covered in this chapter along with a survey of current chatbot systems and
a discussion of current problems.

3.1 Existing Systems

For e-commerce companies, chatbots are becoming more and more crucial since they give
clients speedy and individualised service. However, there are several problems with the
e-commerce industry’s current chatbot systems that could harm user experiences. The
incapacity of current chatbots to comprehend and respond to client enquiries in regional
languages is one of the biggest issues. Due to their inability to successfully connect with
the chatbot, clients may have a negative customer experience as a result of this language
barrier. For instance, a consumer who speaks Roman Urdu might not be able to get
information from a chatbot that only speaks English.
The incapacity of current chatbots to understand intricate inquiries or requests is another
drawback. Customers may become irritated by this restriction and have unpleasant ex-
periences. For instance, a chatbot might not be able to answer a consumer who inquires
about the availability of a given product in a particular area. This can be particularly
challenging for global e-commerce companies because various clients may have different
needs and expectations depending on where they are.[6] E-commerce companies must use
cutting-edge NLP and machine learning algorithms when developing chatbot systems to
solve these problems. Even in regional languages, these algorithms can aid chatbots in
comprehending and responding to client enquiries. One such example is the Roman Urdu
chatbot for the e-commerce industry, which is created to provide clients with a linguistic

11

Requirement Specifications 12

interface they are accustomed to. The chatbot can then overcome the language barrier and
give clients more individualised experiences. In addition, the Roman Urdu chatbot uses
powerful NLP and machine learning algorithms to recognise and respond to complicated
consumer demands. The chatbot can learn and develop its responses over time by examin-
ing patterns in consumer queries. client satisfaction rises as a result of this enhanced client
experience. Although the e-commerce industry’s current chatbot systems give customers
speedy and customised experiences, they have significant drawbacks that may detract from
such experiences. E-commerce companies may build chatbot systems that are better able
to comprehend and respond to client enquiries, even in regional languages, by utilising
cutting-edge NLP and machine learning algorithms. An great illustration of how these
technologies may be utilised to give clients more individualised experiences and raise
customer happiness is the Roman Urdu chatbot for the e-commerce industry.[6]

3.2 Current Issues

The Roman Urdu chatbot needs to be built to handle a range of client inquiries and requests
reliably and effectively in order to overcome the challenges currently plaguing existing
chatbots in the e-commerce sector. The following are some of the major concerns that
must be resolved in the creation of the Roman Urdu chatbot.[7]

3.2.1 Language Barrier

The incapacity of current chatbots in the e-commerce industry to understand and reply to
customer enquiries in regional languages is one of their key problems. For clients who want
to converse in a language other than English, this language barrier might be frustrating. An
English-only chatbot, for instance, could be unable to give a customer who speaks Roman
Urdu the information they require. To get over this problem, a Roman Urdu chatbot must
be created that can comprehend and give prompt, accurate client responses in Roman Urdu
[7]. Customers will benefit from a more effective and personalised experience as a result.

3.2.2 Queries

Existing chatbots’ inability to answer complex questions and give accurate, fast responses is
another big problem. Customers who need precise information about a good or service may
become frustrated as a result. The Roman Urdu chatbot needs to be built to comprehend
complex questions and give correct, prompt answers in order to overcome this difficulty.
Customers’ overall experience will be enhanced as a result of making it simpler and quicker
for them to access the information they require.

3.2 Current Issues 13

3.2.3 Integration

The chatbot needs to be made to work in tandem with current e-commerce platforms,
like order management and inventory control systems. Customers will benefit from a
more efficient and seamless online purchasing experience as a result [8]. The chatbot can
give clients more precise and current information about product availability and delivery
timeframes by interacting with existing systems.

3.2.4 Existing Chatbot comparison

To enable the reader to compare and contrast the various chatbots accessible for e-
commerce enterprises in Pakistan, a comparison study of some of the available chatbots
that may be compared for the e-commerce industry is required. This will enable businesses
to decide which chatbot to use based on aspects like features, cost, and usability. Busi-
nesses may improve the client experience by making sure they are utilising the best chatbot
for their needs by carrying out a comparison research [5]

Chatbot Features Pricing Use Case Scenario

Chatfuel Visual builder, customizable tem-
plates, integrations with popular
apps, free plan available

Starts at
$15/month

Customer support: Chatfuel can
be used to provide customer
support 24/7. It can answer cus-
tomer questions about products,
shipping, and returns. It can
also help customers with trou-
bleshooting problems.

ManyChat Visual builder, customizable tem-
plates, integrations with popular
apps, free plan available

Starts at
$10/month

Sales and marketing: ManyChat
can be used to generate leads
and close sales. It can also be
used to promote products and
services.

Chattypeople AI-powered chatbot, natural lan-
guage processing, integrations with
popular apps, free plan available

Starts at
$19/month

Product discovery: Chattype-
ople can be used to help cus-
tomers discover new products
and services. It can also provide
product recommendations based
on customer interests.

Drift AI-powered chatbot, natural lan-
guage processing, integrations with
popular apps, free plan available

Starts at
$50/month

Order tracking: Drift can be
used to track orders and provide
updates to customers. It can
also be used to resolve shipping
and delivery issues.

Zendesk Chat AI-powered chatbot, natural lan-
guage processing, integrations with
popular apps, free plan available

Starts at
$19/month

Returns and refunds: Zendesk
Chat can be used to process re-
turns and refunds. It can also
provide customers with informa-
tion about the return process.

IBM Watson As-
sistant

Natural language processing, ma-
chine learning, and artificial intelli-
gence

Free to $100,000
per month

Customer service, sales, market-
ing, and support

Table 3.1: Comparison of Chatbot Providers

Requirement Specifications 14

3.3 Dataset

Roman Urdu phrases and sentences must be thoroughly compiled in order to build a
chatbot that can understand and reply to consumer questions in Roman Urdu. A wide range
of e-commerce-related issues, customer assistance, and other frequently asked questions,
should be covered by the dataset, which should be sufficiently large. To guarantee that
the chatbot can effectively interpret and reply to customer enquiries, the dataset must also
include a variety of grammatical structures and idioms. The creation of a dataset involves
gathering data from various sources, such as social media platforms, customer support
interactions, and other online forums. In order to guarantee accuracy and consistency, the
data must subsequently be cleaned, processed, and labelled. The chatbot must be educated
on high-quality data that appropriately represents the language and issues pertinent to the
e-commerce sector, which can be a time-consuming and labor-intensive procedure. Once
the dataset has been produced, machine learning methods are utilised to train the chatbot
[4]. The chatbot is designed to learn from the information and develop its capacity to
understand and address customer enquiries in Roman Urdu. Iterative data ingestion, model
creation, and evaluation are all part of the training process to make sure the chatbot is
always becoming better and giving customers high-quality responses [4]. A large dataset
of e-commerce-related words and sentences is needed in order to build a chatbot that can
understand and reply to client questions in Roman Urdu. Data must be cleaned, processed,
and labelled to ensure correctness and consistency, and the dataset must be sizable enough
to cover a variety of topics and linguistic idioms. Once the dataset has been produced,
machine learning methods are utilised to train the chatbot to better comprehend and address
client enquiries.

3.4 Application Requirements

How well the Roman Urdu chatbot can serve users in the e-commerce industry will depend
on the application requirements. Non-functional requirements are significant because they
specify the performance expectations for the chatbot in terms of security, dependability,
and other aspects that are not immediately related to its core activities. For instance, the
chatbot needs to have strong security measures in place to protect users’ private data and
guarantee that it cannot be accessed by unauthorised individuals. In order for people to
have access to it whenever they need it, it must also have high availability. The chatbot
must be able to efficiently handle a high amount of customer requests and provide fast
service. On the other hand, functional requirements outline the precise features and
functions that the chatbot must carry out to satisfy user wants. For instance, the chatbot
needs to comprehend Roman Urdu questions and provide the right answers. Additionally,
it must give customers accurate and pertinent information on the goods, services, and

3.4 Application Requirements 15

other features of e-commerce.[7] The chatbot should also be able to assist consumers with
several aspects of online shopping, including placing orders, following up on deliveries,
and completing payments. The Roman Urdu chatbot can provide users with a seamless
and satisfying online shopping experience by fulfilling these functional and non-functional
requirements.

3.4.1 Functional Requirements

Functional requirements are specified using a use case models below, in which we detail
the main scenario for each one of the following.
i) User account management: The application will ask the user to enter your desire user
name and password and user will created.
ii) Recommendation: The application will show the recommendation options based on
the user queries
iii) Customer Support: The application will provide customer support to the users to get
assistance with their queries
iv) Feedback and Reviews: The application will provide the option to user to give reviews
on products and our services.

3.4.2 Non Functional Requirements

i) Performance: There should be no noticeable delays or outages when handling user
requests and enquiries by the chatbot. It must be built to handle and function swiftly and
effectively.
ii) Scalability: The chatbot needs to be scalable in order to handle growing system de-
mands. This indicates that it ought to be able to manage increasing traffic and continue to
function normally even during periods of high usage.
iii) Availability: The chatbot must be accessible to users around-the-clock because users
may need assistance after typical work hours. Additionally, it must be able to respond to
several users’ requests and enquiries at once.[2]
iv) Reliability: The chatbot must be dependable and respond to user enquiries in a consis-
tent, correct manner. Additionally, the chatbot must be able to bounce back from mistakes
or system faults without interfering with the user experience.[2]
v) Usability: The chatbot should be simple to use and navigate, with answers to user
questions that are succinct and straightforward. Additionally, it should be made to accom-
modate customers who might not be tech-savvy and offer detailed instructions on how to
utilise the system.

Requirement Specifications 16

3.5 Functional Requirements Cases Models

Below are seven cases which include: User account management, Product search and
recommendation, Order management, Customer support.

3.5.1 Use cases Diagram

the overall use case diagram is below are present and descriptions are in the above tables.
The use case diagram for involves several essential components. login feature, which allows
users to access the system and start a conversation with the chatbot. The next use case is
the verification of user details, which ensures that the chatbot provides recommendations
and offers to the user. The query use case involves the user asking questions or making
requests to the chatbot, which then processes the input and provides a suitable response.

Figure 3.1: Usecase Diagram

3.5 Functional Requirements Cases Models 17

3.5.2 Use case 1: Login

This is the first user case in which user will login chatbot. Application will ask the user to
enter your desire email and user will created.

Test Case 1 Login

Actor User

Description User logs into the system and system will access their account information.

Pre-Conditions User will have a registered account.

Post-Conditions User gains access to their account.

Table 3.2: Login

Figure 3.2: Login Usecase Diagram

Requirement Specifications 18

3.5.3 Test case 2: Product Search

The user will enter the desired searches for products to get their information in a structured
way.

Use Case 2 Product Search

Actor User

Description User searches for a product using keywords.

Pre-Conditions User must be logged into their account.

Post-Conditions User is presented with relevant products matching their search criteria.

Table 3.3: Product Search

Figure 3.3: Search Usecase Diagram

3.5 Functional Requirements Cases Models 19

3.5.4 Test case 3: Product Recommendation

The application will show the recommendation options based on the user’s queries.

Test Case 4 Product Recommendation

Actor User

Description User is presented with product recommendations based on their queries request.

Pre-Conditions User must have valid queries

Post-Conditions User is presented with a list of product recommendations that are relevant to their queries request.

Table 3.4: Product Recommendation

Figure 3.4: Recommend Usecase Diagram

Requirement Specifications 20

3.5.5 Use case 4: Other Support

The application will provide other support to the users to get assistance with their queries

Use Case 4 Other Support

Actor User

Description User seeks assistance from the chatbot for other queries related to the product.

Pre-Conditions User must be logged into their account.

Post-Conditions User receives support and resolution for their issue.

Table 3.5: Other Support

Figure 3.5: Other Usecase Diagram

The necessary guidelines for developing a Roman Urdu chatbot for the e-commerce
industry are covered in this Chapter. The chapter opens by outlining the issues currently
with chatbot systems used in the e-commerce sector, such as their inability to compre-
hend regional languages and answer intricate questions. It highlights the necessity for
cutting-edge Machine Learning and Natural Language Processing technologies to solve
these problems. The chapter then discusses the present problems with chatbots in the
e-commerce industry, such as the necessity for a comparison study of available chatbots,
the difficulty in answering complicated inquiries, integration with existing platforms, and
the language barrier. It emphasises how crucial it is to create a Roman Urdu chatbot
that can efficiently respond to customer questions and demands. Data collection from

3.5 Functional Requirements Cases Models 21

various sources, cleaning, processing, and labeling are necessary to ensure accuracy and
consistency. Machine learning algorithms are then applied to train the chatbot using this
dataset, Last but not least, the chapter presents functional requirements in the form of use
case models for managing user accounts, ordering, managing orders, providing customer
service, and receiving comments and reviews. The exact features and tasks the chatbot
must carry out to satisfy user needs are described in these use cases.

Chapter 4

Design

4.1 Proposed DL Model

Feedforward Neural Networks (FNNs) are a subclass of deep learning neural network
design that have excelled in numerous natural language processing (NLP) applications.
Because they can learn hierarchical representations of input data using a series of forward
and pooling layers, FNNs are particularly well-suited to text classification and sentiment
analysis applications. We will use a FNN model for our Roman Urdu chatbot that represents
the incoming text data using word embeddings. With word embeddings, which are a type
of vectorization, each word in a corpus of texts is represented as a high-dimensional vector
that captures its semantic meaning and contextual interactions with other words in the
corpus. As a result, the FNN model can accurately identify the input text data by extracting
useful features from it.[1] An input layer, numerous forward layers, pooling layers, and
fully connected layers are just a few of the layers that make up the FNN model that we
suggest. The forward layers are applied after the input layer receives the word embeddings
that represent the input text data. By applying a series of filters to the input text data
and creating feature maps, the forward layers will learn to recognise features in the text
data. The feature maps will be downscaled by the pooling layers, resulting in a reduction
in the dimensionality of the data and enabling more effective processing. The incoming
text data will eventually be divided into several categories by the fully connected layers.
We will use TensorFlow and Keras, two Python libraries, to put our FNN model into
practise. While TensorFlow offers a strong and adaptable framework for developing and
optimising machine learning models, Keras is a high-level API that streamlines the process
of generating and training deep learning models. These technologies will enable us to
develop a Roman Urdu chatbot that is precise and successful at responding to a variety of
consumer demands in the e-commerce industry.[8]

22

4.2 Data Collection 23

4.2 Data Collection

Any machine learning model, including the one we used to create our Roman Urdu chatbot,
must go through a critical data collection stage. We will require a sizable and varied
collection of Roman Urdu text messages in order to build the chatbot. We will have to
compile and annotate our own dataset because there isn’t much publically available labelled
Roman Urdu data. We intend to gather information from a range of online sources, such as
social media, forums, and online marketplaces. We will use online scraping techniques,
such as Python packages like BeautifulSoup and Scrapy, to scrape data from the web, in
order to collect data. Natural language processing (NLP) techniques will need to be used
to preprocess the data after it has been collected [4]. Tokenization, stop-word elimination,
stemming, and lemmatization are a few examples of the activities that will be involved.
Stop-word removal entails getting rid of frequent terms like "the" and "a," tokenization
involves breaking the text up into individual words or phrases, and so on. Lemmatization
and stemming both entail organising a word’s various inflected forms into a single unit. For
our machine learning model to perform more accurately and efficiently, these preprocessing
procedures are essential. Additionally, data annotation will be required to guarantee that
our dataset is accurately labelled. The data is manually labelled in this annotation process
to show its category, such as product information or customer support [4]. Our machine
learning model is then trained using this labelled data, enabling it to correctly categorise
and react to user inquiries. Overall, gathering and preprocessing data is a crucial step in
creating a machine learning model that would work well for our Roman Urdu chatbot.

4.3 Preprocessing

Any natural language processing (NLP) model, including our Roman Urdu chatbot for
e-commerce, must go through a preprocessing phase. Preprocessing is used to convert
raw text input into a form that machine learning algorithms can easily comprehend. This
entails a number of additional procedures that are crucial for organising and cleaning up
the input text [9].

4.3.1 Tokenization

The technique of tokenizing involves separating a sentence or a paragraph into its individual
words or tokens. As an illustration, the phrase "Mujhe ek din yaad hai" can be tokenized
into the terms "Mujhe," "ek," "din," "yaad," and "hai." This is a crucial stage in the natural
language processing process since it prepares the content for machine learning algorithms
to deal with.[9]

Design 24

4.3.2 Stop Word Removal

Stop words, like "aur," "ki," "mein," and "se," are often used yet meaningless words. To
increase the precision of our machine learning algorithms, we would eliminate these stop
words from the input text in our Roman Urdu chatbot. For instance, the stop word "aur"
would be removed from the phrase "Maine kal ek dress khareedi" to produce the phrase
"Maine kal ek dress khareedi".[9]

4.3.3 Stemming

Words are shortened to their stem, or root form, by the process of stemming. For instance,
with our chatbot, the phrases "khareedna," "khareedi," and "khareedo" would all be reduced
to their root, "khareed." As a result, the complexity of the input text is decreased and
comparable terms are grouped together.[9]

4.3.4 Normalization

Normalization involves converting all the text to a standard format by making all the
characters lowercase and removing any non-alphanumeric characters. For example, the
sentence "Kal maine DRESS khareedi!" would be normalized to "kal maine dress kha-
reedi".

4.3.5 Cleaning

Cleaning involves getting rid of any extraneous characters or background noise in the input
text. This could include punctuation marks, HTML tags, or any other special characters.
For example, the sentence "Maine dress khareedi!" would be cleaned to "Maine dress
khareedi".

4.4 Model Training

The preprocessed data is supplied into the feedforward neural network (FNN) model, which
was developed for our Roman Urdu chatbot for e-commerce, during the model training
phase. In order to improve the model’s performance, this stage comprises changing its
parameters, including learning rate, epochs, batch size, and optimizer.[5] By continuously
feeding the preprocessed data into the model and changing the parameters until the model
can reliably categorize the incoming data, the primary goal of model training is to increase
the model’s accuracy. It is crucial to monitor the model’s performance during the model
training phase using different assessment measures, such as accuracy, precision, recall, and
F1 score, to ascertain how well the model is working. These metrics give information on
the model’s effectiveness and can be utilized to increase the model’s accuracy. Furthermore,

4.4 Model Training 25

overfitting can be avoided and the performance of the model can be enhanced by using
early stopping, a regularisation strategy. The machine learning model’s accuracy and
practical usefulness are both determined during the training phase, which is a crucial step
in the process. To ensure that the model can correctly categorise and respond to input
text data in the Roman Urdu language for our e-commerce chatbot, it is crucial to spend
enough effort and resources to this phase.

4.4.1 Model Architecture

The architecture of a machine learning model plays a crucial role in determining its
performance. In the case of our Roman Urdu chatbot for e-commerce, we chose to use a
Feedforward Neural Network (FNN) model. However, FNNs can also be used for natural
language processing tasks, such as text classification.
forward layers are followed by max-pooling layers, a flattened layer, a dense output layer,
and a dropout layer in our FNN model. Max-pooling layers aid in reducing the size of the
feature maps produced by the forward layers whereas forward layers enable the model
to extract significant features from the input text data. The output of the max-pooling
layers is flattened into a single vector and then fed through a dense layer with ReLU
activation to extract and manipulate the pertinent features further. The dropout layer is then
employed to stop overfitting, which can happen when the model gets too complicated and
starts to closely resemble the training set of data. Our FNN model’s output layer features
softmax activation, with the number of classes matching the number of dataset intents.[10]
The class with the highest probability is selected as the projected intent of the input text
thanks to softmax activation, which guarantees that the output of the model is a probability
distribution over the potential classes.
Due to its simplicity and flexibility, we built our FNN model using the TensorFlow Keras
API. The preprocessed dataset was used to train the model, and during the training process,
the model’s parameters were changed to improve performance. The model was tested
on a different dataset after training to determine its accuracy and make sure it wasn’t
overfitting the training data. In order to efficiently extract and transform pertinent features
from the input text data and deliver accurate predictions of the intent of the user’s inquiries
in our Roman Urdu chatbot for e-commerce, the architecture of our FNN model will be
adopted.[10]

4.4.2 Hyperparameter Selection

Hyperparameters in machine learning are variables that must be defined prior to training
rather than being learned during the process. They have a substantial impact on the model’s
performance, and choosing the appropriate hyperparameters is crucial to getting a reliable
and accurate model. We used the FNN model to categorize user intents for our Roman

Design 26

Urdu chatbot.
The number of filters, which controls how many feature maps are generated by each
forward layer, was the first hyperparameter we chose. Based on actual data and earlier
research in related areas, we selected 64 filters.
The kernel size is another crucial hyperparameter that determines the size of the filter
applied to the input data. A larger kernel size can capture more complex features, but it
also increases the number of parameters and computational cost. We used a kernel size of
3x3, which is a common choice in Neural Network models.
Each neuron’s output from the FNN is given non-linearity through the activation function.
Rectified Linear Units, or ReLUs, are the most widely used activation function because of
how easy and effective they are for training. ReLU was the activation function we went
with for the FNN layers.
Pooling layers are used to downsample the feature maps obtained from the forward layers.
Max pooling is a common pooling technique that selects the maximum value within a
certain region of the feature map. We used max pooling with a pool size of 2x2 to reduce
the dimensionality of the feature maps.
To avoid overfitting, we added a dropout layer after the dense layer. The dropout rate
specifies the probability that a neuron in the layer will be randomly dropped during training.
We set the dropout rate to 0.5, which means that 50% of the neurons in the layer will be
randomly dropped during each training iteration. The learning rate is a hyperparameter that
controls the step size taken during the gradient descent optimization process. We set the
learning rate to 0.001, which is a commonly used value in NN models [10]. we used the
Adam optimizer, which is an adaptive learning rate optimization algorithm that combines
the benefits of two other popular optimization algorithms, Adagrad and RMSprop. Adam
adapts the learning rate for each parameter based on the historical gradient information
and can converge faster than other optimization algorithms.

4.4.3 Training and Evaluation

A crucial element in the creation of a chatbot is model training. In this stage, the model’s
parameters are adjusted to improve performance by including the preprocessed data. Our
chatbot system’s FNN model is made up of dropout layers, a flattening layer, a dense
output layer, numerous forward layers, max-pooling layers, and a few other layers. The
model was developed using TensorFlow’s Keras API.
In the hyperparameter selection stage, we chose the number of filters to be 64, with a
kernel size of 3x3 and ReLU activation function. The model also used max-pooling layers,
with a pool size of 2x2, and a dropout rate of 0.5. The learning rate was set at 0.001, and
we used the Adam optimizer. The hyperparameters were chosen based on experimentation
and best practices in the field of deep learning.

4.5 Design Constraints 27

The dataset used to train the model was divided into training, validation, and testing sets
in the ratio 70:15:15. With a batch size of 32 and a learning rate of 0.001, we employed
the Adam optimizer. To avoid overfitting, the training procedure was run for 50 epochs
while the validation loss and accuracy were tracked. The model with the highest validation
accuracy was chosen as the best one [10]. Accuracy, precision, recall, and F1-score were
some of the evaluation measures used to assess the model’s performance on the testing
set. Our chatbot performed well with an accuracy of 85%, which is an excellent result.
The model training phase of chatbot creation is essential since the model quality has a
significant impact on how effective the AI system will be. The data must be preprocessed,
proper hyperparameters must be selected, and an acceptable model architecture must be
created in order to get the optimum performance. To enhance the model’s performance,
more training, evaluation, and optimisation should be done. We were able to attain an
accuracy of 85% in our chatbot by following these steps, demonstrating the efficacy of our
model training strategy.

4.5 Design Constraints

As far as design restrictions go, a computer running the Windows operating system
and a dependable web browser are needed for the system. Python development tools
like Anaconda, Jupyter Notebook, and PyCharm IDE are required by the development
environment. For effective model training, a high-performance CPU, especially with
a Graphic Processing Card, is advised. Python is the primary programming language
used by the system. These design limitations guarantee the system’s compliance and
functionality with the designated software and development environment, facilitating the
project’s efficient completion.

4.6 Design Methodology

The implementation of a web-based chatbot application involves several critical stages. The
first step is dataset gathering, which involves collecting data relevant to the notable problem
that the educational chatbot aims to address. This data can be obtained from various sources,
including books, websites, and other online resources. Once the dataset is gathered, the
next step is preprocessing, where the data is cleaned, transformed, and prepared for use
by the deep learning model. The preprocessing stage involves several tasks, including
tokenization, stemming, lemmatization, and stop-word removal. Tokenization involves
breaking down the dataset into individual words, phrases, or sentences, while stemming
and lemmatization involve reducing words to their root form to eliminate redundancy. Stop-
word removal involves eliminating common words that do not carry significant meaning,
such as "us," "kar," and "ya" These preprocessing tasks help extract the desired features

Design 28

from the dataset, making it easier for the deep learning model to learn from it. Once the
dataset is preprocessed, the next milestone is to choose a deep learning model suitable
for the desired work. The choice of deep learning model will depend on several factors,
including the size and complexity of the dataset, the desired accuracy of the chatbot, and
the available computing resources. Common deep learning models for natural language
processing include Feedforward Neural Networks (FNNs). The next stage is the training
of the chosen deep learning model over the preprocessed dataset. This involves feeding the
dataset into the deep learning model and adjusting the model’s parameters to maximize
its performance [6]. The training process can take several hours or even days, depending
on the size of the dataset and the complexity of the deep learning model. Once the deep
learning model is trained, the final stage is testing the trained model by giving the text
to the system and analyzing the system’s response based on the learnable features. The
system will respond back based on its ability to understand the user’s intent and provide
an appropriate response [6]. The system design relies on the interfacing between Python
packages, text-based trained models based on deep learning models. Python offers a wide
range of libraries and packages for natural language processing, including NLTK, spaCy,
and TensorFlow [4]. These packages can be used to implement the preprocessing stage,
build and train the deep learning model, and test the trained model.

Figure 4.1: Design Methodology

4.7 Design Architecture

The User Interface component is in charge of handling user queries and showing the
relevant response. Several front-end frameworks, including HTML, CSS, and JavaScript,
can be used to construct the user interface. Flask can be utilized in this situation as a web
framework to manage the user interface.

4.7.1 User Interface

User requests would be handled and the relevant response would be shown by the UI
component. Several front-end frameworks, including HTML, CSS, and JavaScript, can

4.7 Design Architecture 29

be used to construct the user interface. The flask can be utilized in this situation as a web
framework to manage the user interface.

4.7.2 Natural Language Processing

The user input would be processed by the NLP engine, which would then produce the
appropriate response. Text pre-processing, tokenization, named entity recognition, and
sentiment analysis are some of the techniques used in this component. For NLP processing,
Python libraries like NLTK and spaCy can be used.[7]

4.7.3 Deep Learning Model

The Deep Learning model would be used to predict the intent of the user and generate a
response accordingly. In this scenario, a Feedforward Neural Network (FNN) model can
be used to classify the user input. The model can be developed using TensorFlow and
Keras libraries in Python.[7]

4.7.4 Backend APIs

The requests from the UI would be handled by the backend APIs, who would then process
them using the ML model and the NLP engine. A RESTful API that manages user
requests and returns responses to the user interface (UI) can be built using the Django Rest
Framework (DRF).[7]

Design 30

4.7.5 Database

User information and chat history can be saved in a database using PostgreSQL. To retrieve
user data and carry out relevant tasks, the backend APIs can access the database.
In order to create an effective and smooth user experience, the architecture design of the
Roman Urdu chatbot for the e-commerce sector involves a complex system of interrelated
components.[3]

Figure 4.2: Overview of System Architecture

4.8 Design Process 31

4.8 Design Process

The process diagram provides the dynamic working of the system at run-time. In our
system, the run-time working consists of the interaction between our main chatbot interface
with the trained models. Whenever the user enters any input which is in our case is a textual
query the system communicates with the trained models to produce an appropriate response.
The user needs to verify before communicating with the chatbot. After verification user
is allowed to interact with the main user interface. The user now needs to give input per
instructions of communication of the chatbot. after that the system interacts with the
trained model.[6] if user enter some textual query, the system directs that query to NLP
trained model to answer that question. This textual-based model then communicate with
the user.

Figure 4.3: Design Process

Design 32

4.9 Physical Design

The physical design contains the physical objects of our system which are the PC and the
web server (which hosts our chatbot application). The deployment diagram of our system
shows that the user can communicate with our web-based chatbot application through a
PC that has a reliable web browser with the internet [6]. The web server connects the web-
browser with the application, which serves as a bridge.

Figure 4.4: Physical Design

4.10 System Flow 33

4.10 System Flow

he system flow diagram for a chatbot that provides e-commerce support can be divided
into several stages:
1. visits ecommerce website: The user visits the ecommerce website.
2. Activation: The chatbot is activated when the user visits the website and selects Roman
Urdu as their preferred language.
3. Greetings welcome: The chatbot greets the user and asks how they can help.
4. Query: The user enters their query into the chatbot.
5. Searching: The chatbot searches for the query in the ecommerce website’s database.
6. Results to the user The chatbot returns the results of the search to the user.
7. Thanks: The chatbot thanks the user for the interactions.

Figure 4.5: System Flow

Design 34

4.11 Activity Diagram

The flow of activities in a system is represented visually by an activity diagram. The
activity diagram illustrates how the chatbot improves user experience in the context of a
Roman Urdu chatbot for e-commerce websites. Users can communicate with the chatbot
in Roman Urdu and it is available around the clock. The figure depicts the flow of events,
beginning with the user’s query search. The user can engage with the chatbot, access data
from the website’s database, see possibilities for pertinent products, and receive assistance
as they purchase. This activity diagram shows how the chatbot and user communicate with
ease, resulting in a seamless and customized buying experience.

Figure 4.6: Activity Diagram

4.12 Entity Relationship Diagram 35

4.12 Entity Relationship Diagram

This cutting-edge chatbot makes it simple for users to communicate in their local tongue,
improving their purchasing experience. The chatbot ensures personalized and prompt
interactions by storing user information, inquiries, and answers in a strong database
system. The user, query, and response tables are linked seamlessly in the accompanying
Entity-Relationship Diagram (ERD), which also illustrates the intricate linkages inside
the system. Personalized interactions are made possible by the User table, which keeps
track of distinct user identities and their related email addresses. User queries are stored
in the Query table, making it easy to retrieve them and compare them to already-existing
records. Both previously generated and newly generated responses are recorded in the
Response table, ensuring dynamic and contextually relevant interactions. The Roman
Urdu chatbot revolutionises client involvement in the e-commerce space with its language
support, optimised database infrastructure, and thorough ERD.

Figure 4.7: ERD Diagram

Design 36

4.13 Sequence Diagram

A Roman Urdu chatbot will be useful for enhancing the experience on e-commerce
websites. Chatbots will provide query searches and be accessible by letting people converse
in their native tongue. Additionally, the chatbot will offer 24/7 service, assisting clients
in finding products, responding to questions, and resolving problems. The conversation
between a user and a Roman Urdu chatbot on an e-commerce website is depicted in this
sequence diagram. The diagram will demonstrate how the chatbot communicates with the
user, browses the website’s database, show those products to the user’s chat, and assists
the user in completing the shopping process.

Figure 4.8: Sequence Diagram

4.14 Conceptual Design

Most chatbot frameworks use text data collected from various platforms (like social chat
platforms, communication platforms). For our system, we have developed our own dataset
collecting from different web resources. We have increased our dataset by using the
process of data augmentation. After data augmentation, we have trained our model by
using the dataset we have gathered. The training translation algorithm is used to connect

4.14 Conceptual Design 37

the application and the training data [6]. The user gets a continuous feedback of the actions
result. Figure shows the conceptual design of the project.

Figure 4.9: conceptual design

The details of creating a great Roman Urdu chatbot for e-commerce are covered in this
Chapter. The chapter suggests the use of a Feedforward Neural Network (FNN) model,
which is recognized for its competence in text classification and sentiment analysis tasks,
drawing on state-of-the-art developments in natural language processing. Due to the
model’s innate capacity to use word embeddings for effective representation learning, it
is able to recognize subtle patterns and extract important characteristics from the input
text data, resulting in accurate and insightful results. The painstaking collection and
preprocessing of data is a key topic covered in this chapter. The raw text input goes through
a transformational process through a number of crucial techniques, such as tokenization,
stop-word removal, stemming, normalization, and cleaning, making it possible for the
FNN model to efficiently ingest and analyze it. Through the use of these preprocessing
procedures, the chatbot’s performance is enhanced to new heights as it can navigate through
the noise and intricacies present in Roman Urdu text, enhancing the user experience. Model
training is unquestionably an important step in the design process. The importance of
thorough architectural decisions and careful selection of hyperparameters to obtain optimal
performance is emphasized in this chapter. The chatbot’s effectiveness and accuracy are
maximized by experimenting with various configurations, fine-tuning parameters, and
using stringent evaluation procedures, solidifying its place as a trustworthy and essential
e-commerce helper.

Chapter 5

System Implementation

5.1 System architecture

A sophisticated web-based tool that has been created to meet the needs of online shoppers
who speak Roman Urdu is the Roman Urdu chatbot for ecommerce. The system architec-
ture of this chatbot, which has been created to be scalable, versatile, and user-friendly, is
one of its important characteristics. An interface, a chatbot engine, and a backend server
make up the three primary parts of the chatbot system architecture. The chatbot’s front
end, or user interface, is where users interact with it [4]. With features like text input areas,
buttons, and menus that let users communicate with the chatbot using natural language, it
has been created to be straightforward and simple to use. The heart of the chatbot system
is the chatbot engine, which interprets user input and produces pertinent responses. The
chatbot’s engine was created using natural language processing (NLP) methods, allowing it
to comprehend and translate Roman Urdu human input. The major processing component
of the chatbot system, the backend server, handles user queries, processes data storage
and retrieval, and generates appropriate responses [4]. It can handle high user demand
volumes without encountering downtime or performance difficulties because it is scalable
and durable in design.

5.2 Tools and Technologies

Google Colab: Google Colab is a cloud-based service that allows you to run and write
Python code online without any installation required. It’s free to use and offers features
like GPU and TPU support, which can help speed up training for machine learning models.
Jupyter Notebook: Jupyter Notebook is an open-source web application that allows you to
create and share documents that contain live code, equations, visualizations, and narrative
text. It’s commonly used in data science and machine learning projects.
PyCharm: PyCharm is an integrated development environment (IDE) used for Python

38

5.3 Libraries 39

programming. It offers advanced features like code completion, debugging, and support
for web development frameworks like Flask and Django.
Python IDLE: Python IDLE is a simple integrated development environment that is
bundled with Python. It’s easy to use and is a great tool for beginners who are just getting
started with Python.
Sublime Text: Sublime Text is a popular text editor used for code editing. It offers a wide
range of features such as syntax highlighting, code completion, and plugins that can extend
its functionality.

5.3 Libraries

Keras: Keras is a high-level neural networks API that is written in Python. It’s easy to use
and can be used with TensorFlow as a backend.
TensorFlow: TensorFlow is an open-source software library for machine learning and
artificial intelligence. It’s developed by Google and is commonly used for tasks like image
classification, natural language processing, and speech recognition.
Numpy: Numpy is a Python library used for numerical computing. It’s used for tasks like
linear algebra, Fourier transforms, and random number generation.
Matplotlib: Matplotlib is a plotting library used for data visualization in Python. It offers
a wide range of features for creating different types of plots and charts.
Scikit-learn: Scikit-learn is a machine-learning library for Python. It offers a wide range
of algorithms for tasks like classification, regression, and clustering. OS: The OS module
is a Python library used for interacting with the operating system. It provides a way to
perform various operating system related tasks like file handling, directory operations, and
process management.
Pickle: Pickle is a Python module used for object serialization. It allows you to convert
Python objects into a byte stream and vice versa, which can be useful for tasks like storing
and loading machine learning models.
JSON: JSON (JavaScript Object Notation) is a lightweight data interchange format that is
easy to read and write. It’s commonly used for exchanging data between a web application
and a server.
NLTK: NLTK (Natural Language Toolkit) is a Python library used for natural language
processing tasks like tokenization, stemming, and part-of-speech tagging.

5.4 Development Environment/Languages Used

Python has been used as the development language while google collab and Anaconda
Jupiter Notebook are used for the training of the data PyCharm is used for the development

System Implementation 40

environment and for the integration of the HTML-based a website that was developed in
Sublime Text.

5.5 Processing Logic/Algorithms

The basic logic employed in our system is the training of model conversation against the
input. A feedforward neural network is used to create a neural structure to extract features
from training data of conversation text and develop a trained model for the output. The
output of this model is the prediction of the probability of different intent to which a text
can belong and we have taken the higher probability of a class representing the text to
it. This is then passed to the NLP model. Now there are different folders each having a
trained conversational model in them, each representing conversation for different classes.
The NLP model opens the folder related to the text passed previously, in the folder there
exists JSON file which is used for the training of the data. The data extracted from the
JSON file is tokenized stored in the lists and used as training data.[7] Once trained models
are created, the label is used to open and load the trained model for chatbot. When the
user provides textual input. The system tokenizes this input, pass it to the trained model
and the model predicts which class is mostly related to the question asked. The system
then generates a random response from that class. This is the flow that is followed by the
system for training and production of responses against inputs.

The system architecture and techniques employed in the creation of the Roman Urdu
chatbot for e-commerce are covered in detail in this Chapter. An interface, a chatbot
engine, and a backend server make up the scalable, adaptable, and user-friendly system
architecture of the chatbot. The chatbot engine, which is powered by natural language
processing (NLP) techniques, analyses user input and creates pertinent responses, while
the user interface offers users an intuitive way to communicate with the chatbot using
natural language. The backend server manages user requests, data storage, and retrieval,
guaranteeing effective performance even in the face of overwhelming demand. A num-
ber of tools and technologies used in the development process are also examined in this
chapter, including Google Colab, Jupyter Notebook, PyCharm, Python IDLE, and Sublime
Text. The chapter also covers crucial libraries that improve the chatbot’s functionality,
including Keras, TensorFlow, Numpy, Matplotlib, Scikit-learn, OS, Pickle, JSON, and
NLTK. Overall, this chapter offers insightful information about the system architecture
and technological stack behind the Roman Urdu chatbot for e-commerce, emphasizing its
dependability and efficiency in meeting customer needs.

Chapter 6

System Testing and Evaluation

In this chapter, the testing and evaluation of our developed system is presented. Testing is
carried out to check the functionality of the system. Evaluation of system with different
aspects discussed in different sections presented below:

6.1 GUI

In this section the testing of the GUI of our chatbot has been described. For testing we use
conversation flow for checking of the user input and response generation of the system.
The location of the input data and the response is our prime focus, because our focus is to
design a GUI which is user friendly and user can easily see what input has been given and
what response has been generated by the system.

Figure 6.1: GUI Design

41

System Testing and Evaluation 42

6.2 Software Performance Testing

The software testing has been done in three sections:
• Unit testing
• Integration testing
• Compatibility testing

6.2.1 Unit testing

In the NLP section where the user can communicate with the chatbot is tested by providing
different inputs of the same context and checking the bot response. The approximate
response accuracy of the bot is around 90 percent which is similar to the training of the
testing model. The response is generated in such a way that the user input is converted into
a numerical array. This array is passed to the trained model which in a result generates
a response. This response is passed to html GUI using Flask. Which is then displayed
Infront of the user.

Figure 6.2: Model testing

6.2.2 Integration Testing

Conversational Chatbot component In the NLP section if the bot cannot find the answer
to a specific question due to unrelated input by the user, the system asked the user to add
more information to it without going to the exception mode.
Complete integration testing When all of these problems are dealt with, we started
complete system integration testing. The system gets the user input and after processing
through the trained models, displayed as well as passed to the NLP section. The NLP
section loads the files related to the output. In this complete integration, we have found
satisfactory results with the accuracy of system response of around 86 percent.

6.3 Testing Cases 43

6.3 Testing Cases

We have asked questions according to our test cases and patterns and it is giving the result
according to each pattern. below the individual test tables to show the results

6.3.1 Test Case 1: Login

This is the first test case in which user will login chatbot. Application will ask the user to
enter your desire email and user will created

Use Case 1 Login

Actor User

Description User successfully loged into the system and system will access their account.

Pre-Conditions User will visit the website.

Post-Conditions User gained access to the chat.

Table 6.1: Login Testcase

6.3.2 Test Case 2: Product Search

This is the second test case in which user will search desire product from chatbot. Applica-
tion will ask the user to enter your desire query.

Use Case 2 Product Search

Actor User

Description User successfully searches for a product using queries

Pre-Conditions User successfully had registered account in database.

Post-Conditions User is successfully presented with relevant products matching their search criteria.

Table 6.2: Product Search Testcase

System Testing and Evaluation 44

6.3.3 Test Case 3: Product Suggestion

This is the third test case in which user will search desire product from suggestion.
Application will ask the user to enter your query.

Use Case 3 Product Suggestion

Actor User

Description User successfully searches for a product suggestion

Pre-Conditions User successfully had registered account in database.

Post-Conditions User is successfully presented with relevant products suggestion according to their search criteria.

Table 6.3: Product Suggestion Testcase

6.3.4 Test Case 4: Other support

This is the last test case in which user will search other queries like color size. Application
will ask the user to enter your query.

Use Case 4 Other Searches

Actor User

Description User successfully searches for other relevant information related to product

Pre-Conditions User successfully had registered account in database.

Post-Conditions User had successfully shown the other information.

Table 6.4: Other searches Testcase

6.4 Selection between model

Using model from scratch First we have dataset, split the dataset for 80 percent for training
and validation and 20 percent for testing. So for that purpose, we designed and develop a
FNN model and after that, we train it just to check the training process and to understand
how actually the FNN is working and what parameters we are going to change to reduce
the validation loss and to increase the accuracy of the model. So we did changes to the
steps per epochs moreover modify the model by changing the activation functions and
adding neurons etc. We try to increase the dataset, data augmentation technique and create
a new dataset. Then we again modify the existing FNN model and, the results we achieved
were improved according to our expectations.

6.5 Feedforward Neural Network 45

6.5 Feedforward Neural Network

A multilayer perceptron (MLP), commonly referred to as a feedforward neural network,
is a class of artificial neural network frequently employed in deep learning. It is made
up of numerous layers of sequentially organised interconnected nodes, also referred to as
neurons or units. An input layer, one or more hidden layers, and an output layer make up
the network architecture. Each neuron in the network takes input signals from the layer
below, adds these signals up based on weight, and then applies an activation function to
create an output. The weighted connections, also known as weights, choose how strongly
each input will affect a neuron’s output. Each neuron also has a bias term that enables the
activation function to be changed.
By modifying the weights and biases during training, the network learns to approximate
complicated nonlinear relationships between input and output data. Gradient descent is
used in the backpropagation optimization process to achieve this correction. Backpropaga-
tion determines the gradients of the network’s error with regard to the weights and biases,
enabling systematic updating of these parameters in a way that minimizes the discrepancy
between the expected results and the actual labels. Until the network reaches a suitable
level of accuracy, this iterative procedure is continued.
The network’s capacity to describe nonlinear relationships depends critically on the activa-
tion mechanisms employed in the neurons. Rectified linear unit (ReLU) function activation
is a widely utilised activation that we have used. It gives the network nonlinearity, allowing
it to understand intricate patterns and produce predictions that are more accurate.

Figure 6.3: Performance testing Graph

Chapter 7

Conclusions

With the help of our web-based chatbot application, "Roman Urdu Chatbot for E-commerce,"
users can have conversations in Roman Urdu. Our chatbot is made to improve the user’s
online buying experience in light of the growing popularity of chatbots. Our chatbot
provides thorough responses to user questions about the product. It was developed with
the Flask framework and incorporates a number of libraries, including Keras, Tensor-
Flow, NumPy, Matplotlib, Scikit-learn, OpenCV, OS, Pickle, and NlTK. In addition, we
developed and tested the chatbot using Jupiter Notebook, PyCharm, Python IDLE, and
Sublime Text. Based on user input, the chatbot engine is built to comprehend Natural
Language Processing and produce pertinent responses. The backend server can handle
high user demand without experiencing downtime or performance difficulties because it is
durable and scalable. Building user trust requires a chatbot that is safe and secure, which
ours does. The overall usability, accuracy, and information provided by our Roman Urdu
chatbot for ecommerce improve the user’s ecommerce shopping experience. A number
of tools and technologies, including Flask, Keras, Tensorflow, Numpy, Matplot, Sklearn,
OpenCV, OS, Pickle, Json, and NlTK, were used to create our chatbot. The chatbot can
process user input, retrieve data from backend servers, and give each user a customised
response thanks to these tools and technology.[7] The chatbot is designed to be user-
friendly and engaging, with a conversational tone that makes it feel like a real person. It
provides accurate and informative responses to user queries, and is responsive to user input.

7.0.1 Future works

Overall, our chatbot for ecommerce is a powerful tool that can help businesses provide a
better shopping experience for their customers. With its ability to provide personalized
assistance and support, our chatbot can help businesses build trust and loyalty with their
customers, ultimately leading to increased sales and revenue. this chatbot is best for
learning purposes that can help a person to understand and expand it according to its ability.

46

Conclusions 47

There are several areas in which the Roman Urdu chatbot for ecommerce can be further
improved and expanded.
One important aspect is to expand its architecture to accommodate more features and
functionalities. This can involve integrating more APIs and external services to improve
the user experience and enhance the chatbot’s capabilities. In addition, the architecture
can be optimized for scalability, security, and reliability, to ensure that it can handle large
volumes of user requests and provide a seamless experience.
Another area for improvement is to collect more Roman Urdu data and train the chatbot
with a larger dataset. This can help to improve the accuracy and relevance of the chatbot’s
responses, and enable it to handle a wider range of user queries and interactions. Improving
the GUI design of the chatbot can also enhance the user experience and make it more
visually appealing and engaging. This can involve incorporating more interactive features,
animations, and graphics, to make the chatbot more dynamic and user-friendly. To contin-
uously test and improve the chatbot, it can be attached to a live ecommerce website, where
it can interact with real users and gather feedback on its performance. This can help to
identify areas for improvement and enhance the chatbot’s effectiveness over time.

Chapter 8

References

[1] "Chatbot-based E-commerce System." by K. Kim, J. Hwang, and J. Lee.
https://www.researchgate.net/publication/318118765Chatbot −basedE − commerceSystem

[2]”DesignandDevelopmento f aChatbot f orE −CommerceWebsite.”byH.Kumar,R.Kumar,andA.Kumar.
htt ps : //ieeexplore.ieee.org/document/9098731

[3]”UrduChatbot f orE − commerceusingDeepLearningApproach.”byH.FarooqandS.Anwar.
htt ps : //ieeexplore.ieee.org/document/9259888

[4]”BuildingaChatbot f orE−commerceusingNaturalLanguageProcessing.”byV.Pandey,A.Singh,andP.Prakash.htt ps :
//www.i jitee.org/wpcontent/uploads/papers/v9i6/F6172029619.pd f

[5]AChatbot −BasedIntelligentE −CommerceSystem f orOnlineShopping.”byL.Ma,X .Chen,andJ.Zhang.
htt ps : //www.researchgate.net/publication/331203810AChatbot−BasedIntelligentE −CommerceSystem f orOnlineShopping

[6]”Developmento f anIntelligentChatbot f orE − commerce.”byA.Kumar,R.Kumar,andS.Kumar.
htt ps : //ieeexplore.ieee.org/document/8721615

[7]”DesignandDevelopmento f anUrduChatbot f orE − commerceApplications.”byM.Qamar,S.Khan,andA.Soomro.
htt ps : //ieeexplore.ieee.org/document/9312902

[8]”Developmento f anIntelligentChatbot f orE−commerceusingDeepLearningTechniques.”byN.Na f isandM.G.R.Alam.htt ps :
//ieeexplore.ieee.org/document/8823537

[9]”Developmento f anIntelligentChatbot f orE−commerceusingDeepLearningTechniques.”byN.Na f isandM.G.R.Alam.htt ps :
//ieeexplore.ieee.org/document/8823537

[10]”AnUrduChatbot f orE − commerceDomainusingNeuralNetworks.”byM.SaleemandS.Khan.

48

References 49

htt ps : //ieeexplore.ieee.org/document/9053617

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction
	1.2 Problem Description
	1.3 Project Objectives
	1.4 Project Scope

	2 Literature Review
	2.1 Daraz Chatbot
	2.2 Ali Express Chatbot
	2.3 Amazon Chatbot

	3 Requirement Specifications
	3.1 Existing Systems
	3.2 Current Issues
	3.2.1 Language Barrier
	3.2.2 Queries
	3.2.3 Integration
	3.2.4 Existing Chatbot comparison

	3.3 Dataset
	3.4 Application Requirements
	3.4.1 Functional Requirements
	3.4.2 Non Functional Requirements

	3.5 Functional Requirements Cases Models
	3.5.1 Use cases Diagram
	3.5.2 Use case 1: Login
	3.5.3 Test case 2: Product Search
	3.5.4 Test case 3: Product Recommendation
	3.5.5 Use case 4: Other Support

	4 Design
	4.1 Proposed DL Model
	4.2 Data Collection
	4.3 Preprocessing
	4.3.1 Tokenization
	4.3.2 Stop Word Removal
	4.3.3 Stemming
	4.3.4 Normalization
	4.3.5 Cleaning

	4.4 Model Training
	4.4.1 Model Architecture
	4.4.2 Hyperparameter Selection
	4.4.3 Training and Evaluation

	4.5 Design Constraints
	4.6 Design Methodology
	4.7 Design Architecture
	4.7.1 User Interface
	4.7.2 Natural Language Processing
	4.7.3 Deep Learning Model
	4.7.4 Backend APIs
	4.7.5 Database

	4.8 Design Process
	4.9 Physical Design
	4.10 System Flow
	4.11 Activity Diagram
	4.12 Entity Relationship Diagram
	4.13 Sequence Diagram
	4.14 Conceptual Design

	5 System Implementation
	5.1 System architecture
	5.2 Tools and Technologies
	5.3 Libraries
	5.4 Development Environment/Languages Used
	5.5 Processing Logic/Algorithms

	6 System Testing and Evaluation
	6.1 GUI
	6.2 Software Performance Testing
	6.2.1 Unit testing
	6.2.2 Integration Testing

	6.3 Testing Cases
	6.3.1 Test Case 1: Login
	6.3.2 Test Case 2: Product Search
	6.3.3 Test Case 3: Product Suggestion
	6.3.4 Test Case 4: Other support

	6.4 Selection between model
	6.5 Feedforward Neural Network

	7 Conclusions
	7.0.1 Future works

	8 References

