

Bahria University Discovering Knowledge

FINAL YEAR PROJECT REPORT

PERSON IDENTIFICATION USING BIOMETRIC MODALITIES

By

SYED SAAD HUSSAIN SYED ASIM ZUBAIR WAJEEHA AMJAD (43812) (43793) (43741)

SUPERVISED BY (MA'AM.SAMEENA JAVAID)

BAHRIA UNIVERSITY (KARACHI CAMPUS) 2019

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

		Ν
Signature	:	- Shi
Name	+	Syed Saad Hussain
Reg No.	:	43812
Signature	:.	ajecha
Name	:	Wajecha Amjad
Reg No.	:	43741
Signature	:	Krij
Name	;	Syed Asim Zubain
Reg No.	:	43793

09/02/20

Date

APPROVAL FOR SUBMISSION

We certify that this project report entitled "PERSON IDENTIFICATION USING BIOMETRIC MODALITIES" was prepared by SYED ASIM ZUBAIR, SYED SAAD HUSSAIN & WAJEEHA AMJAD has met the required standard for submission in partial fulfilment of the requirements for the award of Bachelor of COMPUTER SCIENCE at Bahria University.

Approved by,

Signature :

Supervisor:

Ma'am. SAMEENA JAVAID

Co-Supervisor: Mr. Muhammad Marouf

Date

09/02/20

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express my gratitude to my research supervisor, Ma'am Sameena Javaid & co-supervisor Mr Muhammad Marouf for their invaluable advice, guidance and their enormous patience throughout the development of the research.

In addition, We would also like to express my gratitude to our loving parent and friends who had helped and given me encouragement.

PERSON IDENTIFICATION USING BIOMETRIC MODALITIES

ABSTRACT

Biometric modalities provides us the study of characteristics related to physiological traits for the verification or identification of a person. Unimodal biometric arises many shortcomings and disadvantages of security, accuracy, performance imperfection, storage space and data handing. Using multimodal modalities, security rate will be much higher but accuracy, performance perfection, storage space and data handing are still a subject of research and discussion. In our current research study we are working with multimodal biometric modalities of face and thumb impression recognition for the validation of any individual to obtain high security with better accuracy using two modalities of face and thumb impression. System will be able to train face and thumb impression of persons, and for testing and validation both modalities are necessary to input or define. We are using Discrete Cosine Transform algorithm which collects features point of the sample, furthermore the data will be classified by the Support Vector Machine Technique to give the correct outcome. Another contribution of our project is our own collected dataset. There were lack of datasets which can provide us both facial images as well as thumb impression of the same person. The results have better accuracy rate and two modalities (face and thumb impression) are necessary to input for validation which makes the system more secure an applicable in many desired cases.

TABLE OF CONTENTS

DECLERATION	ii
APPROVAL FOR SUBMISSION	iii
ACKNOWLEDGEMENT	v
ABSTRACT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS / ABBREVIATIONS	xvi
LIST OF APPENDICES	xvii

CHAPTER

1	INTRODUCTION	18
	1.1 BACKGROUND	18
	1.2 PROBLEM STATEMENT	20
	1.3 AIMS AND OBJECTIVES	21
	1.4 SCOPE OF PROJECT	21
1 s -	1.4.1 LOGICAL ACCESS CONTROL	21
	1.4.2 PHYSICAL ACCESS CONTROL	22
-	1.4.3 TIME AND ATTENDANCE	22
· · · · ·	1.4.4 LAW ENFORCEMENT	23
	1.4.5 SURVEILLANCE	23
	1.4.6 SMART PHONE SECURITY	24
2	LITERATURE REVIEW	.26
	2.1 EXECUTIVE SUMMARIES	31
2	DESIGN AND METHODOLOGY	35
3	DESIGN AND METRODOLOGI	

viii

3.1 PROPOSED DESIGN	35
3.2 DCT TRANSFORMATION	35
3.3 BACK PROPAGATION FACE DETECTION	36
3.4 SUPPORT VECTOR MACHINE	37
3.5 FACE	- 39
3.5.1 TEXTURE	39
3.5.2 FACIAL FEATURES	39
3.5.3 FACE DETECTION	40
3.6 FINGER PRINT	42
3.7 BIOMETRICS	43
3.8 IMAGE COMPRESSION	44
3.8.1 COMPRESSION AND PICTURE QUALITY	44
3.9 DCT 8X8 MATRIX	45
3.10 DISCRETE COSINE TRANSFORM	46
3.11 SUPPORT VECTOR MACHINE	47
3.12 INTRODUCTION TO WATERFALL	50
3.13 METHODOLOGY	51
3.13.1 WORK FLOW	52
3.13.2 IMAGE CROPPING	52
3.13.3 AUGMENTATION	53
3.13.4 HOW DCT WORKS	53
3.13.5 TRAIN / TEST SPLIT	54
3.13.6 MODEL TUNING	55
3.13.7 SAVING AND MAKING PREDICTONS	55
3.13.8 HOW SVM WORKS	55
3.13.8.1 SCENARIO 1	55
3.13.8.2 SCENARIO 2	56
3.13.8.3 SCENARIO 3	56
3.13.9 INTEGRATION OF MODALITIES	57
3.14 TYPES OF SVM KERNEL'S	57
3.14.1 LINEAR KERNEL	58
3.14.2 POLYNOMIAL KERNEL	59
3.14.3 RADIAL BASIS FUNCTION	60
3.15 GAMMA	60

216	CONTROL ERROR	61
- langue de la	DATASET	61
5111	FACE	62
	THUMB PRINT	62
	HARDWARE EQUIPMENTS	63
3.18 H 3.18.1		63
	2 A4TECH WEBCAM	64
	IENTATION	65
	MAGE CROPPING	65
	AUGMENTATION	66
4.2		66
	RIGHT-TRANSLATE	67
	UP-TRANSLATE	67
	ROTATION	68
4.2.4	ZOOM	69
4.2.5	BRIGHTNESS	69
	SALT AND PEPPER	70
4.2.8		71
	LEFT-FLIP	72
	0 AFFINE TRANSFORM	73
	DISCRETE COSINE TRANSFORM	80
	TRAIN/TEST SPLIT	83
4.4.1		84
4.5	PARAMETERS OF SVM	84
4.6	SAVING AND PREDICTIONS	85
4.7	INTEGERATION OF MODALITIES	86
4.8	MAJOR DIFFERENCE THUMB IMPLEMENTAT	ION 87
4.9	LIBRARIES	87
4.10	CONNECTIVITY OF HARDWARE	89
	LT AND DISCUSSION	92
5.1	WHY DCT IS BETTER THAN DFT	92
5.2	WHY DCT IS BETTER THAN DWT	93
5.3	WHY DCT IS BETTER THAN FFT	93
5.4	WHY DCT IS BETTER THAN SIFT	94
2.7	WILL DOI 10 DECT	1.1

5

ix

5.5 HOW SVM IS BETTER THAN OTHER CLASSIFIER	94
5.6 THUMB PRINT	94
5.6.1 MINUTIAE	95
5.7 FACE RESULTS	96
5.7.1 TRAINING / TESTING RESULT	96
5.7.2 CONFUSION MATRIX RESULT	96
5.7.3 PRECISION / RECALL / F1 SCORE	97
5.8 THUMB RESULTS	99
5.8.1 TRAINING /TESTING RESULT	99
	99
5.8.2 PRECISION/RECALL/FISCORE CONCLUSION AND RECOMMENDATIONS	101
	101
6.1 CONCLUSION	101
6.1.1 THUMB	101
6.1.2 FACE	101
6.2 RECOMMENDATIONS	
	100
	102

REFERENCES	5
DENDICES	

x