

FINAL YEAR PROJECT REPORT

AUTONOMOUS NAVIGATION & OBJECT TRACKING ROBOT

In fulfillment of the requirement For degree of BEE (Electrical Engineering)

By

RAYYAN IDREES AIMAN HAFEEZ 57320 BEE (ELECTRICAL) 57322 BEE(ELECTRICAL)

SUPERVISED

BY

DR. HINA SHAKIR

BAHRIA UNIVERSITY (KARACHI CAMPUS) 2018-2022 The copyright of this report belongs to the author under the terms of the copyright Ordinance 1962 as qualified by Intellectual Property Policy of Bahria University. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this report.

©2022, AIMAN HAFEEZ & RAYYAN IDREES. All rights reserved.

APPROVAL FOR SUBMISSION

We certify that this project report entitled "AUTONOMOUS NAVIGATION AND OBJECT TRACKING ROBOT" was prepared by AIMAN HAFEEZ & RAYYAN IDREES have met the required standard for submission in partial fulfilment of the requirements for the award of Bachelor of Electrical Engineering at Bahria University.

Approved by,

Signature :

Supervisor: Dr. Hina Shakir

: 12/08/22

Date

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express gratitude to our research supervisor, Dr Hina Shakir for her invaluable advice, guidance and her enormous patience throughout the development of the research.

In addition, we would also like to express gratitude to our loving parents and friends who had helped and given us encouragement.

ABSTRACT

During the previous decades, a tremendous growth in the field of robotics automation has been made. Daily activities involve interaction with smart machines that present a certain level of autonomy. Robots ensure that a task can be done more accurately and efficiently. They can perform the repetitive task without any difficulty. In this autonomous robot, finding object in an unexplored area is a major mission in this work, for advance work the robot will pick the required object. A self-customized mobile robot having low-cost and low-power equipment's will be utilized in this project. The Robot Operating System or ROS is being executed with the help of Jetson Nano. Mapping is established using Rplidar . A mobile robot structure planning for object detection and navigation is being developed in this project. This work proposes a pose planning method to observe a target object using 2D information from Rplidar. The proposed planning method is utilized under the ROS environment; the ROS Navigation stacks nodes help to process sensor information. The mobile robot navigation is handled by the ROS Navigation stacks. 2D ROS navigation stack takes information of odometry, sensors and velocity of wheels to send to mobile robot. To be able to work on navigation stack the robot must be running ROS which has tf transform tree to place and publish sensor data using the correct ROS messages command. ROS navigation stack is also needed to configure robot pose, shape and structure to perform the high level tasks. The object detection model is trained through python. The camera will find where in the frame object is located by extracting its bounding boxes. Then it follows the goal point of the map generated by SLAM. In the end, robot moves towards the object and pick it up with the help of robotic arm.

TABLE OF CONTENTS

9

DECLARATION			3
APPROVAL FOR SUBMISSION	the state state		6
ACKNOWLEDGEMENTS		1.000	7
ABSTRACT			8
LIST OF FIGURES		+	11
LIST OF TABLES	Section Descent 112	+	14
APPENDICES	Distante Maria		15

CHAPTERS

1	INTR	ODUCTION	16
	1.1	Background	16
	1.2	Literature Review	16
	1.3	Problem Statement	21
	1.4	Aims and Objectives	22
	1.5	Scope of Project	22
	1.6	Sustainable Development Goals of Project.	23
		1.6.1 Introduction	23
		1.6.2 Justification	23
		1.6.3 Mapping of Sustainable Development Goals	24
	1.7	Environmental Aspects of Project	24
÷		1.7.1 Introduction	24
		1.7.2 Environmental Impact Assessment(EIA)	24
		1.7.3 Environment Impact Statement (EIS)	25
2	DESI	GN AND METHODOLOGY	26
	2.1	Components	26
	2.2	Block Diagram	27
		2.2.1 Methodology	28

3	DESI	GN IMPLMENTATION	29
	3.1	Room Map Generation	29
	3.2	ROS Navigation Stack	31
	3.3	Data From Wheel Encoders:	32
	3.4	Sensor Fusion Using the ROS Robot Pose EKF Package	33
	3.5	Controlling Robot Velocity Remotely Using ROS	34
	3.6	Two Wheel Differential Drive	35
		3.6.1 Right Wheels ticks through ROS	36
		3.6.2 Left Wheels ticks through ROS	37
		3.6.3 Initial to Goal Pose Publisher:	38
		3.6.4 2D initial pose data through ROS:	39
		3.6.5 2D goal pose data through ROS:	39
	3.7	Launching the Autonomous Robot	40
	3.8	Headless Setup	41
	3.9	Hardware	44
		3.9.1 Jetson Nano:	45
		3.9.2 Rplidar:	46
		3.9.3 Robotic Arm:	47
4	RESU	LTS AND DISCUSSIONS	49
	4.1 ·	Robotic Arm:	50
. :	4.2	Map Generation	51
	4.2	Navigation:	52
• • •	4.3	Object Detection:	52
•	4.4	Tracking	53
5	CONC	CLUSIONS AND RECOMMENDATIONS	54
	5.1	Map Generation:	54
	5.2	Navigation:	54
	5.3	Object detection:	54
	5.4	Object Tracking:	55
			E/
DFF	ERENCES		56

.

10

REFERENCES