

## **FINAL YEAR PROJECT REPORT**

# TEMPERATURE AND MASK SCAN ENTRY SYSTEM FOR COVID PREVENTION

In fulfillment of the requirement For degree of BEE (Electrical Engineering)

By

SHAMOON AHMAD SYED MONIS WALI RAFAY AZIZ SHAFAY AZIZ 57038 BEE(ELECTRONICS) 57312 BEE(ELECTRONICS) 57105 BEE(POWER) 57050 BEE(POWER)

### **SUPERVISED**

BY

ENGR. SAHIBZADA WAJID ALI KHAN

BAHRIA UNIVERSITY (KARACHI CAMPUS) 2018-2022

#### **DECLARATION**

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

Signature:

Name

Shamoon Ahmad

Reg No. : 57038

Signature: WorisWall

Name : Syed Monis Wali

Reg No. : 57312

Signature:

Name: Rafay Aziz

Reg No. : 57105

Signature:

The copyright of this report belongs to the author under the terms of the copyright Ordinance 1962 as qualified by the Intellectual Property Policy of Bahria University. The acknowledgment shall always be made of the use of any material contained in, or derived from, this report.

© 2022, Shamoon Ahmad, Syed Monis Wali, Rafay Aziz and Shafay Aziz. All right reserved.

#### **ACKNOWLEDGEMENTS**

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express my gratitude to my research supervisor, Engr. Sahibzada Wajid Ali Khan for his invaluable advice, guidance, and his enormous patience throughout the development of the research.

In addition, we would also like to express my gratitude to our parents and friends who had helped and encouraged me.

## TEMPERATURE AND MASK SCAN ENTRY SYSTEM FOR COVID PREVENTION

#### **ABSTRACT**

The increasing number of COVID-19 tests offers additional information about the epidemic's spread, perhaps allowing it to be managed and more infections avoided. Wearing a face mask to reduce droplet transmission in the air, keeping adequate physical space between individuals, and avoiding direct contact can all assist to prevent this outbreak. As a result, the focus of this research is on developing a Face Mask and Temperature Detection model utilizing a vision system. The author's goal in this thesis is to create a model that can detect faces wearing masks and assess their temperature. If the temperature is higher than normal, the door will not open, and if they don't have a mask, the door will not open as well.

## Table of Contents

| DECLARATION                                        | i  |
|----------------------------------------------------|----|
| APPROVAL FOR SUBMISSION                            | i\ |
| ACKNOWLEDGEMENTS                                   | v  |
| ABSTRACT                                           |    |
| LIST OF FIGURES                                    |    |
| LIST OF SYMBOLS / VARIABLES                        |    |
| LIST OF APPENDICES                                 | xi |
| CHAPTER 1 INTRODUCTION                             | 14 |
| 1.1 Background                                     | 14 |
| 1.2 Literature Review                              | 15 |
| 1.3 Problem Statement                              | 19 |
| 1.4 Aims &Objectives                               | 19 |
| 1.5 Scope of Project                               | 20 |
| 1.6 Sustainable Development and Goals              | 20 |
| 1.7 Environment Aspects of Project                 | 21 |
| CHAPTER 2 Design & Methodology                     | 22 |
| 2.1 Software Used                                  | 22 |
| 2.1.1 TensorFlow                                   | 22 |
| 2.1.2 VNC Viewer                                   | 22 |
| 2.2 Hardware Used                                  | 23 |
| CHAPTER 3 DESIGN Implementation                    | 28 |
| 3.1 Face Mask Detection                            | 28 |
| 3.2 Temperature detection                          | 30 |
| 3.3 IR detection                                   | 31 |
| 3.4 System Overview                                | 32 |
| 3.5 facemask Detection                             | 33 |
| 3.6 Circuit                                        |    |
| CHAPTER 4 RESULTS AND DISCUSSIONS                  | 35 |
| 4.1System Requirement's                            | 35 |
| 4.2 Different Test Cases For Quantitative Analysis | 36 |
| CHAPTER 5 CONCLUSION AND RECOMMENDATIONS           | 38 |
| 5.1 Conclusion                                     | 38 |
| 5.2 Recommendations                                | 38 |
| REFERENCES                                         |    |
| APPENDIX                                           | 40 |