

# FINAL YEAR PROJECT REPORT

## SOLAR POWERED WATER PURIFICATION PLANT SYSTEM

In fulfillment of the requirement For degree of BEE (Electrical Engineering)

### By

SAYED MUHAMMAD SAEED ZAIN ALI ABDUL RAFAY QURESHI 57103 BEE(Power) 57051 BEE(ELECTRONICS) 57040 BEE(ELECTRONICS)

### **SUPERVISED**

### BY

## **Engr. SAHIBZADA WAJID ALI KHAN**

BAHRIA UNIVERSITY (KARACHI CAMPUS) 2018-2022

#### DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations, which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

Signature :

Name

Sayed M. Saeed Abbas

Reg No. :

:

:

:

57103

Zain Ali

57051

57040

Signature :

Name

Reg No.

Signature :

| Kat | ent- |
|-----|------|
| N   |      |

Name

: Abdul Rafay Qureshi\_\_\_\_\_

Reg No. :

1

Date

#### ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express our gratitude to our research supervisor, Engr. Sahibzada Wajid Ali Khan for his invaluable advice, guidance and his enormous patience throughout the development of the research.

In addition, we would also like to express our gratitude to our loving parents and friends who had helped and given us encouragement.

#### SOLAR POWERED WATER PURIFICATION PLANT SYSTEM

v

v

#### ABSTRACT

This project is to develop a water purifier that is driven by solar energy and may be utilised for an infinite amount of time, with the quality of the water being monitored automatically by means of sensors. The concept of reverse osmosis serves as the driving force behind this endeavour. The solar panel is responsible for absorbing the sun's rays. After then, this energy is stored in a battery, which also serves to regulate it. The battery is connected to the inverter and the dc connection port, which is the location from where the purifying unit runs, through a switch. The purification unit features a pressure-maintained pump and a reverse osmosis system as part of its components. A high-pressure pump is used to provide the pressure necessary for the process of reverse osmosis. The microcontroller examines both purc and non-purified water with a pH sensor and a Tds sensor, depending on the type of water, to determine whether or not it is healthy to consume. With these sensors, we are able to determine the PH (potential hydrogen ion) as well as the TDS (parts per million) of water (input and output). We are able to determine whether the water is safe to drink through the automation of these sensors, and if it is not, we are able to re-purify the water down the drain. After carrying out this method, both the water tank and the output tap will be supplied with water that has been cleaned and disinfected.

#### **Table of contents**

.

| DECLARATION                     | ii  |
|---------------------------------|-----|
| APPROVAL FOR SUBMISSION         | iii |
| ACKNOWLEDGEMENTS                | iv  |
| ABSTRACT                        | v   |
| TABLE OF CONTENT                | vi  |
| LIST OF TABLES                  | ix  |
| LIST OF FIGURES                 | x   |
| LIST OF SYMBOLS / ABBREVIATIONS | xii |
| LIST OF APPENDICES              | xv  |

### CHAPTERS

1

| INTRODUCTION |                     |                                          | 16    |
|--------------|---------------------|------------------------------------------|-------|
| 1.1          | Backgro             | bund                                     | 16    |
| 1.2          | Literatu            | re Review                                | 17    |
| 1.3          | Problem Statements  |                                          | 19    |
| 1.4          | Aims and Objectives |                                          | 20    |
| 1.5          | Scope of Project    |                                          | 20    |
| 1.6          | Sustaina            | able Development Goals of Project        | 21    |
|              | 1.6.1               | Introduction                             | 21    |
|              | 1.6.2               | Justification                            | 21/22 |
| <br>         | 1.6.3               | Mapping of Sustainable Development Goals | 23    |
| 1.7          | Environ             | mental Aspects of Project                | 24    |
|              | 1.7.1               | Introduction                             | 24    |
|              | 1.7.1.1             | Methods                                  | 25    |
|              | 1.7.2               | Environmental Impact Assessment (EIA)    | 25    |
|              | 1.1                 | Land use                                 | 25    |
|              | 1.2                 | Human Health and well-being              | 26    |
|              | 1.3                 | Wildlife and habitat                     | 27    |
|              | 1.7.3               | Environment Impact Statement (EIS)       | 29    |
|              | 1.1                 | Impacts on Climate                       | 29    |
|              |                     |                                          |       |

vi

. .

. .

.

.

vi

**DESIGN AND METHODOLOGY** 31 Introduction 31 Framework Design 31 Research Philosophy of design 2.2.1 32 2.2.2 Research Strategy of design 33

2

3

4

5

2.1

2.2

Methodology 2.2.3 34

| DESIGN IMPLMENTATION       |         | 35               |    |
|----------------------------|---------|------------------|----|
| 3.1                        | Block d | iagram           | 35 |
| 3.2 Components Description |         | 36               |    |
|                            | 3.2.1   | Design Coding    | 44 |
|                            | 3.2.1.1 | Circuit Diagrams | 50 |
|                            | 3.2.1.2 | Calculations     | 53 |
|                            |         |                  |    |

| RES | ULTS AND DISCUSSIONS                   | 57    |
|-----|----------------------------------------|-------|
| 4.1 | Solar powered water purification plant | 57    |
| 4.2 | Solar panel                            | 57    |
| 4.3 | Charge Controller                      | 58    |
|     | 4.3.1 RO Plant                         | 58    |
|     | 4.3.1.1 Sensors Values                 | 59/60 |

| CON | CLUSION        | IS AND RECOMMENDATIONS     | 64 |
|-----|----------------|----------------------------|----|
| 5.1 | Conclus        | Conclusion                 |    |
| 5.2 | Recomandations |                            | 64 |
|     | 5.2.1          | Future work & Improvements | 64 |
|     | 5.2.1.1        | Problems                   | 65 |

vii

vii