

FINAL YEAR PROJECT REPORT

COTTON DUST MONITORING & ANALYSIS SYSTEM

In fulfillment of the requirement
For degree of
BEE (Electrical Engineering)

By

JUNAID FAHIM OSAMA SATTAR HUMAIMA FARAZ 57328 BEE(ELECTRICAL) 57104 BEE(ELECTRICAL) 57053 BEE(ELECTRICAL)

SUPERVISED

BY

ENGR. BASIT ALI

BAHRIA UNIVERSITY (KARACHI CAMPUS) 2018-2022

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

Signature:

Name: Junaid fatim

Reg No. : 57328

Signature:

Name: Humaima Fayaz

Reg No. : 57053

Signature:

Name : Osama Sattar

Reg No. : 57104

Date : 05/08/22

The copyright of this report belongs to the author under the terms of the copyright Ordinance 1962 as qualified by the Intellectual Property Policy of Bahria University. The use of acknowledgment shall always be made of the use of any material contained in, or derived from, this report.

© 2022, Junaid Fahim, Osama Sattar & Humaima Faraz. All right reserved.

ACKNOWLEDGEMENTS

We would like to thank everyone who contributed to the successful completion of this project. We would like to express my gratitude to my research supervisor, Engr. Basit Ali for his invaluable advice, guidance and his/her enormous patience throughout the development of the research.

In addition, We would also like to express my gratitude to our loving parents and friends who had helped and given me encouragement.

COTTON DUST MONITORING AND ANALYSIS SYSTEM

ABSTRACT

In the textile industry, the cause of pollution which is found in its environment is a combination of gaseous and vapor (known as aerosols) contaminants. Aerosols are responsible for creating dust pollution, a type of occupational hazard in the textile sector. These include organic and vegetable dust, other chemical dust, etc. One of the most common organic dust found in the textile industry is cotton dust. This kind of occupational hazard is found in the departments(spinning, weaving, carding, etc.) where cotton gets processed and manufactured. This dust is a major concern as it is severe for human health, headed by symptoms of irritability of the airways, coughing, chronic inflammation, a few chronic reactions, etc leading to pulmonary diseases. The main goal of this project is to determine firstly the dust concentration by detecting it, secondly analyze the size of particles (ranging from 0 to above 500 microns), thirdly then generate alarms by warning the workers, and lastly, to update a register log timely. A device is designed in a manner accordingly by following the objectives defining its perfect parameters(dust, temperature & humidity), and displaying its results. It would take input through different sensors and output by displaying it on any monitor. Finally, this project would be able to conclude the cotton dust exposure levels making it available for the workers, developing a suitable environment to increase work productivity. It would be able to save lives before making them any worse by warning the hazards.

TABLE OF CONTENTS

I	DECLA	RATION		iii	
1	APPROV	AL FOR SUBMISSION		iv	
1	ACKNO	WLEDGEMENTS		vii	
1	ABSTRA	ACT		viii	
I	LIST OF	FIGURE		xii	
I	LIST OF	SYMBOLS / ABBREVIATIONS		xiii	
		APPENDICES		xiv	
		TABLES		15	
		TABLES		13	
OI I	4 DEED				
	APTER:			16	
CHAPTER 1					
	INTRO	DDUCTION		16	
	1.1 Ba	ckground	•	16	
	1.2 Li	terature Review		17	
	1.2.1	Cotton Dust		17	
	1.2.2	Pulmonary Diseases		18	
	1.2.3	Byssinosis		19	
	1.2.4	Chronic bronchitis		21	
	1.2.5	Asthma		21	
	1.2.6	Emphysema		21	
	1.2.7	Cotton-dust impact on human health		22	
	1.2.8	Classification of Cotton Dust		25	
	1.2.9	Analysis on temperature, humidity & concentration		25	
	1.2.10	DUST CONCENTRATION		26	
	1.2.11	Prevention of cotton dust:		30	
	1.2.12	Engineering Solution		31	

	Х
1.3 Problem Statements	33
1.4 Aims and Objectives	34
1.5 Scope of Project	34
1.6 Sustainable Development Goals of Project	34
1.6.1 Introduction	34
1.6.2 Justification	35
1.6.3 Mapping of Sustainable Development Goals	35
1.7 Environmental Aspects of Project	36
1.7.1 Introduction	37
1.7.2 Environmental Impact Assessment (EIA)	36
1.7.3 Environment Impact Statement (EIS)	37
CHAPTER 2	39
2 DESIGN AND METHODOLOGY	39
2.1 METHODOLOGY	39
2.2 DESIGN	39
2.2.1 HARDWARE DETAIL	39
2.2.1.1 HM3301	39
2.2.1.2 SCD 30	41
2.2.1.4 ARDUINO	43
2.2.1.5 DC MOTOR PUMP	44
2.2.1.6 MOTOR DRIVER	44
2.2.1.7 TFT SCREEN	45
2.2.1.8 LCD SCREEN	47
2.2.1.10 SOLAR PANEL	49
2.2.1.11 GROVE BASE SHIELD V2.0 FOR ARDUINO	50
2.2.1.12 GROVE BASE HAT FOR RASPBERRY PI	51
2.2.1.13 ENERGY METER:	52
2.2.1.14 I2C	52
2.2.1.15 POWER SUPPLY	53
2.2.2 SOFTWARE DETAIL	54
2.2.2.1 PYTHON	54
2.2.2.2 AUTOCAD	55
CHAPTER 3	56
3 DESIGN IMPLMENTATION	56

			XI		
	3.1	ALGORITHM	56		
	3.1.1	RESEARCH	56		
	3.1.2	IMPLEMENTATION	57		
	3.2	SOFTWARE DEVELOPMENT	57		
	3.2.1	GUI Development	58		
	3.3	HARDWARE DEVELOPMENT	60		
	3.3.1	MONITORING AND ANALYSIS DEVELOPMENT	60		
	3.3.2	RESPIRATOR DEVELOPMENT	61		
	3.3.3 3.4	ALTERNATE POWER SOURCE FINAL OUTPUT:	62 63		
CHAPTER 4					
4	RESU	JLTS AND DISCUSSIONS	65		
	4.1	RESULTS	65		
	4.2	DISCUSSIONS:	71		
CHAPTER 5					
5	CON	ICLUSIONS AND RECOMMENDATIONS	72		
	5.1	CONCLUSIONS:	72		
	5.2	RECOMMENDATIONS:	72		
	REFE	ERENCES	73		
	APPE	ENDENCIES	76		