

FINAL YEAR PROJECT REPORT

IMPACT ESTIMATION OF SMOG ON CERAMIC & POLYMER INSULATOR BY DEVELOPING ARTIFICIAL CHAMBER

In fulfillment of the requirement For degree of BEE (Electrical Engineering)

By

SAUD ALI MUHAMMAD ARMAN NADEEM MUHAMMAD USAMA ZAKIR 57114 BEE (ELECTRICAL) 54014 BEE (ELECTRICAL) 57067 BEE (ELECTRICAL)

SUPERVISED

BY

ENGR. BASIT ALI

BAHRIA UNIVERSITY (KARACHI CAMPUS)

2018-2022

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

Signature :

Name

Saud Ali Panhwar

Reg No. : 57114

:

Signature :

Name : Muhammad Usama Zakir

Reg No. : 57067

Signature :

Name : Muhammad Arman Nadeem

Reg No. : 54014

: 10/08/2022 Date

The copyright of this report belongs to the author under the terms of the copyright Ordinance 1962 as qualified by the Intellectual Property Policy of Bahria University. The due acknowledgment shall always be made of the use of any material contained in, or derived from, this report.

© 2022, Saud Ali, Usama Zakir, and Arman Nadeem. All right reserved.

:

iv

iv

ACKNOWLEDGEMENTS

We would like to thank everyone who contributed to the successful completion of this project. We would like to express our gratitude to our research supervisor, Engr. Basit Ali for his invaluable advice, guidance, and his enormous patience throughout the development of the research.

In addition, we would also like to express our gratitude to our loving parents and friends who helped and encouraged us.

vi

IMPACT ESTIMATION OF SMOG ON POLYMER & CERAMIC INSULATOR IN AN ARTIFICIAL CHAMBER

ABSTRACT

This Final Year Project aims to check what impact SMOG has on Polymer and ceramic Insulator thus leading to contamination and Flashover issues and causing power failures. In past, experimental chambers have been designed to implicate aging tests on Polymer and ceramic. The Artificial chamber we have created will have 5 different types of artificial environments such as Raining, Temperature (Hot and Cold), Fog, SMOG, and Dust.

The first step will be developing the artificial chamber and then calibrating 5 different environmental settings, Once done Testing will begin on Polymer. This part consists of taking readings for all of the different environments e.g., Rain, Temperature (Hot and Cold), Dust, SMOG, and Fog by using environmental data for the past 5 years of Pakistan for better and more accurate results. The Testing will let us know the different effects of the environment on Polymer and Ceramic insulators. After testing we will compare both Polymer and Ceramic insulators and check which insulator was impacted by the environmental stress more thus letting us know which insulator is best suited for the outdoor environments.

vii

TABLE OF CONTENTS

DECLARATION	ii
APPROVAL FOR SUBMISSION	iii
ACKNOWLEDGEMENTS	vi
ABSTRACT	vii
LIST OF FIGURES	xii
LIST OF SYMBOLS / ABBREVIATIONS	xiv
LIST OF APPENDICES	xv

CHAPTERS

1	INTR	16	
	1.1	Background	16
	1.2	Literature Review	19
	1.3	Problem Statements	23
	1.4	Aims and Objectives	23
	1.5	Scope of Project	23
2	DESI	25	
	2.1	Overview of the past	25
	2.2	Structure of Polymer Insulator	25
	2.3	Development of Artificale Chamber	26
	2.4	Experimental Method	27
	2.5	Polymer Insulator	27
	2.6	Rainwater	27
3	DESIGN IMPLMENTATION		
	3.1	Experimental chamber & Control Panel	28
	3.2	Heat and Cold Effect on Insulators	31
	3.3	Raining Effect on Insulators	34
	3.4	Effect of SMOG on Insulators	37
	3.5	Dust and Insulators	38

viii

.

.

viii

			ix
4	RESUL	TS AND DISCUSSIONS	40
	4.0	Testing Procedure for aging analysis	40
	4.1	Aging Process on Polymer Insulator	41
		4.1.1 Polymer Aging Process of the Year 2017	42
		4.1.2 Polymer Aging Process of the Year 2018	45
		4.1.3 Polymer Aging Process of the Year 2019	48
		4.1.4 Polymer Aging Process of the Year 2020	51
		4.1.4 Polymer Aging Process of the Year 2021	54
	4.2	Collection of Contamination from Polymer insulator	57
	4.3	Measuring Leakage Current of Polymer Insulator	59
	4.4	Aging Process on Ceramic Insulator	59
		4.4.1 Ceramic Aging Process of the Year 2017	60
		4.4.2 Ceramic Aging Process of the Year 2018	63
		4.4.3 Ceramic Aging Process of the Year 2019	66
		4.4.4 Ceramic Aging Process of the Year 2020	69
		4.4.5 Ceramic Aging Process of the Year 2021	72
	4.5	Collection of Contamination from Ceramic Insulator	75
	4.6	Measuring Leakage Current of Ceramic Insulator	76
	4.7	Results	76
	4.8	Aging process on Polymer Insulator with only SMOG	78
		4.8.1 Polymer Aging Process of SMOG of the year 2017	79
		4.8.2 Polymer Aging Process of SMOG of the year 2018	80
		4.8.3 Polymer Aging Process of SMOG of the year 2019	81
		4.8.4 Polymer Aging Process of SMOG of the year 2020	82
		4.8.5 Polymer Aging Process of SMOG of the year 2021	83
	4.9	Results	84
5	CONCI	LUSIONS AND RECOMMENDATIONS	85
	5.1	Conclusion	85
	5.2	Future Work	85
REFERE	ENCES	a longe lane	86
APPENI	DICES		88

ix

•