IOT ENABLED GROCERY SHOPPING RECOMMENDATION SYSTEM USING MACHINE LEARNING TECHNIQUE

Supervisor Dr. Sohaib Ahmed

Muhammad Tauseef 02-241181-001

A Thesis submitted in the fulfilment of the requirements for the award of MS (SE) Degree

DEPARTMENT OF SOFTWARE ENGINEERING BAHRIA UNIVERSITY, KARACHI CAMPUS

FALL 2020

Approval for Examination

Scholar's Name: MUHAMMAD TAUSEEF

Registration

No. 54378

Program of Study: MS (SE)

Thesis Title:

IOT ENABLED GROCERY SHOPPING RECOMMENDTION SYSTEM USING MACHINE LEARNING TECHNIQUE

It is to certify that the above scholar's thesis has been completed to my satisfaction and, to my belief, its standard is appropriate for submission for examination. I have also conducted plagiarism test of this thesis using HEC prescribed software and found _% that is within the permissible limit set by the HEC for similarity index ____ 09 the MS degree thesis. I have also found the thesis in a format recognized by the BU for the MS thesis.

Scholar **Principal**-Signature

Date: 07-Dec-2020

Name:

Muhammad Tauseef

Supervisor's Signature:

OR SOMME AHMED 11/01/2021

Author's Declaration

I, MUHAMMAD TAUSEEF hereby state that my Master's thesis titled

"IOT ENABLED GROCERY SHOPPING RECOMMENDATION SYSTEM USING MACHINE LEARNING TECHNIQUE"

is my own work and has not been submitted previously by me for taking any degree from this University

BAHRIA UNIVERSITY KARACHI CAMPUS, PAKISTAN

or anywhere else in the country/world.

At any time if my statement is found to be incorrect even after my graduation, the University has the right to withdraw/cancel my MS (SE) degree.

Name of scholar: <u>Muhammad Tauseef</u>

Date: 07-December-2020

Plagiarism Undertaking

I,	solemnly	declare that	research	work	presented	in
the	thesis titled					

"IOT ENABLED GROCERY SHOPPING RECOMMENDATION SYSTEM USING MACHINE LEARNING TECHNIQUE"

is solely my research work with no significant contribution from any other person. Small contribution / help wherever taken has been duly acknowledged and that complete thesis has been written by me.

I understand the zero-tolerance policy of the HEC and Bahria University towards plagiarism. Therefore, I as an Author of the above titled thesis declare that no portion of my thesis has been plagiarized and any material used as reference is properly referred / cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled thesis even after award of MS (SE) degree, the university reserves the right to withdraw / revoke my MS (SE) degree and that HEC and the University has the right to publish my name on the HEC / University website on which names of scholars are placed who submitted plagiarized thesis.

Scholar / Author's Sign:

1 and and and my

Name of the Scholar: <u>Muhammad Tauseef</u>

Acknowledgement

In preparing this thesis, I was in contact with many people, researchers, academicians, practitioners and research centers. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my thesis supervisor, Professor **Dr. Sohaib Ahmed**, for encouragement, guidance, critics and friendship. Without his continued support and interest, this thesis would not have been the same as presented here.

Librarians at Bahria University also deserve special thanks for their assistance in supplying the relevant literatures. My fellow students should also be recognized for their support. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space.

I am grateful to all my Parents who supports me during studies and research.

Abstract

Recommender System are increasingly become part of the information solution because our data is growing rapidly therefore these Information solutions could be capable works on the existing data pattern and predict some other recommendations to facilitate the user decisions. Grocery recommendation system still looking for personalized recommendations for the customers which will enhance the customer personalized shopping experiences while shopping from a Grocery Mart. The major issue exists in all recommender systems is the Cold start problem. The cold start problem occurs when no data found from past data to process the request. The cold start problem are of two types either Visitor cold start problem when a new customer added into the system as well as when a new product added into the system it is called as Product cold start problem in both case the recommender systems are unable to generate the recommendations.

This thesis gives the implementation of hybrid filtering recommendations approach to generate the recommendations based on personalized grocery shopping experiences during shopping in a Grocery Mart. It also implemented the solution of cold start problem for both cases either visitor cold start or product cold start by fetching the IoT based promotion recommendations for those products. To generate the IoT based recommendations, we have implemented a mobile application, Grocery Picker, which is interacting with the smart IoT based advertisement solution using ESP8266 and display it onto the customer mobile.

This Grocery Picker application uses machine learning components that generate the Recommendations based on the needs of customers. The main contribution of this thesis is to provide the solution of cold start problem by the implementations of IoT based recommendations using the smart advertisement component.

TABLE OF CONTENTS

Ch #	Thesis Contents	Page #	
		# 9	
1	Introduction	10	
	1.1 Background	13	
	1.2 Problem Statement	13	
	1.3 Research Objectives	13	
	1.4 Research Contribution	14	
	1.5 Organization of Thesis	15	
2	Literature Review	15	
	2.1 Recommendation System	16	
	2.2 Machine Learning based Recommendation System	18	
	1) Types of Recommendation Filtering Techniques		
	2) Collaborative Filtering (CF)		
	2.1) Memory Based Collaborative Filtering		
	2.1.1) User Based Collaborative Filtering	19 20	
	2.1.2) Item Based Collaborative Filtering	20	
	2.1.3) Similarities Approaches Collaborative Filtering	20	
	2.2) Model Based Collaborative Filtering	20	
	3) Content based Filtering (CB)		
	4) Hybrid Filtering (HF)	21	
	2.3 Cold Start Issue in Recommendation Systems	26	
	2.4 Related Work	26	
3	Methodology	33	
	3.1 Activity Oriented Design Methodology	33 34	
	3.2 Why AODM Selected		
	3.3 AODM Concept of Activity Theory	34 35	
	3.4 Eight-Step-Model Formation		
	3.5 Experiment Phases Methodologies	36	
	3.6 Activities of Interests to Design Methodology	37	
	3.6.1 Collaborative Filtering (Cosine Similarity Model)	37 38	
	3.6.2 Collaborative Filtering (Pearson Similarity Model)		
	3.7 Experimental Approach for Model Formation		
	3.8 Activities Evaluation & Testing Approaches		
	3.8.1 User based Recommendations Evaluation		
	3.8.2 Item based Recommendations Evaluation	41 42	
	3.8.3 IoT based Promotion Recommendations Evaluation		
	3.8.4 SMART Advertisement Infrastructure		
	3.8.5 Conceptual Diagram of SMART Advertisement	45	
	3.8.6 IoT Experiment Cases & Configurations	46	
4	IoT based Mobile Application (GROCERY PICKER v1.0)	52	
	4.1 Grocery Picker v1.0 Main Processes	53	

viii

4.2 System Design & Mobile Application Interfaces	54
4.3 Grocery Picker v1.0 Screen Shots & Processes	55
1) Login/Signup	55
2) Mobile Application Interface	55
3) Product Data Synchronization	56
4) Shopper Personalized Recommendations	57
5) Machine Learning Components	58
6) User based Recommendations	58
7) Item/Product based Recommendations	60
8) Product Personalized Recommendations	61
9) IoT SMART Advertisement Components	61
Implementations & Results	69 69
1) Public Dataset Grocery Products	
2) Exploratory Analysis on Instacart Dataset	70 85
3) Experimental Results	85
4) Import Python Modules	85
5) Instacart Data Dictionary	80 86
6) Load Dataset	80 86
7) Data Preparation	80 88
8) Data Splitting	88
9) Defining Models	88 90
10) Popularity Model Experimental Results	90 92
11) Collaborative Model Experimental Results	92 92
11.1) Cosine Similarity Model Results	92
11.2) Pearson Similarity Model Results	95
12) Model Evaluation Results	98
13) Evaluation Summary	99
14) Cold Start Problem User based Recommendations	99
15) Item-based Recommendation Model	100
15.1) Dataset Clarifications	100
	100
15.2) Model Extension steps	100
15.3) Extended Model Evaluation Results	103
15.4) Cross Recommendation Validation Results	105
15.5) Product Cold Start Problem in Item based Recommendation	106
	100
16) SMART Advertisement Testing & Verification of Results	106
17) IoT based Promotion Recommendations	117
Thesis Conclusion	116
6.1 Limitations in Grocery Picker v1.0	117
6.2 Future Directions	117
References	119