

# MIND SPELLER: BCI HYBRID SPELLER USING EEG

A Thesis submitted In partial fulfillment of the requirement For degree of MS (SOFTWARE ENGINEERING)

By

## IMRAN MUSTAFA 14630

**SUPERVISOR** 

DR. HUMERA FAROOQ

BAHRIA UNIVERSITY (KARACHI CAMPUS)

SPRING, 2016

#### Acknowledgement

First of all, I would like to express utmost gratitude to my supervisor, Dr. Humera Farooq for her guidance, support, and patience throughout the duration of this study. She always encouraged and directed me towards the right course for pursuing my research work, and her suggestions certainly helped me in achieving my goal.

I would like to thank Head of Software Engineering Department, for being a staunch supporter of research work in the department, and for encouraging students to perform better. I am also thankful to the research committee, FDRC, for giving useful suggestions in general, as well as in particular to this study. In the end, I would like to thank the examiner for taking out the time to go through my thesis diligently. I appreciate all the valuable suggestions.

#### **Abstract**

Computer aided systems are key communication channels between disable and healthy person. Brain computer interface enable user to communicate through brain signals. Locked-in syndrome is a state in which a person unable to talk or move. In this condition person not communicate through common way, although the person is still aware of the environment, and also move their eyes. For allow a person which is in Locked-in syndrome condition to communicate without any help from others, brain computer interface may be a feasible option. Brain computer interface is a system that acquires electroencephalographic (EEG) signals; EEG signals associated to neuronal activity that comes from the brain of the subject.

EEG signal converts into commands, which translates and processes those commands. Translated commands control an external device or write some message for communication purpose. Purpose of the presented research is to allow a person to write alphabet using brain signals. The detection of alphabets is based on different type responses received from EEG device. Proposed approach use non-invasive method. Non Invasive brain computer interface recorded brain activity from outer boundaries of body. Electrodes were placed in outer scalp. The proposed method predicts characters for writing text and conveys user messages to other persons. Then band pass filters had been applied for noise removal and eliminate non targeted signal and perform feature extraction. For classification, Support vector machine (SVM) has been used.

Results show that subject concentration increases the accuracy of prediction of characters and numbers of training increases the accuracy of prediction of characters. Accuracy of prediction increased when the number of electrodes was increased.

### **Table of Contents**

| Acknowledgement                                             | i     |
|-------------------------------------------------------------|-------|
| Abstract                                                    | ii    |
| Table of Contents                                           | . iii |
| List of Figures                                             | . vi  |
| List of Tables                                              | vii   |
| List of Abbreviations                                       | viii  |
| List of Symbols                                             | . ix  |
| 1. INTRODUCTION                                             | 1     |
| 1.1. Background                                             | 1     |
| 1.2. Problem Statement                                      | 3     |
| 1.3. Research Objectives                                    | 4     |
| 1.4. Thesis Contributions                                   | 4     |
| 1.5. Thesis Scope                                           | 5     |
| 1.6. Organization of Thesis                                 | 5     |
| 2. LITERATURE REVIEW                                        | 7     |
| 2.1. Overview of chapter                                    | 7     |
| 2.2. Augmentative and Alternative Communication (AAC)       | 7     |
| 2.2.1. Unaided communication systems                        | 8     |
| 2.2.2. Aided communication systems                          | 8     |
| 2.3. Brain Computing Interface                              | .12   |
| 2.4. BCI Structure                                          | .13   |
| 2.4.1. Brain Activity Measurement Techniques                | .15   |
| 2.4.2. Preprocessing                                        | .18   |
| 2.4.3. Feature Extraction                                   | .19   |
| 2.4.4. Classification                                       | .19   |
| 2.4.5. Self-Training Semi Supervised Support Vector Machine | .19   |
| 2.4.6. P300                                                 | .20   |
| 2.4.7. Feedback                                             | .24   |
| 2.5. State of the Art Methods for BCI Speller Approaches    | .24   |
| 2.6. Summary of Chapter                                     | 26    |

| 3.                         | METHODO      | OLOGY                                           | 27 |
|----------------------------|--------------|-------------------------------------------------|----|
|                            | 3.1. Chapte  | r Overview                                      | 27 |
|                            | 3.2. Brain ( | Computing Approaches                            | 27 |
| 3.3. Proposed Approach     |              |                                                 |    |
| 3.4. Proposed Model Phases |              |                                                 |    |
|                            | 3.4.1.       | Brain Activity Measurement                      | 30 |
|                            | 3.4.2.       | Preprocessing                                   | 35 |
|                            | 3.4.3.       | Eliminate non-target data                       | 36 |
|                            | 3.4.4.       | Feature extraction                              | 37 |
|                            | 3.4.5.       | SVM Classifier                                  | 38 |
|                            | 3.4.6.       | Alphabet Prediction                             | 41 |
|                            | 3.5. Summa   | ary of Chapter                                  | 43 |
| 4.                         | RESULT A     | AND EVALUATION                                  | 44 |
|                            | 4.1. Overvi  | ew of chapter                                   | 44 |
|                            | 4.2. Experi  | ments                                           | 44 |
|                            | 4.2.1.       | Specification of system                         | 44 |
|                            | 4.3. Quanti  | tative/Subjective Experiment 1                  | 46 |
|                            | 4.3.1.       | Specification of dataset                        | 46 |
|                            | 4.3.2.       | EEG Channels data                               | 48 |
|                            | 4.3.3.       | Preprocessing                                   | 51 |
|                            | 4.3.4.       | Eliminate non-target data in feature extraction | 53 |
|                            | 4.3.5.       | Alphabet Prediction                             | 55 |
|                            | 4.4. Qualita | ative/Subjective Experiment 2                   | 56 |
|                            | 4.4.1.       | Specification of dataset                        | 57 |
|                            | 4.4.2.       | Preprocessing                                   | 60 |
|                            | 4.4.3.       | Eliminate non-target data                       | 61 |
|                            | 4.4.4.       | Experiment 2 with 64 electrodes                 | 62 |
|                            | 4.4.5.       | Experiment 2 with 8 electrodes                  | 65 |
|                            | 4.5. Analys  | sis of Experiments                              | 67 |
|                            | 4.6. Summa   | ary of Chapter                                  | 69 |
| 5.                         | CONCLUS      | SION AND FUTURE WORK                            | 71 |
|                            | 5.1. Conclu  | ision of Thesis                                 | 71 |

| 5.2. Limitations | 72 |
|------------------|----|
| 5.3. Future work | 75 |
| References:      | 74 |