

FINAL YEAR PROJECT REPORT

IOT BASED SAFETY SYSTEM FOR UNDERGROUND COAL MINES

In fulfillment of the requirement
For degree of
BS (INFORMATION TECHNOLOGY)

By

SHAGUFTA NOOR FARIHA FAYYAZ 48898 BSIT 48876 BSIT

SUPERVISED

BY

ENGR AISHA DANISH
BAHRIA UNIVERSITY (KARACHI CAMPUS)
FALL-2020

DECLARATION

We hereby declare that this project report is based on our original work except for citations and quotations which have been duly acknowledged. We also declare that it has not been previously and concurrently submitted for any other degree or award at Bahria University or other institutions.

Signature:

2 my your

Name

FARIHA FAYYAZ

Reg No.

02-235171-009

Signature:

43504

Name

SHAGUFTA NOOR

Reg No.

02-235171-034

Date

14-DECEMBER-2020

APPROVAL FOR SUBMISSION

We certify that this project report entitled "IOT BASED SAFETY SYSTEM FOR UNDERGROUND COAL MINES" was prepared by Fariha Fayyaz and Shagufta Noor has met the required standard for submission in partial fulfilment of the requirements for the award of Bachelor of Information Technology at Bahria University.

Approved by,

Signature:

Supervisor: ENGR AISHA DANISH

Date

The copyright of this report belongs to Bahria University according to the Intellectual Property Policy of Bahria University BUORIC-P15 amended on April 2019. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this report.

© 2019 Bahria University. All right reserved.

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the successful completion of this project. We would like to express my gratitude to my project supervisor, ENGR AEISHA DANISH for his/her invaluable advice, guidance and her enormous patience throughout the development of the project.

In addition, We would also like to express my gratitude to our loving parent and friends who had helped and given me encouragement.

IOT BASED SAFETY SYSTEM FOR UNDERGROUND COAL MINES

ABSTRACT

Mines are the world's most dangerous place to work because in the mines, fatality incidents occurred. A recent report states that in such mine accidents an average of around 12,000 people have died. This system will facilitate the coal mine industry to greater underground explosion. The carbon mine safety system is implemented with IoT, some gas and air quality sensors, Raspberry pi and ZigBee The device is installed in coal mine to track and regulate different parameters such as poisonous gas emission, temperature and fire detection. All sensors are constantly uploaded for analysis. Here the gas is continuously monitored if any gas level uncertainties Up, then buzzer warns staff. This device sensor senses poisonous gas presence. Temperature values are often constantly tracked and viewed on the Site and MOB APP. The built framework is primarily applied to ensure that no fatalities' exists in coal mines and to ensure workers' welfare.

TABLE OF CONTENTS

DECLARATION	İ
APPROVAL FOR SUBMISSION	ii
ACKNOWLEDGEMENT	V
ABSTRACT	vi
TABLE OF CONTENTS	D
LIST OF SYMBOLS	Х
LIST OF FIGURES	хi
LIST OF TABLES	χİ

Under the last

STATE OF STREET STATE OF STREET

5 POSSETS AND DISCUSSIONS

TABLE OF CONTENT

CHAPTERS

1	INTRODUC	TION	15	í
	1.1	Background	15	
	1.2	Problem Statements	16	,
	1.3	Aims and Objectives	17	,
	1.4	Scope of Project	18	}
2	LITERATU	RE REVIEW	19)
	2.1	Research Papers	19)
	2.2	Summary Of Literature Review	27	7
3	DESIGN AN	ND METHODOLOGY	23	8
	3.1	Hardware Development	28	8
	3.2	Software Development	30	0
4	IMPLMEN	TATION	3	4
	4.1	Flow of the Project	3	4
	4.2	Hardware List	3	5
	4.3	Block Diagram	3	6
	4.4	Assembling	3	6
	4.5	Operating System Downloading	4	15
	4.6	Databases	. 5	0
5	RESULTS	AND DISCUSSIONS		52
	5.1	Hybrid Application		52
	5.2 .	Air Quality Index (AQI)		54
	5.3	Why use Arduino's raspberry pi instead?		55
	5.4	Why use Cloud and Local databases?		56

			10
	5.5 Why we're using Arduino as ADC?		56
	5.6 What does MQ mean?	loss.	56
	5.7 Why make hybrid apps?		56
6	CONCLUSION AND RECOMMENDATIONS		57
	REFERENCES		58
	APPENDICES		59