

Bahria University Discovering Knowledge

FINAL YEAR PROJECT REPORT

IMAGE RECOGNITION USING CONVOLITION NEURAL NETWORK

ANSUB AHMED KHAN	(27092)
MUHAMMAD WAQAS	(35941)
MUHAMMAD ABDULLAH	(27141)
ABDUL HANNAN VOHRA	(27262)

By

SUPERVISED BY (MR. TARIQ SIDDIQI)

BAHRIA UNIVERSITY (KARACHI CAMPUS) 2018

ACKNOWLEDGEMENTS

We would like to thank everyone who had contributed to the completion of this project. We would like to express gratitude to our research supervisor, Mr Tariq Siddiqi for his invaluable advice, guidance and his/her enormous patience throughout the development of the research.

In addition, we would also like to express gratitude to our loving parent and friends who had helped and given us encouragement.

IMAGE RECOGNITION USING CONVOLUTION NEURAL NETWORK

ABSTRACT

The acknowledgment of the decent variety of materials that exist in the earth around us are a key visual ability that computer vision frameworks centre around. This project image recognition utilizes best in class Convolutional Neural Network (CNN) methods classifiers so as to perceive materials and examine the outcomes. Expanding on different broadly utilized material databases gathered, a choice of CNN structures is assessed to comprehend which is the best way to deal with recognition includes so as to accomplish remarkable results for the project. The outcomes consist of five material datasets with the accuracy of 82%, while applying another significant heading in computer vision. By restricting the measure of data extracted from the layer before the last fully connected layer, transfer learning goes for breaking down the commitment of shading data and reflectance to distinguish which fundamental feature choose the category the image has a place with. The accuracy of the project improves and with the comparison of the previous result it shows that performance of the project also improves particularly in the datasets which comprise of an extensive number of images.

TABLE OF CONTENTS

DECLARATION	ii
APPROVAL FOR SUBMISSION	iv
ACKNOWLEDGEMENTS	vi
ABSTRACT	viii
TABLE OF CONTENTS	vviiii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF SYMBOLS / ABBREVIATIONS	xxiiii
LIST OF APPENDICES	xxivv

CHAPTER

1	INTR	ODUCTI	ON	1
	1.1	Backgr	ound	1
	1.2	Problem	n Statement	2
	1.3	Aims a	nd Objectives	3
	1.4	Scope of	of Project	3
2	LITE	RATURE	REVIEW	5
	2.1	Formal	Presentation	5
	2.2	Problem	n with overfitting	5
		2.2.1	Huge amount of data	6
		2.2.2	Requires High Performance Hardware	6
		2.2.3	Multitasking and Flexibility	e
	2.3	Feature	extraction	7
		2.3.1	Stride	ç

			ix
		2.3.2 Classification	9
	2.4	Project pipeline	10
3	DESI	GN AND METHODOLOGY	12
	3.1	Working of CNN	12
	3.2	Workflow of Project	13
	3.3	Proposed Methodology	13
	3.4	Regularization and data augmentation	14
	3.5	Detection	14
4	IMDI	LEMENTATION	15
4	4.1	Convolution	15
	4.2	Working of CNN	15
	4.3	Flatten	18
	4.4	Full Connection	18
	4.5	Compiling the model	19
	4.6	Preparation of Dataset	20
		4.6.1 Creation of classifier	21
	4.7	Features and landmarks	22
5	RESU	ULT AND DISCUSSION	23
	5.1	Accuracy Result	23

5.2	Training and Testing		
	5.2.1 Procedure		24
	5.2.2 Weight Sharing		25
5.3	Summary of CNN		25
5.4	Evaluation of Architecture		
5.5	Experimental Repitition		26

6	CON	CONCLUSION AND RECOMMENDATIONS		
	6.1	Conclusion	27	
	6.2	Practice	27	
	6.3	The Future	28	

REFERENCES

30

29

х

APPENDICES