
JAVERIA ZAFAR

01-235191-100
AROOBA MALIK
01-235191-005

Abnormal Event Detection

Bachelor of Science in Information Technology

Supervisor: Mahwish Pervaiz

Department of Computer Science
Bahria University, Islamabad

December 30th, 2022

C e r t i f i c a t e

We accept the work contained in the report titled “Abnormal Event Detection”, written by
Javeria Zafar and Arooba Malik as a confirmation to the required standard for the partial
fulfillment of the degree of Bachelor of Science in Computer Science.

Approved by . . . :

Supervisor: Mahwish Pervaiz

Internal Examiner: Faisal Asad ur Rehman

External Examiner: Muhammad Asif

Project Coordinator: Zubaria Inayat

Head of the Department: Dr Arif ur Rehman

December 30th, 2022

Abstract

Abnormal event detection is one of the foremost important task in analysis applications.
because the traditional and abnormal events have some similarities, a lot of discriminating
ways or motion data ought to be explored. quick abnormal event detection meets the
growing demand to methodology a large style of security videos. For that purpose we
have proposed a model that used for event detection. System detect the event whether it’s
normal or abnormal on basis of movement and velocity. For human detection we use HOG
descriptor. For classification we used five different classifiers: decision tree, naïve Bayes,
bagging,linear SVC and random forest. For evaluating the performance of our model we
have a tendency to used 2 datasets: Avenue and Web dataset. Results shows that our model
offers sensible accuracy and shows enhancement.

i

Acknowledgments

This project would not have reached its desired outcome without the help of countless
people but firstly, we pay our due regards to Allah Almighty who gave us the capability and
knowledge to fully comprehend the project, His blessings are countless and we are forever
grateful to Him. We would also like to appreciate the efforts of our project supervisor
Ma’am Mahwish Pervaiz who helped us through every obstacle and hurdle that we faced in
our project. She was supportive, her influence was mighty and highly effective. Lastly, we
would like to mention all the teachers who taught us through our whole degree duration.

JAVERIA ZAFAR, AROOBA MALIK
Bahira University Islamabad, Pakistan

December 30th, 2022

ii

“Out of clutter, find Simplicity. From discord, find Harmony. In the middle of difficulty
lies Opportunity.”

Albert Einstein

iii

Contents

Abstract i

1 Introduction 1
1.1 Challenges . 2
1.2 Objective . 3
1.3 Problem Description . 3
1.4 Project Scope . 3
1.5 Methodology . 4
1.6 Feasibility Study . 5

1.6.1 Risks Involved . 5
1.6.2 Resource Requirement . 5
1.6.3 Solution Application Areas . 5

1.7 Tools/Technology . 6
1.7.1 Tools . 6
1.7.2 Language . 6
1.7.3 Libraries . 6

2 Literature Review 7

3 Requirement Specifications 13
3.1 Existing Systems . 13
3.2 Proposed System . 13
3.3 Require Specification . 14

3.3.1 Functional Requirements . 14
3.4 Non-Functional Requirements . 16

3.4.1 Availability . 16
3.4.2 Reliability . 16
3.4.3 Usability . 16
3.4.4 Security . 16
3.4.5 User Friendly: . 17

3.5 Use Case Diagram . 17
3.5.1 Sub-Use Case Diagrams . 18

3.6 Use Case Dictionary . 19
3.6.1 Import Video . 19
3.6.2 Pre-Processing . 19
3.6.3 Object Detection . 20
3.6.4 Human Verification . 21

iv

CONTENTS v

3.6.5 Feature Extraction . 21
3.6.6 Human Activity Recognition . 22

4 Design 24
4.1 System Architecture . 24
4.2 Design Constraints . 25
4.3 Design Methodology . 25
4.4 Sequence Diagram . 27

4.4.1 Human Detection . 27
4.4.2 Activity Recognition . 27

4.5 GUI Design . 28
4.5.1 User Interface 1 . 28
4.5.2 User Interface 2 . 28
4.5.3 User Interface 3 . 29
4.5.4 User Interface 4 . 29

5 System Implementation 30
5.1 Internal Component . 30
5.2 Functionality of Components . 31

5.2.1 Data Set . 31
5.2.2 Pre-processing . 32
5.2.3 Object Detection . 33
5.2.4 Human Verification . 33
5.2.5 Feature Extraction . 35
5.2.6 Classification . 36
5.2.7 Accuracy Generated From Model 45

5.3 Libraries . 45
5.3.1 OS . 45
5.3.2 Numpy . 45
5.3.3 Pandas . 46
5.3.4 CV2 . 46
5.3.5 Glob . 46
5.3.6 Scikit-learn . 46

6 System Testing and Evaluation 47
6.1 Graphical User Interface Testing . 47

6.1.1 Video Input . 47
6.1.2 Video Display . 48
6.1.3 Anomaly Detection Alert . 49

6.2 Usability Testing . 51
6.3 Test Cases . 51

6.3.1 Model Training . 51
6.3.2 Model Testing . 52
6.3.3 Video Input . 52
6.3.4 Load Multiple Video . 53
6.3.5 Frame Extraction . 53
6.3.6 Processing . 54

CONTENTS vi

6.3.7 Video Display . 54
6.3.8 Anomaly Alert . 55

6.4 Exceptional Handling . 55

7 Conclusions 56

References 57

List of Figures

1.1 Web dataset . 4
1.2 Avenue dataset . 4
1.3 Methodology Flowchart . 5

3.1 Use Case Diagram . 17
3.2 Use Case For Video Import . 18
3.3 Use Case For Video Display . 18
3.4 Use Case For Anomaly Alert . 18

4.1 System Architecture . 25
4.2 Methodology Steps . 26
4.3 Human Detection . 27
4.4 Human Activity Recognition . 27
4.5 User Interface 1 . 28
4.6 User Interface 2 . 28
4.7 User Interface 3 . 29
4.8 User Interface 4 . 29

5.1 Avenue Dataset . 31
5.2 Web Dataset . 31
5.3 Video Input . 32
5.4 Histogram of oriented gradient . 35
5.5 Feature Extraction . 35
5.6 Classification . 37
5.7 Accuracy . 45

6.1 Load Image . 48
6.2 Without Video . 48
6.3 With Video . 49
6.4 Detection Alert . 49
6.5 Detection Alert . 50
6.6 Detection Alert . 50
6.7 Detection Alert . 51

vii

List of Tables

3.1 Use Case Dictionary for Import Video 19
3.2 Use Case Dictionary for Pre-Processing 20
3.3 Use Case Dictionary for Object Detection 20
3.4 Use Case Dictionary for Human Verification 21
3.5 Use Case Dictionary for Feature Extraction 22
3.6 Use Case Dictionary for Human Activity Recognition 23

5.1 Accuracy Results . 45

6.1 Test Case for Train Model . 52
6.2 Test Case for Test Model . 52
6.3 Test Case for Video Input . 53
6.4 Test Case for Load Multiple Videos . 53
6.5 Test Case for Frame Extraction . 54
6.6 Test Case for Processing . 54
6.7 Test Case for Video Display . 55
6.8 Test Case for Anomaly Alert . 55

viii

Acronyms and Abbreviations

OVR Occurrence/Variance Report
MII Motion Information Image
SVC Scalable video coding
UMN University of Minnesota
LSTM Long Short-Term Memory
NCS Neural Compute Stick
MIL Multiple Instance Learning
CNN Convolutional Neural Network
RNN Recurrent Neural Network
NFR Non-Functional Requirements
HTML HyperText Markup Language
CSS Cascading Style Sheet

ix

Chapter 1

Introduction

Event recognition is a sub-field of computer vision which identifies input videos with the
objective of determining anomalous event when arise. Event detection is a technique for
analysing event streams to find groups of events that are abnormally created. Depends on
the context we all agree that abnormal events are unexpected events that happens less often
than normal events.

Among the newest research problems in the video field, abnormal event detection
perceives the specific frames containing an anomaly. Abnormal event detection has
increased impact on national security and people’s livelihoods. One of the main areas
that individuals started utilising for security reasons and activity monitoring is video
surveillance. As society becomes more modernised, more surveillance cameras are being
installed in public spaces like parks and shopping centres, providing a massive volume of
video every second that is difficult for a person to process and identify any unusual events
in.

In [1] a system of abnormal event detection in videos using spatiotemporal autoencoder
was proposed in which spatiotemporal architecture was presented. This study includes two
main parts, one for representing spatial feature and the other for learning how to evaluate
spatial features over time. They used three datasets including Avenue, Subway and UCSD
in their study. Experimental results in these benchmarks shows that the detection accuracy
of their method was comparable to state-of-the-art methods at considerable speed of up to
140 frames per second.

In [2] a method was proposed in which it was suggested to use a feasible automated
video analytic system to count and monitor crowds. This system makes use of a few
key approaches, such as a video processing back-end that incorporates tracking and
human subject detection as well as a front-end graphical interface for operators who use

1

Introduction 2

conventional and CNN-based object recognition algorithms. This technology is able to
accept many video streams from a central storage location and reduce human workload.

In [3] a way to identify abnormal events in human group activities was suggested by
a system of abnormal event detection on the BMTT-PETS 2017 surveillance challenge.
Their primary contribution was the creation of a method that uses supervised learning and
action isolation to learn from a small number of videos. To eliminate unwanted static
visual elements, the background was subtracted from the initial image. They then employ
an LSTM network for sequence learning after using a CNN for feature extraction. The
LSTM network receives as an input the output of CNN’s final fully linked layer. They
finally obtain the classification scores using a linear SVM. Their approach highlights how
non-deep learning based techniques such as linear SVM and background subtraction can
be combines with deep learning techniques such as LSTMs and CNN’s to build machine
learning systems with fewer data.

In [4] a method was proposed in which novel technique for anomalous crowd event
detection in surveillance videos was used for unsupervised anomaly detection and localiza-
tion based on deep spatiotemporal translation networks. The suggested method was built
upon a fresh MII model that was created utilising optical flow. Optical flow vectors that are
able to create images with motion information that are then taught and tested using CNN.

1.1 Challenges

An appropriate feature extraction, defining normal behaviours, handling an imbalanced
distribution of normal and abnormal data, addressing variations in abnormal behaviour,
sparse occurrence of abnormal events, environmental variations, and camera movements
are some of the challenges in anomaly detection from the existing systems. Additionally,
we could see that the present object recognition and tracking technologies do not place
facial identification at the top for improved surveillance capabilities. It also appears
challenging to discover anomalies other than motion abnormalities given the need for
enormous datasets to train the algorithm perfectly. Also, the activity must be determined
by the individual’s size. Small images are more challenging to detect.

1.2 Objective 3

1.2 Objective

To design a system that automates the intimation of anomalies happened in a particu-
lar place with the help of a video surveillance camera which does not require human
involvement to perform the action.

1.3 Problem Description

The reason for developing this project is that the task of abnormal event detection in
computer vision is challenging. Due to the massive increase in population we want to avoid
any anomaly and unwanted condition and for that the need for accurate and significant
applications has been increased. Surveillance cameras are used every where in public places
like parks, malls and markets to recognise any unusual occurrence that can inconvenience
to people. For that we need monitor rooms and a lot of people to look at those monitors,
so some time if there is an anomaly happened and no person is watching they can miss
that. So this system became helpful for abnormal event detection as it does not require the
involvement of human to detect the abnormal event yet it alerts the authorities whenever
any anomaly is happened.

Many pattern learning techniques have been created in the last ten years, and the
majority of them make the assumption that any pattern that deviates from this typical
pattern should be abnormal. Because the normal pattern may include an excessive number
of various events and actions, it is actually impossible to provide a technique to identify
the entire range of normal patterns. Since abnormality events may also involve numerous
comparable events and behaviours, defining abnormality events can be difficult.

1.4 Project Scope

The main target of this project is small to medium density crowd. Our system will used
in places like Park, Malls and Market. Specific size of images or individuals required to
detect the activity. The project employs a trained model that has been taught to analyze
video input, perform model inference, and display output if an anomaly is discovered. For
that purpose we used web and avenue dataset.

Introduction 4

Figure 1.1: Web dataset

Figure 1.2: Avenue dataset

1.5 Methodology

This section provides the approach used for identifying and classification using machine
learning. The method is understood by the workflow model provided in figure [1]. We
used two different datasets in this project that includes web dataset and avenue dataset.
The web dataset includes 12 videos of regular pedestrians and 8 videos of actual fights,
clashes, and escapes from fear. The avenue dataset includes 16 training and 21 testing
video clips and it was captured in Chinese University of Hong Kong (CUHK). It contains
15328 training, 15324 testing while 30652 frames in total.

Firstly in order to train the model with the video clips, we had selected the appropriate
dataset. Then import the video, read the content, extract the frames from the video input,
and save them as images in the temporary memory for further processing to carry out the
data preparation. The system fixes a size for each frame. The fixed height and width for
each frame size is usually 128 for making the frames more sharp, while the noise and
objects in the background is removed and detect the object. After this phase, the system
verifies the human if it is a human or other object. After the verification process, the extra
features are extracted on the basis of orientation, velocity and movement. In the end, the
system pass the features for classification and the output is generated.

1.6 Feasibility Study 5

Figure 1.3: Methodology Flowchart

1.6 Feasibility Study

We tried our best to meet the schedule of our project as we worked throughout our semesters
and used the best technology for our project because we want to use this project for future
use as well. We used simple languages and logic so it became easy for other users to
understand and make it more feasible.

1.6.1 Risks Involved

• Large crowd is not targeted.

• Specific size of images or individuals required to detect the activity

1.6.2 Resource Requirement

• Camera

• An interface for the system to integrate properly

1.6.3 Solution Application Areas

Our project will be used in

• Shopping malls

Introduction 6

• Parks

• Markets

1.7 Tools/Technology

1.7.1 Tools

• Jupyter Notebook

• Visual Studio Code

1.7.2 Language

• Python

• HTML

• CSS

1.7.3 Libraries

• Numpy

• OpenCV

• Pandas

• OS

Chapter 2

Literature Review

A literature review is a piece of writing that aids in connecting the understanding of the
subject matter that we have selected for the final year project. It is crucial that we research
all relevant aspects of the chosen issue and that we are capable of responding to queries
about the research. Experts believe that someone can accomplish this goal by conducting a
literature review. Additionally, the literature review leads you to a thorough analysis of
the particular research issue. Understanding the connected work is essential for any study
in order to identify the flaws in the current system and formulate a new approach to the
problem’s solution that takes into account the problems found in the related work.

In [5] As one of the most important tasks in research applications, writers conducted
research on the identification of anomalous events in crowded situations. The authors
used de-noising input frames in this case. To lessen the blur and noise in the frames,
they employed pixel-wise non-local Means (NLM) denoising. The gaussian mixture-
based background and foreground segmentation algorithm is used in their model. The
model selects the appropriate number of gaussian distributions for each pixel, offering
greater adaptability for scenarios that may change owing to brightness and other factors.
Additionally, they employ the motion heatmap creation, a two-dimensional histogram
that identifies the regions in the video that underwent any motion movement at all. They
used three datasets, the Web dataset, the UMN dataset, and the UCSD dataset, which
each contain a variety of normal and aberrant occurrences, to evaluate the performance
of the model they had suggested. They were 96.12 percent accurate across all datasets.
As a result, the model’s accuracy is improved over that of the earlier models that were
suggested.

7

Literature Review 8

In [6] As it becomes more and more crucial in research applications, writers have
examined abnormal event detection from movies using a two-Stream recurrent variational
autoencoder. Unsupervised learning is used with a variational autoencoder to model
complex distributions. It was a procreative model using neural network parameters. The
authors analyse the long-term dependencies of a video sequence using Long Short Term
Memory. However, it is well recognised that LSTM has limitations in how it expresses
spatial information, which is essential to high-level visual semantics. The convolutional
LSTM, in which all the state-to-state evolutions of memory cells are convolutional oper-
ations, is used by the authors to address the issue. The model is able to preserve spatial
information while also capturing temporal dependencies. We can sum up by saying that the
authors’ contributions produce a semi-supervised result for abnormal event identification
in videos. On multiple datasets, including AVENUE, UCSD, and SUBWAY, this method
outperforms current top methods in terms of assessments at the frame, event, and pixel
levels.

In [7] Authors investigated the use of feature coding for anomalous event detection in
indoor video. They present a base lexicon that may be updated online to reflect changes in
the video’s context. The method that was proposed improved on traditional sparse coding,
whose bases are stored permanently in the dictionary and are not changed after training.
They are not suitable for unsupervised methods as a result. The spatio-temporal patch
approach is utilised for video representation. Events are properly represented by a high
dimensional feature vector. The use of high-dimensional feature sparse representation of
events and model complexity create a difficult problem. Consequently, it is challenging
to fit a reliable Gaussian model to the sparse data. When there are few training data
and high dimensional features, sparse representation is the optimal method for abnormal
event identification. The scientists employed two readily available video datasets from the
entrance and exit surveillance cameras of subway stations for their experimental findings.
Their method aids in reducing the quantity of false alarms at subway station departure and
entrance gates. Compared to other accessible ways that are suggested by other researchers,
their system was able to deliver more accurate results in a series of anomalous incidents.

Literature Review 9

In [8] With spatio-temporal adversarial networks that learn the spatio-temporal char-
acteristics of normal patterns, the author suggested a unique abnormal event detection
method. The spatio-temporal discriminator and the spatio-temporal generator are the two
networks that make up the spatio-temporal adversarial networks. A clean frame for the
typical scene and a deformed frame for the abnormal scenario were to be produced by the
suggested generator, respectively. The spatio-temporal characteristics of typical patterns
are well encoded using the bidirectional design. As a result, scenarios with anomalous
spatiotemporal patterns can be quickly identified. The suggested discriminator has two
functions. First, the discriminator aids the generator in learning the spatiotemporal char-
acteristics of typical patterns during adversarial learning. The discriminator alone can
identify aberrant events as the second step following adversarial learning. They used
the UCSD Ped1, UCSD Ped2, and Avenue datasets for their studies and findings. The
training sets of these datasets contain only normal events while the testing sets contain
both normal and aberrant occurrences. Two evaluation indicators were used to assess
the effectiveness of their suggested strategy. First, they used the area under curves-based
frame-level evaluation. They also used event-level evaluation depending on the quantity
of occurrences found. Comparing the findings of the suggested technique to those of the
previous event-level evaluation strategies, it showed higher accuracy.

In [9] Authors suggested using a sparse reconstruction over the usual basis to find
aberrant events. The authors divide the abnormal occurrences into two categories. The
first was a local anomalous occurrence, when the behaviour of the locality differed from
its spatiotemporal surroundings. The second was a global abnormal occurrence, where the
entire scene was abnormal despite the fact that any given local behaviour could be normal.
In order to propose a system to identify local and global events in congested environments,
the authors use various types of bases. They suggested a brand-new feature description
called Multi-scale histogram of optical low to lay the groundwork for sparse representation.
The more precise motion energy information is also provided by the multi-scale histogram
of optical flow. They employed three different datasets to assess the effectiveness of their
suggested algorithm. They employed the UMN dataset for the global abnormal event,
and the UCSD Ped1 and Subway datasets for the local abnormal event. They use three
measurements for evaluation: pixel, frame, and event levels. In comparison to other
methods, the one suggested by the authors detects all wrong direction occurrences and also
has a higher accuracy for no-payment events.

Literature Review 10

In [10] in the world of technology, the demand for intelligent video surveillance is
rising since it can analyse huge amounts of video data. In order to uncover anomalies in
crowded video sequences, the authors conducted research on abnormal event identification
in crowded scenarios. They use a basic patch descriptor in their system, which divides
a given check picture frame into two patches based on the size of the image frame and
evaluates pixel motion energy. The projected system then used efficient edge detection and
filtering DoG. The motion context was then allocated and normalised cuts and gaussian
expectation-maximization techniques were employed to cluster related patches. In order to
identify the anomalous activity scattered among the packed scenes, they ultimately adopted
the k-nearest neighbour (k-NN) search method. In comparison to the current system, their
proposed one takes less time to identify anomalies in a picture frame. The suggested
system has a faster elapsed time and Ncuts computation time than the current system. The
suggested system also enhances PSNR. Their technique efficiently and precisely aids in
finding anomalies in video frames of busy scenes. However, due to several constraints,
their technology is unable to process an entire video at once. Additionally, when patch
size increases, system performance suffers.

In [11] the challenge of identifying unexpected patterns in recordings is known as
"abnormal event detection" in surveillance. For quick abnormal event detection that
was connected to subspace clustering, authors proposed an effective sparse combination
learning framework using both batch and online solvers. They employed hierarchical
clustering and k-means for subspace clustering. The framework they use to learn space
basis combinations is described. Then they perform sparse combination training, where
they evenly divide each layer into a collection of non-overlapping patches and resize each
frame work into different scales to retrieve the relevant data. In terms of pixels, each patch
is the same size. Birth-and-Death Combination Online Learning was the next stage. Then
they do analysis for online training and testing. They create a novel evaluation dataset for
their work. Their dataset contains a few plausible scenarios that were absent from earlier
datasets. On the Subway dataset, they also perform quantitative comparisons with earlier
approaches. For testing, a different UCSD Ped1 dataset is utilised. They employed the
NYPD dataset along with the UMN data set to test the effectiveness of the online solver.
They use a method that learns sparse combinations, which dramatically speeds up testing
without sacrificing effectiveness. To manage massive amounts of data, an online solution
was also made available.

Literature Review 11

In [12] processing a huge volume of surveillance videos required abnormal event de-
tection. The task of spotting unusual events in crowded situations was difficult. Therefore,
researchers conducted research on AED-NET, a network for the identification of aber-
rant events. They proposed a novel model to deal with the interconnectedness of human
behaviour and to improve the representation of object’s interaction in order to address
how occlusion between moving objects affects the effectiveness when it was applied to
crowded settings. They employed the deep learning network PCAnet, which can perform
difficult tasks like facial recognition, for feature extraction. They chose this model because
of its effectiveness and capacity for feature extraction competition. For a self-supervised
learning technique for anomaly identification, they also employed kPCA. They computed
optical flow using the Horn-Schunck (H-S) method. They made use of the numerous
normal and aberrant occurrences found in the UMN dataset and the UCSD dataset. They
constructed flow maps using the raw data from the surveillance video clips, and PCAnet
then retrieved their high-level features, which were then utilised to assess the anomalism
of both local and global anomalous events. The findings demonstrate how effectively the
framework detects both local and global anomalous events.

In [1] is is stated that it has long been a difficult task to spot an anomaly in a crowded
scene, but with the enormous growth of video there was an increasing need not only for
object recognition and their behaviour, but in particular for detecting the rare, interesting
occurrences of unusual objects or suspicious behaviour in the large body of ordinary data.
Because of this, academics have done research on employing spatiotemporal auto-encoder
to detect aberrant events in films. In their study, they employ a deep learning methodology
to represent video data by a collection of standardised features that are taken from lengthy
video clips. They used a domain-free approach that doesn’t call for additional work from
people. Their approach involved training an end-to-end model that combined a temporal
encoder-decoder and a spatial feature extractor to understand the temporal patterns of the
input volume of frames. First, they transform unaligned raw data into usable input for the
model. To learn the regular patterns in the training films, they then suggest a convolutional
spatio-temporal auto-encoder. Finally, after the model has been trained, the performance of
the model may be assessed by feeding it test data to see if it was successful in recognising
abnormal occurrences while maintaining a low false alarm rate. To train their model, they
employed the UCSD D Ped1 and Ped2 datasets, the subway entrance and exit records, and
the Avenue dataset.

Literature Review 12

In [13] it is stated that researchers in the field of computer science are paying more
and more attention to video studies lately. There has been a lot of research towards the
detection of abnormal events in crowded settings. The author’s research on real-time
abnormal event identification in crowded settings is presented in this publication. First,
they developed the STACOG feature descriptor to characterise video events in order to
recognise aberrant events in crowded settings. Second, they made use of the PETS2009
dataset and the UMN dataset, both of which are freely accessible surveillance datasets.
Thirdly, their approach is computationally cheap, making it ideal for real-time anomaly
identification in surveillance footage. The STACOG descriptor was employed for feature
extraction. By taking advantage of the local correlations between the space-time gradients
from the image sequences, it captures the geometric properties of a motion shape. They
then divided the STACOG descriptors of the training frames into a set of clusters using the
K-medoids clustering algorithm. On a laptop with an Intel Core i5-3210M CPU running at
2.50GHz and 6G RAM, they conducted trials to assess the precision and performance of
the suggested approach. At the frame level, their suggested strategy has shown equivalent
results, with 98.48 percent AUC for UMN and 92.13 percent accuracy for PETS 2009.
However, they must research how to exploit the auto-correlation of streak flow features
to enhance the proposed method’s accuracy. By enclosing the velocity field for a while,
streak flow faithfully captures the motions of the crowd.

Chapter 3

Requirement Specifications

This chapter deals with all the requirement specifications of the project, recording all the
functional requirements and the non-functional requirements. A simple use-case has also
been included at the end of this chapter, along with its dictionary.

3.1 Existing Systems

Existing systems related to our project had somewhat similar features and working but
some of the challenges in abnormal event detection include defining normal behaviors,
addressing the variations in abnormal behavior, appropriate feature extraction, handling
imbalanced distribution of normal and abnormal data, environmental variations, sparse
occurrence of abnormal events and camera movements. Also we observed that facial
identification is not on the top of the current object recognition as well as tracking for more
enhanced surveillance capabilities.

Those systems were not able to overcome the problem of huge datasets to train the
system perfectly and identifying anomalies other than motion anomalies seems difficult.
Hence, we developed the system that will overcome some of the challenges like these.

3.2 Proposed System

Our system automates the intimation of any such anomalies happened in a particular
place like park, shopping mall and market etc. With the help of a video surveillance
camera, which doesn’t require any involvement of human beings to perform the intimation.
This system then shall be propagated to other areas of identification like earthquakes.
Our system classify events as normal or abnormal event through different classifiers like
decision tree, naïve bayes, random forest, linear SVC and bagging.

13

Requirement Specifications 14

3.3 Require Specification

Initially our system would be trained and tested for the selected set of abnormalities. Then
the trained model would be integrated in such a way that would take input from the dataset
and generate responses.

3.3.1 Functional Requirements

Functional requirements are a set of requirements that describes how a system must func-
tion. It based on the proposed system and the users that are interacting with it. According
to its elicited criteria, each system would have an own set of functional requirements. Our
system has the following functional requirements.

3.3.1.1 Import Video

Videos from dataset had been given in the form of input to the system to extract the frames
of a specific threshold. The size of the extracted frames then is fixed as it helps in detecting
the image.

3.3.1.2 Pre-Processing

Before being used, data must first be processed. The idea of data preprocessing is to turn
the raw data into a clean data set. Before submitting the dataset to the algorithm, it is
pre-processed to look for missing values, noisy data, and other anomalies. So we have
done pre-processing in this project in following steps:

• Extract Frames We extracted frames from both datasets. This process was done by
using Video Capture Object. Avenue data set contains 15328 training, 15324 testing
and 30652 frames in total. Web dataset contains 2545 abnormal, 5066 normal and
7611 frames in total. After extraction resize the frames of the videos to a fixed width
and height of 128 and a sequence length of 16 ignoring the videos having frames
less than the sequence length, to reduce the computations and normalize the resized
frame by dividing it with 255 so that each pixel value then lies between 0 and 1.
Later on these frames will used in detecting normal and abnormal events.

• Filter Application After extracting frames from videos, we applied filter for smooth-
ing, modifying and enhancing the image. For filter application we used median filter.
The median filter considers each pixel in the image in turn and looks at its nearby
neighbors to decide whether or not it is representative of its surroundings. It replaces
the pixel value with the median of neighboring pixel values. The median is calculated
by first sorting all the pixel values from the surrounding neighborhood into numerical
order and then replacing the pixel being considered with the middle pixel value.

3.3 Require Specification 15

• Background Removal Once the image is smoothed then we had removed the
background. For background removal we used frame difference. Background
subtraction as the name suggest is the process of separating out foreground objects
from the background in a sequence of video frames. Firstly we converted the
incoming frames to gray scale then subtract the current frame from the background
model which is just the previous frame and last for each pixel calculate the difference
between the current frame and the previous frame. If the difference between the
current frame us greater then the threshold, the pixel is considered the part of
foreground.

3.3.1.3 Detection of Objects

After the pre-processing phase, object detection is done using watershed algorithm. Wa-
tershed algorithm is based on extracting sure background and foreground and then using
markers will make watershed run and detect the exact boundaries. This algorithm generally
helps in detecting touching and overlapping objects in image.Firstly we had find the sure
background using morphological operation like opening and dilation. Then we find the
sure foreground using distance transform. and lastly unknown area is the area neither lies
in foreground and background and used it as a marker for watershed algorithm.

3.3.1.4 Verification of Humans

Computer vision systems use human recognition and tracking to find and follow humans in
video footage. Finding every occurrence of a human in an image is the challenge of human
detection, which has most commonly been completed by scanning the entire image at all
feasible scales and comparing a small region at each location with templates or patterns
of individuals. In our approach, if the input video is correctly received, the system will
accurately recognize the object using HOG.

3.3.1.5 Feature Extraction

Extra features of the dataset is extracted. Which includes:

• Orientation The system detects the orientation of the human. Meaning it determines
the position in which the human is standing.

• Movement To estimate the motion pattern optical flow has been extracted for the
selected pixels belonging to moving objects using Horn-Schunck optical flow algo-
rithm. Speed of a pixels relates with its neighboring pixels. For every point in optical
flow change of speed is smooth with no sudden changes.

Requirement Specifications 16

• Velocity Distance of objects between two points has been computed using value of
their centroid. Euclidean distance has been used to calculate distance. It is calculated
by using the Euclidean distance formula given by equation. Position of pixels are
used as initial and final stage of objects

3.3.1.6 Model Training

Model needs to be trained firstly. The system splits the data to create training and testing
sets. It also shuffles the dataset before the split to avoid any bias and get splits representing
the overall distribution of the data.

3.3.1.7 Human Activity Recognition

The goal of Human Action Recognition (HAR) is to comprehend human behavior and give
each action a label. Due to its many uses, it has been garnering more and more interest in
the computer vision community. According to our methodology, the system will identify
each person’s activity and designate it as either a normal or abnormal occurrence.

3.4 Non-Functional Requirements

NFRs outline the constraints that have an impact on how the system should operate and
fulfill the functional requirements. Here are a few NFRs connected to our system:

3.4.1 Availability

The system is available for anyone at every time.

3.4.2 Reliability

The system provides exact and authenticated data about the detection and recognition of
video.

3.4.3 Usability

The system is available for usage when the user requests it. After choosing a video, the
user checks to see what kind of event is taking place in it. The application then analyses
the video and informs the user whether the occurrence is normal or abnormal.

3.4.4 Security

The system is also used for security purpose.

3.5 Use Case Diagram 17

3.4.5 User Friendly:

The system is user friendly so that any person can use our system without any type of error.

3.5 Use Case Diagram

Use-cases are typically used to document the system requirements for a specific project,
including the user experience and personnel involved. Figure demonstrates some of the
functions of our system and how it communicates with users.

Figure 3.1: Use Case Diagram

Requirement Specifications 18

3.5.1 Sub-Use Case Diagrams

The developed system accurately imports the videos stored in the local memory.

Figure 3.2: Use Case For Video Import

The system will display video as the video is uploaded.

Figure 3.3: Use Case For Video Display

When an anomaly is detected the system will generate an alert which is displayed on
the front-end of web page.

Figure 3.4: Use Case For Anomaly Alert

3.6 Use Case Dictionary 19

3.6 Use Case Dictionary

An explanation of each functionality in a use case diagram is provided by a use case
dictionary. This greatly improves the reader’s ability to comprehend the project’s non-
technical aspects.

3.6.1 Import Video

This is the initial version of the dictionary that concentrates on the section where videos
are obtained that are utilized for anomaly identification.

Table 3.1: Use Case Dictionary for Import Video

Use Case ID 01
Title Import Video

Pre-Condition
The system needs to have proper
video clips that may be used for
detecting the an anomaly.

Post-Condition
The video is imported success-
fully.

Basic Path
The user will upload the videos
stored in the local memory for
detecting the abnormal events.

Alternative Path
If videos are not uploaded suc-
cessfully the user will try again.

Exceptional Path
Might be some errors or system
failures.

3.6.2 Pre-Processing

In deep learning and data mining processes, it is essential that the project must first, pre-
process our data to remove redundancies and unnecessary data. This makes our data more
easy to read and more prune to a better output.

Requirement Specifications 20

Table 3.2: Use Case Dictionary for Pre-Processing

Use Case ID 02
Title Pre-Processing

Pre-Condition
We have chosen the proper
dataset web and avenue to train
the model with the video clips.

Post-Condition
The chosen dataset has video
clips.

Basic Path

We import the video, read the
content, and extract the frames
from the video input and save
them as images in the temporary
memory for processing the same.

Alternative Path
Remove the background and
noise for smoothing the image.

Exceptional Path
Might be some errors or system
failures.

3.6.3 Object Detection

This portion of the project deals with the technical aspect. When the project has a video
clip, it runs it through the model and detects all the objects present in the video and removes
the unnecessary ones, including background noise, objects in the room like pictures.

Table 3.3: Use Case Dictionary for Object Detection

Use Case ID 03
Title Object Detection

Pre-Condition Valid and clear video is needed

Post-Condition
The objects are detected, and the
noise and background objects are
removed.

Basic Path
Extract the background and fore-
ground of the image. For that
purpose watershed was used.

Alternative Path

If the image is not pre-processed
in case the image is big than
the given threshold, then it is de-
tected again.

Exceptional Path
Might be some errors or system
failures.

3.6 Use Case Dictionary 21

3.6.4 Human Verification

The technological element of the project is covered in this section. When a video clip is
available, the project will identify the object based on movement by pulling features from
the frame.

Table 3.4: Use Case Dictionary for Human Verification

Use Case ID 04
Title Verify Human

Pre-Condition
System is taking input video suc-
cessfully.

Post-Condition
System will detect the Human by
using HOG descriptor.

Basic Path
System will detect the object on
the basis of the movements by ex-
tracting features from the frame.

Alternative Path

If the system will not detect the
human on the basis of the move-
ment of human then it will detect
on the basis of velocity.

Exceptional Path
Frames are too large to extract
the features of that object prop-
erly.

3.6.5 Feature Extraction

In this section system will extract the features precisely from the given dataset.

Requirement Specifications 22

Table 3.5: Use Case Dictionary for Feature Extraction

Use Case ID 05
Title Extract Features

Pre-Condition
System is detecting object suc-
cessfully.

Post-Condition
System will extract the features
precisely from given dataset.

Basic Path

System will extract features on
basis of movement. Load the
images normal and abnormal for
further process.

Alternative Path

If system will not extract features
on basis of above path then sys-
tem will extract feature on basis
of velocity of object.

Exceptional Path
Frames are too large to extract
the features of that object prop-
erly.

3.6.6 Human Activity Recognition

In this section the system will recognize human activities based on their motion patterns in
each frame.

3.6 Use Case Dictionary 23

Table 3.6: Use Case Dictionary for Human Activity Recognition

Use Case ID 06
Title Recognize Human Activity

Pre-Condition
Identify the motion pattern of ob-
ject in each frame.

Post-Condition
System will recognize the activ-
ity of every individual.

Basic Path
System will recognize the activ-
ity of human as normal event or
abnormal event.

Alternative Path
For each input frame, we divide
every scaled frame in equal and
non-overlapping regions.

Exceptional Path
Scenario was extremely crowded
to classify the event of individual
object.

Chapter 4

Design

This chapter includes all the design for the said model, having an in-depth analysis of the
needs and requirements. The chapter itself is divided into different modules, all of which
are discussed in detail, below.

4.1 System Architecture

This portion highlights the design at a low-level, including non-technical terms. This makes
it easy to understand the general gist of the project, for those who are not familiar with the
methods and concepts used, at root level. Our Project has no hardware requirements as its
working is purely based on pre-defined datasets (pre-recorded videos). We used web and
avenue dataset. We use Numpy, Pandas libraries along with OpenCV libraries. The model
we proposed is further used for event classification.

24

4.2 Design Constraints 25

Figure 4.1: System Architecture

4.2 Design Constraints

There are a few constraints associated with the system.

• The browser needs to have access to the front-end website of the system that would
act as a dashboard. Keeping this in mind the system should have access to internet
for proper working.

4.3 Design Methodology

The objective of this system is to analyze videos, perform series of tasks for detection and
recognition of actions from the set of predefined normal and abnormal situations. This
system is developed on the basis of following activities.

Design 26

• Import video from dataset.

• Frame extraction from the selected video.

• Apply median filter to smooth image.

• Remove background from the frame using frame difference method.

• Detect object in the frame using watershed algorithm.

• Verify human using HOG descriptor.

• Extract the features on the basis of movement and velocity to characterize various
actions.

• Recognition of activity by using different classifier and results are shown to users.

To train the model we used proper dataset by providing video clips. In order to process the
video, we import it, read the information, and then separate the frames from the video input
and save them as images in the temporary memory. After extracting frames we had applied
median filter to smooth the image and to reduce the noise present in the image. After
that we removed the background using frame difference. Background subtraction as the
name suggest is the process of separating out foreground objects from the background in a
sequence of video frames. Then we used the HOG descriptor, which counts the instances
of gradient orientation in focused areas of a picture, for human detection. After that on
the basis of features of activity performed by human in video clips system recognized that
activity is normal or abnormal event. For classification we used different classifiers linear
svc, bagging, decision tree, naïve bayes and random forest.

Figure 4.2: Methodology Steps

4.4 Sequence Diagram 27

4.4 Sequence Diagram

A sequence diagram is a form of interaction diagram, because it illustrates the interactions
between a group of items and the order in which they occur.

4.4.1 Human Detection

Figure 4.3: Human Detection

4.4.2 Activity Recognition

Figure 4.4: Human Activity Recognition

Design 28

4.5 GUI Design

To make it easier for the user to run the script, this project needed an interactive user
interface (UI). Making a Flask application that would serve as the front end and integrate it
with the model and other Python scripts was the strategy used to complete this work. The
project’s UI is shown in figure below

4.5.1 User Interface 1

Figure 4.5: User Interface 1

4.5.2 User Interface 2

Figure 4.6: User Interface 2

4.5 GUI Design 29

4.5.3 User Interface 3

Figure 4.7: User Interface 3

4.5.4 User Interface 4

Figure 4.8: User Interface 4

Chapter 5

System Implementation

In this particular section of the thesis, it is diving in the physical implementation of the
system and how it all works out as an end product. This is an essential portion as it covers
the technical aspect of the project in depth.

5.1 Internal Component

Anomaly detection has been a massive gap in the technical world and its introduction
has opened up numerous gates for further research and development. Having said this,
anomaly detection in videos, has been a tough ask since it is not possible to accurately
depict what constitutes as an anomaly, given the wide nature. The system was trained in
such a manner that it takes a video clip from the dataset having each frame extracted. The
model then gives a frame score for each individual frame extracted from the video, by using
Open-CV function, in the range of 0 to 1. if the value is 0, it indicates that they belong
to abnormal behavior category and 1 shows it belong to normal behavior category. Our
system is divided into 5 major components internally, which perform their task respectively.
The first component is preprocessing in which the video is uploaded in order to pre-process
by extracting frame from the video clip, nest step is object detection in which the object is
detected, next our system will verify human. After that features are extracted and lastly
classifiers are applied which gives out anomaly score.

30

5.2 Functionality of Components 31

5.2 Functionality of Components

5.2.1 Data Set

In this project we used two datasets i.e. WEB dataset and Avenue dataset. Both contain
normal and abnormal video clips.We use 80% dataset for training purpose and 20% for
testing the model.

Avenue Dataset contains 21 testing and 16 training video clips. The videos are captured
in CUHK campus avenue with 30652 (15328 training, 15324 testing) frames in total.

Figure 5.1: Avenue Dataset

The web dataset contains 8 Videos of real-life escape panic, clash, fight and 12 Videos
of normal pedestrians. This dataset contains 2545 abnormal, 5066 normal and 7611 frames
in total.

Figure 5.2: Web Dataset

System Implementation 32

5.2.2 Pre-processing

Before being used, data must first be processed. To pre-process the data the system read
the video files from the dataset and resize the frames to a fix width and height of 128
and a sequence length of 16 while disregarding the videos having frames shorter than the
sequence length to reduce computations. We then normalize the resized frame by dividing
it with 255 so that each pixel value then lies between 0 and 1. The pre-processing in this
project includes following steps:

5.2.2.1 Import Video

Since this project revolves around existing system, the project needs to have an input
source that can give us video clip or video input. Figure 5.1 shows an example of a locally
stored video.

Figure 5.3: Video Input

5.2 Functionality of Components 33

5.2.2.2 Extract and Read Frames

Now we extract frames from both datasets. The process was done by using Video Capture
Object. Avenue data set contains 15328 training, 15324 testing and 30652 frames in total.
Web dataset contains 2545 abnormal, 5066 normal and 7611 frames in total. Later On
these images will used in detecting normal and abnormal events.

5.2.2.3 Filter Application

After extracting frames from videos, we applied filter for smoothing, modifying and
enhancing the image. For filter application we used median filter. The median filter
considers each pixel in the image in turn and looks at its nearby neighbors to decide
whether or not it is representative of its surroundings. It replaces the pixel value with the
median of neighboring pixel values. The median is calculated by first sorting all the pixel
values from the surrounding neighborhood into numerical order and then replacing the
pixel being considered with the middle pixel value.

5.2.2.4 Remove Background

Once the image is smoothed then we had removed the background. For background
removal we used frame difference. Background subtraction as the name suggest is the
process of separating out foreground objects from the background in a sequence of video
frames. Firstly we converted the incoming frames to gray scale then subtract the current
frame from the background model which is just the previous frame and last for each pixel
calculate the difference between the current frame and the previous frame. If the difference
between the current frame us greater then the threshold, the pixel is considered the part of
foreground.

5.2.3 Object Detection

After the pre-processing phase, object detection is done using watershed algorithm. Wa-
tershed algorithm is based on extracting sure background and foreground and then using
markers will make watershed run and detect the exact boundaries. This algorithm generally
helps in detecting touching and overlapping objects in image.Firstly we had find the sure
background using morphological operation like opening and dilation. Then we find the
sure foreground using distance transform. and lastly unknown area is the area neither lies
in foreground and background and used it as a marker for watershed algorithm.

5.2.4 Human Verification

Human Verification is the task of locating all instances of human beings present in an
image, and it has been most widely accomplished by searching all locations in the image,

System Implementation 34

at all possible scales, and comparing a small area at each location with known templates or
patterns of people.

5.2.4.1 HOG

The Histogram of Oriented Gradients (HOG) is a feature descriptor used in computer
vision and image processing applications for the goal of the object detection. It is a method
that counts events of gradient orientation in a specific portion of an image or region of
interest.

In 2005, Dalal and Triggs published a research paper named Histograms of Oriented
Gradients for Human Detection. After the release of this paper, HOG is used in a lot of
object detection applications.

Here are the most important aspects of HOG:

• HOG focuses on the structure of the object. It extracts the information of the edges
magnitude as well as the orientation of the edges.

• It uses a detection window of 64x128 pixels, so the image is first converted into (64,
128) shape.

• The image is then further divided into small parts, and then the gradient and orien-
tation of each part is calculated. It is divided into 8x16 cells into blocks with 50
percent overlap, so there are going to be 7x15 = 105 blocks in total, and each block
consists of 2x2 cells with 8x8 pixels.

• We take the 64 gradient vectors of each block (8x8 pixel cell) and put them into a
9-bin histogram.

5.2.4.2 Initializing the HOG Person

Firstly, initialize the HOG (Histogram of oriented gradient) person. Object detection
frequently makes use of the HOG features. An image is divided into small squared cells

5.2 Functionality of Components 35

using HOG, which then computes a histogram of oriented gradients in each cell, normalises
the outcome using a block-wise pattern, and provides a description for each cell. HOG is
often used for object detection. Take the input image you want to calculate HOG features
of. Resize the image into an image. Detect all regions in the image that has a person inside
it. Draw original bounding boxes around the object. Now show the output.

Figure 5.4: Histogram of oriented gradient

5.2.5 Feature Extraction

Feature extraction is a step of the dimensional reduction process which divides and
condenses an initial set of raw data into smaller, easier-to-manage groups. When you have
a large data set and need to conserve resources without losing any important or significant
information, the feature extraction technique can be helpful. The amount of redundant data
in the data collection is decreased with the help of feature extraction.

In the end, the reduction of the data speeds up the learning and generalisation phases of
the machine learning process and makes it easier for the computer to develop the model.

In this section, we discuss the features we used to classify the events. We have extracted
features on the basis of velocity and movement.

Figure 5.5: Feature Extraction

5.2.5.1 Velocity

Distance of objects between two points has been computed using value of their centroid.
Euclidean distance has been used to calculate distance. It is calculated by using the
Euclidean distance formula given by equation. Position of pixels are used as initial and
final stage of objects.

System Implementation 36

where x1 is position of previous pixel, x2 is position of present pixel in terms of width,
y1 is the position of previous pixel and y2 is position present pixel in terms of height.
Considering the distance velocity of all moving objects have been calculated using distance
travelled per unit time with respect to frame rate as equation below. The velocity of the
object is presented .

5.2.5.2 Movement

To estimate the motion pattern optical flow has been extracted for the selected pixels
belonging to moving objects using Horn-Schunck optical flow algorithm. Speed of a pixels
relates with its neighboring pixels. For every point in optical flow change of speed is
smooth with no sudden changes. Smoothing constraint has been described. Figure presents
the optical flow of multiple points selected.

5.2.6 Classification

The human activity categorization problem has remained a challenging task in computer
vision for more than two decades. Previous works on characterizing human behavior have
shown great potential in this area.

For classification of event whether it’s normal or abnormal. We use five different
classifiers decision tree, Naïve Bayes, Random forest, linear SVC and OVR bagging.

5.2 Functionality of Components 37

Figure 5.6: Classification

5.2.6.1 Decision Tree

• Definition A helpful supervised machine learning tool, Decision Tree can be applied
to both classification and regression issues. They are effective analytical models that
require little pre-processing time to understand data. It is a decision-support tool
with a tree-like structure that offers suggestions for potential outcomes and costs of
choices.

• Construction A decision tree displays a decision-making algorithm in a structure
analogous to a flowchart. By separating the source set into subgroups based on a
quality worth test, a tree can be comprehended. Recursive partitioning is the process
of repeating this cycle on each selected subset. When the value of the subset at the
node matches the value of the subset of the target variable or when splitting does not
improve the accuracy of the predictions, the recursion is said to be complete. The
creation of a decision tree classifier does not require any expertise in boundary setting
or the domain. High dimensional data can be handled via decision trees. Overall, the
decision tree classifier has excellent precision and uses an inductive method to learn
about characterization.

• Representation Decision trees classify or organise events by placing them from the
tree’s root to various leaf nodes. This offers a description or classification of the
occurrences. An occurrence is categorised by starting at the root node of the tree,
examining the characteristics suggested by this node, and then moving along the
tree branch by evaluating it against the value of the attribute. For the subtree that is
rooted at the new node, the procedure is repeated.

System Implementation 38

• Example Here is an illustration of a binary tree model. Suppose you want to know
if a person is fit based on the information they have provided about their age, food
habits, physical activities, etc. The questions "what’s the age," "does he work out?"
and "does he eat too many pizzas?" would be the decision nodes in this case. The
leaves, which are the actual outcomes, are also either "fit" or "unfit." It is classified
as binary because there are just two options.

• Advantages Decision trees have a number of benefits over other decision-making
tools. Among them are:

– It is not necessary to standardise or normalise the acquired data before using a
decision tree method. Both continuous and categorical variables are supported.

– It is not necessary to credit the missing data when using the decision tree
algorithm.

– Pre-processing procedures in a decision tree making model demand less code
and analysis than typical pre-processing steps of data.

– In contrast to the typical data pre-processing processes, the pre-processing
phases in a decision tree making model save time.

– A decision tree generates comprehensive rules.

– Compared to other algorithms, the principle or concept that underpins the
decision tree making model is simpler and more recognisable to developers and
programmers.

• Disadvantages

– A decision tree typically requires more memory because of the numerical
calculations involved.

– A decision tree’s repeatability is extremely sensitive since even a small change
in the data can have a significant impact on the tree’s structure.

– Decision tree making methods are less suitable for jobs requiring the prediction
of continuous attribute values due to their limitations.

– Making a decision tree is highly expensive because fields need to be sorted at
each node. Some algorithms combine the usage of several distinct fields at once,
thus raising expenses.

5.2 Functionality of Components 39

• Conclusion It is evident from the description above that decision trees can effectively
handle non-linear data sets. In many spheres of life, including engineering, civil
planning, business, and even law, it acts as a stimulant for decision-making. It is
necessary to consider the decision tree model’s benefits and drawbacks in light of
how well they fit the current problem statement.

5.2.6.2 Naïve Bayes

• Definition It is a classification method built on the Bayes Theorem and predicated
on the idea of predictor independence. A Naive Bayes classifier, to put it simply,
believes that the presence of one feature in a class has nothing to do with the presence
of any other feature. Simple to construct and especially helpful for very big data sets
is the naive Bayes model. Along with being straightforward, Naive Bayes is known
to perform better than even the most complex classification techniques.

• Example A fruit might be categorised as an apple, for instance, if it is red, rounded,
and around 3 inches in diameter. Even if these characteristics depend on one another
or on the presence of other characteristics, each of these traits separately increases
the likelihood that this fruit is an apple, which is why it is called "Naive."

• Pros

– The test data set class can be predicted quickly and easily. Additionally, it excels
at multi-class prediction.

– A Naive Bayes classifier performs better than other models like logistic regres-
sion when the assumption of independence is true, and it requires fewer training
data.

System Implementation 40

– Compared to a numerical variable, it performs well with categorical input
variables (s). It is assumed that numerical variables have a normal distribution
(bell curve, which is a strong assumption).

• Cons

– If a categorical variable has a category in the test data set but not in the training
data set, the model will give it a probability of 0 (zero) and will not be able to
predict anything. This is commonly referred to as "Zero Frequency." We can
utilise the smoothing method to resolve this. Laplace estimate is one of the
simplest smoothing methods.

– However, naive Bayes is likewise regarded as a poor estimator, therefore the
predict proba outputs for probability should not be taken too seriously.

– The assumption of independent predictors is one more Naive Bayes flaw. We
rarely find a set of predictors that are entirely independent in the real world.

• Applications of Naive Bayes Algorithms

– Real time Prediction:

Naive Bayes is a quick classifier that eagerly learns new things. As a result, it
might be applied to real-time prediction.

– Multi class Prediction:

The ability of this method to predict many classes is very widely recognised.
Here, we can forecast the likelihood of several target variable classes.

– Text classification/ Spam Filtering/ Sentiment Analysis:

Because they perform better in multi-class situations and follow the indepen-
dence criterion, naive Bayes classifiers are frequently employed in text clas-
sification and have a greater success rate than other methods. It is therefore
frequently used in Sentiment Analysis and Spam Filtering (to identify spam
e-mail) (in social media analysis, to identify positive and negative customer
sentiments)

– Recommendation System:

Together, Naive Bayes Classifier and Collaborative Filtering create a recom-
mendation system that filters opportunistic information and forecasts whether a
user would find a given resource appealing or not.

5.2 Functionality of Components 41

5.2.6.3 Random Forest

• Introduction Supervised machine learning algorithms like random forest are fre-
quently employed in classification and regression issues. On various samples, it
constructs decision trees and uses their average for classification and majority vote
for regression.

The Random Forest Algorithm’s ability to handle data sets with both continuous
variables, as in regression, and categorical variables, as in classification, is one of its
most crucial qualities. In terms of classification issues, it delivers superior outcomes.

• Real Life Analogy To better comprehend this idea, let’s use a real-world analogy.
When it comes to selecting a course based on his skill set, a student named X is
confused. So he makes the decision to talk to a variety of people, including his
cousins, teachers, parents, degree students, and workers. He asks them a range of
queries, such as why he ought to select, employment prospects with that course,
tuition, etc. He ultimately chooses to take the course that the majority of people
recommended after consulting with a variety of people about it.

• Steps involved in random forest algorithm

– Step 1: In Random Forest, n records at random are selected from a data set with
k records.

– Step 2: Each sample’s decision tree is built separately.

– Step 3: The output of each decision tree will be produced.

– Step 4: For classification and regression, the final result is based on the majority
vote or average, respectively.

System Implementation 42

• Features

– Diversity: Each tree is unique, so not all qualities, variables, or features are
taken into account while creating a particular tree.

– Immune to the curse of dimensionality: The feature space is smaller since no
tree takes into account all features.

– Train-Test split: In a random forest, there will always be 30 percent of the data
that the decision tree cannot see, therefore we don’t need to separate the data
for train and test.

– Stability: Stability arises because the result is based on majority voting/ averag-
ing.

• Advantages

– Because the result is based on majority vote or average, it solves the over-fitting
problem.

– Even if the data has null or missing values, it still works properly.

– Because each decision tree that is produced is independent of the others, it
demonstrates the parallelization property.

• Disadvantages

– When compared to decision trees, where choices may be made by going down
the tree’s path, random forests are much more complex.

– As a result of its complexity, training takes longer than for other models. Every
time a decision tree needs to make a prediction, it must produce output based
on the input data.

• Conclusion We may now draw the conclusion that Random Forest is one of the
greatest, high-performing strategies that is widely employed in many industries due
to its effectiveness. It can handle category, continuous, and binary data. If someone
wants to create a model quickly and effectively, random forest is an excellent option
because one of its strongest features is that it can manage missing values.

Overall, random forest is a quick, straightforward, adaptable, and reliable model with
certain drawbacks.

5.2 Functionality of Components 43

5.2.6.4 Linear SVC

• Introduction The supervised machine learning technique known as SVC, or Support
Vector Classifier, is frequently used for classification problems. An technique called
the Linear Support Vector Machine (Linear SVC) looks for a hyperplane to maximise
the distance between samples that are classified.

With a high number of data, the Linear Support Vector Classifier (SVC) approach
performs well. It uses a linear kernel function to perform classification. When
compared to the SVC model, the Linear SVC adds more parameters such penalty
normalisation, which uses the loss function. Because linear SVC is based on the
kernel linear technique, the kernel method cannot be modified.

• Objective A Linear SVC’s (Support Vector Classifier) goal is to split or categorise
the data you supply by returning a "best fit" hyperplane. You may then feed some
features to your classifier to get the "predicted" class after acquiring the hyper-
plane. This makes this particular algorithm—which may be used in a variety of
circumstances—pretty ideal for our purposes.

• Working SVC separates the data into two classes by mapping the data points to a
high-dimensional space and then locating the best hyperplane. Scikit-version learns
of SVC, known as Sklearn SVC, is a well-known machine learning library.

• Margin The criterion is SVC if the hyperplane we are utilising for classification is in
linear condition.

The margin, which is a line’s separation from the nearest class points, is the separation
of the vectors from the hyperplane. The margin between classes should be maximised
in the hyperplane we select. Margin can be further classified into:

– Soft Margin: We will let some margin violation to occur, which is known as
soft margin classification, because the majority of real-world data are not totally
linearly separable.

– Hard Margin: If the training data can be separated into two classes linearly,
we can choose two parallel hyperplanes to divide the classes, increasing the
distance between them.

System Implementation 44

5.2.6.5 Bagging

• Introduction An ensemble learning technique called bagging, often referred to as
Bootstrap aggregating, aids in enhancing the efficiency and precision of machine
learning algorithms. It lowers the variance of a prediction model and is used to
handle bias-variance trade-offs. Bagging, specifically decision tree methods, is used
for both regression and classification models to prevent over-fitting of the data.

Bootstrapping is a technique for estimating a population parameter by randomly
selecting data samples from a population.

• Steps to Perform Bagging

– Consider a training set that contains m features and n observations. You must
choose a random sample without replacement from the practise dataset.

– Using sample data, a model is constructed using a subset of m features that is
randomly selected.

– The nodes are divided using the feature that offers the best split among all of
them.

– You have the best root nodes because the tree has matured.

– Repeating the previous steps n times. To provide the most accurate prediction,
it combines the results of various decision trees.

• Advantages

– Bagging reduces data over-fitting.

– It raises the model’s precision.

– It effectively handles higher dimensional data.

• Conclusion In statistics and machine learning, the notion of bagging is significant
because it prevents data from becoming overfit. It is a model averaging technique
that can be used with other algorithms in addition to decision trees.

5.3 Libraries 45

5.2.7 Accuracy Generated From Model

Classifiers Accuracy

Bagging 0.96

Decision Tree 0.96

Linear SVC 0.93

NB 0.93

Random Forest 0.96

Table 5.1: Accuracy Results

Figure 5.7: Accuracy

5.3 Libraries

5.3.1 OS

The OS module in Python has functions for adding and deleting folders, retrieving their
contents, changing the directory, locating the current directory, and more.

Before you can communicate with the underlying operating system, you must import
the os module. In order to use its functions, import it first using the import os command.

5.3.2 Numpy

An open-source library for the Python programming language is called NumPy (Numerical
Python). It is employed in array manipulation and scientific computing. In addition to a
multidimensional array object, it offers high-level array manipulation features.

Numerous mathematical operations can be carried out on arrays with NumPy. It
provides a vast library of high-level mathematical functions that work on these arrays and
matrices, as well as strong data structures that ensure efficient calculations with arrays and
matrices.

System Implementation 46

5.3.3 Pandas

The most often used open source Python library for data science, data analysis, and machine
learning activities is called Pandas. It is constructed on top of Numpy, a different package
that supports multi-dimensional arrays. It is a data analysis and manipulation software
package created for the Python programming language. It includes specific data structures
and procedures for working with time series and mathematical tables.

5.3.4 CV2

An excellent tool for image processing and computer vision work is OpenCV. It is a free
library that may be used to carry out operations like face recognition, object tracking,
landmark recognition, and many other things. It supports many languages, such as Python,
Java, and C++.

A collection of Python bindings called OpenCV-Python was created to address issues
with computer vision. The imread() function of CV2. loads an image from the given file.
This method produces an empty matrix if the picture cannot be read (due to a missing file,
poor permissions, an unsupported or invalid format, etc.).

5.3.5 Glob

The Python glob module allows us to search over all path names in order to find files that
fit a given pattern (which is defined by us). The rules established by the Unix shell are
used to define the supplied pattern for file matching. The output of the software returns the
result acquired by adhering to these guidelines for a certain pattern file matching in the
random order. Because the glob module can navigate through the list of files at a specific
point in our local disc, we must meet certain requirements when using the file matching
pattern. The module will mostly review those lists of files on the disc that have a particular
pattern.

5.3.6 Scikit-learn

In the Python ecosystem, Scikit-learn, an open source data analysis toolkit, is considered to
be the pinnacle of machine learning (ML). Important ideas and traits include: algorithms
for making decisions, such as: Data are identified and categorised by classification based
on patterns. The most effective and reliable Python machine learning library is called
Sklearn (Skit-Learn). Through a Python consistency interface, it offers a variety of effective
tools for statistical modelling and machine learning, including classification, regression,
clustering, and dimensionality reduction.

Chapter 6

System Testing and Evaluation

In this portion of the document, it will look at the evaluation criteria and testing of the
whole integrated system. Testing is a crucial phase of any project development and in order
for any project to be deployed, it needs to go through extensive testing.

6.1 Graphical User Interface Testing

Figure shows what the GUI looks like after completion. The system is made using simple
HTML and CSS language integrated with the trained Decision Tree model. There are a
few components associated with the whole system and tests each of them individually.

6.1.1 Video Input

The first phase was to test if the GUI was able to load a video from the system and read
it in the model. It has an option at the top of the web page that asks the user to choose a
video file from the computer and displays the title of that video. This test was conducted
successfully.

47

System Testing and Evaluation 48

Figure 6.1: Load Image

6.1.2 Video Display

Next it had to display the selected video to the front-end. Any video input that the
user passed in the website, if its locally stored then it can display it and the user can
counter-check to see if that was indeed what he selected.

Figure 6.2: Without Video

6.1 Graphical User Interface Testing 49

Figure 6.3: With Video

6.1.3 Anomaly Detection Alert

A heading tag was created which would display alerts when an anomaly is being detected
in the video stream. The python script was given a threshold of 0 which means that any
frame with an anomaly score that was 0, is to considered as an anomalous frame and hence
an alert should be given out.

Figure 6.4: Detection Alert

System Testing and Evaluation 50

Figure 6.5: Detection Alert

Figure 6.6: Detection Alert

6.2 Usability Testing 51

Figure 6.7: Detection Alert

6.2 Usability Testing

In this phase of testing it deducted how easy it was to perform the desired tasks by using
the project’s web interface. It included simple buttons which perform their tasks on a
single click and nothing complicated was included in the front end.

6.3 Test Cases

Multiple test cases were carried out on the interface and model, and the results were noted
down in a tabular form. The following tables give a more detailed and descriptive analysis
of the test cases.

6.3.1 Model Training

The decision tree model was first tested using the provided Avenue and Web dataset. The
table below displays the outcomes.

System Testing and Evaluation 52

Table 6.1: Test Case for Train Model

Test Case ID 01
Title Train Model

Initial State
Avenue and Web dataset

had to be available
Input Avenue and Web dataset

Expected Output
Model should be

successfully trained on
data

Actual Output
Model was successfully

trained on data
Status Pass

6.3.2 Model Testing

Next it had to test the trained model and validate the results. The results are shown in the
table below.

Table 6.2: Test Case for Test Model

Test Case ID 02
Title Test Model

Initial State
Trained model had to be

available
Input Video Input

Expected Output
Model gives categorical

accuracy

Actual Output
Model gave categorical
and validation accuracy

of 0.96
Status Pass

6.3.3 Video Input

In the interface, a button was created that would allow the user to take video input from his
local device. The table below displays the outcomes.

6.3 Test Cases 53

Table 6.3: Test Case for Video Input

Test Case ID 03
Title Video Input

Initial State No video

Input Local video input

Expected Output
Video should be

displayed on interface

Actual Output
Title of video was

displayed
Status Pass

6.3.4 Load Multiple Video

The interface was checked if it had the ability to take and load multiple video input. The
table below displays the outcomes.

Table 6.4: Test Case for Load Multiple Videos

Test Case ID 04
Title Load Multiple Videos

Initial State No video loaded

Input Avenue and Web dataset

Expected Output Load multiple videos

Actual Output
Interface could load

multiple videos
Status Pass

6.3.5 Frame Extraction

The next step was to use OpenCv library to extract frames from a video input. The table
below displays the outcomes.

System Testing and Evaluation 54

Table 6.5: Test Case for Frame Extraction

Test Case ID 05
Title Extract Frames

Initial State
Video input had to be

available
Input Video input

Expected Output
Frames should be

extracted

Actual Output
Frame extraction was

successful
Status Pass

6.3.6 Processing

The interface has a headings tag that displays alerts in real time. The results are shown in
the table below.

Table 6.6: Test Case for Processing

Test Case ID 06
Title Processing

Initial State Heading is not visible

Input Frame processing

Expected Output
Output of each frame in

real-time

Actual Output
Alerts are visible on the

web page
Status Pass

6.3.7 Video Display

In order to make the process synchronous, the project displayed video as well on the web
page, in real-time. The table below displays the outcomes.

6.4 Exceptional Handling 55

Table 6.7: Test Case for Video Display

Test Case ID 07
Title Video Display

Initial State No video displayed

Input Video input

Expected Output Video displayed

Actual Output
Video was displayed

successfully
Status Pass

6.3.8 Anomaly Alert

The project includes a heading tag in the web page that shows us if the video input has an
anomaly or not. The results are shown in the table below.

Table 6.8: Test Case for Anomaly Alert

Test Case ID 08
Title Anomaly Alert

Initial State No alert is given

Input
Anomaly score and

threshold

Expected Output
Alert should be

successfully generated

Actual Output
Alert was successfully

generated
Status Pass

6.4 Exceptional Handling

There are also some limitations due to chosen of web dataset, as our target was small to
medium density crowd. Web dataset was for high density. If any one want to made this
system again, then they choose according to their target like small or High density crowd.

Chapter 7

Conclusions

One of the most important tasks in research applications is abnormal event detection. There
has to be further research into discriminating techniques or motion information because
both normal and aberrant occurrences share certain similarities. We suggested a model
that may be used for event detection for that reason. The system will determine if an
occurrence is normal or abnormal based on how people move. HOG descriptor is used for
human detection. We employ five distinct classifiers: decision tree, naive bayes, bagging,
linear SVC, and random forest for classification. Avenue and the Web dataset are the two
datasets we utilise to assess the performance of our approach. Our system has an accuracy
of 0.96. In order for our model to be accurate and demonstrate improvement

The project assisted us in enhancing our abilities in a variety of areas, including Python
programming, artificial intelligence, and traditional and machine learning based. As we
worked on this project, we gained a lot of knowledge. We learned how the machine
learning algorithms function and how to simply modify them through training and testing
the model. We gained insight into the field of computer vision by using the Open-Cv
package. Additionally, we were able to gain a lot of knowledge on how to combine Python
with HTML, CSS, and JS.

56

References

[1] Yong Shean Chong and Yong Haur Tay. Abnormal event detection in videos using
spatiotemporal autoencoder. pages 189–196, 2017. Cited on pp. 1 and 11.

[2] Kang Hao Cheong, Sandra Poeschmann, Joel Weijia Lai, Jin Ming Koh, U Rajendra
Acharya, Simon Ching Man Yu, and Kenneth Jian Wei Tang. Practical automated
video analytics for crowd monitoring and counting. IEEE Access, 7:183252–183261,
2019. Cited on p. 1.

[3] Kothapalli Vignesh, Gaurav Yadav, and Amit Sethi. Abnormal event detection on
bmtt-pets 2017 surveillance challenge. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages 36–43, 2017. Cited
on p. 2.

[4] Thittaporn Ganokratanaa, Supavadee Aramvith, and Nicu Sebe. Unsupervised
anomaly detection and localization based on deep spatiotemporal translation network.
IEEE Access, 8:50312–50329, 2020. Cited on p. 2.

[5] Tahjid Ashfaque Mostafa, Jia Uddin, and Md Haider Ali. Abnormal event detection in
crowded scenarios. In 2017 3rd International Conference on Electrical Information
and Communication Technology (EICT), pages 1–6. IEEE, 2017. Cited on p.
7.

[6] Shiyang Yan, Jeremy S Smith, Wenjin Lu, and Bailing Zhang. Abnormal event
detection from videos using a two-stream recurrent variational autoencoder. IEEE
Transactions on Cognitive and Developmental Systems, 12(1):30–42, 2018. Cited
on p. 8.

[7] Mona Izadi, Zohreh Azimifar, and Gholam-Hossein Jowkar. Abnormal event detec-
tion in indoor video using feature coding. In 2017 Artificial Intelligence and Signal
Processing Conference (AISP), pages 151–155. IEEE, 2017. Cited on p. 8.

[8] Sangmin Lee, Hak Gu Kim, and Yong Man Ro. Stan: Spatio-temporal adversarial
networks for abnormal event detection. In 2018 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pages 1323–1327. IEEE, 2018.
Cited on p. 9.

[9] Yang Cong, Junsong Yuan, and Ji Liu. Sparse reconstruction cost for abnormal event
detection. In CVPR 2011, pages 3449–3456. IEEE, 2011. Cited on p. 9.

57

REFERENCES 58

[10] VK Gnanavel and A Srinivasan. Abnormal event detection in crowded video scenes.
In Proceedings of the 3rd International Conference on Frontiers of Intelligent Com-
puting: Theory and Applications (FICTA) 2014, pages 441–448. Springer, 2015.
Cited on p. 10.

[11] Cewu Lu, Jianping Shi, Weiming Wang, and Jiaya Jia. Fast abnormal event detection.
International Journal of Computer Vision, 127(8):993–1011, 2019. Cited on p.
10.

[12] Tian Wang, Zichen Miao, Yuxin Chen, Yi Zhou, Guangcun Shan, and Hichem
Snoussi. Aed-net: An abnormal event detection network. Engineering, 5(5):930–939,
2019. Cited on p. 11.

[13] A Nady, A Atia, and A Abutabl. Real-time abnormal event detection in crowded
scenes. Journal of Theoretical and Applied Information Technology, 96:6064–6075,
2018. Cited on p. 12.

	Front Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Challenges
	1.2 Objective
	1.3 Problem Description
	1.4 Project Scope
	1.5 Methodology
	1.6 Feasibility Study
	1.6.1 Risks Involved
	1.6.2 Resource Requirement
	1.6.3 Solution Application Areas

	1.7 Tools/Technology
	1.7.1 Tools
	1.7.2 Language
	1.7.3 Libraries

	2 Literature Review
	3 Requirement Specifications
	3.1 Existing Systems
	3.2 Proposed System
	3.3 Require Specification
	3.3.1 Functional Requirements

	3.4 Non-Functional Requirements
	3.4.1 Availability
	3.4.2 Reliability
	3.4.3 Usability
	3.4.4 Security
	3.4.5 User Friendly:

	3.5 Use Case Diagram
	3.5.1 Sub-Use Case Diagrams

	3.6 Use Case Dictionary
	3.6.1 Import Video
	3.6.2 Pre-Processing
	3.6.3 Object Detection
	3.6.4 Human Verification
	3.6.5 Feature Extraction
	3.6.6 Human Activity Recognition

	4 Design
	4.1 System Architecture
	4.2 Design Constraints
	4.3 Design Methodology
	4.4 Sequence Diagram
	4.4.1 Human Detection
	4.4.2 Activity Recognition

	4.5 GUI Design
	4.5.1 User Interface 1
	4.5.2 User Interface 2
	4.5.3 User Interface 3
	4.5.4 User Interface 4

	5 System Implementation
	5.1 Internal Component
	5.2 Functionality of Components
	5.2.1 Data Set
	5.2.2 Pre-processing
	5.2.3 Object Detection
	5.2.4 Human Verification
	5.2.5 Feature Extraction
	5.2.6 Classification
	5.2.7 Accuracy Generated From Model

	5.3 Libraries
	5.3.1 OS
	5.3.2 Numpy
	5.3.3 Pandas
	5.3.4 CV2
	5.3.5 Glob
	5.3.6 Scikit-learn

	6 System Testing and Evaluation
	6.1 Graphical User Interface Testing
	6.1.1 Video Input
	6.1.2 Video Display
	6.1.3 Anomaly Detection Alert

	6.2 Usability Testing
	6.3 Test Cases
	6.3.1 Model Training
	6.3.2 Model Testing
	6.3.3 Video Input
	6.3.4 Load Multiple Video
	6.3.5 Frame Extraction
	6.3.6 Processing
	6.3.7 Video Display
	6.3.8 Anomaly Alert

	6.4 Exceptional Handling

	7 Conclusions
	References

