
i

MODEL-BASED TESTING FOR ETHEREUM SMART CONTRACTS

Noureen Jan

Enrollment No: 01-241172-020

A thesis submitted to the Department of Software Engineering, Faculty of Engineering

Sciences, Bahria University, Islamabad in the partial fulfillment for the requirements of a

Master degree in Software Engineering

June 2020

ii

Approval Sheet

Thesis Completion Certificate

Scholar's Name: Noureen Jan Registration No: 01-241172-020

Program of Study: MS Software Engineering

Thesis Title: Model Based Testing for Ethereum Smart Contracts

It is to certify that the above student's thesis has been completed to my satisfaction and, to my belief, its

standard is appropriate for submission for Evaluation. I have also conducted plagiarism test of this thesis

using HEC prescribed software and found similarity index at ___________ that is within the permissible

limit set by the HEC for the MS/MPhil degree thesis. I have also found the thesis in a format recognized

by the BU for the MS/MPhil thesis.

Principal Supervisor’s Signature: __________________________

Date: ____21-07-2020____ Name: ____Dr. Tamim Ahmed Khan____

iii

Certificate of Originality

This is certify that the intellectual contents of the thesis Model-based Testing for Ethereum Smart
Contracts are the product of my own research work except, as cited property and accurately in the
acknowledgements and references, the material taken from such sources as research journals, books,
internet, etc. solely to support, elaborate, compare and extend the earlier work. Further, this work has
not been submitted by me previously for any degree, nor it shall be submitted by me in the future for
obtaining any degree from this University, or any other university or institution. The incorrectness of this
information, if proved at any stage, shall authorities the University to cancel my degree.

Signature: _______________________ Date: _________________

Name of the Research Student: Noureen Jan

iv

Abstract

Ethereum blockchain is popular blockchain between developers and financial related

organizations. Ethereum allows to transfer cryptocurrency between two users on Ethereum

blockchain as Bitcoin blockchain allows. After the release of Bitcoin Blockchain the finance

related organizations used it and the demand more features in it because Bitcoin blockchain only

allows you to transfer cryptocurrency. After seeing the increase interest of financial companies

Ethereum blockchain release with more features, smart contract is one of them. Smart contract on

Ethereum blockchain is an independent identity. Once smart contract will be uploaded on

blockchain it will never be changeable. If any error, bug or failure arise after successful

deployment you have to write a new smart contract which can cost you extra money which you can

pay on deployment time. Smart contracts are written in high level programming language Solidity.

Smart contracts are self-executable but they will run when an external application or system with

inputs can call their any function. To overcome the issue of smart contract failure, we propose a

model-based testing for Ethereum smart contracts. We extract model-based information to identify

various aspects of smart-contracts to develop test cases and we then consider code-based

information to execute test cases. We also provide test coverage criteria considering for smart

contract interaction we write test cases for our system under test (SUT). It is pertinent to note that

our proposed technique is equally useful to testing smart contracts in distributed systems in

general.

5

Dedication

This Thesis is dedicated to my beloved parents, respected teachers and all those who prayed for

my success.

Acknowledgments

I bestow all praises and appreciation to Almighty Allah, the most Merciful, Who gave me the

understanding, courage and patience to complete this research.

I wish to express my deep sense of gratitude to my supervisor, Dr. Tamim Ahmed Khan for his able

guidance and useful suggestions, which helped me in completing my thesis work. I gratefully

acknowledge the generous supervision Dr. Tamim Ahmed Khan and for the care with which, he

guided me and for their obliging and sympathetic attitudes.

Finally, yet importantly, I would like to express my heartfelt thanks to my beloved parents for their

blessings, support and wishes for the successful completion of my thesis work.

Table of Contents

Approval Sheet .. ii

Certificate of Originality.. iii

Abstract ... iv

Dedication ... 5

Acknowledgments ... 6

Table of Contents .. 7

List of Figures ... 10

List of Tables ... 11

Chapter 1 ... 12

Introduction .. 12

1.1. Motivation ... 14

1.2. Problem Statement ... 14

1.3. Main Research Questions .. 15

1.4. Aims and Objectives ... 15

1.5. Our Contribution.. 15

1.6. Organization of Dissertation ... 15

Chapter 2 ... 16

Literature Review .. 16

2.1. Testing ... 16

2.2. Smart Contacts .. 16

2.3. Smart Contracts Testing .. 16

2.4. Running Application ... 18

2.5. Blockchain .. 19

2.5.1. Types of Block chain .. 22

2.6. The Ethereum Block chain .. 23

2.6.1. Accounts ... 24

2.6.2. Transactions ... 25

2.6.3. Ethereum Virtual Machine .. 25

2.6.4. Ether and Gas ... 26

2.6.5. Blocks .. 26

2.6.6. Mining .. 26

2.7. Smart Contracts... 28

2.7.1. Proxy Pattern .. 29

2.8. Lifecycle .. 29

2.9. DAO .. 31

2.10. DApp .. 31

2.11. Transaction Flow of Smart Contract based Applications 31

2.12. Programming Languages .. 33

2.12.1. Solidity ... 33

2.12.2. Node.js ... 33

2.13. Tools .. 33

2.13.1. Ganache .. 34

2.13.2. Truffle ... 34

Chapter 3 ... 35

Proposed Methodology ... 35

3.1. Research Methodology .. 35

3.1.1. Literature Review ... 35

3.1.2. Model Proposal .. 36

3.1.3. Validation .. 36

3.2. Our Approach ... 36

3.2.1. Smart Contracts structure ... 37

3.2.2. Layered Architecture of Blockchain .. 37

3.2.3. Ethereum Blockchain.. 38

3.2.4. Testing Technique ... 39

3.2.5. Coverage Criteria ... 43

3.3. Running Applications ... 43

3.3.1. Case Study 1: ... 43

3.3.2. Case study 2 ... 63

Chapter 4 ... 65

Results and Evaluation... 65

4.1. Testing Results .. 65

4.1.1. Case Study 1 ... 65

4.1.2. Case Study 2 ... 65

4.2. Test Cases Mapping ... 66

4.3. Comparison of techniques .. 68

4.4. Generalization of our proposal ... 69

4.5. Validation .. 70

Conclusion and Future Work ... 72

References .. 74

Appendix A .. 80

10

List of Figures

Figure 1: A basic structure of Smart Contract [3] ... 12

Figure 2: Blockchain Architecture [38] .. 13

Figure 3: Ethereum Blockchain Layers [14] .. 14

Figure 4: Smart Contract Example .. 19

Figure 5: Blockchain Generation [22] ... 19

Figure 6: Chain of Blocks [36] .. 20

Figure 7: Permission less Vs Permissioned types of Blockchain [46] .. 22

Figure 8: Ethereum Transaction [49] ... 24

Figure 9: Schematic of a blockchain platform with smart contracts [62] ... 28

Figure 10: Smart contracts Proxy Pattern [63] ... 29

Figure 11: Decentralized Applications Structure [53] .. 31

Figure 12: Ethereum Network Node’s View .. 32

Figure 13: Transaction Flow of Smart Contract ... 32

Figure 14: Node.js Version Command.. 33

Figure 15: Initial View of Ganache Workspace .. 34

Figure 16: Truffle Version Command ... 34

Figure 17: Research Methodology ... 35

Figure 18: A basic structure of Smart Contract [3] ... 37

Figure 19: Blockchain Architecture [38] ... 38

Figure 20: Consumer Role Code ... 46

Figure 21: Distributor Role Code .. 46

Figure 22: Farmer Role Code .. 47

Figure 23: Retailer Role Code ... 47

Figure 24: Ownable Code ... 48

Figure 25: Supply Chain Code .. 48

Figure 26: Sequence Diagram .. 51

Figure 27: Fault Seeding in Smart contract .. 70

11

List of Tables

Table 1: Pre-conditions .. 39

Table 2: Test cases related to Pre-conditions .. 40

Table 3: Post-conditions .. 40

Table 4: Test cases related to Post-conditions .. 41

Table 5: Contract Invariants Classes .. 41

Table 6: Test cases related to Contract Invariants Classes .. 42

Table 7: Roles ... 42

Table 8: Test cases related to Roles ... 42

Table 9: Test Cases Mapping... 66

12

Chapter 1

Introduction

Smart contracts get automatically executed and perform processing frequently in an IT-

environment without any human involvement [1]. Smart contracts are written in high level

programming languages and are executed on blockchain environment [2]. After the deployment

of smart-contract, blockchain will automatically verify, execute and enforce the contract terms

between both parties i.e., service provider and consumer. These contracts are called smart contracts

because they can be partially or fully self-executing and self-enforcing [2].

Smart contracts concept was first proposed in 1994 by Nick Szabo [3]. Smart contract is a small

piece of code with unique address that resides on blockchain [4]. A smart contract contains

variables and set of executable functions. Whenever a transaction is executed it contains

parameters required for execution of function. On execution of a function, variables state will be

changed in smart contract on the basis of logic implemented in function. The structure of smart

contract is showed in Figure 1.

Figure 1: A basic structure of Smart Contract [3]

The blockchain architecture is basically divided into six layers (Figure 2): the data layer, the

network layer, the consensus layer, the contract layer, the service layer, and the application layer.

The data layer and network layer are the lower levels. These layers generate, validate, and store

the data and information. The consensus and contract layers are the intermediary between the lower

and upper levels. The consensus layer is mainly consists of PoW, PoS, DPoS, and PBFT. The

contract layer includes smart contract, consensus protocol, and incentive mechanism. The upper

level is at the top of the architecture, including the service and the application platform [38].

13

Figure 2: Blockchain Architecture [38]

We can write smart contracts in high level programming languages like Python and Solidity. In

blockchain architecture, on contract layer our smart contracts work. We can write smart contracts

on Ethereum blockchain. On Ethereum blockchain, a smart contract is a file of written code which

enforces and defines agreements between Ethereum users. On Ethereum smart contracts are

usually written in solidity language and are then compiled in to bytecode for deploying on

Ethereum Blockchain. On every node Ethereum virtual machine (EVM) is running and executing

smart contracts byte code. Almost 70 different opcodes includes in EVM bytecode for computation

and communication with the underling blockchain [4]. Every online smart contract EVM bytecode

is publically accessible on the blockchain. All deployed contracts accessed three things; own

account balance, its byte code and private storage. EVM byte code generally access two types

(persistent and non-persistent) of private storage. In persistent storage a key-value store continued

through transactions. While in non-persistent storage discards it’s content once transaction is

completed. A gas price is charged on every EVM instruction [4]. Figure 3 shows how a smart

contract fits in to Ethereum [14].

14

Figure 3: Ethereum Blockchain Layers [14]

1.1. Motivation

Our business logic is written in smart contract in the form of computer code, Smart contract is an

important component of all those applications which contracts deployed on blockchain. Smart

contract cannot be changed after deployment and if any error or bug is identified by any user after

it then all other users will must be effected by it too.

We require testing technique for Ethereum smart contracts which considers aspects such as pre-

conditions, post-conditions, invariants etc. since a contract has a Pre-condition and a Post-

condition [65]. This must be a technique assisted by model-based information with test case

development technique considering contract implementation. We limit our discussion to Ethereum

blockchain smart contracts and then we generalize our technique for distributed system with

similar base.

1.2. Problem Statement

There are few techniques that are used to test runtime behavior of smart contract with application

and response accordingly. There are also limited techniques used to test smart contract but there

is no testing technique for smart contracts that considers pre and Post-conditions. We require a

model-based testing for smart contracts which is accompanied by model-based coverage criteria

and considers essential constructs of smart contracts.

15

1.3. Main Research Questions

Q1. How can we test smart contracts using a model-based technique?

Q2. How can we test smart contracts by providing a model-based coverage criteria?

1.4. Aims and Objectives

Objective of this research is to propose a model-based testing for smart contracts. The proposed

model will provide:

 Devise a model-based test case aspects and development technique for smart contracts

 provide a model-based coverage criterion for testing smart contracts

1.5. Our Contribution

In our research we proposed a model-based testing for Ethereum based contracts and we

supplemented it with a general smart-contract testing technique. As smart contracts are an

independent entity on Ethereum network of any external system wants to communicate with the

smart contract any function then it must have the address of the contract. After calling the specific

function of the smart contract by using its address, smart contract will be triggered. We defined a

coverage-criteria for our testing. We consider both positive and negative intent test cases for our

system under test (SUT). We designed a matrix for our test cases having a pre-condition, a Post-

condition, expected output, actual output and result.

1.6. Organization of Dissertation

The rest of the thesis is organized as follows. Chapter 2 is contains the background of smart

contracts and its testing. Chapter 3 contains complete technical background of Ethereum and its

smart contracts. Chapter 4 is on methodology of our research. Chapter 5 is on Conclusion.

16

Chapter 2

Literature Review

This chapter introduces previous research studies of smart contracts testing and the background of

smart contracts on blockchain. Also we have introduced our running example of system which we

have taken for testing.

2.1. Testing

Testing is an important technique to validate the system under test (SUT) in information and

communication technology (ICT) systems [5]. Test case is a set of different conditions and inputs.

Test cases are written to validate the system under test (SUT) outcomes with the desired outcomes

[5].

Model-based testing is defined as the more efficient testing in which we test cases generated on

the basis of defined model using the combination of system under test requirements and specific

functionality.

2.2. Smart Contacts

Smart Contracts are a well-studied areas, a lot of research work has been done in the area. Smart

contracts concept presented by Nick Szabo in 1994. He defined it as “a computerized transaction

protocol that executes the terms of a contract” [6]. Smart contracts structure makes them self-

enforceable in order to diminish the need for trusted mediators between transacting parties [7]. For

the development of smart contracts developers mostly prefer Ethereum platform. The main

components of smart contract required for transactions are based on functions and state machine.

The design and the implementation of the Ethereum are totally independently from the

cryptocurrency Bitcoin. A high-level programming language called Solidity is used to write smart

contracts and decentralized applications (Dapps). The programmer can create their transaction

state, formats, events, functions, and rules for ownership. A special virtual machine called

Ethereum virtual machine (EVM) designed for the execution of smart contracts [8].

2.3. Smart Contracts Testing

Mense et al. identify the known security vulnerabilities of smart contracts and provide an updated

in-depth analysis of existing smart contract vulnerabilities. Investigate the security code analysis

17

tools used to identify vulnerabilities and bugs in smart contracts [9]. Visual contracts are defined

as the visual representation of smart contracts. Tamim et al. proposed a model-based coverage for

helping the tester to implement test cases by automating the decision, if the response from the

operation being tested is correct. This information is present in visual contracts and should be

reused rather than re-implemented [10]. The use of graph transformation systems specifying

service interfaces for the derivation of model-based coverage criteria [11]. Tamim et al. proposed

a model to generate test cases from visual contract. From visual contracts direct graphs (DG)

extracted to originate test cases and if all these test cases executed on system under test (SUT) then

it will be guaranteed to accomplish full coverage [12]. A technique based on combing static and

dynamic analysis process model-based coverage proposed. Ardit et al. consider all the security

vulnerabilities of smart contracts which were already known. Also proposed an in-depth updated

analysis of all the vulnerabilities in the prevailing smart contracts and tools for code analysis. The

purpose of these tools were to detect bugs and vulnerabilities in smart contracts [13]. Wang et al.

analyzed nondeterminisms in the smart contract execution that cause unpredictable payments and

potential financial loss [14]. Zixin et al. proposed a new tool MuSC for mutation testing of smart

contracts. MuSc tool is for Ethereum based smart contracts, it contains all the operators used in

Ethereum based smart contact programming language. It facilitate developers to do mutation

testing on user-defined test net [15]. Solidity is a programming language which is used for

developing smart contracts in Ethereum. W.K Chan and Bo Jiang proposed a fuzz testing service

named fuse for the testing of Ethereum based smart contracts [16]. William et al. proposed an

optimization based technique integrated with Mythril-Classic. This technique allow to detect

depth-n vulnerabilities by analyzing data dependency [17]. Parizi et al. considered open source

tools for automatic detection of security vulnerabilities in Ethereum based smart contracts written

in solidity and analyzed all these tools by doing 10 real-world smart contracts testing on them. The

end result of research was that the SmartCheck tool is more efficient and accurate than all other

tools to find security vulnerabilities in Ethereum based smart contracts [18]. Fu et al. proposed an

automated framework named EVMFuzz to find the security vulnerabilities in Ethereum Virtual

Machines (EVMs) developed in different programming languages [19]. Haya and Khaled

proposed a blockchain based solution for the detection of deepfake video and audio. It helps artists

to find that the requested video or digital content is traceable or not. In proposed solution, a smart

contract developed to facilitate secondary artists to take permission from original artists to copy or

18

edit digital content or video [20]. Destefanis et al. considered the case study of Parity smart contract

library in which due to a delay in library bug fix activity, a non-experienced developer did a

hacking activity due to which 513774.16 ethers frozen. By considering this case study they clearly

stated that Blockchain oriented software engineering is required to avoid such consequences again

[21]. Valentin and Maria introduced a new greybox fuzzer testing technique for smart contracts

named HARVEY [72]. They addressed two key challenges that faced during real world contracts

fuzzing are random input mutations and state space exploration. HARVEY [72] tested by focusing

on these two challenges and is used in different industry companies that are concerned majorly

with security. Piter and Richard introduced a new set of operators on the basis of previous work

and test these operators on scale and for further improvement of mutation score they introduced a

condition based on smart contracts gas limits [73]. Andesta et al. proposed different mutation

operators for the testing of smart contracts written in Solidity language [74]. These mutation

operators evaluated on fixed buggy smart contracts and find the percentage of bugs generated by

introduced operators. For the generation of mutants for smart contracts they used Universal

Mutator with their defined mutation rules [74]. Ashraf et al. introduced a GasFuzzer that deals

with the transaction gas allowance to exploit security vulnerabilities during gas allowance and

consumption dimensions [75]. Patrick and Lin et al. introduced a new tool named Deviant for the

mutation testing of smart contracts written in Solidity [76]. Deviant [76] automatically generated

mutants for the solidity project to evaluate different faults that may occur during programming

process. Akca et al. proposed an automated technique to evaluate the vulnerabilities of smart

contracts on code execution and also provides detection of some vulnerabilities types that are not

analysed much in previous works [77]. Nehai et al. proposed a method to check model of the

application based on smart contracts [78]. The Kernel layer, application layer and the environment

layer are the three-fold modelling process on the basis of which a model is build [78]. Translation

rules from Solidity to NuSMV [78] language have been provided to build the application layer.

2.4. Running Application

We take a running smart contract based supply management application named “Parmigiano

Reggiano Supply Chain Management Application” from Github. We used this application smart

contracts in our research for testing. It is developed to manage cheese sale and keep track of whole

sale from farmer to the buyer. This application contains role based contracts and a main contract

19

to handle whole sale. Farmer, distributor, retailer and customer are different actors in it and have

different roles. Smart contracts written in solidity, we use Git, Ganache and Truffle for testing.

Python and Node.js are prerequisite for running Ganache and truffle. Some events shown in Figure

4 written in smart contract.

Figure 4: Smart Contract Example

2.5. Blockchain

Blockchain concept was first born in 2008 when bitcoin was introduced. An individual or group

name under Satoshi Nakamoto published a paper titled: "Bitcoin: A Peer-to-Peer Electronic Cash

System". In January 2009, when an open source program is introduced bitcoin has grown in

popularity because any one can install this program and can join the Bitcoin peer-to-peer network.

“Block” and “chain” two separately nouns were used in Satoshi Nakamoto (2008) while in 2014

the concept merged in to a word “Blockchain”.

Three generations of blockchain proposed [22, 23 and 24]

1. Blockchain 1.0 (for cryptocurrency)

2. Blockchain 2.0 (for financial services)

3. Blockchain 3.0 (for the authentication of digital identity, currency economics)

Figure 5: Blockchain Generation [22]

20

Swan [22] presented a short-term assessment of three different generations of blockchain as shown

in Figure 5. Blockchain used in different sectors context and consequently addressed in different

disciplines, we can say that this is a one reason why we don’t have any general accepted definition

between practitioners and researchers of blockchain [25]. The second reason is that Blockchain is

an emergent research [26, 27] that lacks cohesive terminology and well defined concepts that

characterize Blockchain.

Blockchain have no specific definition, different authors define it in different ways. Olnes [34]

defined blockchain as an open, distributed, and trust less database on the Internet. Other

researchers such as [28, 29–34] agrees that Blockchain is a distributed data structure, database or

system. Blockchain is a sequence of blocks containing a complete list of transaction records [35].

A block contains previous block hash in the header, every block has only one parent block as

shown in Figure 6. It is worth noting that uncle blocks (children of the block’s ancestors) hashes

would also be stored in blockchain [36]. The first block of a blockchain have no parent block and

is called genesis block. Blocks are created by network participants who are processing transactions

by using client software, it is impossible in the mid to delete or insert a new block because hashes

will never match. Bitcoin hashing scheme proof of work is similar to Hashcash and based on SHA-

256 hash function [37]. In Bitcoin transaction, blocks contains transactions which are hashed with

Markel Tree [39], [40]. Markel tree is one of the type of binary tree having root nodes and leaf

nodes. Root node is the hash of its all child nodes [37].

Figure 6: Chain of Blocks [36]

Blockchain has following key characteristics based on the survey did by Zhang et al. are as

following:

21

A. Decentralized

In traditional centralized transaction systems there must be a central authority which validates all

the transactions before execution. These centralized transaction systems cause a bottleneck on

server by effecting its performance. Blockchain is a decentralized system which means there is no

central authority required in it to validate the transactions. Transactions on blockchain network

can be accompanied between two users in a peer to peer manner in which no central authority is

required to validate the transactions. This characteristic of blockchain improves its performance

because all the load on the server side in centralized transaction systems is now ended in

decentralized transaction systems.

B. Persistence

In blockchain network, transaction dispersion over the network can be confirmed and recorded in

blocks distributed on whole network. Each broadcasted block would be validated by other nodes

and transactions would be checked. Any type of misrepresentation could be identified easily.

C. Anonymity

All users on network can be interacted with blockchain network by any generated address.

Blockchain network is a decentralized network so there is no central authority to take all the private

information of users to validate. Users can generate multiple addresses to interact with blockchain

network to avoid their identity exposure. All the transactions on the network have some amount

of security in it because of this mechanism.

D. Auditability

All transactions on the blockchain network can be validated and logged with timestamp, users on

the network can easily trace or verify the previous transactions record by accessing any node over

the distributed network. In bitcoin blockchain previous transaction can be traceable iteratively.

This will improves the traceability and transparency of the transactions related data which is stored

on blockchain network.

22

2.5.1. Types of Block chain

Blockchain networks can be designed on the bases of different deign or model options. The Data

on blockchain network can be observed, all design and model options for blockchain networks can

be classified on the bases of who should be allowed to participate on the network [41].

Based on that there are essentially three types of blockchain are introduced by some researchers.

Wust et al. introduced two blockchain types permissioned and permissionless blockchain in his

research [42]. Vokerla et al. introduced three types of blockchain in his research which are: public,

private and consortium blockchain [43]. Bitcoin and Ethereum are the examples of permissionless

blockchain. Public blockchain are permission-less blockchain and is defined as the blockchain

which is decentralized and open, anyone can access it without any permission [42]. Private

Blockchain are permissioned blockchain and is defined as the blockchain which have a central

authority to validate or give permission to a single entity to participate or read the blockchain [42].

Consortium blockchain are semi-decentralized in which more than one company is taking part in

its operations [43].

Figure 7: Permission less Vs Permissioned types of Blockchain [46]

Although there is no categorization related to blockchain design types or models. However, some

of the researchers tried to fill this gap by proposing a comparison between different blockchain

types such as a researcher work shown in Figure 7 which gives a comparison between permission

less/permissioned and general purpose/specialized blockchain.

2.5.1.1. Ethereum

Ethereum is a platform which is based on distributed computing. Ethereum practices a blockchain

for saving the state of user’s accounts, program codes and its associated states. It also allows to

develop smart contracts which will be discussed in further section 3.2. Some scripting languages

23

are supported by Ethereum to write smart contracts which will be then compiled in to byte code

that is executed on Ethereum Virtual Machine (EVM) [60, 61].

2.5.1.2. Monax’s eris-db

Monax’s eris-db was a first permissionless blockchain based designed blockchain client free

system for developers to develop or blockchain applications and smart contracts based blockchain

applications related to business processes and systems [46].

2.5.1.3. Bitcoin

Bitcoin was the first decentralized cryptocurrency introduced in 2008 with blockchain concept.

After the release of Bitcoin, Finance industry show more interest in it. As a result Bitcoin had a 60

billion dollars market capitalization which was the highest among all other cryptocurrencies.

Bitcoin blockchain introduced Proof-of-Work consensus mechanism to solve the double expenses

problem. To finalize the block in Bitcoin it takes almost 10 minutes.

2.5.1.4. Multichain

Multichain is a platform which facilitate users to create and deploy private blockchains. Problems

related to the openness, privacy and mining are solved by it with the integration of user permissions

management in it [44, 45].

We are working on Ethereum blockchain which is a permissionless blockchain. In the next section

we tried to cover all the related concepts of Ethereum Blockchain. We take Ethereum Blockchain

for our thesis work because it allows developers to write custom smart contracts and it supports

multiple scripting languages.

2.6. The Ethereum Block chain

The first blockchain introduced with name Bitcoin and after the successful release of bitcoin the

financial industry shows more interest in it. After using the bitcoin blockchain the financial

industry demands more features in blockchain system because the bitcoin blockchain only

provides functionality of transfer electronic money peer to peer [47]. When the demand of financial

industry increases researchers think about another network which fulfils all their demand. In year

2014 a programmable blockchain released with name Ethereum which fulfils all the demands of

financial industry [48]. Ethereum have different approaches other than electronic money transfer

24

between peers like users add their own operations and complexity [49]. Therefore we can say that

for complex business logics Ethereum blockchain is a best option.

The design of Ethereum blockchain is similar to state machine [49, 50]. A transaction is created

whenever a user wants to change the data on Ethereum blockchain. The transactions will be

collected and processed incrementally each of which will elaborate how the data will change from

current state to next state, as in Figure 8.

Figure 8: Ethereum Transaction [49]

Ethereum Classic (ETC) [50] and Ethereum (ET) [51] are two running Ethereum networks.

Ethereum Classic is an old branch of Ethereum which is also working these days separately with

its own cryptocurrency and community and Ethereum is a new branch of Ethereum network which

is also working separately. In this thesis, we used Ethereum new branch for the deployment and

testing of smart contracts. The popular cryptocurrency on Ethereum network is called “Ether”.

2.6.1. Accounts

In Ethereum, users must have an account to process transactions and to communicate with

blockchain so we can say that accounts on blockchain plays an important role. External owned

account and smart contracts account about which we can say it’s a contract account, these are two

types of account on Ethereum. Both types of accounts are same but controlled differently. The

External Owned Accounts (EOA) are controlled by private keys while smart contracts are

controlled by internal code which can be executed by EOA’s. Accounts have 20-byte address as

they are treated as state objects which can be for external agent’s identification that can be contract

account or EOA accounts [54]. All accounts have public key by using which they signed

transactions. The characteristics of account in blockchain can be classified in to four categories

which are as following.

25

A. Nonce

It’s a counter that is used to count the number of transactions executed from an EOA account or

number of contracts created from a contract account.

B. Current Balance

Current Balance amount is in Ethers which an account have.

C. Code

A contract account have an external code which can be executed by EOA’s.

D. Storage

Contract account on blockchain have a permanent storage to save data.

2.6.2. Transactions

Ethereum is an account based model as we have banking system user must have an account on

Ethereum to do transactions or any operation they want to do on blockchain. Whenever a

transaction information or value is executed between two users account the state of Ethereum

changes. On Ethereum transactions are of three types transfer Ether, create a contract and a call to

contract.

In Ethereum a smart contract cannot execute a transaction, a smart contract can call internally other

account smart contract for transaction, and this internal transaction call can be called as a message

call. When a message call can be held it contains the calling function which can be activated in

called contract.

2.6.3. Ethereum Virtual Machine

Ethereum virtual machine is a computing machine which can be used for the execution of EVM

code. EVM code is a byte code. EVM can be used for the validation of transaction details like

signature in the transaction, correct number of values and matching of nonce with the specific

transaction account nonce. It can also be used for checking the gas is enough or not to execute the

transaction. EVM can also transfer ethers from one account to the particular account. EVM also

calculate the gas and transaction fee of a transaction to initiate miner’s gas payment.

26

2.6.4. Ether and Gas

Ether is the crypto currency used by the Ethereum blockchain. It contain a specific value like other

currencies have. Ether can be used for transactions and for paying gas fee which can be calculated

on transaction computation to the miners.

Computation required on using resources of blockchain and for transactions blockchain charged

some fee which is called gas. The price of gas is dynamically changed with the change of Ether

price. Gas is calculated on the bases of computation required multiplied with the current gas price.

2.6.5. Blocks

Block is an essential component of Ethereum blockchain. On blockchain blocks contain

information related to transactions. Block contains all mined transactions set and a block header.

The chain of blocks can be created by hashing the block. Hash of the block saved in next block for

reference and by doing this with all blocks a chain is created on blockchain.

The Ethereum Blockchain starts it life with a zero block called genesis block. After every 14

seconds Ethereum blockchain refresh its state because the difference between blocks in almost 14

seconds so we can say that it takes 14 seconds to refresh its state. A block on Ethereum contains

hash of previous block and its own previous work, on the basis of these two things hash of the

transaction will be calculated on Ethereum blockchain. The maximum block size on Ethereum

blockchain is around 1,500,000 gas.

2.6.6. Mining

The process of creating new blocks and validating transactions on block is known as mining.

Miners on blockchain get transaction from the transaction pool, run it on EVM and solve its nonce.

After successfully solving the nonce of block they create a new block that fits in to the chain and

add it in to the transaction pool. Miners awarded differently with Ethers on every task like on

adding a new block in the chain they will be awarded with three Ethers.

A block consumes 15 seconds to create on Ethereum network which is equal to the punctuation

between nodes on the Ethereum blockchain, this phenomena give guaranty that no malicious attack

can arise to change the history.

27

2.6.6.1. Proof of Work (POW)

Ethash is a POW algorithm used on Ethereum blockchain. This algorithm contains finding a

dataset, a nonce and a header. To find these three, headers of all blocks on blockchain are hashed

together to create a seed. Seed will be used to generate a cache known as pseudorandom cache. By

using non-cryptographic hash function this cache generates a dataset. The dataset, nonce and

header all these three things are repetitively hashed until the satisfied difficulty target [52].

2.6.6.2. Proof of Stake (POS)

The substitute method to influence consensus on blockchain is known as proof of stake (POS). A

task is given to the validators to suggest transactions as blocks to the blockchain to reach

consensus. To do it validators have to solve a POS algorithm to avoid overflow of suggestions on

blockchain. The validator must have to add the solution with the suggested block for validation

check, if the block is valid then it will be added to the transaction blocks pool [53].

Stakes are virtual resources that are required by validators to solve the POS algorithm. Discovering

new blocks with solution speed is totally dependent on stakes [53].

2.6.6.3. Smart Contracts Execution

In this section we explain the general concept of smart contracts execution. In general a smart

contract is defined as the business logic of any decentralized application or an agreement between

parties. The business logic of the application is written in code and deployed on blockchain by

which application will be interact. Functions of the smart contracts will be called by application

after that smart contract function will be triggered. As Delmolino et al. represent the architecture

of blockchain system with smart contracts and also represent the process of sending money by

users as shown in Figure 9 [62]. Smart contracts is the most important component of any DApp

based cryptocurrency system. In the next section we can explain the smart contracts execution on

Ethereum blockchain.

28

Figure 9: Schematic of a blockchain platform with smart contracts [62]

2.6.6.4. Smart Contract Execution on Ethereum

In Ethereum, after the deployment of smart contracts it contains specific address on network. To

run a smart contract on network user required an account on Ethereum network with balance

amount in Ethers. When a transaction is initiated a gas amount is paid to miners by the sender other

than the amount which is being transferred in transaction. If the transaction is invalid than the gas

amount will be paid to the miners who validate transaction on the network and the remaining

amount will be refunded to the sender account. If the transaction is valid than the gas amount is

given to miners. After that the smart contract will be active and the explicit function of smart

contract will be called for operation on transaction.

2.7. Smart Contracts

So far we have mentioned a small introduction of smart contract and Ethereum based smart

contracts in chapter 1. But in this section we will give a whole overview of smart contract in

relation to the Ethereum.

Smart contracts are not more than a piece of code which mainly contains the business logic of the

application. Smart contracts run on top of the blockchain network and more like the other classes

concept in object oriented programming. Smart contracts are exist on Ethereum network

independently. Smart contracts on Ethereum can be executed or trigged whenever any function of

the deployed contract by either transactions or messages. Smart contracts byte codes are stored on

blockchain. The bytecode contains all the rules and agreements between two parties without the

involvement of any third party. As we know smart contracts are consist of different functions then

29

we can say that these functions are must be in the byte code of contract. To keep the database clean

and save the space Ethereum allows smart contracts to automatically self-destroy when they are

not doing any operations or saving values. A smart contract represented by 20-byte address like

EOA accounts have address for identification.

Smart contract can be written in high level programming language like solidity for Ethereum

network. When a smart contract is deployed on the network, EVM will compile the code in to

bytecode. The smart contracts on Ethereum make it more flexible for different applications.

Ethereum allow a developer to write any type of smart contract.

2.7.1. Proxy Pattern

The biggest disadvantage of writing smart contracts using traditional pattern is that once smart

contract will be deployed on blockchain than it will never be changeable. As we know developers

doing changes continuously for bug fixing but this feature is not supported by Ethereum

environment. To overcome this problem proxy pattern will be used in writing smart contracts. The

function of proxy contract in it is to redirect the contracts delegate calls to the logical contracts as

shown in Figure 10. Separate data and logic contracts and spate data and logic contracts with key-

value pair are the two approaches used in it [63]. ZapplinOs provides the feature of developing

upgradeable smart contracts [64].

Figure 10: Smart contracts Proxy Pattern [63]

2.8. Lifecycle

As we know that the smart contract is an independent identity on the blockchain, once the code of

the smart contract deployed on blockchain it will never b modifiable after deployment. If there is

30

any burg or error in deployed smart contract you have to write separately a new smart contract and

then deploy it. Smart contract is an independent identity, there is no strong link between application

and smart contracts. If the calling application will be destroyed there is no effect of application on

smart contract.

When a smart contract is submitted to deploy on blockchain, it will be exposed to miner nodes to

validate the execution of smart contract. A gas fee will be given to miners as they used

computational power to validate the contract. After this point smart contract will be public to all

the users on blockchain. Any one on the blockchain can access the smart contract.

After the deployment of smart contract if any user want to interact with the smart contract then

they must have some inputs for the calling function. After execution of it smart contract state will

be changed and a transaction will be created on the blockchain. All these elements will be

submitted to Ethereum ledger and will be validated by consensus mechanism [55]. After validation

an amount will be transferred to the respective account and the contract agreement fulfilled. It’s

an infinite amount that can be created on the network. We also have ‘templated’ on Ethereum

network to create smart contract with main functions to achieve similar behaviour. These are

tokens that can be defined as common list of rules and are called ERC (Ethereum Request

Comments). Some of these are described below [54]:

ERC20:

It is the most commonly used standard on Ethereum because it provides a simple interface. This

standard is used to build tokens and can be reused in any application. In decentralized exchange

platform for the exchange of wallet ERC-20 standard used [54].

ERC223:

If a token is written in ERC20 standard and sends a request to the contract which is not written in

ERC20 standard, this token will not be accessible again. ERC223 introduced to validate the request

standards and to avoid this issue [54].

ERC721:

These standards developed a complete unique tokens. We can use this standard for the

representation of assets that cannot be duplicated [54].

31

As mentioned in earlier sections that DApp have backend and frontend. Backend development is

done in Ethereum and Solidity so we can say that smart contracts are the backend system of DApp.

DApp are software applications that can be communicate with the smart contracts deployed on

blockchain. This is the way by using which users can interact with the smart contracts. At the end

we are able to say that the DApp is an interface for the smart contracts.

2.9. DAO

The collection of smart contracts or the type of contracts on blockchain is known as decentralized

autonomous organization (DAO). It is coded for automate the services of organization but the main

purpose of it is to be automatically driven by smart contracts [53].

2.10. DApp

Decentralized Applications can automate business logic of application by using smart contracts.

DApp also have backend and frontend like other applications have. The frontend of the DApp is

developed by combining Html, CSS and JavaScript. The backend of DApp can be developed using

Ethereum and Solidity as shown in Figure 11. This will allow web applications to be moderately

decentralized [53].

Figure 11: Decentralized Applications Structure [53]

2.11. Transaction Flow of Smart Contract based Applications

Once we write a smart contract and deploy it on Ethereum network. Deployment mechanism

ensure that all nodes on the network have the same copy of smart contract on their nodes as shown

in Figure 12.

32

Figure 12: Ethereum Network Node’s View

Whenever a transaction is generated from the application it will be transmitted to the Ethereum

client. Ethereum client will send the response to the application after processing transaction.

Ethereum client will redirect the transaction to nodes and all nodes will start validating it. Here

nodes validating mean different miners will start to mine the transaction block to get reward. Once

a block is mined by any miner it will be added to the blockchain where multiple blocks merge to

make a transaction as shown in Figure 13.

Figure 13: Transaction Flow of Smart Contract

33

2.12. Programming Languages

In this section we explain about the languages which we used during implementation. We used

Solidity programming language for writing smart contracts on Ethereum blockchain and Node.js

is required for running truffle during implementation.

2.12.1. Solidity

Solidity is a high level programming language with a Javascript similar script used to write smart

contracts. Different developing blockchain platform of solidity are Ethereum, ErisDB, Zeppelin

and Counterparty [57]. Contracts written in solidity language are structured similar to the classes

in object oriented programming languages [58]. It contains variables, functions, function

modifiers, events, structures, and enums which modify these, like in primitive programming [58].

Special variables (msg, block, tx) already defines in solidity that always exist in the global

namespace and contain properties to access information about an invocation-transaction and the

blockchain [58].Smart Contracts supports polymorphism and inheritance.

2.12.2. Node.js

Node.js can configure your environment for developing smart contracts. NPM (Node Package

Manager) which comes with Node.js. For checking if you have already installed node by going to

and run following command as shown in Figure 14.

Figure 14: Node.js Version Command

2.13. Tools

In this section we explain about the tools which are used in our implementation. Ganache and

Truffle are being used in our work for the implementation, compilation and deployment of smart

contracts.

34

2.13.1. Ganache

For the development of local blockchain we can use Ganache tool. It provides your own personal

blockchain for the development of Ethereum. It will allow you to develop application, deploy

smart contracts and also testing of application or smart contract. It’s a command line tool and is

available for windows, mac and Linux as a desktop application. When you create a workspace on

ganache initially there will be ten accounts with different addresses, balance in ethers and

mnemonics. Mnemonics contain 12 to 24 words in it, we can call it seed phrase. They allow you

to access the cryptocurrency stored in your wallet. It’s a secret group of words which cannot be

shared with others. We can say Mnemonics is just a memory. The initial view of a workspace is

shown in Figure 15.

Figure 15: Initial View of Ganache Workspace

2.13.2. Truffle

It provides a suite of tools for developing Ethereum smart contacts with the Solidity programming

language. You can install Truffle with NPM by using your command line with following command

as shown in Figure 16.

Figure 16: Truffle Version Command

35

Chapter 3

Proposed Methodology

In this chapter, we discuss about our research methodology and our proposed model. The

implementation of our model on two different applications are also discuss.

3.1. Research Methodology

Our research covers of three steps; literature review, model proposal and then validation as shown

in figure 17.

Figure 17: Research Methodology

3.1.1. Literature Review

In this phase we analyse different testing techniques used for the testing of smart contracts. Fully

automatic fuzzy engines are already proposed for testing the smart contracts. For testing the

vulnerabilities of smart contracts different tools are used and on these tools comparison studies

done by few researchers. W.K Chan and Bo Jiang proposed a fuzz testing service named fuse for

the testing of Ethereum based smart contracts [16]. Nehai et al. proposed a method to check model

Litrature Review

Testing Technique
Analysis

Gap Analysis

Model Proposal

Identification of Preconditions

Identification of
Postconditions

Identification of Contract
invariants

Identification of Roles

Test Cases Extraction

Coverage Analysis

Validation

Perform Casestudies

Result Analysis

36

of the application based on smart contracts [78]. The Kernel layer, application layer and the

environment layer are the three-fold modelling process on the basis of which a model is build [78].

Translation rules from Solidity to NuSMV language have been provided to build the application

layer [78]. Zixin et al. proposed a new tool MuSC for mutation testing of smart contracts [15].

MuSc tool is for Ethereum based smart contracts, it contains all the operators used in Ethereum

based smart contact programming language [15]. Fu et al. proposed an automated framework

named EVMFuzz to find the security vulnerabilities in Ethereum Virtual Machines (EVMs)

developed in different programming languages [19].

3.1.2. Model Proposal

Limited techniques are used to test smart contracts and none of these techniques focuses on pre-

conditions and post-conditions which are an essential part of the smart contracts as Nehai et al.

[78] proposed way of applying model-checking to a Blockchain Ethereum application based on

smart contracts. Few techniques that are used to test runtime behavior of smart contract with

application and respond accordingly as Gordan and Joshua [79] proposed a tool

CONTRACTLARVA to test smart contracts at run time according to specifications.

As a result of gap analysis six steps model is proposed for testing smart contracts i.e. identification

of pre-conditions, identification of post-conditions, identification of contract invariants,

identification of roles, test cases extraction and coverage analysis. Based on smart contracts and

account information we list all pre-conditions, post-conditions, contract invariants and role

properties. In test cases extracting, by considering all mentioned list we write test cases for smart

contracts. At the end we analyse defines coverage criteria to confirm the maximum testing

coverage.

3.1.3. Validation

On this stage of our research methodology, model is implemented on two applications to show the

validity and applicability of the model. The results of applications is analysed on the bases of bugs

detected by our model.

3.2. Our Approach

We study existing testing frameworks for smart contracts and already discussed in this section.

Based on literature review we identify the following points on which our model comprises of:

37

smart contracts structure, layer of blockchain on which smart contract works, Ethereum

blockchain, testing technique, test cases generation and the coverage criteria.

3.2.1. Smart Contracts structure

Smart contracts concept was first proposed in 1994 by Nick Szabo [3]. Smart contract is a small

piece of code with unique address resides on blockchain [4]. A smart contract contains variables

and set of executable functions. Whenever a transaction is executed it contains parameters required

for execution of function. On execution of a function, variables state will be changed in smart

contract on the basis of logic implemented in function. The structure of smart contract is showed

in Figure 18.

Figure 18: A basic structure of Smart Contract [3]

3.2.2. Layered Architecture of Blockchain

The blockchain architecture is basically divided into six layers (Figure 19): the data layer, the

network layer, the consensus layer, the contract layer, the service layer, and the application layer.

The data layer and network layer are the lower levels. These layers generate, validate, and store

the data and information. The consensus and contract layers are the intermediary between the lower

and upper levels. The consensus layer is mainly consists of PoW, PoS, DPoS, and PBFT. The

contract layer includes smart contract, consensus protocol, and incentive mechanism. The upper

level is at the top of the architecture, including the service and the application platform [38].

38

Figure 19: Blockchain Architecture [38]

3.2.3. Ethereum Blockchain

Ethereum is a decentralized public blockchain having a virtual machine named Ethereum Virtual

Machine (EVM). EVM is running on all nodes of Ethereum. Ethereum is used to build

decentralized application that are not controlled by any central authority. Ethereum practices a

blockchain for saving the state of user’s accounts, program codes and its associated states. A node

can validate the transaction of another node. Ethereum virtual machine is a computing machine

which can be used for the execution of EVM code. EVM code is a byte code. EVM can be used

for the validation of transaction details like signature in the transaction, correct number of values

and matching of nonce with the specific transaction account nonce. It can also be used for checking

the gas is enough or not to execute the transaction. EVM can also transfer ethers from one account

to the particular account. EVM also calculate the gas and transaction fee of a transaction to initiate

miner’s gas payment.

Smart contracts run on top of the blockchain network and more like the other classes concept in

object oriented programming. Smart contracts are exist on Ethereum network independently.

Smart contracts byte codes are stored on blockchain. The bytecode contains all the rules and

agreements between two parties without the involvement of any third party. As we know smart

contracts are consist of different functions then we can say that these functions are must be in the

byte code of contract. To keep the database clean and save the space Ethereum allows smart

contracts to automatically self-destroy when they are not doing any operations or saving values.

39

3.2.4. Testing Technique

We propose a model-based testing technique named model-based smart contracts testing

technique. We discover four model aspects:

 Pre-conditions

 Post-conditions

 Contract invariant

 Contract roles

Once we have considered model-based aspects given above, we turn to white-box testing concepts

since we have access to code. We define how do we extract them and how do we develop test

cases pertaining to these model aspects.

 Pre-Condition

The condition which is required before to execute the function of a smart contract. It can be last

executed step, last executed function output and accessibility of existing data. The pre-conditions

required for the execution of smart contracts are account with sufficient balance, address of the

smart contract and inputs for calling function of smart contract. If any condition is false then smart

contract will not be executed and state will not update as shown in Table 2. We list all pre-

conditions that must be met before a contract can be executed. This is done using Table 1.

Table 1: Pre-conditions

S No. Pre-condition Justification Inputs (Set)

1. Account with

sufficient

balance

Account required for transaction

and balance is use for paying gas

fee on processing.

Account address, balance

2. Address Deployed address of smart

contract required for interaction

Account address

3. Inputs Functions with some input values

are required for triggering smart

contracts.

Account address, balance

40

In order to develop test cases from identified pre-conditions, we additionally consider account

related information and we characterize them into test cases with positive and negative intent

considering input spaces. This is shown in Table-2.

Table 2: Test cases related to Pre-conditions

S No.
Account with Sufficient Balance Address Inputs State (Expected Output)

1. Updated

2. Not Updated

3. Not Updated

4. Not Updated

 Post-condition

Post-condition is the desired output, desired effect on data after the complete execution of a

function, relative to the given parameters that satisfies the pre-conditions of a function. The Post-

conditions for a smart contract are: after the execution transaction should be successful, current

state of the smart contract which is going to be changed and on transaction there must be an event

triggered. If any condition is false then the state of smart contract will not be update as shown in

Table 4. We list all post-conditions that must be met before a contract can be executed. This is

done using Table 3.

Table 3: Post-conditions

S No. Pre-condition Justification Inputs (Set)

1. Transaction After execution of smart contract

transaction will be done

Balance update

2. Current state State of the smart contract is

required for updating

Storage, address

3. Events Event triggered on a transaction

execution

Balance transfer

event

41

In order to develop test cases from identified post-conditions, we additionally consider smart

contract related information and we characterize them into test cases with positive and negative

intent considering input spaces. This is shown in Table-4.

Table 4: Test cases related to Post-conditions

S No.
Transaction Current State Events Next State (Post-condition for previous)

1. Update

2. Not Update

3. Not Update

4. Not Update

 Contract Invariants

The condition which is required to be true before and after the iteration of a loop. The state of

smart contract, its address and inputs are the contract invariants required for the execution of a

smart contract. If any condition is false then the smart contract will not execute as shown in Table

6. We list all contract invariants classes that must be met before a contract can be executed. This

is done using Table 5.

Table 5: Contract Invariants Classes

S No. Pre-condition Justification Inputs (Set)

1. State Smart contract must have a state Storage, address

2. Address After deployment smart contract

have an address for external users

to communicate

Smart contract address

3. Inputs For smart contract execution

there must be some input values

Account address, balance

In order to develop test cases from identified contracts invariants classes, we additionally consider

smart contract related information and we characterize them into test cases with positive and

negative intent considering input spaces. This is shown in Table-6.

42

Table 6: Test cases related to Contract Invariants Classes

S No
State Address Inputs Execute

1.

2.

3.

4.

 Testing Each Role

All the actors/users roles interact with smart contract through application should be tested. Account

with sufficient balance and inputs are required for testing the role. If any condition is false then

smart contract will not execute as shown in Table 8. We list all roles properties that must be met

before a contract can be executed. This is done using Table 7.

Table 7: Roles

S No. Pre-condition Justification Inputs (Set)

1. Accounts with

sufficient

balance

Account required for

transaction and balance is

use for paying gas fee on

processing.

Account address, balance

2. Inputs For interaction with smart

contract there must be

some input values

Account address, balance

3. Role must be a registered or

authentic role for smart

contracts interaction

Owner

In order to develop test cases from identified role properties, we additionally consider roles related

information and we characterize them into test cases with positive and negative intent considering

input spaces. This is shown in Table-8.

Table 8: Test cases related to Roles

43

S No.
Account with Sufficient Balance Inputs Role Expected Output

1.

2.

3.

3.2.5. Coverage Criteria

We propose a coverage criterion in term of our model translating them into test requirements.

Therefore, we say that a test suite is providing coverage with respect to test requirements which

we define in terms of all pre-conditions coverage, all post-conditions coverage, all contract

invariants coverage and all roles coverage.

 Pre Conditions

We ensure all pre-conditions are executed with all options as shown in Table 2 above:

 Post-conditions

We ensure all post-conditions are executed with all options as shown in Table 4 above:

 Contract Invariants

We ensure all contract invariants are executed with all options as shown in Table 6 above:

 Testing Each Role

We ensure all roles are executed with all options as shown in Table 8 above:

3.3. Running Applications

We take two open source decentralized applications from internet with frontend and backend.

3.3.1. Case Study 1:

We take an application code from internet which is a DApp with frontend and backend. This

application is based on supply chain management for cheese. This application tracks cheese sale

from farm to the customer. All actors have to use this application according to their roles. The

business logic of this application is written in smart contracts which will save all the data. As we

discussed in previous section that Ethereum facilitate developers to write any type of contract, it

44

is not necessary that our business logic is based on money. In this application, smart contracts are

written to store data of each step of sales or purchase process. Here, we have the following smart

contracts:

1. ConsumerRole

2. DistributorRole

3. FarmerRole

4. RetailerRole

5. Ownable

6. SupplyChain

The following are the pre-conditions for smart-contracts on the bases of different roles:

S No. Roles Pre-conditions

1. Farmer Authentic account

 Balance

 UPC

 Farm name

 Farm address

 Farm latitude

 Farm longitude

 Product notes

 Product price

2. Distributor Authentic account

 Balance

 UPC

 Product price

 Total slices

3. Retailer Authentic account

 Balance

 UPC

 Product price

4. Consumer/Customer Authentic account

 Balance

 UPC

The following are the post-conditions for smart-contracts:

45

S No. Roles Post-conditions

1. Farmer Farmer sell cheese

 Distributor buy cheese

 Farmer ship cheese to the

distributor

 Balance amount increases

2. Distributor Able to process cheese

 Distributor sell cheese

 Retailer buy cheese

 Distributor ship cheese

 Balance amount increases

3. Retailer Retailer process cheese

 Retailer sell cheese

 Consumer/Customer buy

cheese

 Balance amount increases

4. Consumer/Customer Consumer purchase cheese

 Balance amount deducted

as per product price

The following are the contract invariants classes required for smart contracts testing.

S No. Contract Invariants

1. State

2. Address of the deployed smart contract

3. Inputs

Actors (we identify them as Roles) of this application are as following:

 Farmer

 Distributor

 Retailer

 Consumer/Customer

3.3.1.1. Smart Contracts

There are total six smart contracts and a library written for this application. All role based smart

contracts import the library named with Roles. All other smart contracts other than library are as

following:

46

 ConsumerRole

All the functions related to consumer are written in this smart contract to handle the consumer or

customer role. Functions related to consumer role are adding, removing and checking. Add

function is written to add new consumer, remove function is written for deleting a consumer while

checking function is written to check that the consumer is an authentic user or not. The code of

this contract is shown in Figure 20.

Figure 20: Consumer Role Code

 DistributorRole

All the functions related to distributor are written in this smart contract to handle the distributor

role. Functions related to distributor role are adding, removing and checking. Add function is

written to add new distributor, remove function is written for deleting a distributor while checking

function is written to check that the distributor is an authentic user or not. The code of this contract

is shown in Figure 21.

Figure 21: Distributor Role Code

47

 FarmerRole

All the functions related to farmer are written in this smart contract to handle the farmer role.

Functions related to farmer role are adding, removing and checking. Add function is written to add

new farmer, remove function is written for deleting a farmer while checking function is written to

check that the farmer is an authentic user or not. The code of this contract is shown in Figure 22.

Figure 22: Farmer Role Code

 RetailerRole

All the functions related to retailer are written in this smart contract to handle the retailer role.

Functions related to retailer role are adding, removing and checking. Add function is written to

add new retailer, remove function is written for deleting a retailer while checking function is

written to check that the retailer is an authentic user or not. The code of this contract is shown in

Figure 23.

Figure 23: Retailer Role Code

48

 Ownable

This contract is written to authenticate the user and assigning roles to the user according to their

interaction with the main contract (shown in Figure 24).

Figure 24: Ownable Code

 SupplyChain

It’s a main contract which inherit all other smart contracts. All main functions and events are

written in this contract. This contract address is used for the external system communication with

the smart contract. The code of this contract is shown in Figure 25.

Figure 25: Supply Chain Code

49

3.3.1.2. Interaction between Roles

We design a sequence diagram on the bases of our actor’s communication with smart contracts as

shown in Figure 26. We clearly mentioned all the called function of smart contracts in diagram.

As we mentioned in previous detail that if any external system have to communicate with smart

contract than address of SupplyChain contract will be used. SupplyChain contract is a main

contract which inherit other smart contracts. We can say that other smart contracts are like model

classes. All smart contracts are deployed on Ethereum network but for communication

SupplyChain smart contract is used. The main purpose of developing this application is to manage

the supply chain of cheese and automate every process. We have four actors for our application

which are farmer, distributor, retailer and consumer/customer.

Farmer produce cheese in his farm and sell it to distributor. When he wants to sell his cheese, three

functions of smart contracts is called to trigger smart contract which are: produceItemByFarmer(),

sellItemByFarmer() and shippedItemByFarmer(). Input variables for all these functions are as

following:

 produceItemByFarmer(): Universal product code (UPC), originFarmName,

originFarmInformation, originFarmLatitude, originFarmLongitude, productNotes and price

 sellItemByFarmer(): Universal product code (UPC) and price

 shippedItemByFarmer(): Universal product code (UPC)

Distributor buy cheese from farmer and sell it to retailers. When he wants to sell his cheese, six

functions of smart contracts is called to trigger smart contract which are:

purchaseItemByDistributor(),receivedItemByDistributor(),processedItemByDistributor(),packag

eItemByDistributor(),sellItemByDistributor() and shippedItemByDistributor(). Input variables for

all these functions are as following:

 purchaseItemByDistributor(): Universal product code (UPC)

 receivedItemByDistributor(): Universal product code (UPC)

 processedItemByDistributor(): Universal product code (UPC) and slices

 packageItemByDistributor(): Universal product code (UPC)

 sellItemByDistributor(): Universal product code (UPC) and price

 shippedItemByDistributor():Universal product code (UPC)

50

Retailer buy cheese from distributor and sell it to consumers/customers. When he wants to sell his

cheese, three functions of smart contracts is called to trigger smart contract which are:

purchaseItemByRetailer(), receivedItemByRetailer() and sellItemByRetailer(). Input variables for

all these functions are as following:

 purchaseItemByRetailer(): Universal product code (UPC)

 receivedItemByRetailer(): Universal product code (UPC)

 sellItemByRetailer(): Universal product code (UPC) and price

Consumer/customer buy cheese from retailer. On buying cheese by customer from retailer a

functions of smart contracts is called to trigger smart contract is purchaseItemByConsumer(). Input

variables for this functions are as following:

 purchaseItemByConsumer(): Universal product code (UPC)

FetchItemBufferOne(), fetchItemBufferTwo() and fetchitemHistory() are three general functions

which can be called by any role. We shows all these functions calling with only consumer/customer

role but it can be called by anyone to see the data of product.

 fetchItemBufferOne(): Universal product code (UPC)

 fetchItemBufferTwo(): Universal product code (UPC)

 fetchitemHistory(): Universal product code (UPC)

On the basis of defined coverage criteria and considering sequence diagram, we write test cases

file for smart contract in JavaScript. We write a truffle file to run the test file. At the end we design

a testing matrix with Pre-condition, Post-condition, expected result, output and result. We use

Ganache, Truffle and Git for our testing.

51

Figure 26: Sequence Diagram

3.3.1.3. Test Cases Extraction

We divide our traceability matrix containing test cases according to part identified in our proposal.

In our application every previous function is the Pre-condition of next function and the output is

the Post-condition of that function. In case of roles, they must have an authentic account to process

with sufficient balance. The contract invariants are successfully tested when any function of the

smart contract is executed with some input values, its state is changed on successful transaction

and after deployment we have an address of the smart contract by which we are doing interaction.

In our traceability matrix, post-condition and pre-condition are for individual test case.

S No Test

Case

Pre-

Condition

Post-

Condition

Output Expected

Results

Actual

Results(Pass/Fail)

1. Farmer

produce

cheese

Must have an

account with

all detail

(UPC,

Farmer will be

allowed to

produce

cheese

Farmer

allowed

to

Farmer

allowed to

produce

cheese

Pass

52

originFarmNa

me,

originFarmInf

ormation,

originFarmLat

itude,

originFarmLo

ngitude,

productNotes,

productPrice)

produce

cheese

2. farmer

produce

cheese

with null

UPC

Must have an

account with

all detail

(UPC,

originFarmNa

me,

originFarmInf

ormation,

originFarmLat

itude,

originFarmLo

ngitude,

productNotes,

productPrice)

Farmer will

not be allowed

to produce

cheese

Farmer

not

allowed

to

produce

cheese

Farmer

not

allowed to

produce

cheese

Pass

3. farmer

produce

cheese

with null

Farmer

name

Must have an

account with

all detail

(UPC,

originFarmNa

me,

originFarmInf

ormation,

originFarmLat

itude,

originFarmLo

ngitude,

productNotes,

productPrice)

Farmer will

not be allowed

to produce

cheese

Farmer

not

allowed

to

produce

cheese

Farmer

not

allowed to

produce

cheese

Pass

4. farmer

produce

cheese

with null

Farmer

Address

Must have an

account with

all detail

(UPC,

originFarmNa

me,

originFarmInf

ormation,

Farmer will

not be allowed

to produce

cheese

Farmer

not

allowed

to

produce

cheese

Farmer

not

allowed to

produce

cheese
Pass

53

originFarmLat

itude,

originFarmLo

ngitude,

productNotes,

productPrice)

5. farmer

produce

cheese

with null

Latitude

Must have an

account with

all detail

(UPC,

originFarmNa

me,

originFarmInf

ormation,

originFarmLat

itude,

originFarmLo

ngitude,

productNotes,

productPrice)

Farmer will

not be allowed

to produce

cheese

Farmer

not

allowed

to

produce

cheese

Farmer

not

allowed to

produce

cheese

Pass

6. farmer

produce

cheese

with null

longitude

Must have an

account with

all detail

(UPC,

originFarmNa

me,

originFarmInf

ormation,

originFarmLat

itude,

originFarmLo

ngitude,

productNotes,

productPrice)

Farmer will

not be allowed

to produce

cheese

Farmer

not

allowed

to

produce

cheese

Farmer

not

allowed to

produce

cheese

Pass

7. farmer

produce

cheese

with

product

notes

Must have an

account with

all detail

(UPC,

originFarmNa

me,

originFarmInf

ormation,

originFarmLat

itude,

originFarmLo

ngitude,

Farmer will

not be allowed

to produce

cheese

Farmer

not

allowed

to

produce

cheese

Farmer

not

allowed to

produce

cheese

Pass

54

productNotes,

productPrice)

8. farmer

produce

cheese

with null

product

price

Must have an

account with

all detail

(UPC,

originFarmNa

me,

originFarmInf

ormation,

originFarmLat

itude,

originFarmLo

ngitude,

productNotes,

productPrice)

Farmer will

not be allowed

to produce

cheese

Farmer

not

allowed

to

produce

cheese

Farmer

not

allowed to

produce

cheese

Pass

9. farmer

produce

cheese

with null

address

Must have an

account with

all detail

(UPC,

originFarmNa

me,

originFarmInf

ormation,

originFarmLat

itude,

originFarmLo

ngitude,

productNotes,

productPrice)

Farmer will

not be allowed

to produce

cheese

Farmer

not

allowed

to

produce

cheese

Farmer

not

allowed to

produce

cheese

Pass

10. farmer

sell

cheese

Must have an

account with

all detail

(UPC and

product price)

Farmer will be

allow to sell

cheese.

Allows

farmer

to sell

cheese.

Allows

farmer to

sell cheese Pass

11. Farmer

sell

cheese

with null

UPC.

Must have an

account with

all detail

(UPC and

product price)

Farmer will

not be allow to

sell cheese.

Farmer

not

allow

selling

cheese.

Farmer

not allow

selling

cheese.
Pass

12. farmer

sell

cheese

with null

product

price

Must have an

account with

all detail

(UPC and

product price)

Farmer will

not be allow to

sell cheese.

Farmer

not

allow

selling

cheese.

Farmer

not allow

selling

cheese.
Pass

55

13. farmer

sell

cheese

with null

address

Must have an

account with

all detail

(UPC and

product price)

Farmer will

not be allow to

sell cheese.

Farmer

not

allow

selling

cheese.

Farmer

not allow

selling

cheese.

Pass

14. distributo

r buy

cheese

Must have an

account with

UPC and

balance

Distributor

will buy

cheese

Distrib

utor

buys

cheese

Distributo

r buys

cheese
Pass

15. Distribut

or buy

cheese

with null

UPC

Must have an

account with

UPC and

balance

Distributor

will not buy

cheese

Distrib

utor not

allowed

to buys

cheese

Distributo

r not

allowed to

buys

cheese

Pass

16. Distribut

or buy

cheese

with 0

balance

Must have an

account with

UPC and

balance

Distributor

will not buy

cheese

Distrib

utor not

allowed

to buys

cheese

Distributo

r not

allowed to

buys

cheese

Pass

17. Distribut

or buy

cheese

with null

address

Must have an

account with

UPC and

balance

Distributor

will not buy

cheese

Distrib

utor not

allowed

to buys

cheese

Distributo

r not

allowed to

buys

cheese

Pass

18. Farmer

ship

cheese

Must have an

account with

UPC

Allows farmer

to ship cheese

Farmer

allowed

to ship

cheese

Farmer

allowed to

ship

cheese

Pass

19. Farmer

ship

cheese

with null

UPC

Must have an

account with

UPC

Farmer will

not be

allowed to

ship cheese

Farmer

not

allowed

to ship

cheese

Farmer

not

allowed to

ship

cheese

Pass

20. Farmer

ship

cheese

with null

address

Must have an

account with

UPC

Farmer will

not be

allowed to

ship cheese

Farmer

not

allowed

to ship

cheese

Farmer

not

allowed to

ship

cheese

Pass

21. Distribut

or receive

cheese

Must have an

account with

UPC

Distributor

will receive

cheese

Distrib

utor

receive

s

cheese

Distributo

r receives

cheese Pass

22. Distribut

or receive

cheese

Must have an

account with

UPC

Distributor

will not

receive cheese

Distrib

utor not

receive

Distributo

r not Pass

56

with null

UPC

d

cheese

received

cheese

23. Distribut

or receive

cheese

with null

address

Must have an

account with

UPC

Distributor

will not

receive cheese

Distrib

utor not

receive

d

cheese

Distributo

r not

received

cheese

Pass

24. Allows

distributo

r to

process

cheese

Must have an

account with

UPC and total

slices

Distributor

will be allow

to process

cheese

Distrib

utor

allowed

to

process

cheese

Distributo

r allowed

to process

cheese
Pass

25. Allows

distributo

r to

process

cheese

with null

UPC

Must have an

account with

UPC and total

slices

Distributor

will not be

allow to

process

cheese

Distrib

utor not

allowed

to

process

cheese

Distributo

r not

allowed to

process

cheese

Pass

26. Allows

distributo

r to

process

cheese

with 0

slices

Must have an

account with

UPC and total

slices

Distributor

will not be

allow to

process

cheese

Distrib

utor not

allowed

to

process

cheese

Distributo

r not

allowed to

process

cheese

Pass

27. Allows

distributo

r to

process

cheese

with null

slices

Must have an

account with

UPC and total

slices

Distributor

will not be

allow to

process

cheese

Distrib

utor not

allowed

to

process

cheese

Distributo

r not

allowed to

process

cheese

Pass

28. Allows

distributo

r to

process

cheese

with null

address

Must have an

account with

UPC and total

slices

Distributor

will not be

allow to

process

cheese

Distrib

utor not

allowed

to

process

cheese

Distributo

r not

allowed to

process

cheese

Pass

29. Distribut

or pack

cheese

Must have an

account with

UPC

Allows

distributor for

cheese

packaging

Distrib

utor

allowed

for

cheese

Distributo

r allowed

for cheese

packaging

Pass

57

packagi

ng

30. Distribut

or pack

cheese

with null

UPC

Must have an

account with

UPC

distributor

will not be

allowed for

cheese

packaging

Distrib

utor

not

allowed

for

cheese

packagi

ng

Distributo

r not

allowed

for cheese

packaging
Pass

31. Distribut

or pack

cheese

with null

address

Must have an

account with

UPC

distributor

will not be

allowed for

cheese

packaging

Distrib

utor

not

allowed

for

cheese

packagi

ng

Distributo

r not

allowed

for cheese

packaging

32. Distribut

or sell

cheese

Must have an

account with

UPC and

product price

Distributor

will be able to

sell cheese

Distrib

utor sell

cheese

Distributo

r sell

cheese
Pass

33. Distribut

or sell

cheese

with null

UPC

Must have an

account with

UPC and

product price

Distributor

will not be

able to sell

cheese

Distrib

utor not

sell

cheese

Distributo

r not sell

cheese Pass

34. Distribut

or sell

cheese

with 0

product

price

Must have an

account with

UPC and

product price

Distributor

will not be

able to sell

cheese

Distrib

utor not

sell

cheese

Distributo

r not sell

cheese
Pass

35. Distribut

or sell

cheese

with null

product

price

Must have an

account with

UPC and

product price

Distributor

will not be

able to sell

cheese

Distrib

utor not

sell

cheese

Distributo

r not sell

cheese
Pass

36. Distribut

or sell

cheese

with null

address

Must have an

account with

UPC and

product price

Distributor

will not be

able to sell

cheese

Distrib

utor not

sell

cheese

Distributo

r not sell

cheese Pass

58

37. Retailer

purchase

Cheese

Must have an

account with

UPC and

balance

Retailer will

purchases

cheese

Retailer

purchas

es

cheese

Retailer

purchases

cheese
Pass

38. Retailer

purchase

Cheese

with null

UPC

Must have an

account with

UPC and

balance

Retailer will

not purchases

cheese

Retailer

not

allowed

for

purchas

ing

cheese

Retailer

not

allowed

for

purchasin

g cheese

Pass

39. Retailer

purchase

Cheese

with 0

balance

Must have an

account with

UPC and

balance

Retailer will

not purchases

cheese

Retailer

not

allowed

for

purchas

ing

cheese

Retailer

not

allowed

for

purchasin

g cheese

Pass

40. Retailer

purchase

Cheese

with null

account

Must have an

account with

UPC and

balance

Retailer will

not purchases

cheese

Retailer

not

allowed

for

purchas

ing

cheese

Retailer

not

allowed

for

purchasin

g cheese

Pass

41. Distribut

or ship

cheese

Must have an

account with

UPC

Distributor

will be

allowed to

ship cheese

Distrib

utor

allowed

to ship

cheese

Distributo

r allowed

to ship

cheese
Pass

42. Distribut

or ship

cheese

with null

UPC

Must have an

account with

UPC

Distributor

will not be

allowed to

ship cheese

Distrib

utor not

allowed

to ship

cheese

Distributo

r not

allowed to

ship

cheese

Pass

43. Distribut

or ship

cheese

with null

address

Must have an

account with

UPC

Distributor

will not be

allowed to

ship cheese

Distrib

utor not

allowed

to ship

cheese

Distributo

r not

allowed to

ship

cheese

Pass

44. Allows

retailer to

receive

cheese

Must have an

account with

UPC

Retailer will

be allowed to

receive cheese

Retailer

allowed

to

receive

cheese

Retailer

allowed to

receive

cheese

Pass

59

45. Allows

retailer to

receive

cheese

with null

UPC

Must have an

account with

UPC

Retailer will

not be allowed

to receive

cheese

Retailer

not

allowed

to

receive

cheese

Retailer

not

allowed to

receive

cheese

Pass

46. Allows

retailer to

receive

cheese

with null

address

Must have an

account with

UPC

Retailer will

not be allowed

to receive

cheese

Retailer

not

allowed

to

receive

cheese

Retailer

not

allowed to

receive

cheese

Pass

47. Allows a

retailer to

sell

cheese

Must have an

account with

UPC and

product price

Retailer will

be allowed to

sell cheese

Retailer

allowed

to sell

cheese

Retailer

allowed to

sell cheese
Pass

48. Allows a

retailer to

sell

cheese

with null

UPC

Must have an

account with

UPC and

product price

Retailer will

not be allowed

to sell cheese

Retailer

not

allowed

to sell

cheese

Retailer

not

allowed to

sell cheese
Pass

49. Allows a

retailer to

sell

cheese

with 0

product

price

Must have an

account with

UPC and

product price

Retailer will

not be allowed

to sell cheese

Retailer

not

allowed

to sell

cheese

Retailer

not

allowed to

sell cheese Pass

50. Allows a

retailer to

sell

cheese

with null

product

price

Must have an

account with

UPC and

product price

Retailer will

not be allowed

to sell cheese

Retailer

not

allowed

to sell

cheese

Retailer

not

allowed to

sell cheese Pass

51. Allows a

retailer to

sell

cheese

with null

address

Must have an

account with

UPC and

product price

Retailer will

not be allowed

to sell cheese

Retailer

not

allowed

to sell

cheese

Retailer

not

allowed to

sell cheese
Pass

52. Allows a

consumer

to

Must have an

account with

UPC and

balance

Consumer

will be

allowed for

Consu

mer

allowed

to

Consumer

allowed to

purchase

cheese

Pass

60

purchase

cheese

purchasing

cheese

purchas

e

cheese

53. Allows a

consumer

to

purchase

cheese

with null

UPC

Must have an

account with

UPC and

balance

Consumer

will not be

allowed for

purchasing

cheese

Consu

mer not

allowed

to

purchas

e

cheese

Consumer

not

allowed to

purchase

cheese

Pass

54. Allows a

consumer

to

purchase

cheese

with 0

balance

Must have an

account with

UPC and

balance

Consumer

will not be

allowed for

purchasing

cheese

Consu

mer not

allowed

to

purchas

e

cheese

Consumer

not

allowed to

purchase

cheese
Pass

55. Allows a

consumer

to

purchase

cheese

with null

account

Must have an

account with

UPC and

balance

Consumer

will not be

allowed for

purchasing

cheese

Consu

mer not

allowed

to

purchas

e

cheese

Consumer

not

allowed to

purchase

cheese

Pass

56. fetchItem

BufferOn

e() test

Must have an

UPC

Item will be

buffered

successfully

Item

buffere

d

success

fully

Item

buffered

successful

ly

Pass

57. fetchItem

BufferOn

e() test

with null

UPC

Must have an

UPC

Item will not

be buffered

successfully

Item

not

buffere

d

success

fully

Item not

buffered

successful

ly
Pass

58. fetchItem

BufferTw

o() test

Must have an

UPC

Item will be

buffered

successfully

Item

not

buffere

d

success

fully

Item not

buffered

successful

ly
Pass

59. fetchItem

BufferTw

o() test

with null

UPC

Must have an

UPC

Item will be

buffered

successfully

Item

not

buffere

d

Item not

buffered

successful

ly
Pass

61

success

fully

60. fetchItem

History()

test

Must have an

UPC

Item history

will be shows

Item

history

showed

Item

history

showed
Pass

61. fetchItem

History()

with null

UPC

Must have an

UPC

Item history

will not be

shows

Item

history

not

showed

Item

history not

showed
Pass

62. Add

distributo

r account

as an

farmer

account

Must have an

account with

balance

Distributor

account will

not be added

as farmer

account

Distrib

utor

account

success

fully

added

as

farmer

account

Distributo

r account

will not be

added as

farmer

account
Fail

63. UPC less

than 12

digits is

not

acceptabl

e

Must have an

account and

UPC with all

other inputs

UPC with 1

digit will not

be acceptable

Transac

tion

done

success

fully

with 1

digit

UPC

UPC with

1 digit will

not be

acceptable
Fail

64. Add

distributo

r account

as an

farmer

account

Must have an

account with

balance

Distributor

account will

not be added

as farmer

account

Distrib

utor

account

success

fully

added

as

farmer

account

Distributo

r account

will not be

added as

farmer

account

Fail

65. UPC less

than 12

digits is

not

acceptabl

e

Must have an

account and

UPC with all

other inputs

UPC with 1

digit will not

be acceptable

Transac

tion

done

success

fully

with 1

digit

UPC

UPC with

1 digit will

not be

acceptable
Fail

66. Farmer

name

length

Must have an

account with

Farmer name

with one digit

Cheese

detail

added

Farmer

name with

one digit

Fail

62

should be

more than

two

character

s

all other

inputs

will not be

acceptable

success

fully

with

one

digit

farmer

name

will not be

acceptable

67. Farmer is

adding

more

cheese

informati

on

Must have an

account with

all other

inputs

Farmer will be

able to add

more cheese

Transac

tion

cancele

d

Farmer

will be

able to add

more

cheese

Fail

68. Farm

name

length

should be

more than

one

character

Must have an

account with

all other

inputs

Farm name

with one digit

will not be

acceptable

Cheese

detail

added

success

fully

with

one

digit

farm

name

Farm

name with

one digit

will not be

acceptable
Fail

69. Cheese

added by

Distribut

or

Must have an

account with

all other

inputs

Distributor

account will

not be able to

add cheese

Distrib

utor

account

success

fully

added

cheese

Distributo

r account

will not be

able to add

cheese

Fail

70. Cheese

added by

Retailer

Must have an

account with

all other

inputs

Retailer

account will

not be able to

add cheese

Retailer

account

success

fully

added

cheese

Retailer

account

will not be

able to add

cheese

Fail

71. Cheese

added by

consumer

Must have an

account with

all other

inputs

Consumer

account will

not be able to

add cheese

Consu

mer

account

success

fully

added

cheese

Consumer

account

will not be

able to add

cheese
Fail

63

3.3.2. Case study 2

We take an application code from internet which is a DApp with frontend and backend. This

application is based on products sale and purchase. This application tracks product sale from sale

to the purchase process. All actors have to use this application according to their roles. The

business logic of this application is written in smart contracts which will save all the data. Here,

we have the following smart contracts:

 AddPurchaseProducts

The following are the pre-conditions for smart-contracts on the bases of different roles:

S No. Roles Pre-conditions

1. Seller Authentic Account

 Balance

 Product Name

 Product Price

2. Buyer Authentic Account

 Balance

 Product id

The following are the post-conditions for smart-contracts on the bases of different roles:

S No. Roles Pre-conditions

1. Seller Product Added

 Balance increase

2. Buyer Product purchased

 Deducted balance

The following are the contract invariants classes required for smart contracts testing.

S No. Contract Invariants Classes

1. State

2. Address of the deployed smart contract

3. Inputs

Actors (we identify them as Roles) of this application are as following:

 Seller

 Buyer

64

3.3.2.1. Test cases Extraction

We divide our traceability matrix containing test cases according to part identified in our proposal

(See Appendix A for traceability matrix).

65

Chapter 4

Results and Evaluation

In this chapter we will discuss our case studies results further we map our test cases of both case

studies on our defined model. We do a short comparison of our model technique with different

previous work techniques and the validation of our test cases result are also discussed.

4.1. Testing Results

After applying our proposed model the testing results of cases study 1 and 2 testcases are discussed

in this section.

4.1.1. Case Study 1

We extract 71 test cases for our smart contract from which 61 test cases are pass and 10 test cases

fails as shown below.

Total Test cases = 71

Pass Test cases = 61

Fail Test cases = 10

Test cases fails because of some reasons, which are as following:

 Universal Product Code is standard 12 digits number but smart contract is accepting one digit

UPC too.

 Doing transactions successfully with 1 character farmer name

 Farmer not able to add cheese details again after one attempt.

 Roles are not properly define.

4.1.2. Case Study 2

We extract 13 test cases for our smart contract from which 13 test cases are pass and 0 test cases

fails as shown below.

Total Test cases = 13

Pass Test cases = 13

Fail Test cases = 0

66

This shows our test cases are more detailed and are capable of reporting faults in a more robust

manner.

4.2. Test Cases Mapping

We mapped all our written test cases for both case studies against all aspects proposed in our model

as shown in Table-9.

Table 9: Test Cases Mapping

C
a
se

 S
tu

d
y
 N

o
.

T
es

t
C

a
se

 N
o
.

Pre-Conditions

Post-

Conditions

Contract Invariant

Classes

 Roles

A
cc

o
u

n
t

w
it

h
 S

u
ff

ic
ie

n
t

B
a
la

n
ce

A
d

d
re

ss

In
p

u
ts

T
ra

n
sa

ct
io

n

C
u

rr
en

t
S

ta
te

E
v
en

t

S
ta

te

A
d

d
re

ss

In
p

u
ts

A
cc

o
u

n
t

w
it

h
 S

u
ff

ic
ie

n
t

B
a
la

n
ce

In
p

u
ts

R
o
le

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

67

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

68

63

64

65

66

67

68

69

70

71

2

1

2

3

4

5

6

7

8

9

10

11

12

13

4.3. Comparison of techniques

In this section we explain three different testing techniques already in practice for the testing of

smart contracts and then for comparison we explain our testing technique.

sFuzz Technique Our Approach

An automated tool used for the testing of

Ethereum virtual machine (EVM) smart

contracts proposed by Naguyen et al [66] . As

we know that the byte code of the smart

contract is executes on EVM instead of direct

smart contract code, so for this tool the byte

code of smart contract is required for testing.

This tool is validating and detecting security

vulnerabilities in EVM smart contracts. This

tool is generating test cases and security

Our model-based testing is not for the EVM

based smart contracts. Before converting smart

contracts into bytecode, we propose a model

for testing smart contracts from different

aspects. We extract test cases from different

aspects of smart contract. We also provide a

matrix traceability to help testers to attain

maximum testing coverage.

69

vulnerabilities on fuzzy smart contracts. For

generating test cases, this tool takes time.

 Mutation Testing Our Approach

Wu et al. proposed a mutating based testing for

smart contracts [67]. They proposed different

mutation operators for Ethereum smart

contracts mutation testing. By using it, they

write test cases for validating and checking

security vulnerabilities for smart contracts.

We propose a model for testing smart contracts

from different aspects. We extract test cases

from different aspects of smart contract. We

also provide a matrix traceability to help

testers to attain maximum testing coverage.

Fuse Testing Our Approach

Chan et al. propose the progress of new testing

service named fuse that is supporting fuzzy

testing of smart contracts. In their approach,

they used seven different classes of

vulnerabilities and defined a set of test oracle.

They have proposed a fuzzy testing with

constant seeding to generate test transactions

and evaluate fuzz-tests.

We propose a model for testing smart contracts

from different aspects. We extract test cases

from different aspects of smart contract. We

also provide a matrix traceability to help

testers to attain maximum testing coverage.

4.4. Generalization of our proposal

It is important to highlight that contract has state, address, variables value, functions, transactions,

events, inputs and outputs. Contract invariant is an essential aspect. Roles aspect may vary in

different proposals. We, therefore, consider the following three aspects for a generalized technique

 Pre-Condition

 Post-Condition

 Contract Invariants Classes

70

4.5. Validation

On the bases of information provided in model we write test cases manually but without applying

any coverage formal notation. By using fault seeding we evaluate the completeness of our test

cases. The test set capability to detect or address similar errors in a system i.e., a measure of

confidence in our test suite [69] is a statistical measure provided by the seeded faults percentage.

We decide which fault to be introduced in system we developed different rules and find different

fault types for automatically seeding them. After applying all rules on system code, we execute

test suite to assess its quality.

In order to decide which faults to introduce we identified suitable fault types, and then developed

rules for seeding them automatically. After applying the rules to the code of the system, we execute

the entire test suite to assess its quality. We added test cases in an iterative process until all the

seeded faults were identified. We seed a fault in smart contract by changing the value of UPC and

productID as shown in figure 27.

Figure 27: Fault Seeding in Smart contract

Faults are classified into two types; domain and computational faults by [70]. The result of control

flow error is a domain fault in which program executed in a wrong path while when a program

executed in a correct path but give incorrect results is a computation fault. More specifically, we

have followed the fault types discussed in [71], which also supports calculating a measure of

71

confidence in a test suite. Fault types are classified by [71], into wrong declaration, wrong

assignment, wrong procedure handling, control faults and I/O faults. Considering Case study No.

1, we consider 71 test cases for validation purposes. We seed 41 faults and run our test cases. We

rerun our test cases and find all faults giving a confidence of 99%. Considering Case study No.2,

we consider 13 test cases for validation purposes. We seed 7 faults and run our test cases. We

rerun our test cases and find all faults giving a confidence of 99%. Our results are shows in Table-

9.

Table 9: Results

Case Study Total Test cases Faults Seeding Faults Found

1. 71 41 41

2. 13 7 7

We can say that if faults will seed or not in to smart contracts, our technique will test all aspects

of smart contract.

72

Chapter 5

Conclusion and Future Work

Ethereum blockchain is more popular between Finance related organizations. Ethereum allows

many other features other than the transfer of cryptocurrency. Smart contracts on Ethereum run

independently, they will trigger or run when an external application or another contract can call

them. Smart contracts in Ethereum written in Solidity Language. Once the smart contract is

deployed on the network then it will never be changeable you have to write a new contract with

fix. Due to this reason smart contracts testing is much important than any other thing. If anyone

wants to interact with the Ethereum then their accounts must be created on Ethereum Blockchain

by using Metamask. Metamask is a browser extension which will be added after installation. On

Ethereum for doing transaction a gas fee is charged as a processing fee. Whenever a transaction is

processed miners on the blockchain will mine the transaction and in return a processing fee will

be charged to the sender. Gas fee will must be paid by the sender with the transaction amount. On

Ethereum if you deploy any smart contract, on the basis of complexity of the smart contract gas

fee will be charged which will be paid by the owner. After all these observations we can say that

for doing transaction or smart contract deployment one must have account balance.

In this thesis we worked on the testing of smart contracts as we didn’t find any research on model-

based testing of smart contracts. We propose a model-based technique for testing smart contracts.

We identify different aspects of smart contract to write test cases. We also provide a testing

traceability matrix which shows the maximum test coverage. We implement our model on two

case studies for testing smart contracts. We also evaluate our test suite capability by seeding faults

in our system. In an iterative process we added test cases until all seeded faults were identified.

For the testing and deployment of smart contracts we used Truffle, Ganache, Node.js and Git. We

used Metamask and RemixIDE for learning the interaction of smart contracts with applications.

At the end we conclude that to avoid smart contract failure issue we have to test all pre-conditions,

post-conditions and invariants of smart contracts.

 Private Blockchain is a blockchain in which a centre authority is there and if anyone wants to use

the private blockchain then it must be authenticate by the central authority while the public

blockchain is completely opposite of it. Ethereum is a public blockchain, anyone can use it by

73

creating account. Some companies used this blockchain and develop their own private blockchains

i.e. Amazon build a private blockchain based on Ethereum and now they are offering private

blockchain services with smart contracts. Some other companies develop their own games using

Ethereum Blockchain in which on the start of the game they asked for Ethereum account to play

the game. As we know Ethereum is a public blockchain, different companies’ uses it for their own

different purposes. The future work will be that a general programming language can be proposed

to write smart contracts for any case study.

74

REFERENCES

1. A. Savelyev. “Contract law 2.0:‘Smart’contracts as the beginning of the end of classic contract

law”. Information & Communications Technology Law 26.2 (2017).

2. M. Gates. Blockchain: Ultimate guide to understanding blockchain, bitcoin, cryptocurrencies,

smart contracts and the future of money. CreateSpace Independent Publishing Platform, 2017.

3. Szabo, Nick. “Formalizing and securing relationships on public networks.” First Monday 2.9

(1997).

4. Bahga, A. and Madisetti, V.K. (2016) Blockchain Platform for Industrial Internet of Things.

Journal of Software Engineering and Applications, 9, 533-546.

http://dx.doi.org/10.4236/jsea.2016.910036

5. Gerhold, M., Stoelinga, M. Model-based testing of probabilistic systems. Form Asp Comp

30, 77–106 (2018). https://doi.org/10.1007/s00165-017-0440-4

6. Frantz, Christopher K., and Mariusz Nowostawski. "From institutions to code: Towards

automated generation of smart contracts." 2016 IEEE 1st International Workshops on

Foundations and Applications of Self* Systems (FAS* W). IEEE, 2016.

7. N. Szabo. Smart Contracts. [Online]. Available:

http://szabo.best.vwh.net/smart.contracts.html

8. N. Szabo. The Idea of Smart Contracts. [Online]. Available:

http://szabo.best.vwh.net/smart_contracts_idea.html

9. Mense, Alexander & Flatscher, Markus. (2018). Security Vulnerabilities in Ethereum Smart

Contracts. 375-380. 10.1145/3282373.3282419.

10. Khan T.A., Runge O., Heckel R. Testing against Visual Contracts: Model-Based Coverage.

In: Ehrig H., Engels G., Kreowski HJ., Rozenberg G. (eds) Graph Transformations. ICGT.

Lecture Notes in Computer Science, vol 7562. Springer, Berlin, Heidelberg

11. Heckel, Reiko & Khan, Tamim & Machado, Rodrigo. Towards Test Coverage Criteria for

Visual Contracts. ECEASST. 41. 10.14279/tuj.eceasst.41.667.

12. Runge, Olga, Tamim Ahmed Khan, and Reiko Heckel. "Test case generation using visual

contracts." Electronic Communications of the EASST 58.

13. Dika, Ardit, and Mariusz Nowostawski. "Security Vulnerabilities in Ethereum Smart

Contracts." 2018 IEEE International Conference on Internet of Things (iThings) and IEEE

http://dx.doi.org/10.4236/jsea.2016.910036

75

Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social

Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, 2018.

14. Wang, Shuai, Chengyu Zhang, and Zhendong Su. "Detecting nondeterministic payment bugs

in Ethereum smart contracts." Proceedings of the ACM on Programming Languages

3.OOPSLA (2019): 189.

15. Li, Zixin, et al. "MuSC: A Tool for mutation testing of Ethereum smart contract." 2019 34th

IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE,

2019.

16. Chan, W. K., and Bo Jiang. "Fuse: An Architecture for Smart Contract Fuzz Testing Service."

2018 25th Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2018.

17. Zhang, William, et al. "MPro: Combining Static and Symbolic Analysis for Scalable Testing

of Smart Contract." arXiv preprint arXiv:1911.00570 (2019).

18. Parizi, Reza M., et al. "Empirical vulnerability analysis of automated smart contracts security

testing on blockchains." Proceedings of the 28th Annual International Conference on

Computer Science and Software Engineering. IBM Corp., 2018.

19. Fu, Ying, et al. "Evmfuzz: Differential fuzz testing of ethereum virtual machine." arXiv

preprint arXiv:1903.08483 (2019).

20. Hasan, Haya R., and Khaled Salah. "Combating deepfake videos using blockchain and smart

contracts." Ieee Access 7 (2019): 41596-41606.

21. Destefanis, Giuseppe, et al. "Smart contracts vulnerabilities: a call for blockchain software

engineering?." 2018 International Workshop on Blockchain Oriented Software Engineering

(IWBOSE). IEEE, 2018.

22. Swan, Melanie. Blockchain: Blueprint for a new economy. " O'Reilly Media, Inc.", 2015.

23. Zhao, J. Leon, Shaokun Fan, and Jiaqi Yan. "Overview of business innovations and research

opportunities in blockchain and introduction to the special issue." (2016): 1-7.

24. Bjørnstad, Magnus Vitsø, Simen Krogh, and Joar Gunnarsjaa Harkestad. A study on

blockchain technology as a resource for competitive advantage. MS thesis. NTNU, 2017.

25. Seebacher, Stefan, and Ronny Schüritz. "Blockchain technology as an enabler of service

systems: A structured literature review." International Conference on Exploring Services

Science. Springer, Cham, 2017.

76

26. Zhao, J. Leon, Shaokun Fan, and Jiaqi Yan. "Overview of business innovations and research

opportunities in blockchain and introduction to the special issue." (2016): 1-7.

27. Seebacher, Stefan, and Ronny Schüritz. "Blockchain technology as an enabler of service

systems: A structured literature review." International Conference on Exploring Services

Science. Springer, Cham, 2017.

28. J. L. Zhao, S. Fan, and J. Yan. “Overview of business innovations and research opportunities

in blockchain and introduction to the special issue”. Springer (2016).

29. R. Böhme et al. “Bitcoin: Economics, technology, and governance”. Journal of Economic

Perspectives 29.2 (2015).

30. J. Garay, A. Kiayias, and N. Leonardos. “The bitcoin backbone protocol: Analysis and

applications”. In: Annual International Conference on the Theory and Applications of

Cryptographic Techniques. Springer. 2015.

31. Y. Lewenberg, Y. Sompolinsky, and A. Zohar. “Inclusive block chain protocols”. In:

International Conference on Financial Cryptography and Data Security. Springer. 2015.

32. H. Wang, K. Chen, and D. Xu. “A maturity model for blockchain adoption”. Financial

Innovation 2.1 (2016).

33. F. Tschorsch and B. Scheuermann. “Bitcoin and beyond: A technical survey on decentralized

digital currencies”. IEEE Communications Surveys & Tutorials 18.3 (2016).

34. S. Ølnes. “Beyond bitcoin enabling smart government using blockchain technology”. In:

International Conference on Electronic Government and the Information Systems

Perspective. Springer. (2016).

35. D. Lee Kuo Chuen, Ed., Handbook of Digital Currency, 1st ed. Elsevier, 2015.

[Online].Available:http://EconPapers.repec.org/RePEc:eee:monogr:9780128021170

36. V. Buterin, “A next-generation smart contract and decentralized application platform,” white

paper.

37. Vujičić, Dejan, Dijana Jagodić, and Siniša Ranđić. "Blockchain technology, bitcoin, and

Ethereum: A brief overview." 2018 17th international symposium infoteh-jahorina (infoteh).

IEEE, 2018.

38. Lu, Yang. "Blockchain: A survey on functions, applications and open issues." Journal of

Industrial Integration and Management 3.04 (2018): 1850015.

77

39. Merkle, Ralph C. "A digital signature based on a conventional encryption function."

Conference on the theory and application of cryptographic techniques. Springer, Berlin,

Heidelberg, 1987.

40. Merkle, Ralph C. "Protocols for public key cryptosystems." 1980 IEEE Symposium on

Security and Privacy. IEEE, 1980.

41. Bergquist, Jonatan. "Blockchain Technology and Smart Contracts: Privacy-Preserving

Tools." (2017).

42. Wüst, Karl, and Arthur Gervais. "Do you need a blockchain?." 2018 Crypto Valley

Conference on Blockchain Technology (CVCBT). IEEE, 2018.

43. Vokerla, Rahul Rao, et al. "An Overview of Blockchain Applications and Attacks." 2019

International Conference on Vision Towards Emerging Trends in Communication and

Networking (ViTECoN). IEEE, 2019.

44. Kikitamara, Sesaria, M. C. J. D. van Eekelen, and Dipl Ing Jan-Peter Doomernik. "Digital

identity management on blockchain for open model energy system." Unpublished Masters

thesis–Information Science (2017).

45. MultiChainTeam. MultiChain Offical Website. (2017). url: https://www.multichain.com/.

(visited on 06/10/2020).

46. MONAX-Team. MONAX: Deploy smart, legally-binding contracts on the blockchain.

(2016). url: https://monax.io/. (visited on 06/10/2020).

47. M. Iansiti and K. R. Lakhani. The Truth About Blockchain. Harvard Business Review(). URL:

https://hbr.org/2017/01/the- truth- about- blockchain (visited on 06/10/2020).

48. E. Community. A Next Generation Blockchain. URL:

https://ethdocs.org/en/latest/introduction/what-is-ethereum.html#a-next-generation-

blockchain (visited on 06/10/2020).

49. I. Bashir. Mastering Blockchain. English. 1st ed. GB: Packt Publishing, 2017.

ISBN:9781787125445.URL:https://ebookcentral.proquest.com/lib/tut/detail.action?docID=4

826445.

50. Wood, Gavin. "Ethereum: A secure decentralised generalised transaction ledger." Ethereum

project yellow paper 151.2014 (2014): 1-32.

51. E. C. Organization. Ethereum Classic Website. URL: https://ethereumclassic.org (visited on

06/11/2020).

52. E. Organization. Ethereum Website. URL: https://ethereum.org (visited on 06/11/2020).

78

53. Tikhomirov, Sergei. "Ethereum: state of knowledge and research perspectives." International

Symposium on Foundations and Practice of Security. Springer, Cham, 2017.

54. Tran, Hung. "Enabling a decentralized organization through smart contracts and tokens on the

Ethereum blockchain." (2018).

55. Advisors, E. T. H., et al. "ETHEREUM ANALYTICS." (2019).

56. Sillaber, Christian, and Bernhard Waltl. "Life cycle of smart contracts in blockchain

ecosystems." Datenschutz und Datensicherheit-DuD 41.8 (2017): 497-500.

57. Khan, Tamim Ahmed, and Reiko Heckel. "A methodology for model-based regression testing

of web services." 2009 Testing: Academic and Industrial Conference-Practice and Research

Techniques. IEEE, 2009.

58. Mohanta, Bhabendu Kumar, Soumyashree S. Panda, and Debasish Jena. "An overview of

smart contract and use cases in blockchain technology." 2018 9th International Conference

on Computing, Communication and Networking Technologies (ICCCNT). IEEE, 2018.

59. Wohrer, Maximilian, and Uwe Zdun. "Smart contracts: security patterns in the ethereum

ecosystem and solidity." 2018 International Workshop on Blockchain Oriented Software

Engineering (IWBOSE). IEEE, 2018.

60. V.Buterin: A next-generation smart contract and decentralized application plat-form. White

paper, 2014

61. Ethereum, Documentation. URL:http://www.ethdocs.org/en/latest/, Last visited June 19,

2020

62. Delmolino, Kevin, et al. "Step by step towards creating a safe smart contract: Lessons and

insights from a cryptocurrency lab." International conference on financial cryptography and

data security. Springer, Berlin, Heidelberg, 2016.

63. Stack Exchange URL:https://ethereum.stackexchange.com/questions/2404/upgradeable-

smart-contract “, Last visited June 19, 2020

64. ZeppelinOS Documentation URL:https://docs.zeppelinos.org/docs/1.0.0/start , Last visited

June 19, 2020

65. Khan, Tamim Ahmed, and Reiko Heckel. "On model-based regression testing of web-services

using dependency analysis of visual contracts." International Conference on Fundamental

Approaches to Software Engineering. Springer, Berlin, Heidelberg, 2011.

79

66. Nguyen, Tai D., et al. "sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts."

arXiv preprint arXiv:2004.08563 (2020).

67. Wu, Haoran, et al. "Mutation testing for ethereum smart contract." arXiv preprint

arXiv:1908.03707 (2019).

68. Chan, Wing Kwong, and Bo Jiang. "Fuse: An architecture for smart contract fuzz testing

service." 2018 25th Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2018.

69. Pfleeger, S.L.: Software Engineering: Theory and Practice. Prentice Hall PTR, Upper Saddle

River (2001)

70. Howden, W.: Reliability of the path analysis testing strategy. IEEE Transactions on Software

Engineering SE-2(3), 208–215 (1976)

71. Pasquini, A., Agostino, E.D.: Fault seeding for software reliability model validation. Control

Engineering Practice 3(7), 993–999 (1995)

72. Wüstholz, Valentin, and Maria Christakis. "Harvey: A greybox fuzzer for smart contracts."

arXiv preprint arXiv:1905.06944 (2019).

73. Hartel, Pieter, and Richard Schumi. "Mutation Testing of Smart Contracts at Scale."

International Conference on Tests and Proofs. Springer, Cham, 2020.

74. Andesta, Erfan, Fathiyeh Faghih, and Mahdi Fooladgar. "Testing Smart Contracts Gets

Smarter." arXiv preprint arXiv:1912.04780 (2019).

75. Ashraf, Imran, et al. "GasFuzzer: Fuzzing Ethereum Smart Contract Binaries to Expose Gas-

Oriented Exception Security Vulnerabilities." IEEE Access (2020).

76. Chapman, Patrick, et al. "Deviant: A Mutation Testing Tool for Solidity Smart Contracts."

2019 IEEE International Conference on Blockchain (Blockchain). IEEE, 2019.

77. Akca, Sefa, Ajitha Rajan, and Chao Peng. "SolAnalyser: A Framework for Analysing and

Testing Smart Contracts." 2019 26th Asia-Pacific Software Engineering Conference

(APSEC). IEEE, 2019.

78. Nehai, Zeinab, Pierre-Yves Piriou, and Frederic Daumas. "Model-checking of smart

contracts." 2018 IEEE International Conference on Internet of Things (iThings) and IEEE

Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social

Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, 2018.

79. Ellul, Joshua, and Gordon J. Pace. "Runtime verification of ethereum smart contracts." 2018

14th European Dependable Computing Conference (EDCC). IEEE, 2018.

80

APPENDIX A

S No Test Case Pre-

Conditions

Post-

Condition

Output Expected

Results

Actual

Results(Pass/

Fail)

1. Add

Product

Successful

ly

Product

must have a

name and

price

Product

should be

add in to

the

catalogue.

Product

added

successfull

y.

Product added

successfully.

Pass

2. Product

not added

without

name and

price

Product

must have

name and

price

Product

should not

be add in

to

catalogue

without

name and

price.

No

Product

added in

catalogue

without

name and

price.

Product not

add in

catalogue

without name

and price.
Pass

3. Product

not added

without

name

Product

must have

name

Product

should not

be add in

to

catalogue

without

name.

No

Product

added in

catalogue

without

name.

Product not

add in

catalogue

without name. Pass

4. Product

not added

without

price

Product

must have

price

Product

should not

be add in

to

catalogue

without

price.

No

Product

added in

catalogue

without

price.

Product not

add in

catalogue

without price. Pass

5. Sale

Product

Transactio

n

Successful

ly

Product

must have

an id

After

Successful

transaction

product

should be

remove

from

catalogue.

Transactio

n done

successfull

y and

removed

from

catalogue.

Transaction

done

successfully

and removed

from

catalogue.

Pass

6. Trying to

buy same

product

again

Product

must have

an id

Product

should not

be sale

again.

Transactio

n Failed

Transaction

Fail
Pass

7. Trying to

add

Account

informatio

Product

should not

No

Product

Product should

not be add in to
Pass

81

product

without

account

n required

for adding

product

detail

be add in

to

catalogue

without

account.

added in

catalogue

catalogue

without

account.

8. Trying to

buy

product

without

account

Buyer must

have an

account

Product

should not

be sale.

Transactio

n failed

Transaction

Fail

Pass

9. Trying to

buy

product

with

insufficien

t balance

Buyer must

have an

account

with

sufficient

balance

Product

should not

be sale.

Transactio

n failed

Transaction

Fail

Pass

10. Trying to

add

product

with

insufficien

t balance

Seller must

have an

account

with

sufficient

balance

Product

should not

be add.

Product

not added

in

catalogue.

Product should

not be add in

catalogue
Pass

11. Add

multiple

products

in to the

catalogue

Seller must

have an

account

with

sufficient

balance

Products

should be

add

All

products

added

successfull

y

Products

should be add

Pass

12. Trying to

buy

product

with

invalid

product id

Buyer must

have an

account

with

sufficient

balance

Product

should not

be sale.

Transactio

n failed

Transaction

Fail

Pass

13. Trying to

add

product

with zero

price

Seller must

have an

account

with

sufficient

balance

Product

should not

be add

Product

not added

in

catalogue

Product should

not be add in

catalogue
Pass

