
HARDWARE IMPLEMENTATION OF OVERLAP

SAVE METHOD BASED FADING CHANNEL

EMULATOR

BY

MUHAMMAD NAUMAN

01-244172-045

SUPERVISED BY

DR. ATIF RAZA JAFRI

Session-2017-2019

A Report submitted to the Department of Electrical Engineering

Bahria University, Islamabad

in partial fulfilment of the requirement for the degree of MS(EE)

Hardware Implementation of Overlap Save Method based ii | P a g e

Fading Channel Emulator

CERTIFICATE

We accept the work contained in this report as a confirmation to the required standard for the

partial fulfilment of the degree of MS (EE).

__________________ __________________

Head of Department Supervisor

__________________ __________________

Internal Examiner External Examiner

Hardware Implementation of Overlap Save Method based iii | P a g e

Fading Channel Emulator

DEDICATION

I would like to dedicate this thesis to my parents, siblings, friends, supervisor and teachers for

their love, endless support, and strong motivation which helped me in achieving my goals.

Hardware Implementation of Overlap Save Method based iv | P a g e

Fading Channel Emulator

DECLARATION OF AUTHORSHIP

I hereby declare that content of this thesis is my own work and that it is the result of work done

during the period of registration. To the best of my knowledge, it contains no material previously

published or written by another person nor material which to a substantial extent has been

accepted for the award of any other degree or diploma of the university or other institute of

higher learning, except where due acknowledgement has been made in the text.

(Student Signature)

Hardware Implementation of Overlap Save Method based v | P a g e

Fading Channel Emulator

ACKNOWLEDGEMENTS

First I like to thank Allah, without his grace I could not have achieved anything. I like to

specially thank Dr. Atif Raza Jafri, my supervisor and teacher, for his advice, supervision, great

support and guidance. I would also thank my Electrical Engineering department for their support

and guidance.

Hardware Implementation of Overlap Save Method based vi | P a g e

Fading Channel Emulator

ABSTRACT

Wireless communication systems require extensive and thorough evaluations before field trials

and actual deployment. Difficulty in real time testing makes it the least favourable option for

field trials prior thorough evaluation in the laboratory. It is therefore, channel emulators are used

to evaluate a waveform at real time data rate while emulating a channel. Among various channel

emulation techniques, Overlap Save (OLS) method used along with inverse Fast Fourier

Transform (IFFT) technique provides the best computational efficiency. Hardware solutions

based upon OLS method based technique are not available. Implementation of OLS method

based technique on FPGA is novel and provides high throughputs as compared to software

solutions. In this thesis an FPGA based channel emulator is implemented which emulates a

Rayleigh Fading channel along with Doppler effects. An OLS-based fading variates generator

and a time domain OLS-based interpolator are implemented which shown reduction in

complexity when compared with originally proposed OLS method. A high throughput of 34

Mega Samples per Second (MSPS) was targeted, keeping in view maximum sampling frequency

in LTE which is 30.72MHz for a 20 MHz configuration. Design with minimal resources was

implemented and required throughput was successfully achieved on Virtex-7 FPGA. Designing

of system was done in such a way that system can be used with multiple antenna systems.

Hardware Implementation of Overlap Save Method based vii | P a g e

Fading Channel Emulator

TABLE OF CONTENTS

Certificate .. ii

Dedication .. iii

Declaration of Authorship.. iv

Acknowledgements ... v

Abstract .. vi

Table of Contents .. vii

List of Figures ... x

List of Tables ... xiii

Abbreviations ... xiv

CHAPTER 1. Introduction.. 2

1.1. Thesis Background/Overview .. 2

1.1.1. Large Scale Fading ... 4

1.1.2. Small Scale Fading ... 5

1.1.3. Rayleigh Fading .. 10

1.1.4. Overlap Save Method ... 11

1.1.5. Multiple-Input and Multiple-Output (MIMO) System ... 12

1.1.6. Digital System Design and FPGA .. 12

1.2. Problem Description .. 13

1.3. Thesis Objectives ... 13

Hardware Implementation of Overlap Save Method based viii | P a g e

Fading Channel Emulator

1.4. Thesis Organization ... 13

CHAPTER 2. Literature Review .. 16

2.1. Channel Emulation... 16

2.2. FFT/IFFT Methods .. 20

2.3. Time Domain vs. Frequency Domain Interpolation .. 23

CHAPTER 3. Methodology .. 27

3.1. Sub-Modules .. 29

3.1.1. Gaussian Noise Generation ... 29

3.1.2. FFT/IFFT Module ... 31

3.1.3. Complex Multiplier ... 36

3.1.4. Block Memories .. 37

3.2. Timing Requirements... 38

3.2.1. Scheme 1: Separate FFT/IFFT Module and Interpolator .. 39

3.2.2. Scheme 2: Single FFT/IFFT Module and Interpolator ... 42

3.3. System Architecture ... 45

CHAPTER 4. Evaluation .. 55

4.1. System Constraints... 55

4.2. System Verification ... 56

4.3. System’s Simulation Waveform .. 57

4.4. System Performance .. 59

Hardware Implementation of Overlap Save Method based ix | P a g e

Fading Channel Emulator

CHAPTER 5. Conclusions and future work ... 66

References ... 68

Appendix A. Selection of Various Parameters ... 72

Appendix B. Comparison of Filter Coefficients ... 73

Hardware Implementation of Overlap Save Method based x | P a g e

Fading Channel Emulator

LIST OF FIGURES

Figure 1.1: Typical Radio Environment ... 3

Figure 1.2: OTA Field Trials .. 3

Figure 1.3: Channel Emulation Model.. 4

Figure 1.4: Fading Types .. 4

Figure 1.5: Doppler Spectrum... 7

Figure 1.6: Frequency Selective vs. Flat Fading... 8

Figure 1.7: Small Scale Fading ... 9

Figure 1.8: Rayleigh Distribution ... 10

Figure 1.9: OLS Method ... 11

Figure 1.10: MIMO System .. 12

Figure 2.1: SOS Method for Generation ... 17

Figure 2.2: IFFT Method for Generation .. 18

Figure 2.3: Original OLS-based Channel Emulator ... 19

Figure 2.4: Decimation in Time and Decimation in Frequency ... 20

Figure 2.5: Single Memory-based FFT Architecture .. 21

Figure 2.6: Dual Memory-based FFT Architecture .. 22

Figure 2.7: Pipelined FFT Architecture .. 23

Figure 2.8: Interpolation in Time and Frequency Domain ... 24

Figure 2.9: Efficient Time Domain Filtering .. 25

Hardware Implementation of Overlap Save Method based xi | P a g e

Fading Channel Emulator

Figure 3.1: Original OLS method based Interpolator’s Top Diagram .. 27

Figure 3.2: Original OLS-based Generator ... 27

Figure 3.3: Original OLS-based Interpolator .. 28

Figure 3.4: GNG Schematic .. 30

Figure 3.5: GNG Timing Diagram.. 30

Figure 3.6: Resources vs. Throughput in FFT Core ... 31

Figure 3.7: Pipelined Streaming I/O Architecture .. 32

Figure 3.8: AXI Protocol .. 33

Figure 3.9: FFT Core Schematic ... 34

Figure 3.10: Frame by Frame Processing and Timings in Pipelined Streaming I/O Architecture 35

Figure 3.11: Complex Multiplier .. 36

Figure 3.12: FFT Core Generation in Xilinx ISE Design Suite 14.7 .. 39

Figure 3.13: Scheme 1 Timing Requirements (without Pipelining) ... 40

Figure 3.14: Scheme 1 Timing Requirements (with Pipelining) .. 41

Figure 3.15: Scheme 2 Timing Requirement (1
st
 Method) ... 43

Figure 3.16: Scheme 2 Timing Requirement (2
nd

 Method) .. 44

Figure 3.17: Top Level Architecture (Single Module) ... 45

Figure 3.18: Tapped Delay Line Channel Model ... 45

Figure 3.19: Top Level (MIMO System) .. 46

Figure 3.20: Proposed OLS-based Generator Architecture .. 47

Hardware Implementation of Overlap Save Method based xii | P a g e

Fading Channel Emulator

Figure 3.21: FSM of OLS-based Generator .. 48

Figure 3.22: Fast Interpolator Architecture having Maximum Resource Consumption 50

Figure 3.23: Proposed OLS-based Interpolator (Resource Efficient) ... 51

Figure 3.24: FSM of OLS-based Interpolator ... 52

Figure 4.1: Output Comparisons (Matlab Output vs. FPGA) ... 56

Figure 4.2: Interpolator Initiation Signal .. 57

Figure 4.3: Output for ‘L’ Number of Cycles ... 58

Figure 4.4: Second Time Interpolator Initiation ... 58

Figure 4.5: Output Samples .. 59

Hardware Implementation of Overlap Save Method based xiii | P a g e

Fading Channel Emulator

LIST OF TABLES

Table 1: Implementation Results of GNG .. 29

Table 2: FFT Core’s Resource Utilization .. 33

Table 3: Available Clock Cycles vs. Required Multipliers .. 49

Table 4: Interpolator Coefficients Storage Method in Various Memories 50

Table 5: Some Resources of XC7VX550T ... 55

Table 6: Resources Used by Common Sub-modules .. 60

Table 7: Estimated Resources for Scheme 1 ... 60

Table 8: Estimated Resources for first method in Scheme 1 .. 61

Table 9: Interpolator Resources .. 62

Table 10: Interpolator for MIMO System ... 62

Table 11: OLS-based Generator Resources .. 63

Table 12: OLS-based Generator Resources for MIMO system .. 63

Hardware Implementation of Overlap Save Method based xiv | P a g e

Fading Channel Emulator

ABBREVIATIONS

OLS Overlap Save

IFFT Inverse Fast Fourier Transform

MSPS Mega Samples per Second

FPGA Field Programmable Gate Array

LTE Long-Term Evolution

OTA Over-the-air

IP Intellectual Property

MIMO Multiple-Input and Multiple-Output

SOS Sum of Sinusoids

FIR Finite Impulse Response

IIR Infinite Impulse Response

GNG Gaussian Noise Generator

BRAM Block RAM

Hardware Implementation of Overlap Save Method based 1 | P a g e

Fading Channel Emulator

Chapter 1

Introduction

Hardware Implementation of Overlap Save Method based 2 | P a g e

Fading Channel Emulator

CHAPTER 1. INTRODUCTION

1.1. Thesis Background/Overview

With the advancement of technology and its underlying flexibility, digital signal processing

has found its application in almost every field. Most of the old analog systems are replaced by

new and specialized digital systems. Technological advancement is the key reason why new and

unique applications are added every day. Internet, wireless communication and automation all

are few applications of digital system.

Among all mobile communication generations, only 1
st
 generation was based upon analog

system, and only supported voice. With each upcoming generation, new and better service was

provided. Within 5
th

 generation, three communication services are being addressed: Extreme

Mobile Broadband (xMBB), Massive Machine-Type Communication (M-MTC) and Ultra-

reliable/Critical Machine-Type Communication (U-MTC) [1].

Before deployment of a wireless communication system, an evaluation is required for successful

communication. Ideally real time testing is the best solution for practically testing systems with

various scenarios, but it requires high cost, more effort and is time consuming. With already

available channel models, there is no or minimum requirement of field measurements. Field

measurements are only needed when channel model is not available, and in this case real time

field tests in different environments are needed.

A channel emulator imitates the real time channel by emulating it on hardware/software. Channel

emulation is performed for evaluation of a system performance in real scenarios before

commercial deployment, but commercially available channel emulators are expensive and not

flexible when configuring various channel parameters [2].

Figure 1.1 illustrates a typical radio environment, with signal following various paths. Such kind

of propagation is known as multipath propagation. Multipath effect can cause signal interference,

Hardware Implementation of Overlap Save Method based 3 | P a g e

Fading Channel Emulator

as a previous symbol can merge in next symbol if proper delay has not been given between

symbols.

Figure 1.1: Typical Radio Environment

Channel emulator can ‘emulate’ the environment or channel present between both transmitter

and receiver. Figure 1.2 displays testing in real environment, also called over-the-air (OTA) field

trials [3]. Figure 1.3 is the case in which devices are under test with channel being emulated by

channel emulator.

Figure 1.2: OTA Field Trials

Hardware Implementation of Overlap Save Method based 4 | P a g e

Fading Channel Emulator

Figure 1.3: Channel Emulation Model

In Figure 1.3 ‘h (n)’ is the composite channel response generated by channel emulator, using

various channel models.

While implementing a channel emulator, certain factors are required to be considered. One of

them is fading. Fading is the attenuation in a signal due to various factors. These factors can be

environmental conditions, multiple paths or many others. Multiple copies arrive at receiver

known as multipath waves, and add up to form a signal which varies widely in phase and

amplitude [4]. Fading can also be defined as rapid fluctuations in a signal, over a short time

period or distance [4]. Figure 1.4 shows types of fading [5].

Figure 1.4: Fading Types

1.1.1. Large Scale Fading

 Large scale fading is generally simpler to model; it is due to large distance and large

objects between transmitter and receiver. It is further divided into Path Loss (Free Space Path

Hardware Implementation of Overlap Save Method based 5 | P a g e

Fading Channel Emulator

Loss) and Shadowing. Path Loss is proportional to squared distance between transmitter and

receiver.

FSPL is linear and is simpler to model; Shadowing is due to the large obstacles present in

between transmission medium [5].

1.1.2. Small Scale Fading

 Small Scale Fading is more complex to model; large power variations are caused by

small changes. It is also called as Rayleigh Fading (if no Line-of-Sight (LOS) is present), as the

received signal’s envelope is described by probability distribution function (pdf) of Rayleigh

distribution [5]. If a dominant LOS component is present, received signal’s envelope is described

by Rician Fading [5].

Delay Spread and Coherence Bandwidth Bc defines how signal is dispersed in time [4]. Delay

Spread can be defined as the difference between first and last received copy. Delay Spread is an

important parameter, as for a channel without ISI; symbol duration should be greater than it [6].

Power Delay Profile (PDP) is a function of time delay Ac (τ), with which Delay Spread can be

found. Most common Delay Spread is rms Delay Spread στ. Mean Delay Spread and rms

Delay Spread is defined as [6]:

Coherence Bandwidth Bc defines how much channel is ‘flat’ which means spectrum range in

which all of the channel response is same. Coherence Bandwidth Bc is approximated by the

following equations, depending upon [4]:

Hardware Implementation of Overlap Save Method based 6 | P a g e

Fading Channel Emulator

First equation is the case when frequency correlation function is above 0.9, and second equation

is the case when frequency correlation function is above 0.9 [4].

Fading due to the relative motion of receiver, transmitter or due to the movement of objects in

the channel cannot be described by Delay Spread or by Coherence Bandwidth; however it is

described by Doppler Spread and Coherence Time [4]. Doppler Spread denoted by BD is a

measure of how much motion of receiver or transmitter caused broadening of spectrum in

received signal. Doppler Spread causes received signal’s bandwidth to increase by 2fd, where fd

is the Doppler Shift [4].

Doppler Shift depends upon the relative velocity of transmitter or receiver, and also the angle ϴ

between them. Doppler Shift is defined by [4]:

λ denotes wavelength of carrier frequency and denotes the speed of mobile. For maximum

Doppler Shift, fm:

A channel is known as slow fading if baseband signal’s bandwidth is much greater than Doppler

Spread [4]. In this case effect of Doppler Spread can be ignored.

Coherence Time and Doppler Spread are inversely related. Coherence Time shows the effects

of frequency dispersion in time domain, maximum Doppler Spread is also known as fading rate

of the channel [5].

Hardware Implementation of Overlap Save Method based 7 | P a g e

Fading Channel Emulator

One way to define Doppler Spread is [5]:

For a carrier frequency of 600MHz, Figure 1.5 shows the Doppler Spectrum for 30 Km/hour and

60 Km/hour speeds.

Figure 1.5: Doppler Spectrum

1.1.2.1. Flat & Frequency Selective Fading

When bandwidth of channel is greater than baseband signal’s bandwidth, signal

undergoes flat fading. All frequency components of signal experience same channel effects. The

following equation summarizes whether a signal is affected by flat fading channel or not:

Hardware Implementation of Overlap Save Method based 8 | P a g e

Fading Channel Emulator

Bs and Bc are the bandwidth of signal and channel. Flat Fading channels can also be called as

narrowband channels [4]. Transmitting more power helps in reducing bit error rates caused by

flat fading.

Frequency selective fading occurs when the bandwidth of transmitted signal is greater than

channel’s bandwidth. In such scenario, different frequency components are affected differently.

Received signal contains multiple instances of transmitted signal. Frequency selective fading is

difficult to model and mitigate as compared to Flat Fading [4]. The following equation

summarizes whether Frequency Selective Fading will distort a signal or not:

Figure 1.6 differentiates between Flat and Frequency Selective Fading.

Figure 1.6: Frequency Selective vs. Flat Fading

1.1.2.2. Fast & Slow Fading

Fast and slow fading are classified on the basis of Doppler Spread. In Fast Fading,

symbol duration of transmitted signal is greater than Coherence Time [4]. Time Selective Fading

is the frequency dispersion, caused by Doppler Spread. Fast fading occurs when [4]:

Hardware Implementation of Overlap Save Method based 9 | P a g e

Fading Channel Emulator

Bs and BD are the bandwidth of signal and Doppler Spread. Ts and Tc are symbol duration and

coherence time. Fast fading usually occurs for very low data rates [4].

Slow fading channel is the one in which bandwidth of transmitted signal is much larger than

Doppler Spread. In this case channel is almost static, as symbol duration is much lesser than

Coherence Time [4]. Again summarizing slow fading:

Figure 1.7 summarizes all the flat, fast, frequency selective and slow fading.

Figure 1.7: Small Scale Fading

Hardware Implementation of Overlap Save Method based 10 | P a g e

Fading Channel Emulator

1.1.3. Rayleigh Fading

 Rayleigh distribution is evident in envelope of mobile radio signal’s amplitude [7].

Rayleigh Fading is suitable in an environment, where Line of Sight (LoS) component is absent

(practical scenarios). Rayleigh Distribution is the sum of two uncorrelated Gaussian Noise

signals. A Gaussian Noise generator, fulfilling properties for Gaussian distribution can help in

generation of Rayleigh Fading. Figure 1.8 illustrates pdf of Rayleigh Distribution.

Figure 1.8: Rayleigh Distribution

Rayleigh Fading is very important as it is a practical model for signals affected heavily by urban

environments [5]. Emulation of Rayleigh Fading with compensating Doppler Effect needs a

random process generation [8]. With current telecommunication scenario, high throughput is

necessary, which requires high speed and specialized hardware. Field Programmable Gate Array

(FPGA) is one of the solutions for high throughput demanding applications.

Hardware Implementation of Overlap Save Method based 11 | P a g e

Fading Channel Emulator

1.1.4. Overlap Save Method

Overlap Save (OLS) method is generally used to perform convolution efficiently between

a long sequence and a shorter one. This method splits long sequence into smaller blocks and

computes convolution. Time domain convolution can be done in frequency domain by simple

multiplication and this is the advantage which OLS method utilizes. Generation of fading

variates can require convolution with a specific filter, which can be implemented using this

technique [8]. Figure 1.9 shows the OLS method, which shows how long sequence is split into

parts by following equation:

Where N is the Fast Fourier Transform (FFT) size and L is selected filter length. Also L is the

output valid value to be used. N can be fixed according to the requirements, and M or L can also

be chosen. Without OLS method a very large number of FFT size is required, and this increases

the computation complexity and memory requirements drastically.

Figure 1.9: OLS Method

Hardware Implementation of Overlap Save Method based 12 | P a g e

Fading Channel Emulator

1.1.5. Multiple-Input and Multiple-Output (MIMO) System

Multiple antennas at transmitter and receivers can be used to increase overall system data

rate and performances [6]. Incorporating multiple antennas is the key principle of MIMO. Using

multiple antennas at both transmitter and receiver has proven to provide more efficiency as

compared to systems incorporating multiple antennas only at either transmitter or receiver [6]. A

typical MIMO system is shown in Figure 1.10.

Figure 1.10: MIMO System

1.1.6. Digital System Design and FPGA

With the advancement in digital system design, fast and efficient implementation of

various algorithms can be done. An FPGA can be configured in order to perform a specific task,

however if a different task is required, FPGA can be reconfigured to perform a new and different

task. Up gradation and flexibility in FPGAs are more than ASICs, DSP processors and

Microcontrollers. FPGAs are usually used where there is a necessity of a single device

performing a task (not good for bulk production), however FPGAs can be used for ASIC

prototyping before production, and ASIC testing can be done on FPGA kits. Selection of FPGA

for Channel Emulator implementation is adequate for achieving higher output sample rate, good

performance and accurate results, when compared to other implementations.

Hardware Implementation of Overlap Save Method based 13 | P a g e

Fading Channel Emulator

1.2. Problem Description

Over-the-air (OTA) field trials are expensive and require manpower to test a device in

real time scenario. With the arrival of 5G technology in 2020, high throughput intensive

applications will soon be introduced. These high throughput intensive applications’ hardware

cannot be merely tested on the basis of simulation results. Also channel emulators based upon

microcontroller or Digital Signal Processing (DSP) processor might not be able to achieve

required high throughput. For targeted 20MHz LTE channelization system (the most demanding

case), an emulator providing 34 Mega Symbols per Second throughput per transmitter receiver

path is required. This high throughput is impossible to be achieved through software using a

single instance of a DSP or other processor. The situation worsens in case of MIMO scenario

where a total of 36 paths are required for a 2 2 MIMO system.

1.3. Thesis Objectives

As mentioned above, software solutions do not fulfil the throughputs of a channel emulator

for 5G applications and hence a hardware based solution is required. For those applications

where less quantity user specific ICs are required, FPGA provide the ideal platform for

implementation. Hence, the aim of this thesis is to propose and implement OLS method [8]

based channel emulator on FPGA. A basic hardware IP will be developed to emulate on path

between transmitter and receiver. The design will be able to achieve a maximum throughput of

34 MSPS using minimum hardware resources. The IP will be designed while keeping the

scalability into account and design will enable usage of multiple instances of IP for 2 2 MIMO

configuration and 9 total paths for multipath effects (i.e. 36 instances of IP).

1.4. Thesis Organization

Thesis is organized as follows: Chapter 2 is dedicated for literature review. State of the art

channel emulators are discussed and associated techniques that are used in generation of fading

variates are analyzed. Since FFT/IFFT is one of the fundamental operations used in channel

Hardware Implementation of Overlap Save Method based 14 | P a g e

Fading Channel Emulator

emulators. FFT techniques are reviewed, along with the time domain and frequency domain

interpolation techniques.

Chapter 3 describes the used methodology in the thesis. Proposed system, various methods for

implementation, timing requirements and efficient resource utilization, are discussed in this

chapter.

Chapter 4 discusses the synthesis and implementation results on FPGA devices. Resource

utilization along with a comparison among different implementation solutions discussed in

Chapter 3 is also presented.

Finally, Chapter 5 presents the conclusion and future directions in this domain.

Hardware Implementation of Overlap Save Method based 15 | P a g e

Fading Channel Emulator

Chapter 2

Literature Review

Hardware Implementation of Overlap Save Method based 16 | P a g e

Fading Channel Emulator

CHAPTER 2. LITERATURE REVIEW

2.1. Channel Emulation

Many channel emulators are commercially available [9, 10, 11]. The commercially available

solutions are efficient, provide excellent channel emulation and are scalable. Commercial

products targets many different channels and user scenarios however these are too much

expensive as simplest of these products starts from $6000. A cost effective solution is very

suitable for anyone which intends to perform channel emulation. An FPGA based solution can

target a specific mobile communication channel, and can be reconfigured to a new channel when

needed.

There are mainly two methods in generation of Rayleigh Fading samples:

 Sum of Sinusoids (SOS) [12] or Jake’s Model [7].

 Filtering Gaussian Noise (FIR based [13] or IIR based [14])

Sum of Sinusoids (SOS) method is based upon the idea that received signal is made up of

various sinusoids. Received signal RD (t) is a superposition of waves, and is expressed as [7]:

N is the number of paths. Amplitude of transmitted wave is denoted by E0, attenuation of the n
th

path is represented by which is a random variable. Carrier and maximum Doppler frequencies

are denoted by and . Phase shift is denoted by . Jakes fading channel simulator is

depicted in Figure 2.1.

SOS method in real time requires large computational complexity and sinusoidal function has

inherent property which introduces correlation in between samples [8].

Hardware Implementation of Overlap Save Method based 17 | P a g e

Fading Channel Emulator

Figure 2.1: SOS Method for Generation

Second method i.e. filtering the Gaussian noise requires FIR [13] or IIR filtering [14], in which

FIR based filtering requires large number of taps, and IIR suffers from stability problem. Both

the methods require values or filter related to Doppler spectrum as filtering is done with Doppler

filter.

Another method exists, which is in actual implementation of second method, is to use FFT and

IFFT operation to perform filtering [15, 16]. First time this method was proposed in a computer

Hardware Implementation of Overlap Save Method based 18 | P a g e

Fading Channel Emulator

program written in FORTRAN [15]. In FFT/IFFT method Gaussian noise is multiplied with

square root of frequency response of Doppler filter, and then performs IFFT to get final Rayleigh

Fading variates. Modification to the original filter coefficients can reduce FFT/IFFT operations

to half of the original, and reduces memory requirements [16]. Original Doppler filter sequence

is U-shaped [7]:

Where fd is the maximum Doppler frequency. Modified Doppler filter coefficients are defined by

[16]:

Normalized Doppler frequency is represented by , N is the FFT size and .

Figure 2.2 shows the IFFT based implementation [16].

Figure 2.2: IFFT Method for Generation

Hardware Implementation of Overlap Save Method based 19 | P a g e

Fading Channel Emulator

FFT/IFFT method is best, compared to the above two methods (SOS and filtering) in terms of

computation complexity. Flaw of this method is the discontinuity issue in IFFT, and Doppler

variates are required to be stored in advance, due to block-oriented nature of IFFT [8]. Also for

high throughput based variates generation, a large size of FFT is required. Further MIMO based

system will require multiple instances of single module, and this will make implementation with

this method impossible.

With the above mentioned issue, FFT/IFFT method cannot find its application in real time

systems with high throughput and long sequences. However there exists a method which can be

utilized to perform FFT/IFFT method in real time systems [8]. OLS method along with an

interpolator can promise low complexity based real time channel emulation. This method helps

in generating Rayleigh Fading variates, and interpolator (either implemented in Time or

Frequency domain) helps in reducing FFT/IFFT size. Originally proposed method for fading

variates generator in [8] is shown in Figure 2.3.

Figure 2.3: Original OLS-based Channel Emulator

Hardware Implementation of Overlap Save Method based 20 | P a g e

Fading Channel Emulator

Various FPGA based implementations can be found in literature. Authors in [17] used U- shaped

Doppler Spectrum and optimized hardware consumption. Single FPGA chip based MIMO

implementation with multipath is done in [18]. Elliptic IIR based interpolation on FPGA was

implemented in [19]. Authors in [20] generated 25 MSPS, with using IIR based filtering

(spectrum filtering and interpolation). Memory consumption is optimized by eight times in [21].

In [22] Sum-of-frequency-modulation (SoFM) method was introduced in a MIMO system, which

is a new technique in hardware implementation. An SOS method based fading generator was

proposed in [23].

2.2. FFT/IFFT Methods

Various FFT/IFFT techniques can be used. Either Decimation-in-Time (DIT) or Decimation-in-

Frequency (DIF) can be used [24]. DIT and DIF implementation in radix-2 FFT is shown in

Figure 2.3.

Figure 2.4: Decimation in Time and Decimation in Frequency

Either one of radix-2, radix-4, mix radix or radix-2
2
 [25] can be used in FFT/IFFT block. Radix-

2
2

utilizes radix-2 structure but has complexity of radix-4. Radix-2 can be used to implement any

size of N, whereas radix-4 is useful where N is in power of 4. Computational complexity is

reduced in radix-4, however its structure and implementation is difficult.

Various FFT architectures are summarized in [26]. There are three main techniques for hardware

implementation of FFT:

 Direct Implementation: Data Flow Graph (DFG) is implemented on hardware as it is.

This technique is efficient for small size of N; however it is not practically suitable for

systems with large FFT size.

Hardware Implementation of Overlap Save Method based 21 | P a g e

Fading Channel Emulator

 Memory-Based FFT Architectures: Reutilizes one or many butterflies, and aim of this

approach is to increase butterfly optimization [26]. It is further divided into two

subdivisions:

o Single Memory-Based: Utilizes single memory for inputs and intermediate

outputs of FFT, data is fed into Processing Element (PE) which is made of a

single or multiple butterflies (BF) from memory and results are fed back. Several

iterations of the process generate results. This approach cannot be used when

input data is streaming, however if high speed is not required this architecture is

feasible. Single Memory-Based architecture is displayed in Figure 2.4 [26].

Figure 2.5: Single Memory-based FFT Architecture

o Dual Memory-Based: Utilizes two separate memories and a PE. Both memory

switch roles as input and output, after each FFT stage switching of input and

output is done. This approach also cannot be used with continuous stream of data.

Dual Memory-Based architecture is displayed in Figure 2.5 [26].

Hardware Implementation of Overlap Save Method based 22 | P a g e

Fading Channel Emulator

Figure 2.6: Dual Memory-based FFT Architecture

 Pipelined FFT Architectures: A high resource consuming approach, but the only

feasible approach which incorporates streaming data and provides best throughput. It

is also called streaming architecture [26] and is highly sophisticated in terms of its

utilization of structure and simple control. It utilizes parallelism between multiple

stages. Incorporating pipeline registers between each stage can increase throughput

even more. A BF operation is done in this architecture and then twiddle factors are

multiplied. A single BF is dedicated to a specific stage of DFG, and log2N BFs are

needed. It takes (N/2+1) cycles to start the process and latency of it is 2N-1. It is

further divided into Feedback and Feedforward systems. Figure 2.6 displays a

generic diagram for Pipelined FFT architectures [26].

Hardware Implementation of Overlap Save Method based 23 | P a g e

Fading Channel Emulator

Figure 2.7: Pipelined FFT Architecture

2.3. Time Domain vs. Frequency Domain Interpolation

With all above FFT architectures with their advantages and disadvantages, interpolation is

necessary due to the fact that in practical scenarios Doppler frequency is very low as compared

to sampling frequency. Interpolation process requires upsampling (zero insertion) followed by

filtering. Filtering can be performed in either frequency domain or time domain. Time domain

filtering suffers with zero multiplication, most of the taps contain zero values and in such a case

frequency domain based filtering is preferred. Interpolation in frequency domain requires

additional FFT block and additional memories. FFT involves various multiplications and storage

in between stages so additional hardware cost occurs in FFT (in terms of complexity). Figure 2.8

displays the frequency domain and time domain interpolation.

Hardware Implementation of Overlap Save Method based 24 | P a g e

Fading Channel Emulator

Figure 2.8: Interpolation in Time and Frequency Domain

Hardware Implementation of Overlap Save Method based 25 | P a g e

Fading Channel Emulator

An efficient time domain filtering on FPGA can reduce cost of additional FFT/IFFT hardware as

fewer multipliers can be utilized by allowing only non-zero multiplications [27]. Filtering

technique in [27] is shown in Figure 2.9. OLS based interpolator in frequency domain [8] can be

done using time domain technique [27] with slight modification to achieve high throughput.

Figure 2.9: Efficient Time Domain Filtering

In this thesis fading variate generation is done with using technique in [8] with many

modifications. A high throughput was targeted and MIMO system had to be incorporated. For

multiple antenna systems and incorporating multiple paths, one needs multiple instances of a

single module with different input parameters. A need of time domain interpolation was seen in

[8]. Zero padding, memory storage for complex interpolator sequence, additional memory for

OLS method and additional FFT/IFFT hardware consumes more resources. Resources required

by system increases a lot, so a time domain interpolation with real valued coefficients of

interpolator sequence can ensure significant reduction in hardware complexity. Time domain

interpolation is done with modification to the technique in [27].

Hardware Implementation of Overlap Save Method based 26 | P a g e

Fading Channel Emulator

Chapter 3

Methodology

Hardware Implementation of Overlap Save Method based 27 | P a g e

Fading Channel Emulator

CHAPTER 3. METHODOLOGY

Generation of Rayleigh Fading Variates with Doppler effects and along with MIMO path

can be implemented with various techniques. FPGA based implementation requires an in depth

analysis before implementation, as FPGA provides fast processing, but it has limited number of

resources. For this thesis a MIMO 2 2 based channel emulator was targeted. In each of the

antenna’s path nine different paths were considered. So for this system 36 modules are required

which will generate fading variates.

Top level diagram of [8] is illustrated in Figure 3.1.

Figure 3.1: Original OLS method based Interpolator’s Top Diagram

OLS-based generator and interpolator proposed in [8] are illustrated in Figure 3.2 and 3.3.

Figure 3.2: Original OLS-based Generator

Hardware Implementation of Overlap Save Method based 28 | P a g e

Fading Channel Emulator

Figure 3.3: Original OLS-based Interpolator

The original OLS-based scheme proposed in [8] was efficient, however implementing it directly

on FPGAs for MIMO based system requires too many resources. Also the frequency domain

interpolation is efficient if upsampling rate is low, however it requires an additional FFT/IFFT

module, complex multipliers and additional memory for storage of results. The time domain

interpolation can act as a better solution where upsampling rates are high; also it does not require

additional memories and FFT/IFFT modules. With slight modification to the technique of [27],

an efficient time domain interpolator can be implemented. Only non-zero multiplication is

required, and for high upsampling rate, there exists a lot of zeros multiplication, which can be

neglected.

Proposed architecture for OLS-based Generator in this thesis is some modification to the original

one proposed in [8]. So for a single module, following sub modules are required:

 Gaussian noise generation

 FFT/IFFT module

Hardware Implementation of Overlap Save Method based 29 | P a g e

Fading Channel Emulator

 Complex Multiplier

 Block Memories

3.1. Sub-Modules

3.1.1. Gaussian Noise Generation

One method in Gaussian noise generation is too study different methods in generating it,

and implementing it from scratch in FPGA. However there exist some open source IP

(Intellectual Property) cores which can be used in this thesis for efficient Gaussian Noise

Generation. One of the open source cores for Gaussian noise generation is Gaussian Noise

Generator Core (GNG) [28]. GNG core is efficient in resource consumption, has long period

2
176

, provides high throughput. Also in [28] it is specified that GNG core can be used in accurate

emulation of an Additive White Gaussian Noise (AWGN) channel. Output of GNG core is in Q

(5, 11) format, in which 5 bits are of integer and 11 bits for fraction. GNG core’s required

resources on Virtex-7 FPGA is illustrated in Table 1.

Table 1: Implementation Results of GNG

Number of Utilized Slices 363

Number of RAM36E1 1

Number of DSP48E1 2

Maximum Frequency 361 MHz

Two instances of a single GNG core are required for emulation, one indicating real part and

second one indicating imaginary part. The schematic module for the core is shown in Figure 3.4.

Hardware Implementation of Overlap Save Method based 30 | P a g e

Fading Channel Emulator

Figure 3.4: GNG Schematic

Init_Z1-3 are initial seeds, ‘ce’ is clock enable, which is kept high while generating new

Gaussian variates. ‘Valid_out’ signal is tied high when GNG core is ready to output data. There

is 11 cycle latency between ‘ce’ and ‘valid_out’ signal. Figure 3.5 displays the timing diagram of

GNG core.

Figure 3.5: GNG Timing Diagram

Hardware Implementation of Overlap Save Method based 31 | P a g e

Fading Channel Emulator

3.1.2. FFT/IFFT Module

Like GNG core is available for Gaussian noise, Xilinx LogiCORE
TM

IP Fast Fourier

Transform v8.0 is available for FFT/IFFT operation [29]. AXI4-Stream is the communication

protocol used by the core. FFT core can take FFT of sizes from 2
3

to 2
16

. Input data can range

from 8 bits to 34 bits. Maximum operable frequency for this core is 550 MHz, and it can be used

with floating or fixed point (full-precision or scaled). FFT size and FFT/IFFT mode can also be

configured on run-time. Among four architectures, anyone can be selected based upon

requirement. Four architectures provided by FFT core are:

 Pipelined Streaming I/O: useful for high throughput and continuous data streaming.

Most resource consuming architecture, but best for high throughput sensitive applications

such as the one in thesis.

 Radix-4 Burst I/O: less resource consuming but throughput is very low as compared to

Pipelined Streaming I/O architecture. Loads and process data separately.

 Radix-2 Burst I/O: Same as Radix-4 architecture, but smaller butterfly size. It is slower

than Radix-4 architecture, but consumes less resource.

 Radix-2 Lite Burst I/O: Longer transform time, but uses least resources.

There is a trade off between transform time and resource consumption. Large transform times

requires lesser resources and vice versa. Figure 3.6 displays the throughput vs. resources [29].

Figure 3.6: Resources vs. Throughput in FFT Core

Hardware Implementation of Overlap Save Method based 32 | P a g e

Fading Channel Emulator

Required throughput can only be achieved by first two architectures. With Pipelined Streaming

I/O, a single FFT core can be used for two modules instead of two FFT cores due to its faster

transform timings. FFT/IFFT size of 8192 has been selected in the thesis and after interpolation

4096 samples are generated in each process (see Appendix-A). Pipelined Streaming I/O

architecture is shown in Figure 3.7.

Figure 3.7: Pipelined Streaming I/O Architecture

On Xilinx ISE software or Vivado Design Suite software, different options are given to

configure FFT core before generating it into project (ISE or Vivado Design Suite). These options

include static or dynamic FFT sizes, selection of architecture, natural or bit-reverse output, and

many more. Also latency and resources’ consumption is also displayed. For an FFT size of 8192,

with input as 16 bits (from GNG core), architecture as Pipelined Streaming I/O with full-

Hardware Implementation of Overlap Save Method based 33 | P a g e

Fading Channel Emulator

precision fixed point and output as natural order, resources consumption by FFT core is

illustrated in Table 2.

Table 2: FFT Core’s Resource Utilization

Operable Frequency (Maximum) 550 MHz

Block Rams 52

DSP48E1 25

Before discussing the schematic diagram of FFT core, first AXI4-Stream protocol needs to be

discussed. There exist ‘TVALID’ and ‘TREADY’ signals on FFT core. Loading data into FFT

Core is controlled by ‘s_axis’ signals and output data is controlled by ‘m_axis’ signals. Figure

3.8 describes the AXI4-Stream protocol.

Figure 3.8: AXI Protocol

Points A, B and C are where no transfer of data takes place, A and B are master’s wait state and

C is slave’s wait state. Master asserts signal ‘TVALID’ and Slave asserts ‘TREADY’, whenever

both are high data transfer takes place. When loading a frame signal ‘s_axis_data_tvalid’ is

Hardware Implementation of Overlap Save Method based 34 | P a g e

Fading Channel Emulator

asserted, and kept high until no more data has to be sent. Same is the case when FFT core

unloads data; it asserts ‘m_axis_data_tready’ and keep it high until all data is unloaded.

Schematic Symbol of FFT Core is shown in Figure 3.9. ‘Config_tdata’ signal’s LSB indicates

whether an FFT or an IFFT has to be taken, ‘s_axis_data_tlast’ can be asserted to indicate last

sample of transform. FFT output signals are defined by ‘m_axis’, ‘m_axis_data_tlast’ is asserted

to indicate last output of frame. Various event signals from FFT core indicate different things,

such as start of the FFT process. Event signal indicating start of FFT process is important, as if

new configuration has to be applied; it is applied after this signal is asserted.

Figure 3.9: FFT Core Schematic

Hardware Implementation of Overlap Save Method based 35 | P a g e

Fading Channel Emulator

In Pipelined Streaming I/O architecture, latency is approximately 3N cycles with natural output,

if data is continuously loaded into FFT core, after initial latency, each frame is output after N

cycles. If a wait state is inserted in between each frame, this wait state is also seen in between

output frames, for example if ‘K’ number of cycles are consumed by wait state in between

loading two frames, this ‘K’ wait state cycles will also occur in between output of these two

frames. Figure 3.10 shows timing diagram of Pipelined Streaming I/O [29].

Figure 3.10: Frame by Frame Processing and Timings in Pipelined Streaming I/O Architecture

Hardware Implementation of Overlap Save Method based 36 | P a g e

Fading Channel Emulator

3.1.3. Complex Multiplier

For complex multiplication there is also an IP core available [30], however with the usage of

DSP slices [31] it is simple to implement a complex multiplier using four DSP48E1s/multipliers.

Also inside DSP slice, pipeline registers can be added which increases throughput to a greater

number. Figure 3.11 shows a complex multiplier with pipeline registers added in each stage.

Pipeline registers reduces the critical path, which in turn increases the maximum operable

frequency of whole system. Multipliers in Figure 3.11 is made up of DSP slices, a single DSP

slice can multiply two real numbers of size 25 and 18 bits (maximum size). Equation for Figure

3.11 is:

Figure 3.11: Complex Multiplier

Hardware Implementation of Overlap Save Method based 37 | P a g e

Fading Channel Emulator

Output of FFT core when full-precision is selected is equal to input size + log2 (N) + 1. With 16

bits as input output is in 30 bits (8192 FFT length). For utilizing a single multiplier for this

purpose needs truncation of data. Last 5 bits from LSB are chopped and results are stored in 25

bits (real and imaginary part separately). This core output is multiplied with Doppler Filter

Sequence in Frequency Domain, Doppler Filter Sequence are stored as Q (1, 15) format in a

memory. Hence a single DSP48E1/multiplier can be used.

3.1.4. Block Memories

Block Memory Generator [32] is a GUI based memory constructor, available in Vivado

Design Suite and Xilinx ISE. ROMs, RAMs and Block RAMs can be constructed (single, dual or

triple port) with it. In this thesis various block RAMs are required. One block RAM is required

to store Doppler Filter Sequence (Frequency Domain). As already mentioned 32 bits are required

(real and imaginary 16 bits each) for Doppler Filter Sequence, a total of 8192x32 spaced memory

is required. Also this memory needs to be single port as filter sequence is written one time only

and a simple counter for address can control it.

Second required memory is for Interpolator’s coefficients. As 4096 outputs are generated (see

Appendix-A) in each process, 4096 real coefficients are required to be stored in advance.

Analysis shown (see Appendix-B) Q (1, 24) is enough for storing time domain filter coefficients,

so a memory of 4096x25 is required (single port interface). If a frequency domain interpolation

filter sequence needs to be stored, it will require 8192x50 memory locations, as both real and

imaginary part needs to be stored. So in terms of Block RAMs, time domain interpolation also

has an edge over frequency domain interpolation.

Third memory required is for GNG core’s outputs, output of GNG core is stored in a dual port

BRAM. Dual port BRAM is required because OLS method requires some old values and new

values, as FFT core is accessing data from a single memory at a time, it is required that new

values are also written in it. Depending upon the value of ‘L’ in OLS method, new variates are

generated. A dual port memory of 8192x32 is enough for GNG core as FFT size is 8192. After

8192 variates are loaded into FFT core, an offset is added to address register of memory, which

skips first ‘L’ variates, meanwhile process for ‘L’ new variate generation is started and new

Hardware Implementation of Overlap Save Method based 38 | P a g e

Fading Channel Emulator

variates are written at start of memory. So a counter executes 8192 times, however an offset of

‘L’ is always added in address register. With this scheme there is no requirement of shifting

memory after loading one frame.

Fourth memory required is for storing outputs of OLS-generator, a memory of 64x32 (see

Appendix-A) is required for it, as for the system’s requirement maximum value of ‘L’ in OLS-

method is ‘64’. Also if a frequency domain interpolation is intended, memory requirements

increase drastically. Zeros are needed to be inserted between non-zero Rayleigh fading variates.

A total of 8192x32 is the minimum requirement; also more DSP slices will be needed for

complex multiplication (25x30 bit multiplication needed). So it is convenient to use a time

domain solution, where upsampling rates are high. Also a 64x60 bits memory is required in each

OLS-based generator for synchronizing all interpolators.

3.2. Timing Requirements

For achieving required throughput, a single process needs to be executed multiple times, with

that information total number of cycles can be calculated and a frequency can be targeted. If

maximum frequency (critical path’s inverse) of FPGA based design is greater than required

frequency, timing requirements are achieved.

In this thesis a target throughput of 34 Mega Symbols per Second was intended. This rate is

chosen by keeping in view maximum sampling frequency in LTE is 30.72MHz for a 20 MHz

configuration [33]. At least 30.72 Mega Symbols per Second is needed, but in this thesis 34

MSPS was adjusted, as in this case system scalability can also be judged (for higher throughputs

how this system can work).

Each time the process is executed, ‘L’ Rayleigh fading variates are generated and interpolator

produces 4096 outputs (see Appendix-A). For 34 MSPS, a total of 8301 times the process needs

to be executed in one second. So a single process which generates 4096 outputs cannot exceed

120 micro seconds time.

Hardware Implementation of Overlap Save Method based 39 | P a g e

Fading Channel Emulator

Initially 8192 cycles are required to first time fill up the memory for Gaussian variates, which is

needed for FFT core; however this initialization can be done in a state of a Finite State Machine

(FSM). FFT core for 8192 size, working with Pipelined Streaming architecture requires 24716

cycles. Figure 3.12 displays the FFT Core generation screen.

Figure 3.12: FFT Core Generation in Xilinx ISE Design Suite 14.7

There can be various schemes for achieving targeted system throughput some of them are:

3.2.1. Scheme 1: Separate FFT/IFFT Module and Interpolator

If an IFFT module is separately instantiated, Interpolator utilizes equal or lesser cycles

than the latency, and simultaneously after one frame’s complete output second frame is loaded,

 cycles are needed. This system can work on 205.16MHz. Timing

diagram of this system is displayed in Figure 3.13 (pipeline registers and DSP slices’ initial

delays are neglected).

Hardware Implementation of Overlap Save Method based 40 | P a g e

Fading Channel Emulator

Figure 3.13: Scheme 1 Timing Requirements (without Pipelining)

This scheme can provide required results, however this system is poorly pipelined and better

pipelining can be achieved if frames are continuously loaded and unloaded. This will generate

output after every 8192 cycles, which mean cycles are required, this

system can operate on 68 MHz, and such a low frequency indicate that it is very easy to

implement. Figure 3.14 displays timing requirement of this scheme.

Hardware Implementation of Overlap Save Method based 41 | P a g e

Fading Channel Emulator

Figure 3.14: Scheme 1 Timing Requirements (with Pipelining)

Scheme of using two instances of FFT core (one as FFT other as IFFT) is a simple technique,

and it provides very high throughputs. Flaw of this method lies in its large resource consumption.

Each instance of FFT core consumes a lot of resources and interpolator module has just 8192

cycles in which it has to generate outputs, with fast processing a large amount of complexity

comes. For this system, time domain interpolator requires ‘L’ complex multiplications, in which

Rayleigh fading variate (complex) is multiplied with real interpolation filter coefficients.

Complexity increases along with size of ‘L’. Even with 64 as maximum size of ‘L’, MIMO based

solution cannot be implemented on targeted FPGA device. Only way to efficiently use this

method is to utilize frames of different types (different GNG memories) by a single module and

incorporate block memories at the output of interpolator. Also this method can be efficient where

single antenna systems needs to be analyzed.

Hardware Implementation of Overlap Save Method based 42 | P a g e

Fading Channel Emulator

3.2.2. Scheme 2: Single FFT/IFFT Module and Interpolator

With a single FFT/IFFT module, a control mechanism is always needed, as a same

module is being used in FFT and IFFT modes. There can be two methods in using single

FFT/IFFT module, both of these methods require equal number of interpolators; however

FFT/IFFT module instances can be reduced.

First method is to use a single FFT instance, load two frames in it, and stop the FFT core for

further inputs. When the output is ready and being sent out, feed it back to the same core after

multiplication with Doppler filter sequence. Now this first method of this scheme requires more

cycles and more complex control mechanism as a single core is doing both tasks. When FFT

core starts outputting IFFT output, again process is restarted and again two frames are loaded.

‘L’ number of useful IFFT outputs of two frames is sent to interpolator, and now interpolator

module has enough time to do its task with reduced number of resources. As already mentioned,

latency of a core is 24716 clock cycles, when output of FFT core is started, new data can be

loaded in it (due to Pipelined Streaming architecture). So after 16524
th

 clock cycle, output data

from FFT core can be multiplied with Doppler filter sequence and can be feedback to FFT core

for IFFT operation. Figure 3.15 illustrates the concept, along with information of consumed

clock cycles. Halt indicates where FFT core doesn’t take input.

Initially some cycles are required, before pipeline is established, initially 49441 clock cycles are

consumed by FFT and IFFT process, however at 33058
th

 cycle frame number 3 is loaded into

FFT, with this in between outputs, 32918 clock cycles are required. Hence the process requires

32918 clock cycles.

With this scheme two frames are loaded at a time which means this process needs to be executed

half times in a second. 4151 times this process needs to be executed in a second, so with this

scheme clock cycles are required. This system can

work on 136.7 MHz, and is efficient in terms of resource utilization.

Drawback of this method lies in the structure of interpolator. Interpolator has 16k cycles for each

frame (total 32k). With 4096 cycles requiring maximum complex multipliers, 16k cycles will

reduce multipliers to four times; however this architecture requires replication of a single module

Hardware Implementation of Overlap Save Method based 43 | P a g e

Fading Channel Emulator

36 times. This will significantly increase the resource consumption, and scalability of such a

system is difficult, however this scheme is scalable and efficient if targeted throughput is

increased.

Figure 3.15: Scheme 2 Timing Requirement (1st Method)

It can be seen that first method’s critical path is average, if half of critical path can be achieved;

two paths can be simultaneously emulated with a single FFT core. This second method involves

loading frames of two different paths into FFT core, and finally two interpolators are instantiated

Hardware Implementation of Overlap Save Method based 44 | P a g e

Fading Channel Emulator

for each path. This method now requires half number of FFT/IFFT instances and memory

requirements can also be reduces as all modules can be driven by single instances of memories.

Figure 3.16 shows the timing diagram. Note that now

clock cycles are required. System can work on 273.28 MHz, achieving such frequency is

difficult, but incorporating pipelining can make it possible. This system is scalable and efficient

if more antennas are incorporated (MIMO system with more antennas needs to be emulated).

Figure 3.16: Scheme 2 Timing Requirement (2nd Method)

Hardware Implementation of Overlap Save Method based 45 | P a g e

Fading Channel Emulator

Due to the scalability in MIMO system, method two of scheme two was chosen as the main

architecture for implementation.

3.3. System Architecture

Top level architecture of a single module is displayed in Figure 3.17. Each module

incorporates two paths.

Figure 3.17: Top Level Architecture (Single Module)

For each antenna there are nine paths, this is modelled as Tapped Delay Line Channel Model, for

a single antenna system following diagram illustrates concept.

Figure 3.18: Tapped Delay Line Channel Model

Hardware Implementation of Overlap Save Method based 46 | P a g e

Fading Channel Emulator

For 36 paths, eighteen instances of the above module are required. Overall top level module is

shown in Figure 3.19.

Figure 3.19: Top Level (MIMO System)

Implementing Tapped Delay Line Channel Model is simple, and simply placing registers at the

output can implement delay while relative power can be implemented with simple multiplication.

Difficult parts of architecture are OLS- based generator module and Interpolator. OLS-based

generator is similar to that of proposed in [8]. However there are some modifications and

architecture is illustrated in Figure 3.20. Internal system of control circuits for new Gaussian

variates, input selection of FFT/IFFT etc. are not displayed as they’re simple Multiplexers

depending upon various counters.

Hardware Implementation of Overlap Save Method based 47 | P a g e

Fading Channel Emulator

Figure 3.20: Proposed OLS-based Generator Architecture

Hardware Implementation of Overlap Save Method based 48 | P a g e

Fading Channel Emulator

FSM for OLS-generator is displayed in Figure 3.21; main state is further elaborated in it.

Figure 3.21: FSM of OLS-based Generator

After Rayleigh fading variates are generated, Interpolation is necessary. Architecture of

interpolator was finalized by keeping in view total number of necessary multiplications and

available clock cycles. With above mentioned system architecture for OLS-based generator,

approximately 33000 cycles are available. Maximum multiplications possible in system are 128

(64 ‘L’ value meaning 64 non-zero complex multiplications). So if all 128 multipliers are

utilized, 4096 coefficients give output in 4096 cycles. With 32k cycles available, comparison is

shown in the following table:

Hardware Implementation of Overlap Save Method based 49 | P a g e

Fading Channel Emulator

Table 3: Available Clock Cycles vs. Required Multipliers

Available Clock Cycles Multipliers

4096 128

8192 64

16384 32

32768 16

With maximum 64 non-zero complex multiplications, there is also a need for specialized

hardware for this purpose, and filter coefficients are needed to be stored in a special way. For the

minimum available clock cycles condition, there are 64 taps after which a complex multiplier

(two real multipliers are present). Now in theory for 4096 coefficients, there is a need of 4096

taps; however 64 are the only non-zero multiplications. Instead of storing 4096 coefficients in a

single memory, sixty four memories of 64 memory locations can be used. With each tap

multiplication is performed between relevant coefficient and Rayleigh fading variate, hence

requirement of 4096 memories and multipliers are not needed. Multiplexer can also be used

instead of memories, however for reconfiguration that strategy is not feasible. Also 36

interpolator instances was needed, multiplexers are made up of FPGA internal logic, so it is

better to use memories. Pipeline stages are also added to even further reduce critical path, also

with this scheme some of pipeline registers can be skipped as this system already provides

efficient throughput and lesser clock cycles. 64 complex multiplier based solution is useful with

single antenna systems, however for a MIMO based system where a lot of interpolators are

needed to emulate all paths, this solution cannot fit in the target FPGA device. So there is a need

for a solution with less number of multipliers. Figure 3.22 illustrates the concept of using 64

memories and multipliers.

Hardware Implementation of Overlap Save Method based 50 | P a g e

Fading Channel Emulator

Figure 3.22: Fast Interpolator Architecture having Maximum Resource Consumption

Aforementioned, interpolator has approximately 33k cycles, so a lesser number of multipliers

can be used (Table 3). Such implementation is scalable and will consume lesser resources than

the targeted board. Now in such a case eight taps has one complex multiplier, now eight

memories are required having 512 coefficients. Coefficients are stored in such a way that only

relevant coefficient is multiplied with relevant tap. Coefficients are stored in the following way:

Table 4: Interpolator Coefficients Storage Method in Various Memories

Memory Coefficients

0 0,64,128,192,256,320,384,448,1,65,...,511

1 512,576,640,704,768,832,896,960,512,577,...,1023

2 1024,1088,1152,1216,1280,1344,1408,1472,1025,1089,...,1535

3 1536,1600,1664,1728,1792,1856,1920,1984,1537,1601,...,2047

4 2048,2112,2176,2240,2304,2368,2432,2496,2049,2113,..., 2559

5 2560,2624,2688,2752,2816,2880,2944,3008,3072,2561,2625,...,3071

Hardware Implementation of Overlap Save Method based 51 | P a g e

Fading Channel Emulator

6 3072,3136,3200,3264,3328,3392,3456,3520,3073,3137,...,3583

7 3584,3648,3712,3776,3840,3904,3968,4032,3585,3649,...,4095

Figure 3.23 displays the concept. Memories are instantiated in OLS-based generator module, so

that two interpolators use a single memory.

Figure 3.23: Proposed OLS-based Interpolator (Resource Efficient)

Architecture can further be improved by instantiating interpolator coefficients in top module,

however critical path is increased and timing requirements are not met due to it. Controlled Input

Hardware Implementation of Overlap Save Method based 52 | P a g e

Fading Channel Emulator

from memory is from a block ram inside interpolator which is 64x32 in size. Simple binary

counter selects the multiplier input from taps, and a simple binary counter controls the address of

interpolator coefficient memories. Figure 3.24 displays the FSM for interpolator.

Figure 3.24: FSM of OLS-based Interpolator

Hardware Implementation of Overlap Save Method based 53 | P a g e

Fading Channel Emulator

Emphasis in this thesis was given on improving single module (OLS-based Generator and OLS-

based Interpolator) as MIMO system can be simply made by instantiation. Improvement was

made by considering three factors:

 Timing Requirement

 Resource Utilization in a single module

 Resource Utilization for 36 modules (MIMO)

Further Tap delay channel model is simple as various delays are needed to be incorporated and

fixed numbers are multiplied with outputs.

In next section i.e. Evaluation, various results are shown, and each module’s resource utilization

is tabulated.

Hardware Implementation of Overlap Save Method based 54 | P a g e

Fading Channel Emulator

Chapter 4

Evaluation

Hardware Implementation of Overlap Save Method based 55 | P a g e

Fading Channel Emulator

CHAPTER 4. EVALUATION

Different FPGA devices offer different resources, for simple designs Spartan-3 series FPGAs

can be used. Different family offers different resources, however an FPGA with minimal

resources and cost is generally preferred. Also an FPGA evaluation kit is preferred as it is simple

to implement it directly on hardware. This thesis requires a device which can accommodate

MIMO based system and can provide very high throughputs. For a single antenna system it is

very simple to implement it on any FPGA, however for MIMO based systems several

considerations are to be sought.

While deciding an FPGA device for the implementation, maximum available Block Memory,

DSP slices, Slice LUTs (Look up tables) and flip flops are to be considered. For this thesis

Virtex-7 device XC7VX550T was targeted. Some Resources of XC7VX550T are illustrated in

Table 5 [34].

Table 5: Some Resources of XC7VX550T

Slices Block Ram (18K) Block Ram (36K) DSP Slices

86600 2360 1180 2880

4.1. System Constraints

34 MSPS throughput was targeted, carrier frequency was set as fcarrier=600 MHz, moreover

available C program of methodology in [8] was used to calculate the Doppler frequencies, and

number of new variates per execution is found also by it (value of ‘L’). System can support

Doppler frequencies from fd=11.1 Hz to fd=350.56 Hz. These Doppler frequencies are of speeds

from 20 km/h to 631 km/h. Number of new variates per OLS-based Generator’s execution range

from L= 2
2

to 2
6
. Outputs of interpolator was set as 4096, interpolation of ‘L’ outputs are used to

Hardware Implementation of Overlap Save Method based 56 | P a g e

Fading Channel Emulator

generate 4096 interpolated outputs. For the simulation purposes, Doppler frequency was set as

16.67 Hz which corresponds to ‘L’ = 4.

4.2. System Verification

 System verification is very necessary, as hardware optimizations come after it. A C model of

[8] was available so a ‘GNG core’ output based Matlab implementation was done. Firstly the

outputs of GNG core and filter coefficients in floating points were stored in a text file (using test

bench of GNG core and available C model). Gaussian variates and filter coefficients are then

stored in a matrix to be easily accessed by Matlab script. After loading inputs a function which

converts floating point into fixed point format (Q (m, n) format) helps to perform fixed point

calculations in parallel. Matlab also helped in verifying Time domain solution vs. Frequency

domain solution’s result comparison (see Appendix B). Figure 4.1 displays the final normalized

outputs (floating point, Matlab based Fixed point and FPGA output).

Figure 4.1: Output Comparisons (Matlab Output vs. FPGA)

Hardware Implementation of Overlap Save Method based 57 | P a g e

Fading Channel Emulator

Difference can be seen in the Matlab based full precision (fixed point) implementation and

floating point, however an offset exists between each implementation. In FPGA based

implementation after multiplication with filter, result is chopped down into 16 bits, due to which

here an offset is visible in the graph, but the output waveform is same.

4.3. System’s Simulation Waveform

Second method of scheme 2 discussed in Chapter 3 is simulated first on Xilinx ISE Design

Suite 14.7. First time enable signal for interpolator comes after 57645 clock cycles. The signal

‘en’ when asserted for ‘L’ number of cycles initiates interpolation. This is displayed in Figure

4.2. Num_Cycles count the number of cycles.

Figure 4.2: Interpolator Initiation Signal

Note that as per simulation parameters ‘L’ was set as 4, so for four cycles ‘en’ signal was high.

Second time ‘en’ becomes high when clock cycles count to 90704. This is displayed in Figure

4.3 and Figure 4.4.

Hardware Implementation of Overlap Save Method based 58 | P a g e

Fading Channel Emulator

Figure 4.3: Output for ‘L’ Number of Cycles

Figure 4.4: Second Time Interpolator Initiation

There are 33059 cycles between outputs, so for 34 MSPS, there is a need of 274422759 cycles,

or a frequency of approximately 274 MHz (3.64ns critical path), as already mentioned in System

Hardware Implementation of Overlap Save Method based 59 | P a g e

Fading Channel Emulator

Performance, both interpolator and OLS-based generator has a critical path less than required

(can work on larger frequency), so timing requirements are met in it.

For the outputs there are three signals, two containing data and one showing output data is valid.

After initiating the interpolation few cycles are consumed inside the interpolator to store the

input data in memory. Signal ‘op_en’ is asserted when output data is mature, and is raised after

every 7 cycles. Figure 4.5 shows the situation in which two samples are output.

Figure 4.5: Output Samples

Targeted throughput of 34 MSPS is achieved on the targeted device for MIMO system. A single

path was also tested using Zynq ZC-702, and results were compared with simulation results.

4.4. System Performance

Emphasis was given on creating a single module, as other modules are instantiated from it.

Before estimation of actual resources, following Table 6 show the resource used by some

common sub-modules.

Hardware Implementation of Overlap Save Method based 60 | P a g e

Fading Channel Emulator

Table 6: Resources Used by Common Sub-modules

Sub-Module Resources

FFT 52 Block RAMs

(Mostly 18k)

25 DSP Slices

GNG Core 1 Block RAM (36k) 2 DSP Slices

Memory for Storing GNG Outputs 8 Block RAMs (1x18k & 7x36k)

Complex Multiplier 4 DSP Slices

Doppler Filter Coefficients Memory 8 Block RAMs (36k)

Interpolator Coefficients Memory 8 Block RAMs (8x18k)

For the schemes discussed in chapter 3 for various timing requirements, scheme 1 having

separate FFT/IFFT, estimated required resources for a single module are shown in Table 7.

Table 7: Estimated Resources for Scheme 1

Module Resource Type Expected Utilization

Interpolator Block RAMs 64

Multipliers 128

OLS-based Generator Block RAMs 118

Multipliers 62

Hardware Implementation of Overlap Save Method based 61 | P a g e

Fading Channel Emulator

Among 112 Block RAMs, 104 are of FFT module (52 each), 50 multipliers are used also by it

(25 each). 64 Block RAMs inside Interpolator holds coefficients data. 64 taps are used so 128

multipliers are needed.

For this scheme 36 modules need to be instantiated. This exceeds the available resources in

targeted device, also in the Virtex-7 FPGA’s largest device i.e. XC7VX980T, this scheme cannot

be implemented. This scheme can work on a system having critical path of 14.7ns (68 MHz).

In the first method of scheme two, in which a single FFT/IFFT module is used. Table 8 show the

estimated required resources of this scheme.

Table 8: Estimated Resources for first method in Scheme 2

Module Resource Type Expected Utilization

Interpolator Block RAMs 16

Multipliers 32

OLS-based Generator Block RAMs 118

Multipliers 37

This design can fit in targeted device; however slice LUTs can increase as 36 modules need to be

instantiated. This scheme can work on a system having critical path of 7.31ns (136.7 MHz).

Second method in scheme two is feasible, as OLS-based generator can compensate two paths. A

very low critical path is required (3.64ns, approximately 274 MHz frequency). This critical path

is difficult to achieve however incorporating pipeling between each process and before and after

each operation can achieve such a low critical path.

For targeted system 18 OLS-based generators and 36 interpolators were required to be

instantiated. One OLS-based generator connects with two interpolators. Resource utilization and

operational frequency for a single interpolator are indicated in Table 9.

Hardware Implementation of Overlap Save Method based 62 | P a g e

Fading Channel Emulator

Table 9: Interpolator Resources

Synthesis Results Place and Route Results

Occupied

Slices

Count

Block

RAM

(18K)

Block

RAM

(36K)

DSP

Slices

Max

Operational

Frequency

Occupied

Slices

Count

Block

RAM

(18K)

Block

RAM

(36K)

DSP

Slices

Max

Operational

Frequency

-

1

0

16

400.986

MHz

(2.494 ns)

1,351

1

 0

16

343.406

MHz

(2.912 ns)

These results are for a single module, however for a 2 2 MIMO system, Table 10 show the

required resources:

Table 10: Interpolator for MIMO System

Resource Type Total 1 Module 36 Modules

Slices 86600 1,351 48636

Block RAM (18 K) 2,360 1 36

Block RAM (36 K) 1180 0 0

DSP Slices 2880 16 576

Now for OLS-based generator, 18 modules need to be instantiated. Resource utilization and

operational frequency for a single OLS-based Generator are indicated in Table 11.

Hardware Implementation of Overlap Save Method based 63 | P a g e

Fading Channel Emulator

Table 11: OLS-based Generator Resources

Synthesis Results Place and Route Results

Occupied

Slices

Count

Block

RAM

(18K)

Block

RAM

(36K)

DSP

Slices

Max

Operational

Frequency

Occupied

Slices

Count

Block

RAM

(18K)

Block

RAM

(36K)

DSP

Slices

Max

Operational

Frequency

-

62

28

69

388.086

MHz

(2.577 ns)

4457

62

28

69

275.41

MHz

(3.631 ns)

These results are for a single module, which incorporates two paths, Table 12 show the required

resources for a 2 2 MIMO based system:

Table 12: OLS-based Generator Resources for MIMO system

Resource Type

Total

Resources

1 Module

18 Modules

(36 Paths)

Slices 86600 4457 80226

Block RAM (18 K) 2,360 62 1116

Block RAM (36 K) 1180 28 504

DSP Slices 2880 69 1242

From the results in above table, it can be seen that thirty six modules can be instantiated on the

targeted device. Hence the required task is achieved on a single device. Now for the path delays

Hardware Implementation of Overlap Save Method based 64 | P a g e

Fading Channel Emulator

and power multiplication, few registers and multipliers are needed, which can be simply added

inside the device, or another device can be connected with it (having fewer resources).

Hardware Implementation of Overlap Save Method based 65 | P a g e

Fading Channel Emulator

Chapter 5

Conclusions and

Future Work

Hardware Implementation of Overlap Save Method based 66 | P a g e

Fading Channel Emulator

CHAPTER 5. CONCLUSIONS AND FUTURE

WORK

Over-the-air (OTA) field trials are difficult, require expensive equipment and are tedious.

OTA should be used only where it is the only option left, as already available channel models

can simplify the task and are very efficient in channel emulation.

In this thesis, a high throughput based channel emulator has been implemented on FPGA, which

emulates a Rayleigh Fading Channel with Doppler effects. The objective of the thesis was to

implement an IP implementing OLS method providing a throughput of 34 MSPS while utilizing

minimum hardware. In order to reduce the hardware used, at first FFT/IFFT core is utilized

maximally in variates generator block and secondly in place of interpolation in frequency

domain (as proposed in [8]), time domain based interpolator incorporating time domain

convolution is proposed to exploit the presence of zero padding at the input of interpolator which

enabled to reduce the hardware cost of interpolator.

For a 2 2 MIMO system with multi path effects (nine taps/paths), 36 instances of a SISO system

without multipath are required, channel emulator was implemented keeping in view this

requirement. Main focus was set to achieve timing requirement with least resources. Timing

requirement was set as 34 MSPS, which was successfully achieved.

Before implementation of system on FPGA, thorough study was done on different methods in

channel emulation, different FFT computation methods, fixed vs. floating point implementation,

and also on available resources. After it various implementations were done in order to achieve

the best design. Actual results from FPGA were stored and compared with Matlab results

(floating and fixed point) for on chip validation.

The work under the scope of this thesis motivates author to further pursue the work in future and

select a different technique in channel emulation. For higher Doppler frequencies than the

Hardware Implementation of Overlap Save Method based 67 | P a g e

Fading Channel Emulator

targeted ones, implemented OLS-based generator can be used for implementation and time

domain interpolator is scalable as well. Frequency domain interpolation can also be studied and

implemented in future to even make system more scalable; however higher consumption of

resources in this technique requires a thorough study first to reduce complexity. Single FFT core

based system (with same FFT core for interpolation) can be realized, however achieving targeted

throughput is a long challenging task. Further, MIMO systems greater than 2 2 can also be

targeted, which is also a challenging task. Massive MIMO concept in 5G technology also

requires channel emulation and new techniques and methods can be studied for such

implementation.

Hardware Implementation of Overlap Save Method based 68 | P a g e

Fading Channel Emulator

REFERENCES

[1] H. Tullberg, H. Droste, M. Fallgren, P. Fertl, D. Gozalvez-Serrano, E. Mohyeldin, O.

Queseth and Y. Selén, "METIS research and standardization: A path towards a 5G system,"

in 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX, 2014.

[2] T. M. Fernández-Caramés, M. González-López and L. Castedo, "FPGA-based vehicular

channel emulator for evaluation of IEEE 802.11p transceivers," in 2009 9th International

Conference on Intelligent Transport Systems Telecommunications, (ITST), Lille, October

2009.

[3] C. DeMartino, "New Technology Redefines Channel Emulation for 5G Millimeter-Wave

Systems," Microwaves & RF, 20 10 2017. [Online]. Available: https://www.mwrf.com/test-

measurement/new-technology-redefines-channel-emulation-5g-millimeter-wave-systems.

[4] T. Rappaport, Wireless Communications: Principles and Practice, Prentice Hall PTR, 1996.

[5] B. Sklar, Rayleigh fading channels in mobile digital communication systems .I.

Characterization, IEEE, 1997.

[6] A. Goldsmith, WIRELESS COMMUNICATIONS, Cambridge University Press, 2005.

[7] W. C. Jakes, Microwave Mobile Communications, IEEE Press, 1993.

[8] J. Yang, C. A. Nour and C. Langlais, "Correlated Fading Channel Simulator," IEEE

TRANSACTIONS ON WIRELESS COMMUNICATIONS, vol. 12, no. 6, pp. 3060-3071,

2012.

[9] Anritsu, "ACE RNX Channel Emulator," 2019.

[10] Gigacomp, MRC, "Wideband Radio Channel Emulator EB Propsim C2," 2015.

Hardware Implementation of Overlap Save Method based 69 | P a g e

Fading Channel Emulator

[11] Keysight Technologies, "Propsim F8 Channel Emulator," 2016.

[12] Pätzold, Matthias, C.-X. Wang and a. B. O. Hogstand, "Two New Sum-of-Sinusoids-Based

Methods for the Efficient Generation of Multiple Uncorrelated Rayleigh Fading

Waveforms.," IEEE Transactions on Wireless Communications, vol. 8, no. 6, p. 3122–3131,

2009.

[13] C.-D. Iskander, "A MATLAB-based object-oriented approach to multipath fading channel

simulation," Feb.2018. [Online]. Available:

http://www.mathworks.com/matlabcentral/fileexchange/18869-a-matlabbased-

objectoriented-approach-to-multipath-fading-channel-simulation.

[14] C. Komninakis and J. F. Kirshman, "Fast Rayleigh fading simulation with an IIR filter and

polyphase interpolation," RF Design, pp. 24-34, July 2004.

[15] D. Young and N. Beaulieu, "JOHN I. SMITH," IEEE TRANSACTIONS ON VEHICULAR

TECHNOLOGY, vol. 24, no. 3, pp. 39-40, August 1975.

[16] D. Young and N. Beaulieu, "The generation of correlated Rayleigh random variates by

inverse discrete Fourier transform," IEEE Transactions on Communications, vol. 48, no. 7,

pp. 1114-1127, July 2000.

[17] P. Huang, Y. Du and Y. Li, "Stability Analysis and Hardware Resource Optimization in

Channel Emulator Design," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, vol. 63,

no. 7, pp. 1089-1100, July 2016.

[18] S. Fard, A. Alimohammad and B. Cockburn, "Single-field programmable gate array

simulator for geometric multiple-input multiple-output fading channel models," IET

Communications, vol. 5, no. 9, pp. 1246-1254, June 2011.

[19] A. Alimohammad and S. F. Fard, "FPGA Implementation of Isotropic and Nonisotropic,"

IEEE Transactions on Circuits and Systems II, vol. 60, no. 11, pp. 796-800, Nov. 2013.

Hardware Implementation of Overlap Save Method based 70 | P a g e

Fading Channel Emulator

[20] A. Alimohammad, S. F. Fard, B. F. Cockburn and C. Schlegel, "A Compact Single-FPGA

Fading-Channel Simulator," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, vol.

55, no. 1, pp. 84-88, JANUARY 2008.

[21] A. N. S. f. R. C. G. W. C. o. t. I. i. FPGA, "Pengda Huang," IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS—II, vol. 63, no. 2, pp. 216-220, FEBRUARY 2016.

[22] Q. Zhu, H. Li, Y. Fu, C.-X. Wang, Y. Tan, X. Chen and Q. Wu, "A Novel 3D Non-

Stationary Wireless MIMO Channel Simulator and Hardware Emulator," IEEE

TRANSACTIONS ON COMMUNICATIONS, vol. 66, no. 9, pp. 3865-3878, SEPTEMBER

2018.

[23] Z. Sheng-kui, Z. Qiu-ming, D. Xiu-chao, L. Xing-lin and C. Xue-qiang, "A Novel Method

for Generation of Correlated Composite Fading," JOURNAL OF APPLIED SCIENCES—

Electronics and Information Engineering, vol. 33, no. 5, pp. 470-480, September 2015.

[24] A. V. Oppenheim and R. W. Schafer, Discrete-time Signal Processing, Prentice-Hall, 1999.

[25] S. He and M. Torkelson, "A New Approach to Pipeline FFT Processor," in Proceedings of

International Conference on Parallel Processing, Honolulu, HI, USA, 1996.

[26] M. ALI, "PIPELINED FAST FOURIER TRANSFORM PROCESSOR," Tampere, Finland,

January 2017.

[27] A. R. Jafri, J. Majid, M. A. Shami and M. A. Imran, "Hardware Complexity Reduction in

Universal Filtered Multicarrier Transmitter Implementation," IEEE Access, vol. 5, pp.

13401-13408, 2017.

[28] G. Liu, Gaussian Noise Generator Core Specification, OpenCores, Jan. 29, 2015.

[29] Xilinx, LogiCORE IP Fast Fourier Transform v8.0, Xilinx, July 25, 2012.

[30] Xilinx, Complex Multiplier v6.0, Xilinx, November 18, 2015.

Hardware Implementation of Overlap Save Method based 71 | P a g e

Fading Channel Emulator

[31] Xilinx, DSP48 Macro v3.0, Xilinx, November 18, 2015.

[32] Xilinx, Block Memory Generator v8.3, April 5, 2017: Xilinx.

[33] A. d. l. Oliva, J. A. Hernandez, D. Larrabeiti and A. Azcorra, "An overview of the CPRI

specification and its application to C-RAN based LTE scenarios," IEEE Communications

Magazine, vol. 54, no. 2, pp. 152-159, February 2016.

[34] Xilinx, 7 Series FPGAs Data Sheet: Overview, February 27, 2018.

Hardware Implementation of Overlap Save Method based 72 | P a g e

Fading Channel Emulator

APPENDIX A. SELECTION OF VARIOUS PARAMETERS

The maximum sampling frequency in LTE is 30.72 MHz, from which 34 Mega Samples per

Second rate was decided to be achieved. Minimum throughput needs to be 30.72 MSPS, but an

interface might be required between various systems working on different clocks, so the 34

MSPS output rate was selected.

FFT core requires various DSP slices and Block RAMs, system was to be designed keeping in

view that several instances of a single module is required (36). So selection of an FFT size is

important, 8192 size was selected. Also available C model used an interpolator’s output of 4096,

so an FFT size of its double is feasible.

Depending upon the Doppler frequency, C model calculates the number of ‘L’ variates to be

generated. Actually an intermediate sampling frequency is selected which decides how much

upsampling is required. This frequency is selected by keeping the ratio to a value which is

a power of 2. Ratio decides the number of zeros to be inserted between each output samples, as

in original design interpolation was done in frequency domain.

Hardware Implementation of Overlap Save Method based 73 | P a g e

Fading Channel Emulator

APPENDIX B. COMPARISON OF FILTER COEFFICIENTS

For the Doppler Filter coefficients, Q (1, 15) format was used to store them. 16 bits were selected

because FFT output’s 25 bits are used. Maximum inputs to DSP slice can be 25 and 18 bits, so

FFT output was allocated more bits. Mean Square Error (MSE) between fixed and floating point

is in 10
-12

 as most information is stored in fractional part.

For the Interpolator Coefficients, Q (1, 24) format was used to store them. Mean Square Error

(MSE) between fixed and floating point is in 10
-15

. Reducing fractional part reduces the accuracy

to a large extent, as most coefficients are truncated to zero.

