
1 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

Implementation of Aho-Corasick String Matching

Algorithm on FPGA

BY

USAMA BIN ZAHID

01-244181-025

SUPERVISED BY

DR. ATIF RAZA JAFRI

Session-2020

A Report submitted to the Department of Electrical Engineering

Bahria University, Islamabad

In partial fulfilment of the requirement for the degree of MS (EE)

2 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

CERTIFICATE

We accept the work contained in this report as a confirmation to the required standard for the

partial fulfilment of the degree of MS(EE).

__________________ __________________

Head of Department Supervisor

__________________ __________________

Internal Examiner External Examiner

3 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

DEDICATION

This thesis is dedicated to my wonderful parents and family who have been always a great source

of encouragement and support.

4 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

DECLARATION OF AUTHORSHIP

I hereby declare that content of this thesis is my own work and that it is the result of work done

during the period of registration. To the best of my knowledge, it contains no material previously

published or written by another person nor material which to a substantial extent has been accepted

for the award of any other degree or diploma of the university or other institute of higher learning,

except where due acknowledgement has been made in the text.

Parts of this thesis appeared in the following publications, to each of which I have made substantial

contributions:

(Student Signature)

5 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

ACKNOWLEDGEMENTS

First and foremost, I offer the gratitude to Allah Almighty who bestowed me with all the wisdom,

strength and ability to carry out this work. Then I am thankful to my thesis supervisor Dr. Atif

Raza Jafri Dean of the department of Electrical Engineering at Bahria University Islamabad for

all his assistance, guidance and encouragement. Last but not the least I must express my deepest

gratitude goes to my parents and family for their constant and unconditional support and prayers.

6 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

ABSTRACT

A review of the existing pattern matching algorithms shows that the software-based solutions

pertaining to pattern matching do not encounter today’s throughput network systems. Pattern

matching is used to examine Ethernet packet contents against thousands of predefined malicious

or suspicious patterns. To accelerate the throughput of pattern matching architectures, hardware-

based solutions are getting more popularity. In this thesis, pattern matching architecture of open

source network intrusion and preventions system (Snort) is proposed and implementation on

FPGA using Aho-Corasick algorithm. According to Aho-Corasick algorithm, while matching

input string in one pass there are three possible transition states i.e. Goto, Failure and Output. The

Aho–Corasick algorithm used for pattern matching of snort IP, HTTP and TCP packet keywords

considering a standard Ethernet packet size of 1500Bytes. The achieved results are evaluated on

Xilinx (ISE) design suit tool which indicates that throughput and number of rule sets in the

projected mechanism is higher as compared to other approaches. Many previous works have

been proposed in this domain, however, solutions for limited rules have been discussed.

Moreover, rule set level parallelism study while considering trade-off among resource utilization,

operational frequency and resulting throughput has not been discussed. In this thesis we have

presented the results of parallel implementation of a rule sets while dividing rule set into small

sub-sets. A comparison of FPGA resources, operation frequency and throughput is also presented

to evaluate parallelism efficiency of proposed architecture. It has been shown that throughput

increases upto 27% by dividing rulesets into small subsets.

7 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

TABLE OF CONTENTS

Certificate .. 2

Dedication ... 3

Declaration of Authorship... 4

Acknowledgements ... 5

Abstract ... 6

Table of Contents .. 7

List of Figures ... 10

List of Tables .. 11

Abbreviations .. 12

Chapter 1. introduction ... 15

1.1. Types of IDS .. 16

1.1.1. Signature Based IDS ... 16

1.1.2. Anomaly-Based IDS ... 16

1.1.3. Host Based IDS ... 17

1.2. NIDS and its Modules:... 18

1.2.1. Recruitment ... 19

1.2.2. Missing a respectable threat .. 19

1.3. Difference between Firewall and IDS.. 19

8 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

1.4. Motivation .. 20

1.5. Problem Description .. 21

1.6. Thesis Objectives ... 22

1.7. Thesis Organization ... 23

CHAPTER 2. Literature Review .. 26

2.1. Research Method ... 26

2.1.1. Categories Definition .. 26

2.1.2. General Class .. 26

2.1.3. DFA Class ... 27

2.1.4. NFA Class ... 27

2.1.5. Hash Classification ... 28

2.1.6. Tree Classification .. 28

2.2. Overview of pattern matching techniques ... 28

2.2.1. String Based Techniques... 29

2.2.2. Regular Expression Based Techniques ... 30

2.3. Research Standards .. 32

2.3.1. Insertion and avoidance procedures .. 32

2.4. Search Technique ... 33

2.5. Some overview... 36

9 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

CHAPTER 3. Methodology .. 40

3.1. Literature Review Part: .. 40

3.2. Architectural Modelling: .. 41

3.2.1. Aho-Corasick Algorithm: ... 41

3.2.2. Aho-Corasick Algorithm with NFA Approach: ... 41

3.2.3. AC-NFA Approach: .. 44

3.3. Snort Overview: ... 45

3.4. FPGA Prototyping: .. 46

3.4.1. Details ... 47

CHAPTER 4. Evaluation .. 50

4.1. System Setup .. 50

4.2. Performance Metric: .. 50

4.3. Evaluation and Comparison ... 51

4.3.1. Graph of Throughput vs Number of Rule-set: .. 54

4.3.2. Graph of Resources Utilization vs Number of Rule-sets: ... 54

CHAPTER 5. Conclusions and future work ... 56

5.1. Contributions.. 56

5.2. Future Works ... 57

References ... 58

10 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

LIST OF FIGURES

Figure 1.1 Mechanism of Signature-Based IDS...15

Figure 2.1 Search Technique... 35

Figure 3.1 AC-Trie for Keywords {SETID, ODAvM, POST, and dump}.......................................43

Figure 3.2 Matching Process of Aho-Corasick Trie and AC-NFA..44

Figure 3.3 AC-NFA trie and Output selection Multiplexer.. 44

Figure 3.4 Basic Architecture of Snort...46

Figure 3.5 Overview of ZYNQ 7000 (SoC) ..47

Figure 4.1 Graph of Throughput vs Number of Rulesets ... 54

Figure 4.2 Graph of Resources of Utilization vs Number of Rulesets...54

file:///D:/Office%20Data/D%20Drive/FYP%20Data/Study%20Materisl/Thesis/Research/MS%20Research/Thesis%20Report/For%20Turnitin/BUIC/1-2-3.docx%23_Toc32263597

11 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

LIST OF TABLES

Table 1 Research work selection process ... 34

Table 2 Existing Implementations of Aho–Corasick Algorithm on FPGA 37

Table 3 Evaluation with 981 IP Keywords ... 52

Table 4 Evaluation with 6059 HTTP Keywords... 53

Table 5 Evaluation with 75306 TCP Keywords ... 53

12 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

ABBREVIATIONS

IDS Intrusion Detection System

NIDS Network Intrusion Detection System

HIDS Host Intrusion Detection System

GPP General Purpose Processing

ASIC Application Specific Integrated Circuit

FPGA Field Programmable Gate Array

DDOS Distributed Denial of Service

FSM Finite State Machine

NFA Non-Deterministic Automaton

DFA Deterministic Finite Automaton

BSIC Byte Shift invariant Code

LUT Lookup Table

HDL Hardware Descriptive Language

RTL Register Transfer Level

AC Aho-Corasick

IP Internet Protocol

13 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

HTTP Hypertext Transfer Protocol

TCP Transmission Control Protocol

14 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

Chapter 1

Introduction

15 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

CHAPTER 1. INTRODUCTION

The increasing intricacy of network traffic and increasing number of attacks over the internet cause

various security threats. An intrusion detection system (IDS) is one of the choice toward identify

the different security threats [1] . The term intrusion is an unauthorized entry into the internet

network. A software application or any communication device that have capability to monitor

communication devices or incoming networks traffic against the malicious activities, is

commonly known as an intrusion detection system (IDS) [2]. There are commonly two types of

IDS, i.e. Network intrusion detection system (NIDS) and Host intrusion detection system

(HIDS). Out of these two, NIDs monitors the incoming traffic from the internet source while

operating system files are monitored by the HIDs. The focus of this work will be on

implementation of NIDs.

Packet
Captured

Event
Processor

Event
Processor

Signature
Matching

Signature
Matching

Signature
Matching

Figure 1.1 Mechanism of Signature-Based IDS

IDS have been more and more used through communities round the globe to discover and defend

against attacks as they are free of charge and involve an extensive municipal of specialists.

However the multiplied rapidity of communication, the pace at which attacks are performed and

complexity of latest threats make detecting and vindicating them very difficult.

16 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

1.1. Types of IDS

There are three types of IDs are available in literature i.e. signature based, anomaly based and host

based [2]. Signature based IDS refers to the detection of attacks by looking for specific patterns,

anomaly based IDS mention to the monitoring of both network and computer intrusions and

searches for any abnormality occurs in the specific activity, whereas host based IDS refers to the

monitoring of the internals of the computing system.

1.1.1. Signature Based IDS

This IDS possess an attacked description that may be matched to detected attack manifestations.

The question of what data has relevancy to associate IDS depends upon what it’s making an

attempt to observe. E.g. DNS, FTP etc. IDS is configured to infer a definite sequence of packets,

or a definite part of knowledge confined in those packets. For instance, associate IDS that watches

internet servers can be programmed to appear for the string “phf” as an indicator of a CGI program

attack. Most signature analysis systems are primarily based of easy pattern matching algorithms.

In general, the IDS merely appearance for a sub string inside a stream of knowledge carried by

network packets.

1.1.1.1. Drawback of Signature-Based IDS

 They are incompetent to observe innovative threats.

 False alarms are involved.

 Need to reconfigure once more for each new pattern to be detected.

1.1.2. Anomaly-Based IDS

In this type of IDS, everyday utilization of network is monitored. Anything distinct from regularity

is assumed to be an interruption action. E.g. overflowing a host with excessive packet. The

17 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

predominant strength is its capability to identify original attacks. Anomaly detection strategies

expect that all intrusive actions are essentially anomalous.

1.1.2.1. Statistical Methodologies

Primarily, conduct outlines for topics are created. As the device remains running, the abnormality

indicator continuously creates the alteration of the current profile from the authentic.

1.1.2.2. Predictive Approach

This technique of IDS attempts to envisage coming actions on the basis of activities that have

previously happened. The hassle with this is that some interruption situations that are not defined

through the rules will now not be labelled intrusive.

1.1.2.3. Weaknesses of Anomaly Detection IDS

 Capability to be misled by a suitably provided threat.

 Generation of false alarms degrade its efficiency.

1.1.3. Host Based IDS

The host working framework records in the review information. These review material includes

occasions just like the utilization of distinguishing proof and verification methods i.e. account

logins, opening any file and execution of program and administration exercises. This inspection is

then examined to discover record of intrusions.

1.1.3.1. Weaknesses of the HIDS:

 The data required to be monitored in is a material of knowledge.

18 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

 Random sorting of messages may significantly rise the assessment and investigation loads.

 Careful monitoring runs the danger that threat appearances might be overlooked.

1.1.3.2. Advantages of the HIDS:

 Threat authentication.

 Checking significant modules.

 Near Instantaneous recognition and reaction.

 No surplus hardware required.

1.2. NIDS and its Modules:

A NIDs is comprises of four modules i.e., 1) packet capturing, 2) packet decoder, 3) packet pre–

processing and 4) pattern matching [3]. In terms of hardware implementations, the packet

capturing module is responsible to hold incoming network traffic while packet decoder is

responsible to split packet header and payload. The pre–processing module is required to organize

incoming packets for the pattern matching module. Finally, the pattern matching module is

responsible to take decision either the packet will be accepted or rejected.

Intrusion detection structures do have a number of known challenges that may be greater work

than an organization is inclined or in a position to tackle. False positive (i.e., producing signals

when there is no real problem). “IDSs are infamous for generating false positive” Researcher said,

adding that indicators are typically are dispatched to a secondary analysis platform to help contend

with this challenge. This undertaking also places pressure on IT teams to always update their IDSs

with the right data to become aware of professional threats and to distinguish these actual threats

from allowable traffic. It’s no small task, professional said. “IDS structures need to be tuned by IT

administrators to analyse the desirable context and limit false-positives. For example, there is little

benefit to examining and presenting signals on net activity for a server that is covered in opposition

to known attacks. This would generate thousands of beside the point alarms at the price of elevating

19 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

meaningful alarms. Similarly, there are occasions where flawlessly legitimate things to do may

generate false alarms really as a depend of probability,” Researcher said, noting that businesses

regularly decide for a secondary analysis platform, such as a security Incident and Event

Management (SIEM) platform, to assist with investigating alerts.

1.2.1. Recruitment

Given the requirement for understanding context, an organization has to be ready to make any IDS

match its very own special needs, experts advised. “What this capability is that an IDS can't be a

one-size-fits all configuration to operate precisely and effectively. And, this requires a savvy IDS

analyst to tailor the IDS for the pursuits and desires of a given site. And, knowledgeable trained

system analysts are scarce”.

1.2.2. Missing a respectable threat

“The trick with IDS is that you have to comprehend what the attack is to be capable to discover it.

The IDS has usually had the patient zero problem: You have to have located any individual who

acquired in poor health and died before you can discover it,” Hanselman said. IDS technological

know0how can also have trouble detecting malware with encrypted traffic, specialists said.

Additionally, the velocity and distributed nature of incoming site visitors can limit the efficiency

of an intrusion detection system in an enterprise.

1.3. Difference between Firewall and IDS

IDS are a devoted and collaboration utilized to screen the critical framework. Today’s security

structure is becoming extremely complex, it includes firewalls, reconnaissance and verification

methods, access management, encoding methods, scanning Tools, and more.

There are some difference between and IDS and Firewall listed below.

20 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

1. Firewall is a network safety scheme that cleans arriving and departing network stream

based on determined rules, while an IDS is a scheme that screens a traffic for suspicious

action or rule disruption and refers alarm upon recognition.

2. Firewall screens network stream based on IP address and port number, while IDS notices

incoming traffic and looks for traffic arrangement or patterns of attack and then cause

alarms.

3. In an organization firewall would be first line of resistance while IDS would be positioned

after firewall.

4. Firewall will stop the stream upon illegal traffic recognition whereas IDS created

alerts/alarms on recognition of irregularity.

Pattern matching is an art of comparing a set of incoming streams of characters with the elements

of stored patterns in the data sets. Multiple platforms have been used for the implementation of

pattern matching algorithms. The most commonly used are central processing units (CPUs),

General Purpose Processors (GPPs), Application Specific Integrated Circuits (ASICs) and FPGAs

[4]. Both, CPUs and GPPs are flexible but with limited throughput. ASICs provide higher

throughput with no flexibility. Besides all these, FPGA is an alternative to achieve both flexibility

(by its inherent re-configurability feature provision) and throughput [4] [5].

1.4. Motivation

The inspiration of this examination originated from the modern difficulties of delivering a security

framework that would guarantee accessibility, privacy and respectability in respects of the present

province of Internet security. Following quite a long while of modern experience and keeping in

mind that taking a shot at the plan of a security framework for a 10GB apparatus, some intriguing

thoughts brought up not many issues marks. An ongoing move by trend-setters to equipment based

IDS suggests a rapid and a great many packets prepared simultaneously. In any case, equipment

based arrangements have restrictions in their capacities to execute specific programming

capacities. For example, there is no normal articulation framework completely executed in

21 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

equipment. Right now, it is observed that 65% snort rules are with normal articulation.

Furthermore, equipment based IDS have a great deal of area issues as there is not really any

allocation of dynamic memory. While the equipment improves speed, the product execution of

IDS has more highlights despite the facts that there are at present numerous threats that go

undetected. Verifying Internet frameworks is to an ever increasing extent testing. Likewise, a great

number of organizations depend on IDS and IPS to ensure their frameworks [5].

After examination, apparently a hole is still persists to fill equipment based IDS convey speed

however are over the top exclusive, programming arrangement, despite the fact that there is no

solution to tackle speed offered by the equipment IDS, they can bolster a more extensive scope

of functionalities. From these ends, the creator begun taking a shot at a framework that won’t

just build the bundle handling rate yet in addition offer further

Examination so as to empower the most extreme identification furthermore, moderation

conceivable. So we have to add-on additional hardware to improve working capabilities of snort

rules. Furthermore we will discuss in details about this solution in next chapters. Then again,

this thesis has a solid enthusiasm for adding to the open source as it is a domain where

specialists encounter, talk about and cooperate. In such manner, a portion of our work has

delivered an IP & HTTP and TCP code which basically used to monitor the performance of

confrontation of IDS against scrap sources. The beginning of this thesis will be the point of view

of having a framework that works for example a framework that can adapt to ongoing threats

and innovation headway, a framework that produces less bogus positive while improving the

discovery rate.

1.5. Problem Description

Throughput enhancement and memory decrease are two central point donating in execution

assessment of matching a pattern. This research objectives is to making a structure for Network

Intrusion Detection Systems that is proficient to remain against the most harmful efforts handled

by the Internet today for example DDOS threats and parallel stages attacks for example assaults

dispersed among Packets. The new structural designs intends to be a multi-dimensional parallel

22 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

structure that will utilize promptly accessible modules for example broadly accessible

programming and hardware equipment.In endeavoring to create such a framework, the

accompanying destinations would be accomplished:

1. Design and actualize IDS based Snort utilizing Aho-Corasick approach.

2. Identify Snort explicit search engine part shortcomings

3. Yield a framework that will recover the recognition frequency while diminishing the false

alarms.

4. Keep fully informed regarding industrial progression by proposing a redundant

Implementation of our design.

5. Provide the cutting edge of Internet Security

For implementing the traditional Aho–Corasick algorithm, DFA creation is required for pattern

matching. The DFA requires one transition state for single character matching. Therefore, the

number of transition states will be increased as the number of required matching characters are

increased which incurs the higher memory cost. For Snort rule sets pattern matching, the

throughput optimization of the Aho–Corasick algorithm is highly desirable. This research will

provide the hardware architecture for pattern matching of open source network intrusion

prevention system snort datasets using the standard Ethernet packet size of 1500Bytes in a real

time environment.

1.6. Thesis Objectives

In this thesis, Hardware implementation of pattern matching Aho-Corasick algorithm based on

finite state machines (NFA & DFA) is proposed. Because of increasing network bandwidth in

advances digital communication technologies, demanding hastening of data monitoring to

withstand the throughput. Details of the proposed architecture is presented in chapter 3.

23 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

The rule set in open source network intrusion and prevention system explored and matched using

AC algorithm. By reducing number of transition states throughput as well as memory optimization

achieved.

1.7. Thesis Organization

Introduction chapter describes importance of network intrusion detection system, its types and

mechanism of signature-based IDS. The remaining portion of thesis is organized as follows. In

chapter 2 some well-known network security techniques and algorithms are explained. In chapter

3 explains the mechanism of proposed architecture based on Aho-Corasick Algorithm. Achieved

results and simulations are analyzed and compared with existing solutions in chapter 4. Future

work and conclusion is presented in chapter 5.

25 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

Chapter 2

Literature Review

26 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

CHAPTER 2. LITERATURE REVIEW

For pattern matching, the most commonly used technique is finite state machine (FSM) [6], [7],

[8], [9], [10], [11], [12] .FSM consists of two types i.e., deterministic finite automaton (DFA) and

non-deterministic finite automaton (NFA). In DFA, one transition state is required to process

single character matching while multiple states are required to process single character matching

in NFA. For multi-character matching, the number of transition states are mainly depending on

number of characters. To implement pattern matching algorithms, various hardware architectures

have been reported in literature

2.1. Research Method

This examination has been executed utilizing the orderly writing audit strategy. The appropriate

information or data in a particular research area is described presenting to an exploration rules for

investigating the momentum inquire about examinations significant to the built questions. In this

way, the classifications definition and research standards are depicted in Sec. 2.2 and Sec. 2.3

individually.

2.1.1. Categories Definition

So as to sort out the chose research examines, we have characterized five classifications. This

classification increment the exactness of the reactions to build questions, created in Sec. 1.

Therefore, characterization subtleties are given in the accompanying:

2.1.2. General Class

There can be a few models where the parcel catching, bundle translating and occasion location

modules are all the while talked about in a solitary equipment arrangement. For instance, the

27 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

arrangements appeared in [6] talk about the data capturing, translating and occasion

identification/motor modules without depicting the bundle pre-handling module. There may be

various models where suspicions are taken out on approaching arrangement of characters from

Gigabit organize for data capturing. Along these lines, all the previously mentioned designs will

be fused right now.

2.1.3. DFA Class

Finite state machine is one of the unmistakable method, utilized in the occasion recognition/motor

module, for design coordinating and is computationally serious for the advancement of NIDS. For

the most part, it performs like a finite state machine (FSM) to perceive the put away examples

inside the approaching floods of info characters. The calculation of FA for the most part relies on

its five tuples: (1) calculations of finite states, (2) arrangement of characters, (3) Forward states

(4) initial state and (5) last state. It establishes two unique sorts: deterministic limited machine

(DFA) and non-deterministic limited automaton (NFA).

DFA, needs just one change state to process each info character for the example coordinating and

requires higher measure of memory to keep each progress state. DFA based example coordinating

calculations and strategies are helpful to accomplish higher throughputs with the cost of higher

memory uses. In any case, various equipment structures have been accounted for to diminish the

requirements of memory while utilizing the DFA mapping. For instance, a productive usage of the

FPGA look-into tables (LUTs) for mapping single character and change states are appeared in [8],

[9], division of bigger examples sets into littler sets with one of a kind and non-one of a kind

examples is exhibited in [13] and bit-parting design to diminish the quantity of progress edges in

each state is appeared in [14] and so on. Every one of these designs will be included right now.

2.1.4. NFA Class

NFA based example coordinating calculations and methods are memory proficient yet then again

they give restricted throughput because of the contribution of numerous states per input character.

28 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

Different models have been accounted for to enhance the throughput of the NFA based example

coordinating calculations and procedures. An engineering for making an interpretation of the

information design into a NFA and afterward encoding utilizing bit covering is introduced in [13].

In addition, parting the bigger examples into the littler sets is appeared in [2]. Every one of these

models [10], [6], [11] will be combined.

2.1.5. Hash Classification

Mapping of variable length of info information onto a fixed length is known as hashing. There are

various models, where hashing strategy have been used, either on the approaching information

bundles from the Ethernet [7] or on the put away factor design lengths into the memory [3].

2.1.6. Tree Classification

By and large, tree alludes to the information structures that have an ability to store the approaching

floods of characters. A few designs have been proposed to store the sub word reference of fixed

length designs into the information structures as utilized in [2]. Besides, to diminish the memory

necessities, different models have been viewed as where the bigger example sets were partitioned

into gatherings of littler sets and the littler assembled sets are put away in the information structures

as introduced in [3].

2.2. Overview of Pattern Matching Techniques

Various architectures and systems for pattern matching are categorized by characterized

classifications i.e., general, DFA, NFA, hash and tree. It is critical to have any kind of effect that

a system is a combination of rule sets to a particular issue where the information and the result are

officially indicated. There are generally two types of string matching algorithm and techniques in

literature review i.e string based and regular expression based techniques. Explanation of both

types are as follows:

29 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

2.2.1. String Based Techniques

There are 27 chosen reads for string coordinating calculations and procedures. Out of these 27

chose considers, 23 investigations send design coordinating calculations while staying 4

examinations use diverse example coordinating strategies. As discussed the recognized string

coordinating calculations are Aho–Corasick, Knuth Morris Pratt, Bowyer–Moore, State–

Traversal, Shift–And , Bit–Split, Bit–Parallel, Bloom–channel, Pattern Matching, Cuckoo and

BST. The distinguished diverse example coordinating strategies are Diode–Resistor rationale

utilizing CMOL, merged state change approach, Automaton mapping and Range tree connect list.

In the accompanying, the distinguished string coordinating calculations and methods are

additionally depicted by the characterized classifications.

For the general class, the Aho–Corasick calculation is utilized in [1] and [8], KMP calculation is

considered in [2] , Booyer–Moore calculation is used in [3] , State–Traversal calculation is utilized

in [5] and Shift–And calculation is executed in [4], [6] and [7]. A high throughput design for string

coordinating utilizing Diode–Resistor rationale with sub-atomic FPGA (CMOL) innovation is

exhibited in [9]. The run time rule-reconfigurable engineering, exhibited in [1] diminishes the

framework vacation at whatever point the standard set is required to be refreshed. Multi organize

pipelined engineering for the execution of Aho–Corasick calculation utilizing fast inspecting by

methods for on request confirmation approach is accomplished in [8]. A versatile quickening

agent, appeared in [2], is progressively arranged towards the force enhancement of string

coordinating. For transmission control convention (TCP) parcels, a continuous on-line string

coordinating is performed utilizing a framework on chip (SoC) stage in [3]. As far as memory

improvement, the arrangement, appeared in [4] utilizes the division of long example sets into littler

sets. The order and gathering of homogeneous traffic, and afterward forward it to the pertinent

equipment hinder for handling is considered in [6]. A multi character string coordinating

arrangement utilizing location and revision of string arrangement is introduced in [7]. Towards

memory enhancements, one of the fascinating answer for string coordinating is appeared in [5].

For DFA classification, Aho–Corasick calculation is executed in [10] and [13] while the Bit–

Split calculation is considered. Towards memory advancements of the Aho–Corasick

30 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

calculation, the failure-less pipelined DFA has been built in [10], decrease of state chart to a

character trie has been considered in [11] and productive usages of FPGA LUTs are focused in

[13]. Memory advancements of the Bit–Split calculation is appeared in [11] and [12]. A gathering

of longer example sets into a few sub patterns with a fixed length is considered in [12] though the

gathering of one of a kind and non-one of a kind sub patterns are focused in [11].

For NFA class, Aho–Corasick calculation is used in [11], Shift–And calculation is focused in [8]

and Bit–Parallel calculation is considered in [9]. The half and half arrangement utilizing both NFA

and DFA in [12] is exhibited by investigating multi characters in equal which acquires arrangement

issue. Thus, a security arrangement regarding right hand advances for the arrangement issue is

introduced in [2]. For Shift–And calculation, a pipelined answer for advance throughput of the

example coordinating is appeared in [7]. Utilizing Bit–Parallel calculation, a powerful

reconfigurable engineering for the specific and expanded example sets is considered in [6] .

Consolidated state change approach utilizing the mix of both shared regular prefixes and no

disappointment advances are conveyed in [5]. For organize security and bioinformatics

applications, a finite automata is developed.

For the hash classification, Bloom–Filter [12], Pattern Matching [11] calculations are considered.

The reconfigurable arrangement, exhibited in [3], is increasingly situated towards the area and

power advancements. The Pattern Matching calculation, proposed in [8], performs content

coordinating utilizing some factor design lengths. An exceptionally versatile and power proficient

string coordinating arrangement, is considered in [5]

2.2.2. Regular Expression Based Techniques

We have recognized 22 investigations for normal articulation coordinating calculations and

methods, as appeared in Table 4. Out of these 22 chose contemplates, 11 examinations use design

coordinating calculations while the remaining 11 investigations use diverse example coordinating

strategies. The pre-owned calculations for the usage of ordinary articulation coordinating are

Parallel Multi–Stride, Left–most, J–DFA, Parallel–DFA, Multi–Stride, Shift–And, Gluskhov–

31 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

NFA, MIN–MAX, YARA and Bloom–channel. Other utilized methods for normal articulation

coordinating incorporates the Memristor crossbar approach, Tiled ordinary articulation,

Deterministic robot mapping, Finite machine mapping, Run length encoding, Distributed

information in cooperative effort, Simple state consolidate tree, Multi–way theory, Non–

deterministic trie mapping, Spatial–Stacking system and Token based coordinating. As per the

characterized classes, the distinguished calculations and methods for ordinary articulation

coordinating are given in the accompanying.

For general class, the used example coordinating calculations are Parallel Multi–Stride and

Left–most. To enhance three plan parameters (territory, throughput and force) simultaneously, a

Memristor crossbar based methodology is also utilized in regular expression type pattern

matching. A tweaked arrangement as far as versatility for the RegEx coordinating is appeared in

[12]. Finite state machine (FSM) based arrangements are acquired in [9] where DFA and limited

automaton (FA) are developed. For rapid interruption recognitions, a mix of Multi–Stride

calculation with the FA strategy is converged in [16]. One of the fascinating work is considered

in [4] where furthest left coordinating of RegExs are performed by using the equipment assets

effectively.

For DFA classification, J–DFA, Parallel–DFA and Multi–Stride design coordinating

calculations are used. Towards, memory streamlining of the DFA, run length encoding strategy is

used in [34]. For NIDS, three unique methods i.e., distributed information in cooperative effort,

Simple state consolidate tree and Multi–way hypothesis are coupled to fulfill 100G Ethernet

guideline. Another intriguing arrangement is introduced in [13] for the 100G Ethernet standard.

The architectures are available in regular expression based pattern matching are incredibly worried

about the memory enhancements of DFA.

For NFA class, the used example coordinating calculations are Shift–And, Gluskhov–NFA, MIN–

MAX and YARA system. Towards rapid, rather than byte coordinating in customary procedures,

a token based coordinating arrangement is presented. Another arrangement is given by using the

pipelining and Spatial–Stacking procedures. Throughput proficient arrangements by utilizing

32 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

the memory based mapping of NFA are considered. Moreover, a string channel is likewise used to

recognize the traversal of a NFA. As of late, for interruption location in the modern substation

machine organize (IEC–61850), a reconfigurable arrangement is introduced. The utilization of

Shift–And calculation with the priority encoder decreases the enormous number of states while

developing the NFA. A unique reconfigurable solution for parallel RegEx coordinating decrease

the utilization of over the top memory. A FPGA prototyping of the interruption recognition

system/device i.e., yet another Recursive Acronym (YARA) is also presented in literature

review. At last, for Hash class, a memory streamlined arrangement utilizing the Bloom–Filter

calculation is used.

2.3. Research Standards

In view of above literature review, we have recognized research process to proceed further. The

insertion and elimination of input pattern, and also the extraction of useful data from set of rules.

2.3.1. Insertion and avoidance procedures

We delimit some strong standards for the incorporation and prohibition of research works, as

appeared in the accompanying:

• Relevant-to-the-subject: Contain just those examinations which are relevant to our

consideration. It must give adequate subtleties to help the reactions of our questions and ought to

be appropriate to one of the pre-built classes. Avoid every one of those examinations which don't

identify with any of the predefined classes.

• Most later (2010–2019): Selected contemplates must be distributed from 2010 to 2019. Bar

every single other examination those are distributed before 2010 to ensure the thought of latest

investigations.

33 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

• Publication associations: Chose just those examinations which must be distributed in any of

the five logical databases i.e., IEEE [9], SPRINGER [10], ACM [11] and PLOS [13] through

2010–2019.

• Hardware based outcomes: Pick just those examinations which give equipment based answers

for the NIDS whichever executed on reconfigurable stage i.e., FPGA or CMOS.

• Repetition: All the exploration considers in a particular research setting can't be incorporated.

In this manner, avoid those investigations which are comparable in the given research setting and

only one of them is incorporated.

2.4. Search Technique

The fundamental perseverance of search technique is to choose the exploration work as per the

incorporation and prohibition rules, characterized in Sec 2.2.1. So as to execute the hunt technique,

distinctive pursuit terms have been utilized like IDS FPGA, NIDS FPGA, equipment structure

NIDS, equipment design NIDS, reconfigurable models NIDS, adaptable engineering NIDS, SoC

NIDS, Pattern coordinating NIDS, Signature coordinating NIDS and String coordinating NIDS

and so on. So as to choose these hunt terms, a few logical distributions have been arbitrarily chosen

and considered. From that point onward, the chose search terms have been utilized to get the

potential research considers identified with the interruption identification frameworks. The quest

terms close by the results for each logical database are orchestrated in Table 1. Four different

databases are used in this work to search keywords. Some conference paper and higher impact

journals are included in these databases. These databases are IEEE, Elsevier, Springer and ACM.

There are five phases of research work selection. First step is review of Systematic literature

review, Second step is the selection of successful and rejected researches. In remaining steps

selection of researches is either Title based, Abstract based, General study or detailed study.

34 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

Phases Research discovered

per phase

Rejected

Researches

Selected

Researches

Remarks

1 35 - - Search based selection

2 35 5 30 Title based selection

3 30 7 23 Abstract based selection

4 23 4 19 Selection on basis of General study

5 19 6 13 Selection on basis of Detailed study

Table 1 Research work selection process

The stages, executed during the consideration of research works, are appeared in Figure 2.

1. We have proposed different terms in five logical information bases and examined around 35

selected results.

2. Out of 35 researches, we have omitted 5 papers based on their Title according to the

consideration and prohibition rules.

3. Out of the outstanding 30 research papers, we have additionally omitted 7 papers based on their

Abstract according to consideration and rejection rules.

4. We have performed an overall investigation of the outstanding 23 research papers by perusing

diverse important areas of each search. Based on our overall examination, we have avoided 4

research papers don't encounter the incorporation criteria.

5. We have executed a point to point investigation of the outstanding 19 researches and have

rejected 6 research papers.

6. Lastly, we have incorporated 13 researches significant to our examination settings.

35 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

 20 Papers 3 Papers

Rejection and selection of research on the basis of Research standards
(Total papers = 35)

IEEE PLOSELSEVIER ACMSPRINGER

 5 Papers 4 Papers 3 Papers

Rejection and selection of research on the basis of Title
(Total papers = 30)

Rejection and selection of research on the basis of Abstract
(Total papers = 23)

Rejection and selection of research on the basis of General study
(Total papers = 19)

Rejection and selection of research on the basis of Thorough study
(Total papers = 13)

Figure 2.1 Search Technique

36 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

2.5. Some overview

Implementation details of hardware architectures reported in literature are summarized in Table 1.

As shown in Table 1, the first column provides the serial number whereas the implemented

algorithm is shown in column 2 of Table 1. The column 3 of Table 1 is further partitioned into four

sub columns for providing the rule set, total number of rules, pattern size and utilized character

matching per clock cycle. Similarly, the last column i.e., column 4 of Table 1 is further divided

into five sub columns for reporting the targeted platform, throughput (in Gbps), FPGA area (in

terms of LUTs, Slices and flip flops), operational clock frequency (in MHz) and reference number.

The most recent solutions, as shown in Table 1, either optimizes throughput or memory of the

pattern matching i.e., Aho–Corasick algorithm. The architectures shown in [6] and [12] are more

orientated towards the throughput optimization whereas the solutions available in [7], [8], [9], [10],

[11] optimizes the memory requirements of the Aho–Corasick pattern matching algorithm. Parallel

based architectures introduced to improve the throughput and to optimize memory of proposed

architecture by sorting alignment issues and reduction transition states. For Implementation of

Aho-Corasick algorithm major contribution is to generate trie diagram of rule sets available in the

memory. The peculiarity oriented IDS necessities a specific information on the framework to be

secured. In the time frame of learning, the irregularity IDS will assemble sufficient data to frame

the reference line, the typical conduct. Notwithstanding profound convention examination, a

marginal is at that point characterized as the typical conduct.

37 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

For throughput optimizations, a run time rule reconfigurable architecture is proposed in [6].

The term re-configurability means that their proposed architecture does not need reconfiguration

whenever updated rules required to add in the rule set. The use of rule base updates, as achieved

in [6], causes a downtime problem. To overcome this issue (downtime problem) a stateful packet

inspection technique is utilized in [6]. A 2-stage pipelined solution is proposed in [12] where

advantages of both DFA and NFA approaches are utilized. Moreover, a multi-character pattern

matching is considered in parallel while utilizing promising memory space.

Towards memory optimizations, use of hash tables considering the bit shuffle technique is

implemented in [7]. Furthermore, to optimize throughput, a new approach has been introduced

using Byte Shift Invariant Code (BSIC). The BSIC consists of suffix sharing concept with the

multiple prefix units which results increase in the throughput. Use of DFA results higher

throughputs while efficient space utilizations can be achieved by adopting NFA approach. One of

Sr. #
Utilized

Algorithm

Database related parameters Hardware related parameters

Rule set
of

patterns

Pattern

size
Chr/cycle

Targeted

Platform

Throughput

(Gbps)

FPGA Area
Freq.

(MHz)
Ref / Year

LUTs Slices FFs

1

Aho–

Corasick

Snort 16K
200

Bytes
1 Xc7z045 1 190592 – 162378 200 [6] / 2017

2 Clam–AV 82K – 1 Xc6vsx315t 3 7500 3604 – 230 [7] / 2012

3 Snort 6166 – 2 Ep2s60 1 – – – 253 [8] / 2010

4 Snort 2200 – 4 Xc7vx485t 6.9 10315 4093 2713 216 [9] / 2018

5 Backdoor 955 – 1 Xc3s500e 1.536 8985 5191 6914 128 [10] / 2015

6 Snort 1000 – 4 Stratix IV 16.8 102030 – 9403 131.27 [11] / 2013

7 – 300 – 4 Stratix IV 4.3 31258 – 300 67 [12] / 2016

Table 2 Existing Implementations of Aho–Corasick Algorithm on FPGA

38 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

the solutions, presented in [8], uses hybrid approach considering combined utilization of

advantages provided by DFA and NFA approaches simultaneously. The use of DFA approach in

[8] reduces state graph to character trie then its NFA was generated. The term character trie means

that the resulting graph after state reduction contains only forward edges/nodes. Moreover,

pipelining is also adopted in [8] to improve the operational clock frequency. Another, memory

optimized architecture for multi-character pattern matching is shown in [9] where look-up-table

(LUTs) based implementation of state transitions are considered. This concept improves the

flexibility by mitigating the requirement of hardware reconfiguration whenever new updates are

available to add in the rule set. To reduce memory cost in [10], the adopted techniques are 1) by

eliminating the failure pointers and 2) sharing the common prefixes with in the DFA. To optimize

clock frequency pipelining is adopted in [10]. A string alignment problem occurs when multiple

characters for matching are considered in parallel. In order to reduce string alignment problem an

assistant transition approach is used in [10] .

The inherent features of architectures reported in [6], [7], [8], [9], [10], [11], [12] are using

different characters matching per clock cycle. Therefore, the architectures, shown in [6], [7] and

[10] utilizes single character matching per clock cycle. Other solutions, described in [8], [9], [11]

and [12] utilizes multi character matching in one clock cycle. All these solutions, presented in [6],

[7], [8], [9], [10], [11], [12] provides pattern matching using different packet sizes, such as

200Bytes used in [6]. Respectively, pattern matching on incoming Ethernet packets using a

standard size of 1500Bytes is an open research direction.

39 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

Chapter 3

Methodology

40 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

CHAPTER 3. METHODOLOGY

In this section, current high-tech network intrusion detection results are studied, their

drawbacks are highlighted and inspiration for the proposed architecture is described. This

section also defines the Aho-Corasick algorithm being used in this work, and how its algorithm

tackles the problem stated. Then, difference between Non-Deterministic and Deterministic

automaton will explained. After that, open source network intrusion detection system (Snort).

In "An Efficient Multicharacter Transition String-matching Engine based on the Aho-Corasick

Algorithm" [11] paper, a real-time Aho-Corasick Non-Deterministic Automaton (AC-NFA) is

implemented. The main contribution in [11] is to avoid transition states as in DFA approach

the problem is the explosion of transition states. The proposed architecture also resolves the

alignment issue. It is noticed that both throughput and hardware cost is directly proportional

with the numbers of patterns.

In order to achieve objectives of this work, the essential steps are described as follows:

3.1. Literature Review Part:

AC-algorithm solutions reviewed where standard Ethernet packet size of 1500Bytes are used

for pattern matching. Then, their hardware architectures explored to recognize the architectural

implementation details relevant to throughput and area optimizations. Based on architectures

explained in [6], [7], [8], [9], [10], [11], [12] results are further evaluated based on type of rule

set, number of patterns implemented and number of characters matching in one clock cycle. It

is noticed that numbers of snort patterns matched in [11] are 1,000 in 131 MHz frequency.

41 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

3.2. Architectural Modelling:

After covering the literature part, the next step is the architectural modelling of Aho–

Corasick pattern matching algorithm in hardware description language HDL (Verilog). To

optimize throughput, AC-NFA approach selected in this work. Primarily, open source

network intrusion and prevention system patterns explored for internet protocol (IP),

hypertext transfer protocol (HTTP) and Transmission Control Protocol (TCP) packets.

Secondarily, C-language implementation of AC-NFA architecture performed and

resulting Goto matrix, failure matrix and output matrix achieved which gives information

about transition states. Then HDL (Verilog) implementation of pattern matching of snort

keywords performed using c-modelling results and synthesizable RTL view evaluated

and analysed using Xilinx (ISE) design suit tool. Simulated results show that the output

and cost of hardware raise linearly with the respect processed in parallel.

3.2.1. Aho-Corasick Algorithm:

In a matching process the transition states to detect existences of patterns in a string may

be goto, failure and output functions. There are two approaches used to implement AC-

algorithm i.e. AC-NFA and AC-DFA. In DFA unique next state for respective current state

while in NFA there can be multiple next state. As we know that, various transition states

cause due to failure functions which makes it problematic to configure AC-Algorithm in

DFA.

3.2.2. Aho-Corasick Algorithm with NFA Approach:

This approach primary defines the AC-algorithm and the AC-trie. Aho-Corasick trie

converted to NFA by eliminating failure states, known as AC-NFA. The matching

algorithm of both tries are also equated.

42 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

Figure 3.1 demonstrates an AC-Trie constructed on the rule set {SETID, ODAvM,

POST, dump} taken from hypertext transfer protocol snort rules. In this figure, states are

represented by circle and output states are denoted by double circle. In addition, goto states

are represented by lines and failure states denoted by dashed lines. At any time only one

active state is present in Aho-Corasick trie. While matching an input character initially goto

functions is monitored. After monitoring if goto function not matched, then through a

failure function that states transfers to a new state and checks the goto function of new

triggered state. The examining character matched one by one in a matching cycle.

Whenever input keyword matched, the resulting output states is non-zero on the other hand

output state is zero.

430 1 2 5

6 7 8 9 10

11 12 13 14

16 17 1815

S E T I D

O D A v M

P O S T

d u m p

¬ {S,O,P,d}

Figure 3.1 AC-Trie for Keywords {SETID, ODAvM, POST, and dump}

Figure 3.2(a) shows the operation of AC-trie matching process. Let’s assume that the input

string “uPOST”. Character “u” doesn’t match with “S”, “O”, “P” and “d”. So, state 0

43 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

retained. The next four characters “POST”, the states transfers from 0-11 and then from

11-14 consecutively to give the output state. In Figure 3.2(b) matching process of input

“uPOSTd” is exemplified.

Input: u P O S T d

(a)

(b)

Figure 3.2 Matching Process of Aho-Corasick

44 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

3.2.3. AC-NFA Approach:

AC-NFA trie is achieved after eliminating the failure functions from AC-trie. Figure 3.3

shows that by eradicating failure functions AC-NFA trie is formed from AC-trie. After

obtaining AC-NFA, all transition states will be matched simultaneously. Only goto

functions of original AC-tries remains in NFA-trie. Figure 3.3(b) is utilized to select output

from multiplexer circuit.

(a)

(b)

Figure 3.3 AC-NFA trie and Output selection Multiplexer

45 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

3.3. Snort Overview:

The essential assembly is exemplified in Figure 3-1. At the point if a data packet reached at

the destination, Snort heeds and catches it. Then analysis of packet is performed and directed

to the suitable pre-processor for further examination, for example, the "http_decode"

dependable of regularising HTTP network stream. The minfrag pre-processor is also case of

pre-processor and it manages smaller than usual (minor) sections. Any little piece found on the

system is then sent to the minifrag pre-processor for more examination.

The pre-processors are likewise alluded to as modules. There are as of now three kinds of

modules in Snort which are pre-processors modules, identification modules and output

modules. When the pre-processors work completed, the packet are delivered to the

identification portion that will make Snort either to give an alert, or withdraw the packet of

data if IPS is used.

Figure 3.2 shows the basic architecture of snort. Packet sniffer modules sniffs the incoming

and outgoing packets and sends it to packet decoder module, Then packet decoder module

extracts the header and sends packet to pre-processor module. Finally Detection engine gives

the result depending on the matching of incoming data stream with the available keywords in

the memory. The decision is on the basis of whether incoming packet will be malicious or not.

In this work snort rule sets of IP and HTTP and TCP protocol is identified, analysed and tested

in real-time. It is noted that clock frequency used while matching a rule-set is inversely

proportional to the time required for pattern matching, also throughput depends on the clock

cycles consumed in pattern matching.

46 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

Arriving and Departing Data

Packet Detector

Packet Decipher

Pre-Processor

Packet Matching
Module

Output

Figure 3.4 Basic Architecture of Snort

3.4. FPGA Prototyping:

After generating the RTL code, then implemented proposed architecture on FPGA. For FPGA

prototyping, the system on chip (SoC) of ZYNQ 7000 series used, as shown in Figure 1.

Relevant to our requirements, the supported features of ZYNQ 7000 series are as follows:

 Available board: ZC702

 FPGA device: Artix–7 (XC7Z020)

47 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

 NIC: 88E1116R (1–Gbps data rate)

3.4.1. Details

The previously mentioned gadget family offers the flexibility and adaptability of a FPGA, while

giving execution, power, and comfort consistently associated with ASIC and ASSPs. The extent

of contraptions in the Zynq-7000 family allows designers to point cost-sensitive similarly as first

class applications from a lone stage using industry-standard mechanical assemblies. While every

 Figure 3.5 Overview of ZYNQ 7000 (SoC)

48 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

device in the Zynq-7000 family contains a comparative PS, the PL and I/O resources vacillate

between the devices. Along these lines, the 7000 and 7000S SoCs can help a wide extent of

employments including:

• Automotive driver help, driver information, and infotainment

• Transmission camera

• Industrialized motor controller, present day frameworks organization, and machine vision

• IP and efficient camera

• LTE radio and baseband

• Medical diagnostics and imaging

• Multifunction printers

• Video and night vision equipment

The Zynq-7000 building enables execution of custom method of reasoning in the PL and custom

programming in the PS. It thinks about the affirmation of exceptional and isolated system limits.

The consolidation of the PS with the PL licenses levels of execution that two-chip courses of action

(e.g., an ASSP with a FPGA) can't facilitate in view of their obliged I/O information move limit,

inertness, besides, power spending plans.

Xilinx offers a colossal number of fragile IP for the Zynq-7000 family. Free and Linux contraption

drivers are available for the peripherals in the PS and the PL. The Vivado® Design Suite

progression condition enables a fast thing headway for programming, gear, and structures

engineers. Appointment of the ARM-based PS also brings an extensive extent of untouchable

gadgets and IP providers in blend in with Xilinx's present PL natural framework. The thought of

an application processor enables raised level working structure support, e.g., Linux. Other standard

working systems used with the Cortex-A9 processor are in like manner open for the Zynq-7000

family.

49 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

Chapter 4

Evaluation

50 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

CHAPTER 4. EVALUATION

This chapter first executes the recommended design on ISE design suit tools to assess the

possibility of utilizing of resources and evaluate attainable throughput. Our results are then

matched with the architectures presented in literature review.

4.1. System Setup

The Patterns for assessment are taken out from Snort (An open source intrusion and detection

system). These rules contains keywords of IP, HTTP and TCP packets. Then the executions of

snort rules is carried out with the help of goto, failure and output matrices. There are 75,306

keywords of TCP packet, 6059 of HTTP packet and 981 rules are present in IP data packet. In

order to get sorting of these rules and to extract content of each rule an auto-generator code is

implemented.

To get the goto, failure and output matrices a comprehensive implementation is performed, for

example in case of IP snort keywords, the average length of keywords is 13. After successful

execution of FPGA device the evaluation of utilization of LUTs, FFs is performed. Also

calculate the total on chip power, signal power and static device power consumed. Accordingly

after that calculate and analyze achieved throughput.

Implementation of snort rules in performed and then results are analyzed and compared with

previous work explained in literature review.

4.2. Performance Metric:

Eq. (1), will be used to calculate the time required for one pattern matching. Throughput of

the proposed architecture will be calculated using Eq. (2). Finally, performance of the proposed

51 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

architecture will be evaluated using Eq. (3). For Example for a pattern to be matches 10 clock

cycles are required at clock frequency of 100MHz.The throughput of the system will be

10Gbps. Which means that for one pattern matching the time required will be 0.1us.

𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
Eq. (1)

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
1

𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔
Eq. (2)

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑎𝑟𝑒𝑎
=

1

𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔

𝐹𝑃𝐺𝐴 𝑆𝑙𝑖𝑐𝑒𝑠
Eq. (3)

4.3. Evaluation and Comparison

In this section first of all IP’s keywords is performed on Aho-Corasick algorithm and hardware

parameters will be summarized in table 3.

In table 3 Hardware parameters i.e. LUTs, FFs, Clock Frequency is presented. Also on the basis

of number of clock cycles utilized in pattern matching throughout is evaluated. For 981 keywords

pattern matching, the maximum length of keyword is 24. So by using equation (1). Time for one

pattern matching will be 6.8us and throughput will be 1.8Gbps.To further optimize throughput

the IP keywords are divided into chunks and then perform the pattern matching. Results are

shown in Table.

52 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

Rule-sets

Hardware related parameters

Max. Clock

Cycles

utilized/pattern

Time for

one pattern

matching

Throughput

(Gbps)

FPGA Area

Freq. (MHz)
LUTs FFs

For 981

keywords
1500 6.8us 1.8 2110 451 220

For First 490

Keywords
1500 5.2us 2.3 1530 386 284

For remaining

490 Keywords
1500 5.3us 2.3 1250 315 279

Table 3 Evaluation with 981 IP Keywords

In table 4 Http snort keywords RTL implementation is performed and execute code with the help

of goto, failure and output matrices. There are 6059 snort rules of http also the maximum keyword

length is 78. To further optimize the throughput the http rules are equally divided and the perform

the pattern matching procedure. Finally the achieved parameters are calculated and presented in

Table 4.It has been seen that throughput achieved while processing 6059 keywords in one pass is

0.96Gbps while after equally dividing rules throughput will increase to 1.23Gbps and for next

3030 rules it will be 1.28Gbps.

In table 5 we summarized parameters of TCP snort rules. It can be seen that for complete 75,306

rules the achieved throughout is 0.43Gbps.

53 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

Rule-sets

Hardware related parameters

Max. Clock

Cycles

utilized/pattern

Time for

one pattern

matching

Throughput

(Gbps)

FPGA Area

Freq. (MHz)
LUTs FFs

For 6059

keywords
1500 12.8us 0.96 12,820 2,521 117

For First 3030

Keywords
1500 9.9us 1.23 8,021 1,910 151

For remaining

Keywords
1500 9.6us 1.28 5,321 1,294 156

Rule-sets

Hardware related parameters

Max. Clock

Cycles

utilized/pattern

Time for

one pattern

matching

Throughput

(Gbps)

FPGA Area

Freq. (MHz)
LUTs FFs

For 75306

keywords
1500 28.3us 0.43 153,840 30,252 53

For First 37653

Keywords
1500 16.8us 0.73 96,252 22,920 89

For remaining

Keywords
1500 15.9us 0.77 63,852 15,528 94

Table 4 Evaluation with 6059 HTTP Keywords

Table 5 Evaluation with 75306 TCP Keywords

54 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

4.3.1. Graph of Throughput vs Number of Rule-set:

4.3.2. Graph of Resources Utilization vs Number of Rule-sets:

0

0.5

1

1.5

2

2.5

IP HTTP TCP

T
hr

ou
gh

pu
t

Ruleset

Total Ruleset 1st Subset 2nd Subset

0

20000

40000

60000

80000

100000

120000

140000

IP HTTP TCP

R
es

ou
rc

es
 U

til
iz

ed

Rulesets

Total ruleset 1st Subset 2nd Subset

55 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

Chapter 5

Conclusions and

Future Work

56 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

CHAPTER 5. CONCLUSIONS AND FUTURE

WORK

This section will begin by to the point the results that have been achieved and the make suggestions

as needs be for future work at a more significant level.

5.1. Contributions

A lot of work has been done in propelling the viability of security frameworks. Before parallel IDS

were talked about, assaults that are part into various stages have consistently been exceptionally

hard to investigate, recognize and alleviate. With the move toward equal IDS, multistage assaults

would be considerably increasingly hard to distinguish. The trouble lives in the way that there is

no connection between the various centres that play out the examination. The IDS will surely

improve in wording of speed for example the quantity of payload prepared every second and at the

equivalent time, however when assaults are part into various stream, most current frameworks

don't associate streams. In this exploration, the creator adds that measurement to the current

framework. Notwithstanding, this would make the IDS be upgraded and that is the thing that this

exploration is about.

An advanced auto-trie generator is designed which takes rulesets of data packet and irrespective

of type of packet it generates AC-NFA trie which helps us to get goto, failure and output matrics.

Also in this thesis transition state reduction of snort IP, HTTP and TCP packet rules is achieved

which automatically reduces number of resources.

57 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

5.2. Future Works

The idea of this work in itself is a test which has produced numerous other challenges which can

fill in as full research assignments. These assignments could be:

 Plan and build up an assault tree equipped for a full incorporation for a multicore

atmosphere.

 Plan and execution of a pipelined design, the default packet utilized for packet capturing.

 Design and implementation of mutli-character pattern matching using Aho-Corasick

algorithm up to 24 characters in one clock cycles.

 To design architecture of ICMP, UDP snort rules and to develop advance solution of IDS.

58 | P a g e

Implementation of Aho-Corasick String Matching Algorithm on FPGA

REFERENCES

[1] Jiajia Yang, Lei Jiang, Xu Bai and Qiong Dai, “High Performance Regular Expression Matching on FPGA.ICSR

pp.541-553,2018

[2] Kubilay Atasu,” Feature-rich Regular Expression Matching Accelerator for Text Analytics” Journal 2016.

[3] Tran Ngoc Thinh, Tran Trung Hieu, Hiroshi Ishii and Shigenori Tomiyama, “Memory efficient signature

matching for ClamAV on FPGA”. Conference 2014

[4] Junsik Kim and Jaehyun Park, “FPGA-based network intrusion detection for IEC 61850-based industrial

network”. Journal February 2018

[5] Derek Pao, Nga Lam Or, and Ray C.C Cheung, “ A memory-based NFA regular expression match engine for

signature -based intrusion detection” Computer Communications Journal March 2013.

[6] P. M. K. Tharaka, D. M. D. Wijerathne, N. Perera, D. Vishwajith and A. Pasqual, "Runtime rule-reconfigurable

high throughput NIPS on FPGA," 2017 International Conference on Field Programmable Technology (ICFPT),

Melbourne, VIC, 2017, pp. 251-254.

[7] D. Pao and X. Wang, "Multi-stride string searching for high-speed content inspection," Comput. J., vol. 55, no.

10, pp. 1216–1231, 2012.

[8] D. Pao, W. Lin, B. Liu, "A memory-efficient pipelined implementation of the aho-corasick string-matching

algorithm", ACM Trans. Archit. Code Optim., vol. 7, no. 2, pp. 1-27, 2010.

[9] X. Wang and D. Pao, "Memory-Based Architecture for Multicharacter Aho–Corasick String Matching," in IEEE

Transactions on Very Large-Scale Integration (VLSI) Systems, vol. 26, no. 1, pp. 143-154, Jan. 2018.

[10] Kim H.J. (2015) A Failureless Pipelined Aho-Corasick Algorithm for FPGA-based Parallel String-Matching

Engine. In: Kim K. (eds) Information Science and Applications. Lecture Notes in Electrical Engineering, vol 339.

Springer, Berlin, Heidelberg

[11] C.-C. Chen, S.-D. Wang, "An Efficient Multicharacter Transition String-matching Engine Based on the Aho-

corasick Algorithm", ACM Transactions on Architecture and Code Optimization, 2013.

[12] C.-C. Chen and S.-D. Wang, “A hybrid multiple-character transition finite-automaton for string matching engine,”

Microprocess. Microsyst., vol. 39, no. 2, pp. 122–134, Mar. 2015.

[13] João Silva , Valery Sklyarov and Iouliia Skliarova,”Comparison of On-chip Communications in Zynq-7000 All

Programmable Systems-on-Chip” pp:31-34 March 2015

https://ieeexplore.ieee.org/author/37290443200
https://ieeexplore.ieee.org/author/37371704800
https://ieeexplore.ieee.org/author/37284663400

