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ABSTRACT

Epilepsy is a brain disorder in which a patient undergoes frequent seizures.
Around 30% of patients affected with epilepsy cannot be treated with
medicines/surgical procedures. However, abnormal activity, known as the
preictal state, starts some time before the seizure actually occurs. Therefore,
it may be possible to deliver medication prior to the occurrence of a seizure
if initiation of the preictal state is predicted before the seizure onset and it
can also help in controlling the subsequent seizures. Electroencephalogram
(EEG) signals are used to analyze the states of epileptic seizures which
can be recorded by placing electrodes on scalp of subject known as scalp
EEG signals or by implanting electrodes inside the brain on the surface
called intracranial EEG signals. In this research, an epileptic seizure pre-
diction method is proposed that predicts the start of preictal state before
the seizure’s onset using scalp and intracranial EEG. Proposed epileptic
seizure prediction method involves three steps; (i) Preprocessing of EEG
signals, (ii) Features extraction and (iii) Classification of preictal and inter-
ictal states. In this method, EEG signals are preprocessed using empirical
mode decomposition followed by bandpass filtering and conversion of time
domain signals into frequency domain using short time Fourier transform.
Class imbalance problem is mitigated by generating synthetic preictal seg-
ments using generative adversarial networks. A three layer customized
convolutional neural network is proposed to extract automated features
and combined with handcrafted features to get a comprehensive feature
set. To reduce the effect of curse of dimensionality, correlated features
have been dropped from feature set using Pearson correlation coefficient
and an optimal subset of features has been selected using particle swarm
optimization. Feature set is then used to train an ensemble classifier that
combines Support Vector Machine (SVM), Convolutional Neural Network
(CNN) and Long Short Term Memory Units (LSTMs) using Model agnostic
meta learning. CHBMIT scalp EEG and American epilepsy society-Kaggle
seizure prediction challenge intracranial EEG datasets have been used to
train and test the proposed method. An average sensitivity of 96.28 %
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and specificity of 95.65 % with average anticipation time of 33 minutes
on all subjects of CHBMIT has been achieved by proposed method. On
American epilepsy society-Kaggle seizure prediction dataset, an average
sensitivity and specificity of 94.2 % and 95.8 % has been achieved on all
subjects. Results achieved by proposed method have been compared with
the existing state of the art epileptic seizure prediction methods. Proposed
method is able to achieve more than 3 % sensitivity, specificity and average
anticipation time compared to existing methods.
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CHAPTER 1
INTRODUCTION

Epilepsy is a disease, in which patients experience one or more seizures

frequently due to disorder in the brain functionality. More than 65 million

people [1] have been effected by this disease. Epileptic seizures can be

categorized into two types including focal [2] and generalized [3] seizures.

In focal seizures, abnormal activity starts during seizure due to disorder in

neurons’ functionality in a specific part of brain and are further divided into

multiple categories including motor, sensory, autonomic and psychological

seizures. Motor seizures cause abnormal movement of muscles or joints,

whereas, in sensory seizures patient experiences pain or shocks. Autonomic

seizures affect any organ’s activity like heart rate or blood pressure and

psychological seizures disturb the emotions or mood of subject.

In generalized seizures, abnormal activity of neurons spreads in the

whole brain and is not limited to a specific region. These seizures are also

categorized into absence, tonic, atonic, clonic, myoclinic and tonic-clinic. In

the absence seizures, patient loses consciousness, whereas, in tonic seizures,

a patient experiences stiffness in the muscles. Patients experience loss in

muscle tone in atonic seizures and feel jerks in myoclonic seizures. Major

causes of epilepsy are still not known. Due to stochastic nature of epileptic

seizures, if a seizure occurs during driving, climbing stairs, walking, or

swimming then it can lead towards serious accidents.

Patients affected from Epilepsy are treated with medicines [4] and in

some cases with surgery [5]. Initially, medicines are used to control seizures

and if medicines fail to stop seizures, then surgical treatment is provided,

however, surgery is only beneficial in case of patients having focal epilepsy.
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Focal seizures though treatable with surgery at early stage are converted into

generalized seizures after some time. Patients with generalized epileptic

seizures cannot be treated with surgery as there is no specific part of brain

which is causing seizures. In more than 30 % of the cases, surgery and

medicines are unable to control seizures [6], therefore, effective method

to control epileptic seizures is to predict the onset of seizure few minutes

before it occurs and control it with medication. Abnormal activity of the

brain can be observed using Electroencephalogram (EEG) signals.

1.1 Electroencephalogram Signals

Electroencephalogram (EEG) is a test used to record the electrical activity

inside the brain. These signals contain information that can be used for

variety of applications including mind-controlled games [7], emotion recog-

nition [8], Neuromarketing [9] and movement related potentials for stroke

patients [10] depending upon the placement of electrodes. There is also a

significant use of EEG signals in diagnosis and treatment of brain related

diseases including Stroke [11], Alzheimer [12], Dementia [13], Parkin-

son [14], and Epilepsy [15]. In case of any neurological disorder, an abrupt

change in the electrical signals inside the brain can be observed through

EEG recordings. These signals can be recorded by placing electrodes on

scalp or inside the skull of the subject called as scalp EEG and intracranial

EEG (iEEG), respectively. The scalp EEG [16] is a non-invasive method to

record electric potentials inside the brain produced due to electrical activity

of neurons. Normally, it is measured by taking the difference in electrical

potentials of two electrodes which are symmetrically arrayed after pacing

electrodes on scalp of subject. In iEEG [17], electrodes are placed directly

on the surface of the brain.

In scalp EEG signals acquisition, impedance is essentially checked

before recording of these signals. Impedance is measure in kΩ using digital

devices. EEG recordings with impedance value of 10 kΩ is considered

as acceptable, however, recommended value is less than 5 kΩ. In case if
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the impedance of electrodes falls below 100 Ω then it is not acceptable

as it represents the short circuit between electrodes placed on the scalp of

subjects. Normal use of gel or saline can lower the impedance, but excessive

use is avoided to ensure that it does not reduce below the normal threshold

level.

Figure 1.1: Electroencephalogram Signals Acquisition methods. a) Scalp EEG Signals
Acquisition b) Intracranial EEG Signals Acquisition1

Figure 1.1 shows EEG signals acquisition from subjects using scalp

and intracranial methods. Spatial distribution of electrodes plays a vital

role in localizing the abnormality in the EEG signals. International 10-20

system is a standard method for placement of EEG electrodes on the scalp

of subjects and an accuracy of 0.5 cm can be achieved with the help of

this system. However, due to assumptions of anatomy of brain, it has been

criticized. Spatial distribution of electrodes becomes important when there

is dysfunction and anatomy of brain must be kept under consideration while

placement of electrodes. Dipole localization is one of the methods for

placement of electrodes for particular brain’s anatomy in which electrodes

are localized in spatial domain and placed on brain after mapping with the

help of MR images.
1http://www.olavkrigolson.com/that-neuroscience-guy/archives/04-2016/
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In the 10-20 electrodes positioning system on the cerebral cortex [18–20],

the letters O, T , F , P and C stand for Occipital, Temporal, Frontal, Parietal

and Central respectively. Each reading from the channel Fp1 - F7 gives

the value of potential difference between the electrodes Fp1 and F7. All

EEG channels indicate the potential difference measured between multiple

electrodes from a specific region inside the brain. For example, the electrode

positioned at Fp1 - F7 represents the neuron’s activity originating from the

frontal lobe of the left hemisphere. Even number with the alphabets denotes

the brain’s activity of right hemisphere, whereas, odd numbers represent

the brain’s activity of left hemisphere. The letter z refers to an electrode

placed on the midline. Figure 1.2 shows the electrodes positions using

10-20 system.

Figure 1.2: The international 10-20 system for placement of electrodes (a) left (b) above
the head2

Researchers [21–26] have divided EEG into different bands in the fre-

quency domain. These bands have different frequency ranges and represent

the following activities.

• α band (8-14 Hz) shows the calmness of the brain.
2https://www.dreamstime.com/stock-photos-eeg-electrode-placement-image29444803
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Figure 1.3: Thirty one seconds long Single Channel EEG signal with Four States of
Epileptic Seizures; Interictal, Preictal, Ictal and Postictal.

• β band (14-30 Hz) represents the concentrated work of an occupied

and busy brain.

• Θ band (4-8 Hz) reflects the excitement and shock.

• The δ band (1-4 Hz) describes sleep, relaxation and fatigue.

These frequency bands provide the information about normal and seizure

state of a subject. Epileptic seizures consist of four different states [27]

based on the occurrence of the seizure onset. These states include interictal

[28], preictal [29], ictal [30] and postictal [31] state. Interictal state is the

normal state in which brain functions properly without any interruption. An

abnormal activity inside brain starts a few minutes before a seizure onset

occurs. This abnormal activity is named as preictal state helps in predicting

epileptic seizures. If preictal state is predicted few minutes before the

onset, then the first seizure or any subsequent seizure can be controlled with

the help of medicines or any other therapeutic measure before it occurs.

However, there is no clear indication of start of this pre-seizure activity.

Ictal state refers to the start of onset of a seizure and ends with the seizure.

Postictal state starts after seizure ends and lasts for few minutes. Figure 1.3
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shows thirty one seconds long Single Channel EEG signal with Four States

of Epileptic Seizures; Interictal, Preictal, Ictal and Postictal.

Epileptic seizure detection [32] is a method for diagnosing whether

patient had suffered with a seizure or not and it involves classification

between ictal state with others. In epileptic seizure prediction [33] method,

classification of preictal state and interictal state is involved to predict

an upcoming seizure before it occurs. In this thesis, a seizure prediction

method using intracranial and scalp EEG signals has been proposed. The

aim of this research is to predict epileptic seizure by detecting the start of

preictal state sufficient time before a seizure onset starts. This will help in

controlling the first or subsequent epileptic seizure to improve the quality of

life of an epilepsy patient. Machine learning and deep learning methods in

combination with signal processing techniques help in predicting epileptic

seizures using EEG signals.

1.2 Motivation

Epilepsy affects more than 1 % of the world’s population while more than

30 % of epilepsy patients do not recover completely from epileptic seizures

upon medication or surgical procedures. Epileptic seizures are sudden in

nature; therefore, in many cases, patients get very marginal time with no

obvious clinical symptoms before the seizure onset starts. Sometimes, they

suffer from frequent seizures subsequently after first seizure ends. More

than 80 % of the patients affected from epilepsy live in developing countries.

Epileptic seizures upon occurrence limit the patient’s life as it may cause

accident and can lead towards serious injury. Medical staff in many small

cities and rural areas of developing countries is not very well trained for

analysis of EEG signals. Devices available in health facilities are not well

equipped with automated detection technology and the diagnosis depends

only on visual analysis of EEG signals.

Epileptic seizures are divided into two types including focal seizures

which are limited to a specific part of brain and generalized seizures where
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the region responsible for seizures is unknown. In focal epilepsy, seizures

can be treated with surgery and brain tissues responsible for producing

seizures are removed, whereas, in generalized epilepsy, seizures cannot

be treated with surgery as the region of brain responsible for generating

seizures is unknown. In focal epilepsy, if subsequent seizures are not

controlled, then these seizures are converted into generalized epilepsy which

is difficult to control than focal epilepsy.

Figure 1.4: Epilepsy patients treatable with medication, surgery or non-treatable with both

Patients remain unconscious for few minutes to few hours after seizure

ends making the life of patient very difficult. Figure 1.4 shows approx-

imately 60% of epilepsy patients can be treated with surgery, 10% with

medication and 30% cannot be treated with medication or surgery. These

30% patients are refractory to medication and their seizures cannot be con-

trolled with medicines. Due to the stochastic nature of epileptic seizure,

it could lead towards patient’s injury while driving, swimming, walking

on roadside or during exercise. Hence, limiting the life of a patient and

disturbing the normal activities of daily routine. Therefore, it is extremely

important to predict seizure onset before it occurs to control first or subse-

quent seizures. In many cases, patients suffer from multiple seizures with a

delay of few minutes to few hours.
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A method for accurate prediction of epileptic seizure could help in

preventing the subsequent seizures using therapeutic interventions to control

the seizures. It will reduce the chance of injury and will significantly

improve the quality of life of epilepsy patients. This system will help

medical staff to monitor and suggest preventive measures for controlling

seizures in time. Rural areas of developing countries lack the availability of

high quality health facilities, this system can be quite useful for treatment of

epilepsy patients. The proposed method will help epilepsy affected patients

in controlling the seizures upon successful prediction before the onset of a

seizure starts.

1.3 Problem Statement

Patients affected from epilepsy experience one or more seizures frequently

due to disorder in the brain functionality. Currently, more than 65 million

people have active epilepsy worldwide. Epileptic seizures are sudden in

nature; therefore, in many cases, patients get very marginal time with no

obvious clinical symptoms before the seizure onset starts. Sometimes, they

suffer from frequent seizures subsequently after first seizure ends. It is

extremely important to control subsequent seizures of focal epilepsy, oth-

erwise, it is converted into generalized epilepsy which cannot be treated

with surgery. Existing epileptic seizure prediction methods are unable to

achieve increased sensitivity, specificity and average anticipation time due

to multiple factors including presence of noise in the EEG signals, low

interclass variance between features and low performance of classifiers.

Zhang et al [34] have achieved highest sensitivity of 92.9% with specificity

of 87.04% using scalp EEG signals. Similarly, researchers [35–42] have

obtained sensitivity ranges between 70-90% with specificity less than the

sensitivity. In epileptic seizure prediction, it is very important to achieve

increased sensitivity and specificity. Therefore, an epileptic seizure predic-

tion system need to be developed to predict epileptic seizures before the
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onset of seizure using effective preprocessing, comprehensive feature set

extraction and accurate classification between preictal and interictal states.

1.4 Epileptic Seizure Prediction

Prediction of epileptic seizures involves detecting the start of preictal state as

early as possible to percent the first or subsequent seizures with medicines.

Start of preictal state can be detected by performing classification between

preictal and interictal state samples. A typical epileptic seizure prediction

method involves four steps including acquisition of EEG signals, noise

removal from EEG signals, feature extraction and classification. In the

first step, EEG signals are recorded by placing electrodes on the scalp or

on the surface of epilepsy effected patient’s brain. After data acquisition,

preprocessing of EEG signals is performed for noise removal to increase

Signal to Noise Ratio (SNR) [43] and then features are extracted from both

interictal and preictal states. In the last step, classification between interictal

and preictal states is done to identify whether the EEG signals belong to

preictal class or interictal. Upon successful detection of preictal state, an

alarm is generated so that an upcoming seizure can be prevented before it

occurs.

Preictal state can start 30 to 90 minutes before the ictal state. Researchers

have considered 30, 60 or 90 minutes EEG signals before ictal state as

preictal state to apply seizure prediction methods. Many researchers [34–

42, 44–72] have proposed machine learning and deep learning methods for

prediction of epileptic seizures using scalp and intracranial EEG signals.

Some common preprocessing methods include filtering of the EEG signals

in the time domain with bandpass Butterworth [42] and Notch filters [46].

Common Spatial Pattern (CSP) filter [73] and Optimized Spatial Pattern

(OSP) filter [74] also provide a better signal to noise ratio when applied

on EEG signals. Empirical Mode Decomposition (EMD) [35] is also quite

useful to preprocess EEG signals as it gives intrinsic mode functions and

by keeping low-frequency components, noise can be removed as high
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frequency components are prone to noise. In this way, increased signal to

noise ratio can be achieved. Fourier transform [39] and Wavelet transform

[35] can also be used to preprocess the EEG signals in order to make them

suitable to feed in Convolutional Neural Networks (CNN) for automated

feature extraction.

After noise removal, features are extracted, and suitable features are

selected with high interclass variance and low intraclass variance [75] to

form a feature set. Researchers [35, 36, 38, 44–48] have extracted hand-

crafted features in both temporal and spectral domain to predict epileptic

seizures. Temporal features include the first four statistical moments [76],

entropy [77], approximate entropy [76], Hjorth parameters [78] and Lya-

punov exponents [79]. Statistical moments include mean, variance, skew-

ness and kurtosis in time domain EEG signals. In spectral features [80],

power spectral density is computed to compute EEG signal’s energy and

then spectral centroid, variational coefficient, spectral skewness and spec-

tral kurtosis is computed in frequency domain. After the evolution of deep

learning algorithms, automated feature extraction using CNN has also been

used by many researchers [39,40,49,50,61,62] that have proved to be good

as these features are extracted with class information provided along with

data.

Classification between interictal and preictal states is performed after

feature extraction from both preictal and interictal state EEG signals with

the help of traditional classifiers or deep learning methods. Researchers

have used Support Vector Machine (SVM) [35], Random forest [81], k-

Nearest Neighbor (KNN) [82], Naïve Bayes [83] and Multi-layer Percep-

tron (MLP) [84] as machine learning classifiers to classify preictal and

interictal states. Deep learning classifiers [85] including CNN [50], Recur-

rent Neural Networks (RNN) [86] and Long Short Term Memory Units

(LSTM) [50] can also be used for classification of EEG signals to predict

epileptic seizures. Figure 1.5 shows the flow diagram of proposed method

for prediction of epileptic seizures.
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Figure 1.5: Flow Diagram of Proposed Methodology for Epileptic Seizure Prediction

In the first step of proposed method, EEG signals have been preprocessed

to remove noise with the help of Empirical Mode Decomposition. These

signals are then converted from time domain to frequency domain using

Short Time Fourier Transform and Butterworth bandpass filter has been
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applied to remove power line noise. After noise removal, synthetic EEG

segments of preictal states have been generated using Generative adversarial

networks to mitigate the effect of class imbalance problem. After prepro-

cessing, handcrafted features including statistical and spectral moments

and automated features using CNN have been extracted for all channels of

EEG signals for both preictal and interictal states. To reduce the curse of di-

mensionality effect, cross correlation between features have been computed

using Pearson Correlation Coefficient (PCC) [87] and highly correlated fea-

tures have been dropped from the feature set. Particle Swarm Optimization

(PSO) [88] is then applied to select an optimal feature set. Preictal and

interictal states have been classified using Model Agnostic Meta Learning

(MAML) [89] by feeding output probabilities of SVM, CNN and LSTM.

k-fold cross validation technique has been used to split the data into training

and testing set.

Few datasets of EEG signals for humans and canine including scalp EEG

dataset and intracranial EEG signals are publicly available. The proposed

method has been applied on two datasets and obtained results have been

compared with recent state of the art seizure prediction methods on same

datasets. Features are extracted by dividing the samples into groups of

multiple seconds known as windows, and are selected from a fixed length

of EEG signals (one second to a few minutes).

1.5 Objectives

Classification between interictal and preictal states using EEG signals of

epilepsy patients is a very challenging task for prediction of epileptic

seizures. EEG signals are non-stationary in nature and it is very com-

plex task to distinguish between interictal and preictal states. The objective

of this research is to propose and validate an epileptic seizure prediction

method that uses EEG signals and accurately classify interictal and preictal

states with the help of deep learning techniques. The main objectives of

this research are as follows:
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• To remove different types of noise from scalp and intracranial EEG

signals.

• To Mitigate the effect of class imbalance with the help of effective

preprocessing techniques for EEG signals.

• To propose a lightweight architecture of CNN for automated feature

extraction.

• To achieve increased sensitivity and specificity with low false alarms.

• To predict the epileptic seizures well before time with increased aver-

age anticipation time.

1.6 Contributions

Contributions of this research are as follows:

• Class imbalance problem has been mitigated by data augmentation

using Geneartive Adversarial Networks.

• Noise removal in both time and frequency domain has been performed

to remove all types of noise including power line, inter-electrode

interference and noise added due to other artifacts.

• A three layer customized CNN with minimum number of training

parameters.

• A comprehensive method for classification between preictal and inter-

ictal has been proposed.

• Proposed method has achieved increased sensitivity, specificity, and

average anticipation time on all subjects. Existing methods have not

achieved these three performance measures on all subjects of dataset

and only reported results on selected subjects of dataset.



Introduction 14

1.7 Thesis Organization

Remainder of the thesis is organized as follows:

• Chapter 2 provides the comparison between existing state of the art

epileptic seizure prediction methods on scalp and intracranial EEG

datasets. It also gives the analysis of existing methods in terms of

classification performance and identifies limitations in the existing

epileptic seizure prediction methods.

• Chapter 3 presents the proposed preprocessing method to increase

Signal to Noise ratio of EEG signals for better prediction of epileptic

seizures.

• Chapter 4 describes the set of extracted features in the proposed

method including both handcrafted and automated features using deep

learning methods. It also explains the formation of feature set by

applying feature selection techniques and discusses the proposed clas-

sification methodology.

• Chapter 5 gives a detailed description of datasets used in this research

and experimental settings and results achieved with state of the art

seizure prediction methods.

• Chapter 6 concludes the thesis, presents contributions to literature and

proposes future directions.
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CHAPTER 2
LITERATURE REVIEW

Analysis of EEG signals has been used by many researchers for detection

and prediction of epileptic seizures for more than two decades. Seizure

detection [90] involves automated detection of onset of a seizure, whereas,

seizure prediction [33] involves the detection of start of preictal class so

that subsequent seizure may be prevented before it occurs. It is evident

from EEG signal recordings of an epilepsy affected patient that there is

a clear difference between ictal state and other states. Therefore, seizure

detection is a relatively less complex problem than seizure prediction as

there is overlapping of interictal and preictal states and very less difference

in both states. Moreover, no annotations exist for the start of preictal states,

therefore, increasing the complexity of prediction.

Figure 2.1: a) Generalized vs Focal Epilepsy b) Regions of brain and responsibility of
each part1

1https://www.humanbrainfacts.org/basic-structure-and-function-of-human-
brain.php,https://twitter.com/NeuroPace/status/910435887179227137/photo/1
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Seizures can be categorized as generalized and focal seizures depending

on the region of brain that causes the seizures. Figure 2.1 shows the

difference between generalized and focal/partial [91] seizures. It also

specifies the regions including motor, sensory,broca area, frontal, temporal,

occipital and parietal lobe along with functions performed by these regions

of brain. In generalized epileptic seizures [92, 93], there is no known

specific part of brain which is responsible for generating seizures. Surgical

treatments cannot be provided to patients affected from generalized epilepsy

and can only be treated with regular medication. However, excessive use of

medication for controlling seizures is not much effective and it may have

many side effects on patient’s health. Therefore, generalized seizures need

to be predicted using scalp EEG signals so that medication can be provided

to control the first seizure or subsequent seizures before they occur.

Focal seizures can be treated with the help of surgery. Tissues are

removed from the specific region of brain which is responsible for seizures.

This is an invasive method and it is very difficult to localize a specific region

of brain for surgical treatment. If focal seizures are not timely controlled

then these seizures are converted into generalized seizures which cannot

be treated with the surgery. Therefore, it is extremely important to predict

these focal seizures with the help of scalp or intracranial EEG signals.

A typical epileptic seizure prediction method involves acquisition of

scalp or intracranial EEG signals from epilepsy affected patients, prepro-

cessing of EEG signals for noise removal to increase SNR of EEG signals,

feature extraction and classification. In this chapter, existing state of the art

epileptic seizure prediction methods proposed by researchers in recent years

using both scalp and intracranial EEG datasets are compared. Analysis of

these methods is performed to identify the research gaps in the the existing

epileptic seizure prediction methods.

2.1 Seizure Prediction Methods using Scalp EEG signals

Accurate prediction of epileptic seizures has always remained a challenge
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due to low SNR in EEG signals acquired from the scalp or brain’s surface

of epilepsy affected patient, comprehensive feature set extraction and clas-

sification between preictal and interictal classes with increased true positive

rate and decreased false positive rate. In case of scalp EEG signals, problem

of low SNR is very common due to interference between multiple electrodes

as the placement of electrodes is also not on the surface of brain, power

line noise, eye blinking, interference of heart rate and electrical activity

generated in movement related cortical potentials. Feature extraction also

remains a challenge as there is no clear distinction between preictal and

interictal states and no these states are not annotated.

In recent years, many researchers [34–42, 44–54] have proposed differ-

ent machine learning and deep learning methods for prediction of epileptic

seizures. These methods consist of preprocessing of scalp EEG signals

for noise removal to increase SNR of EEG signals for better characteriza-

tion of preictal and interictal states. Preprocessing is followed by feature

extraction to form a feature vector for classification between preictal and

interictal states. Publicly available dataset of scalp EEG signals recorded

from multiple subjects has been used by these methods to train and validate

the epileptic seizure prediction methods. Seizure prediction methods on

CHBMIT [94] dataset proposed in recent years have been compared and

research gaps have been identified after analysis of these methods. Pre-

processing, feature extraction and classification steps have been compared

separately followed by detailed analysis based on sensitivity, specificity and

average anticipation time.

2.1.1 EEG Preprocessing Techniques

EEG signals are prone to noise due to power line noise [95], inter-electrode

interference [96], movement related cortical potentials [96], Electrocardio-

gram [97], and blinking eyes [98]. All these factors decrease Signal to Noise

Ratio (SNR) [99] of EEG signals, leading to less accurate classification

between interictal and preictal states. Therefore, accurate epileptic seizure
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Figure 2.2: Preprocessing techniques for Epileptic seizure prediction methods using scalp
EEG signals

prediction remains a challenge. Researchers have proposed different tech-

niques to remove noise from scalp EEG signals so that SNR can be increased.

These techniques include Bandpass/ Band-stop filtering [36], Wavelet trans-

form [52], Discrete Fourier Transform (DFT) [100], Fast Fourier Transform

(FFT) [101], Short Time Fourier Transform (STFT) [102], Pearson Correla-

tion Coefficient (PCC) [34], Hilbert Vibration Decomposition (HVD) [53]

and Empirical Mode Decomposition (EMD) [35]. Figure 2.2 provides mul-

tiple preprocessing techniques used by researchers for predicting epileptic

seizures in recent years. Preprocessing for noise removal is essential step

for accurate classification. Existing methods that have employed little or

no preprocessing have not achieved better results in terms of sensitivity,

specificity and average anticipation time.

Behnam et al. [36] proposed low pass filter to remove the noise that is

incurred in the EEG signals due to interference between multiple biological

signals. Myers et al [44] have also used bandpass filter to increase the SNR

of EEG signals. In [46], authors have preprocessed EEG signals with band-

pass filter of 0.5 to 45 Hz to remove the noise artifacts due to interference

between channels and power line. Mamli et al [51] eliminated power line

noise of 50 Hz with the help of 10th order Notch filter [103]. Alshebeili
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et al [42] have computed derivatives, median and mean and variance after

applying bandstop filter as preprocessing of EEG signals to reduce the

effect of noise. Pearson Correlation Coefficient (PCC) [104] matrices have

been extracted by Zhang et al [34] to assess the synchronization between

multiple channels of scalp EEG signals.

Figure 2.3: (a) Spectrogram of EEG signal with power line noise (b) Spectrogram of EEG
Signal after removal of power line noise

Researchers [39, 45] have converted EEG signals from time domain to

frequency domain and to remove noise in frequency domain signals using

Fast Fourier Transform (FFT) [105]. Due to non-stationary [106] and non-

linear [107] nature of EEG signals, researchers [49, 54] proposed STFT

[108] so that SNR can be increased using short intervals of EEG signals

instead of computing Fourier transform by passing the EEG signals for long

duration. With the assumption that EEG signals remain stationary in short

interval of time, this STFT has performed better in some cases. Figure 2.3

illustrates the spectrogram of EEG signal converted into frequency domain

with power line noise and after removal of power line noise. Suitable

combination of different preprocessing techniques for removing all types

of noise while keeping the important information of EEG signals can be

useful in effective seizure prediction. There exists class imbalance between

preictal and interictal states samples as very few minutes of recordings

consist of preictal state. This problem has been ignored in recent epileptic
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seizure prediction methods which affects the overall performance of these

methods.

Class imbalance problem exists in the EEG signals that are recorded

for epilepsy patients due to a smaller number of samples of preictal as

compared to interictal state segments. In some cases, the ratio between

preictal to interictal is 1:10 that affects the classification accuracy adversely.

Researchers have proposed multiple data augmentation techniques to re-

duce the effect of class imbalance using geometric transformations, noise

addition, oversampling, mixing Intrinsic mode functions (IMFs), synthetic

data generation using Generative adversarial networks (GANs) using CNNs

and Recurrent GANs. Wang et al [109] have added Gaussian noise in the

EEG signals with different variance to increase the samples of EEG signals.

Authors have compared the classification accuracy with and without data

augmentation and have achieved significant increase in the accuracy when

the data augmentation is performed. Zhang et al [110] have proposed a

method for EEG data augmentation by mixing IMFs extracted by applying

empirical mode decomposition. Classification results have been reported on

the real and synthetic data separately and have obtained same accuracy on

both EEG signals. GANs using recurrent neural network layers have been

proposed for synthetic EEG signals generation by Abdelfatteh et al [111]

GANs with LSTM layers have been used for data augmentation by Harada

et al [112] GANs have better performance for data augmentation of EEG

signals than other techniques.

2.1.2 EEG Feature Extraction Methods

Extracting features with increased inter-class and low intra-class variance

for preictal and interictal classes has been a challenging task for predicting

epileptic seizures. In recent years, many researchers [34–42, 44–54] have

proposed multiple methods for feature extraction using both handcrafted

as well as automated features with the help of deep learning techniques.

These features include statistical moments in time and spectral moments in
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Figure 2.4: Feature extraction techniques for Epileptic seizure prediction methods using
scalp EEG signals

frequency domains, univariate/ multivariate features, entropy, approximate

entropy, sample entropy, Hjorth parameters [113] including activity, mo-

bility and complexity, derivatives, histogram-based features, and pdf bins.

All these handcrafted features have achieved good results in terms of sensi-

tivity and specificity but with the evolution of deep learning methods for

feature extraction that include use of CNN [114], RNN [115], LSTM [116],

autoencoders [117] and RCNN [118], deep learning based features have

gained so much attention of researchers. In these automated methods of

feature extraction, one of the most effective factors is their ability to extract

features while keeping the respective class under consideration. Such meth-

ods provide high interclass variance in extracted features which ultimately

lead towards better classification of different states of seizures. Figure 2.4

categorizes the commonly used feature extraction techniques for epileptic

seizure prediction method on scalp EEG dataset in recent years.

Barkin et al [53] have extracted mean, variance, skewness, kurtosis [119],

sample entropy [120] and power spectral density (PSD) [121] as features for

prediction of epileptic seizures. Alshebeili et al [42] have used derivative,

local mean, variance and median as features for classification between

interictal and preictal states. Another important feature extraction method



Literature Review 22

is combining the multiple channels of EEG signals to get a single surrogate

channel. Alotaiby et al [38] proposed Common Spatial Pattern (CSP) [73]

filtering to extract features from scalp EEG signals. Frequency bands

including α (8 Hz to 12 Hz), β (12 Hz to 30 Hz), γ (30 Hz to 60 Hz) and

θ frequency (4 Hz to 8 Hz) are useful in categorizing states of epileptic

seizures. Figure 2.5 illustrated the feature extraction process that involves

noise removal and extraction of skewness and kurtosis from denoised EEG

signal.

Figure 2.5: Illustration of feature extraction process (a) Single Channel EEG signal (b)
EEG signal after noise removal (c) Plot of Skewness from denoised EEG signal (d) Plot of

Skewness from denoised EEG signal

Myers et al [44] and Chu et al [45] have extracted Phase locking values

(PLV) [122] for these frequency bands as features to distinguish between
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interictal and preictal classes. Mamli et al [51] proposed Gray Level Co-

occurrence Matrix (GLCM) [123] as features. Cui et al [48] have performed

automated feature extraction using Bag of Waves method. Many researchers

[34,39,40,49,50,54] in recent years have used different variants of CNN for

automated feature extraction of preictal and interictal classes for epileptic

seizure prediction.

Barkin et al [53] have extracted statistical moments including standard

deviation (σ ), skewness (βt) and kurtosis (Kt) which can be computed

through following equations.

σ =

√√√√ 1
N

N

∑
i=1

(xi−µ)2 (2.1)

βt =
1
N

N

∑
i=1

(xi−µ)3 (2.2)

Kt = E

[(
xi−µt

σt

)4
]

(2.3)

Where, xi is the EEG signal and N is the number of samples. Spec-

tral features are frequency domain features and include spectral centroid,

variational coefficient, and spectral skewness. These features can be com-

puted easily with the help of power spectral density. Power spectral den-

sity [124, 125] is computed as follows:.

P(w) =
N

∑
n=1

ry[n]e− jwn (2.4)

Where, ry denotes autocorrelation of the signal xn. Chu et al [45] have ex-

tracted spectral features including spectral centroid, variational coefficient,

and spectral skewness can be computed by following equations.

Cs =
∑w wP(w)
∑w P(w)

(2.5)
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σ
2
s =

∑w(w−Cs)
2P(w)

∑w P(w)
(2.6)

βs =
∑w((w−Cs)/σs)

3P(w)
∑w P(w)

(2.7)

Fei et al [46] have proposed Lyapunov exponents as features which

are useful in determining the aperiodic behavior of signals. Assume that

||δxi(0)|| and ||δxi(t)|| are the distances of two points in ith direction. Then

the Lyapunov exponent [126] can be computed as:

λi = lim
t→∞

1
t

log2
||δxi(t)||
||δxi(0)||

(2.8)

Hjorth parameters [113] include mobility and complexity, which are

useful for the classification of EEG signals. Hjorth activity can be defined

as variance of EEG signal in time.

Activity = var(t) (2.9)

Mobility(y(t)) =

√
Activity(dy(t)

dt )

Activity(y(t))
(2.10)

Complexity(y(t)) =
Mobility(dy(t)

dt )

Mobility(y(t))
(2.11)

Automated features have been extracted in existing seizure prediction

methods using different architectures of convolutional neural networks.

Multiple convolutional layers with varying filter size and number of filters

have been proposed in existing methods for extracting automated features

from preictal and interictal states. However, to extract features from CNN,

EEG signals are converted into images with the help of Fourier or wavelet

transform. CNN extracts features keeping class information under consider-

ation, whereas, handcrafted features do not consider such information while

feature extraction. Number of trainable parameters, layers, filter size and
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total number of filters for each convolution layer are important factors that

need to be optimized in CNN for effective feature extraction.

Khan et al [37] have proposed CNN architecture of seven convolutional

layers for automated feature extraction from EEG signals. Acharya et al [50]

and Wei et al [40] have used five convolutional layers to extract features

using CNN. Liu et al [39] have extracted features from two CNNs of five

layers in each CNN. They have used time series signals as input in first CNN

and frequency domain signals for second as input to CNN. Truong et al [49]

and Zhang et al [34] have proposed a solution for prediction of epileptic

seizures and have extracted features using three layer convolutional neural

network architecture.

2.1.3 EEG Classification Models

Classifier selection is one of the key steps in classification of EEG signals

for preictal and interictal classes. Researchers have used multiple machine

learning and deep learning-based classifiers for prediction of epileptic

seizures for classification between multiple states of seizures using EEG

signals. Accurate classification between preictal and interictal state is

extremely important as it leads towards effective prediction of epileptic

seizures. Machine learning classifiers include Linear Discriminant Analysis

(LDA) [127], Bayesian classifier [128], K nearest neighbor (KNN) [129],

Thresholding [130], Extreme Learning Machine (ELM) [131], Support

Vector Machine (SVM) [132], Artificial Neural Network (ANN) [133],

Multilayer Perceptron (MLP) [84], Convolutional Neural Networks (CNN)

[50] and Long Short Time Memory Units (LSTM) [134].

Figure 2.6 presents classifiers used by researchers in recent years for clas-

sification of preictal and interictal classes to predict epileptic seizures using

scalp EEG signals. SVM has been widely used for the classification of EEG

signals. Other classifiers that can be used include the k-nearest neighbor

classifier and the Gaussian mixture model (GMM) [135]. CNNs consist

of fully connected layers after convolution layers for classification and are
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Figure 2.6: Classifiers for Epileptic seizure prediction methods proposed by researchers in
recent state of the art methods on scalp EEG signals

also considered very useful for classification. SVM and CNN perform well

in classification between multiple states of seizures. Gaussian Mixture

Models (GMM) [136], Logistic Regression (LR) [137], and Random Forest

(RF) [138] have also been used by researchers.

Alotaiby et al. [38] and Zaghloul et al. [47] have proposed classification

using Linear Discriminant Analysis (LDA) and achieved average classifi-

cation performance. Researchers [51, 52] have performance classification

using k-NN classifier. Bayesian classifier has been applied by Barkin et

al. [53] for classification between interictal and preictal classes. Threshold-

ing is also a useful method to classify multiple classes of epileptic seizures,

however, threshold selection is an empirical problem. Myers et al. [44]

and Chu et al. [44, 45] have used specific thresholds for each patient for

classification between two classes. This threshold is patient specific as

researchers do not find a particular threshold which can be applied on all

patients, therefore, it limits the use of threhold for classification.

Extreme learning machine has been used by Cui et al. [48] for classifi-

cation. SVM is also widely used classifier and linear decision boundary is

good for classification between epileptic seizure classes. Chu et al. [45]

, Mamli et al. [51] and Usman et al. [54] have achieved good results of
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epileptic seizure prediction with SVM. Many researchers have selected

deep learning based classifiers for classification between interictal and

preictal states of epileptic seizures. Fei et al. [46], Barkin et al. [53] and

Alshebeili et al. [42] classified preictal and interictal states using MLP.

Researchers [37, 39, 49, 50] have used CNN for classification which is quite

similar to MLP with fully connected layers. LSTM has also been proved as

good classifier by recent methods [40] in terms of sensitivity and specificity.

2.2 Analysis of Existing Seizure Prediction Method using
Scalp EEG Signals

State of the art epileptic seizure prediction method proposed by researchers

in recent years have been compared. All these methods have been evaluated

based on sensitivity, specificity, and average anticipation time. Sensitiv-

ity measures the true positive rate and specificity is the true negative rate,

whereas, average anticipation time is the detection time of start of preictal

state of a seizure to predict the upcoming seizure. Table 5.17 presents

a comparison between state of the art epileptic seizure prediction meth-

ods using scalp EEG signals proposed by researchers in recent years. A

typical seizure prediction involves three steps including preprocessing of

EEG signals for noise removal, feature extraction to get distinct features

for preictal and interictal classes and classification between these states.

Objective of an effective epileptic seizure prediction method is to achieve

increased sensitivity, specificity, and average anticipation time. Without

preprocessing of EEG signals, researchers are unable to achieve the desired

results. Researchers [38, 47, 48] have ignored preprocessing of EEG signals

due to which they have achieved considerably poor results. Zaghloul et

al. [47] have not preprocessed EEG signals and could achieve only 71%

sensitivity and 14.5 seconds average anticipation time, however, authors

have not reported specificity.
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Alotaiby et al. [38] have achieved 89% sensitivity with 61% specificity

without using preprocessing step. Specificity is also important in seizure

prediction methods as false positive could also affect patient’s health ad-

versely upon medication to control the seizure which is not going to occur

actually. Similarly, Cui et al [48] have obtained sensitivity and specificity

of 70.5 % and 75 % respectively with average anticipation time of 1 minute.

It is also due to non-preprocessing of EEG signals. Significant increase

in sensitivity and specificity has been observed in the methods proposed

by researchers who have preprocessed EEG signals. Common techniques

for preprocessing of scalp EEG signals include Bandpass/ Bandstop fil-

ter [139], Wavelet transform [140], Fast Fourier transform [102], Short

Time Fourier transform [108], Wavelet transform [141], Empirical Mode

Decomposition [142], z-score normalization [143], Hilbert Vibration De-

composition [53], and multichannel fusion to form a surrogate channel.

Feature extraction step in epileptic seizure prediction method is equally

important like preprocessing with the focus to extract features that dis-

criminate preictal and interictal classes. Researchers have proposed both

handcrafted as well as automated feature extraction techniques for seizure

prediction. Handcrafted features include Phase locking values from dif-

ferent frequency bands of EEG signals, statistical and spectral moments,

lyapunov exponents, PDF bins, gray level co-occurrence matrix and Fourier

transform based features.

Automated features have also been extracted in multiple methods using

CNN. Researchers have used proposed different architectures of CNN for

automated feature extraction. Cho et al. [35] and Myers et al. [44] have

extracted phase locking values from different frequency bands of EEG

signals and have achieved sensitivity of 80.54 % and 76.8 % respectively.

Chu et al. [45], Barkin et al. [53] and Alshebeili et al. [42] have attained

sensitivity of 86.68 %, 89.8 % and 88 % with specificity ranges between 86-

91 % using statistical and spectral features. Bag of waves features have been

used by Cui et al. [48] to achieve sensitivity and specificity of 70.5 % and
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75 % respectively. Khan et al. [37], Truong et al. [49], Acharya et al. [50],

Liu et al. [39], Wei et al. [40] and Zhang et al. [34] have used CNN for

automated feature extraction and have achieved sensitivity and specificity in

ranges between 80-92 % and 80-90 %. Analysis of these feature extraction

methods concludes that epileptic seizure prediction methods that have

extracted automated features using CNN, statistical and spectral features

are successful in achieving high sensitivity as well as specificity. It is

due to the fact that these techniques extract features with high interclass

variance which have the ability to distinguish between multiple classes with

increased sensitivity and specificity.

Classification is the last step in seizure prediction methods and the most

important step as the sensitivity and specificity are computed based on the

classifier performance. Researchers have used Linear Discriminant Analy-

sis, K−Nearest Neighbor, Threshold, Support Vector Machine, Artificial

Neural Networks, Extreme Learning Machine and Convolutional Neural

Network. Comparison of epileptic seizure prediction method shows that

SVM, CNN and ANN performs better in terms of sensitivity, specificity and

average anticipation time for classification between preictal and interictal

classes.

Comparison of the recent state of the art epileptic seizure prediction

method shows that preprocessing of EEG signals is a mandatory requirement

for classification of EEG signals with high sensitivity and specificity. Both

handcrafted and automated features can be extracted in the feature extraction

step, however, it has been observed that automated features outperform

than handcrafted features. A combination of both these features can be

useful but not used by researchers in existing methods. Feature selection

also helps in reducing the affect of curse of dimensionality which is also

missing in the existing techniques. Multivariate features must be extracted,

and classification must be done with the help of CNN or SVM as these two

classifiers give better detection provided that preprocessing and features

extraction have been done in an effective manner, however, there is a trade-
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off between sensitivity, specificity, and average anticipation time. It has

been seen that methods with a greater anticipation time results in increased

false alarms, which is not effective in real life application and could have

adverse effects on a patient’s health. Therefore, an optimal setting need

to be chosen to get a better sensitivity and average anticipation time with

minimum false alarms. Comparison of these classifiers shows that CNN

and SVM performed better for scalp EEG signals in terms of sensitivity,

specificity and average anticipation time.

2.3 Seizure Prediction Methods using intracranial EEG
signals

Seizures that occur due to generalized epilepsy can be predicted with the

help of non-invasive scalp EEG signals. In generalized epilepsy, region that

causes epileptic seizures is unknown, whereas, in case of focal epilepsy, a

specific region of brain causes seizures. These regions include frontal lobe,

temporal lobe, parietal lobe, and occipital lobe. To detect focal epilepsy, a

non-invasive method of recording EEG signals is used in which electrodes

are implanted on the surface of specific region of brain after performing

surgery known as intracranial EEG, however, intracranial EEG signals are

useful locating only the focal epilepsy and does not work well in case of

generalized epilepsy. The process of epileptic seizure prediction remains

the same as in case of scalp EEG signals that involves preprocessing of EEG

signals, feature extraction and classification between preictal and interictal

states. State of the art methods proposed by researchers in recent years have

been compared to predict epileptic seizures using intracranial EEG signals.

2.3.1 EEG Preprocessing Techniques

EEG signals are prone to different types of noise including power line

noise, interference between multiple electrodes, electrical signals generated

by brain for other actions like movements, vision, heart rate variations,
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speech signals and eye movement. Intracranial EEG signals are affected

by all these types of noise that lead towards decreased SNR of EEG sig-

nals, therefore, preprocessing of iEEG signals to increase the SNR for

prediction of epileptic seizures remains a challenge. Another problem with

associated with noise removal is that useful information for seizure predic-

tion must be retained while preprocessing. Multiple techniques including

Bandpass/ bandstop filtering, local mean decomposition, empirical mode

decomposition, wavelet transform, fast Fourier transform and Short time

Fourier Transform have been propsoed by researchers to increase SNR of

intracranial EEG signals. Another problem which is faced by researchers

is class imbalance between preictal and interictal class data. To deal with

this imbalanced data problem, researchers have used Synthetic Minority

Over Sampling (SMOTE) [144] in the preprocessing step. Figure 2.7 enlist

some the preprocessing techniques for epileptic seizure prediction method

on scalp EEG dataset proposed by researchers in recent years.

Figure 2.7: Preprocessing techniques for Epileptic seizure prediction methods using
intracranial EEG signals

Shiao et al. [58] have used bandpass filter to split the EEG signals into

different frequency bands to compute the power of each band for further

process of feature extraction and classification. Aarabi et al. [59] and Song

et al. [56] have used bandpass filter to eliminate high frequency components
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in the EEG signals with the assumption that useful information for epilepsy

prediction is present in low frequency component. Aarabi el al. [59] have

also applied another bandpass filter to remove the effect of power line noise.

In [60], authors have separated alpha, beta and gamma frequency bands

using bandpass filtering and then removed power line noise with a bandstop

filter.

Similarly, Korshunova et al. [62] have also applied bandpass filter with

0.1 to 180 Hz and then extracted different frequency bands.

Khan et al. [37] have applied low pass filter of 128 Hz to remove high

frequency components from EEG signals. Bandpass filter at 0 to 44 Hz has

been used for noise removal by Raghu et al. [71] In addition with low pass

filter, Praveena et al. [69] have also extracted intrinsic mode functions using

Empirical Mode Decomposition (EMD). Yu et al. [68] and Yuan et al. [63]

have proposed Local Mean Decomposition and wavelet transform respec-

tively as preprocessing of iEEG signals. Many researchers [39, 55, 64, 67]

have used Fast Fourier Transform in the preprocessing step for seizure

prediction, whereas, due to non-stationary nature of EEG signals, some

researchers [49, 71] have proposed Short Time Fourier Transform (STFT)

as preprocessing. Comparison of existing epileptic seizure prediction meth-

ods using intracranial EEG signals shows that without preprocessing, re-

searchers are unable to achieve better sensitivity and specificity. Fourier

transform and bandpass/ bandstop filtering are useful for preprocessing of

EEG signals and have proved to achieve increase SNR of EEG signals.

In existing seizure prediction methods using iEEG signals, preprocess-

ing has been done for noise removal, however, no single method consists

of combination of preprocessing techniques suitable for increasing the ro-

bustness of seizure prediction method. Class imbalance problem between

preictal and interictal state also reduces the effectiveness of seizure predic-

tion method. Except synthetic minority oversampling technique, no method

to reduce the effect of class imbalance is used by recent methods.
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2.3.2 EEG Feature Extraction Methods

Feature extraction is the most important step in the seizure prediction sys-

tem due to its primary role in classification between preictal and interictal

states. Without extracting features with high interclass variance and low

intraclass variance, accurate classification is not possible. Due to very high

significance of features in predicting epileptic seizures, researchers have

attempted to extract features from multiple techniques using iEEG signals.

These features include both handcrafted as well as automated from deep

learning methods. Handcrafted features can be further categorized into time

and frequency/spectral domain. Time domain features include statistical

moments, fuzzy rules [145], entropy based and univariate linear features,

whereas, frequency domain features include power spectral density and

spectral moments. Automated features include features that have been ex-

tracted using multiple variants of CNN. Figure 2.8 shows feature extraction

techniques for epileptic seizure prediction method using intracranial EEG

dataset proposed by researchers in last few years.

Figure 2.8: Feature extraction techniques for Epileptic seizure prediction methods using
intracranial EEG signals

Niknazar et al. [57] have used an overlapping window to extract multiple

patterns from all channels of EEG signals as features. Aarabi et al. [59]

have extracted six features from EEG signals including both univariate and
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bivariate linear/non-linear features. To avoid the outliers and noise artifacts,

Song et al. [56] have extracted sample entropy as feature for classification

between preictal and interictal states. Signal’s power [146] from six bands in

frequency domain, FFT and cross correlation has been extracted as features

by authors in [58]. FFT has also been used by Parvez et al. [55] to extract

features including phase correlation, discrete cosine transform and energy

concentration ratio. Stojanovic et al. [72] have extracted non-negative

matrix factorization as features for epilepsy prediction. Researchers [60,

69] have also proposed fuzzy rules for classification between preictal and

interictal states. Many researchers [37, 39, 49, 50, 61, 62, 64, 65, 67, 68, 71]

propose use of CNN for feature extraction and Thara et al. [66] have used

LSTM for extracting features from EEG signals.

Univariate features [147] in time, frequency domain and automated fea-

tures using CNN have been extracted by most of the researchers in recent

state of the art seizure prediction methods on intracranial EEG signals.

Different architectures of CNN have been proposed by researchers with

varying number of convolution layers. Extracting features with high inter-

class variance that will distinguish preictal and interictal classes is a major

challenge due to non-stationary nature of EEG signals. Another problem

which has been ignored in many existing methods is Curse of dimension-

ality. It arises due to large number of features and can be resolved with

effective feature selection. Highly correlated features in the feature set do

not contribute in increasing the classification accuracy and also lead towards

curse of dimensionality problem. In automated feature extraction using

CNN, selection of convolutional layers with optimal number of trainable pa-

rameters still remains a challenge for seizure prediction methods. Increase

in number of convolutional layers results to increase in complexity of the

CNN architecture and processing time is also increased.

In recent epileptic seizure prediction methods using intracranial EEG

signals, researchers have not proposed any method that combines the both

automated as well as handcrafted features to form a feature vector. There are
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many handcrafted and automated feature extraction techniques that provide

high interclass variance between preictal and interictal state including.

These techniques include univariate feature extraction and different variants

of CNN. A combination of these handcrafted and automated features can

also help in getting better decision boundary for classification between

preictal and interictal states. Korshunova et al [62], Sun et al [64] and Hu et

al [67] have proposed two layer convolutional neural network for automated

feature extraction with different size and number of filters. Nejedly et al [65]

have used three convolutional layers for feature extraction from intracranial

EEG signals. Raghu et al [71] have applied pretrained models for feature

extraction and have obtained maximum accuracy with the help of Inception

v3.

Figure 2.9: Classification method for Epileptic seizure prediction methods using
intracranial EEG signals

2.3.3 EEG Classification Models

Accurate classification after extracting features from iEEG signals is nec-

essary for prediction of epileptic seizures. Researchers have proposed

variety of machine learning and deep learning approaches for classifica-

tion between preictal and interictal states. Machine learning classifiers

used by researchers in recent years for epileptic seizure prediction include
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Thresholding, Bayesian Linear Discriminant Analysis (BLDA) [148], Lo-

gistic Regression and SVM. Deep learning-based classifiers used in recent

studies include Extreme Learning Machine [131], Artificial Neural Net-

works [149, 150], CNN, Recurrent Neural Networks and Long-Short Term

Memory Units. Figure 2.9 shows the commonly used classification methods

for epileptic seizure prediction method using intracranial EEG dataset.

Researchers [55, 58, 60, 67, 71, 72] have used SVM with multiple ker-

nels for classification on iEEG dataset to get good accuracy on the iEEG

dataset. Yuan et al. [63] and Yu et al. [68] have used BLDA as classi-

fier. Niknazar et al. [57] and Nasseri et al. [70] have used thresholding

and logistic regression for classification between preictal and interictal

classes. Song et al. [56] have classified preictal and interictal classes using

Extreme learning machine. Researchers [64, 66, 69] have used Recurrent

Neural Networks and LSTM for classification. Fully connected layers are

used for classification in CNN similar to Multilayer perceptron. Many

researchers [37, 39, 49, 50, 61, 62, 65] have used CNN for classification

between preictal and interictal for prediction of epileptic seizures using

iEEG signals.

Machine learning and deep learning classifiers have achieved good re-

sults in terms of sensitivity and specificity. Epileptic seizure prediction

methods on intracranial EEG signals have been evaluated on these measures

and average anticipation time is not considered as the iEEG dataset does

not have any information of continuous recordings of each patient. Support

Vector Machine [151, 152], Long Short Term Memory Units [153, 154] and

Convolutional Neural Networks [155, 156] have achieved greater classifica-

tion sensitivity and specificity compared with other classifiers.

Niknazar et al [57] could achieve only 63.75 % sensitivity using thresh-

olding for classification. No specific threshold can be applied for classifi-

cation between preictal and interictal states due to non-stationary nature

of EEG signals. SVM has been used for classification by Shiao et al [58],

Sharif et al [60], Hu et al [67], Raghu et al [71] and Stojanovic et al [72]. All
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these methods have been able to achieve an average sensitivity and speci-

ficity of more than 80 %. LSTM has also proved to be good classifier for

intracranial EEG signals in methods proposed by Thara et al [66] Praveena

et al [69]. An average sensitivity of 89 % has been obtained with LSTM in

these methods. It has been concluded that SVM and LSTM perform better

for classification between preictal and interictal states in intracranial EEG

signals. However, simple classifiers have not been able to classify with

greater accuracy due to non-stationary nature of EEG signals. Researchers

have not employed any ensemble classifier in the existing methods. These

methods have been compared and analyzed for identification of research

gaps in these methods.

2.4 Analysis of Existing Seizure Prediction Method using
intracranial EEG Signals

In this thesis, state of the art epileptic seizure prediction method on in-

tracranial EEG signals proposed by researchers in recent years have been

compared. All these methods have been evaluated based on sensitivity and

specificity. Sensitivity measures the true positive rate and specificity is

the true negative rate. Average anticipation time has not been reported by

researchers in methods of intracranial EEG signals. Table 5.19 compares

state of the art epileptic seizure prediction methods using intracranial EEG

signals proposed by researchers in recent years. Epileptic seizure prediction

method using intracranial EEG signals consists of three steps like scalp

EEG methods including preprocessing of EEG signals, feature extraction

and classification between preictal and interictal states. Niknazar et al [57]

and Kornek et al [61] have not preprocessed EEG signals and as as result

obtained low sensitivity and specificity. Preprocessing of intracranial EEG

involves noise removal to increase SNR of EEG signals and reducing class

imbalance problem by increasing preictal class samples.

Stojanovic et al [72] have proposed Synthetic Minority Oversampling
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(SMOTE) for increasing the samples of preictal class so that class imbalance

problem can be minimized. For noise removal researchers have proposed

Bandpass filtering, Fast Fourier Transform, Wavelet Transform, Discrete

Fourier Transform, Local Mean Decomposition, z-score normalization and

Empirical Mode Decomposition. Song et al [56], Shiao et al [58], Aarabi et

al [59], Sharif et al [60], Korshunova et al [62], Khan et al [37] and Raghu

et al [71] have applied bandpass filter to remove noise from iEEG signals

for increasing SNR and have achieved more than 80 % sensitivity.

STFT has been applied by Truong et al [49] and Raghu et al [71] for con-

version of iEEG signals from time domain to frequency domain. Praveena

et al [69] have achieved sensitivity of 89.8 % using Empirical Mode De-

composition for noise removal. Both handcrafted and automated features

have been extracted in recent epileptic seizure prediction methods. Hand-

crafted features include Signal energy, sample entropy, statistical/spectral

moments, Lyapunov exponent and fuzzy rules. Automated features have

been extracted using Convolutional Neural Network and Long Short Term

Memory Units. Parvez et al [55], Song et al [56], Niknazar et al [57], Araabi

et al [59], Praveena et al [69], Nasseri et al [70] and Stojanovic et al [72]

have extracted handcrafted features for seizure prediction and achieved

the maximum sensitivity of 89 %.With the help of CNN, reseachers have

obtained approximately similar results as compared to handcrafted fea-

tures. Therefore, it has been concluded that both handcrafted and automated

features are useful for seizure prediction using iEEG signals. In order to

achieve increased sensitivity and specificity than existing methods, we need

a customized CNN architecture that will provide increased sensitivity using

reduced number of training parameters. Feature selection is also useful

to enhance the effectiveness of feature set, however, no recent method

employed feature selection technique for seizure prediction.
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Classifier selection is equally important step like feature extraction in

epileptic seizure prediction using intracranial EEG signals. Niknazar et

al [57] proposed threholding for classification but could only get 63.75 %

sensitivity as no single threshold can be applied to classify between multiple

states of seizure. Parvez et al [55], Shiao et al [58], Sharif et al [60], Hu

et al [67], Raghu et al [71] and Stojanovic et al [72] have used Support

Vector Machine for classification between interictal and preictal states. With

SVM, classification sensitivity ranges 80-91.8 % and maximum specificity

of 88 % has been achieved. CNN is also proposed for classification by

researchers including Kornek et el [61], Korshunova et al [62], Khan et

al [37], Acharya et al [50], Truong et al [49], Nejedly et al [65] and Liu

et al [39]. Sensitivity and specificity achieved from CNN varies between

69 % to 88 %. This variation in classification sensitivity is due to different

architecture and number of layers/neurons in the fully connected layers of

CNN. Thara et al [66] and Nasseri et al [70] have proposed Long Short

Term Memory Units for classification between interictal and preictal states

of iEEG signals. Sensitivity of 89 % has been obtained in both methods.

Noise is added into intracranial EEG signals from different sources that

include inter electrode interference and noise due to MRCP or ECG signals.

Therefore, noise removal is necessary in case of these signals like in scalp

EEG signals. Absence of preprocessing in existing seizure prediction that

have used intracranial EEG dataset have not achieved good sensitivity and

specificity. On the other hand, use of bandpass/bandstop filter could not

remove noise that has been added due to inter electrode interference. There-

fore, preprocessing that combines different techniques to remove all these

types of noise is necessary. Comparison of existing methods shows that Em-

pirical Mode Decomposition and Fourier Transform provide better Signal to

Noise ratio, however, class imbalance problem has not been addressed in re-

cent epileptic seizure prediction methods. Both handcrafted and automated

features can be used for classification between preictal and interictal states.

CNN with less number of convolutional layers have been able to achieve
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better results. Features extracted from CNN are dependent on number of

convolution layers and filter size proposed in different methods. It has

been observed that feature selection techniques have not been proposed

in existing methods. Similarly, reducing number of trainable parameters

used by CNN also remains a challenge for reducing the processing time for

effective prediction of epileptic seizures. In classification, CNN, LSTM and

SVM have classified preictal and interictal states with greater sensitivity

and specificity.

2.5 Research Gaps

For this research, analysis of epileptic seizure prediction methods has been

performed using scalp and intracranial EEG signals comprehensively and

following research gaps in existing methods have been found.

1. Existing seizure prediction methods are patient-specific, therefore,

method need to be evaluated on all subjects of the dataset which is

missing in many cases.

2. Class imbalance that limits the performance of prediction methods has

not been addressed in existing literature.

3. EEG signals are prone to different types of noise, therefore, noise

removal need to be done for all types of noise including power line,

inter electrode interference and noise due to other artifacts.

4. Both handcrafted and automated features help in extracting features

to distinguish between preictal and interictal states, however, feature

selection is required from both these types of features.

5. There is lack of comparison between number of parameters of deep

learning classifiers. These parameters need to be minimized so that

processing time can be reduced.
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2.6 Summary

Epileptic seizures can be predicted using scalp EEG or intracranial EEG

signals. A typical seizure prediction method involves recording of EEG

signals, preprocessing of EEG signals for noise removal, feature extraction

and classification between interictal and preictal states. Multiple methods

have been proposed by researchers in recent years based on both scalp and

intracranial EEG signals. This chapter provides a comparison between ex-

isting seizure prediction methods on both scalp EEG as well as intracranial

EEG signals and identifies the research gaps in these methods. Analysis

of existing state of the art methods have showed that without effective pre-

processing, comprehensive feature set and accurate classification, epileptic

seizures cannot be predicted with increased sensitivity. There are many

research gaps in the existing methods in all three steps. In preprocessing,

combination of any technique is not used by many studies to ensure the

increased SNR of EEG signals. No method in scalp EEG signals have

proposed any technique to mitigate the effect of class imbalance problem

for epileptic seizure prediction methods. Researchers have propsosed few

methods for data augmentation of EEG signals for movement related EEG

and emotion recognition. GANs have performed well for augmentation

in these methods. A comprehensive feature set also need to be formed by

combining both handcrafted and automated features which is missing in the

existing methods. Similarly, classification has also been kept simple in the

existing methods.
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CHAPTER 3
PREPROCESSING OF EEG SIGNALS

Epileptic seizure prediction involves preprocessing of EEG signals noise

removal, feature extraction and classification between preictal and interictal

states. The proposed epileptic seizure prediction method can be applied

on both scalp as well as intracranial EEG signals for accurate and in-time

prediction of focal and generalized seizures. Proposed methodology consists

of preprocessing of EEG signals for noise removal and synthetic data

generation for class with less segments, feature extraction and classification

using ensemble classifier.

3.1 Overview of Preprocessing Methodology

EEG signals are prone to noise due to power line [157, 158], inter-electrode

interference [159, 160], movement related cortical potentials [161–163],

electrocardiogram [97, 164, 165], and effect of blinking eyes [166]. All

these factors reduce Signal to Noise Ratio (SNR) [167] of EEG signals

that lead towards decrease in classification accuracy between interictal

and preictal states. Therefore, preprocessing method has been proposed

that involves noise removal including power line noise, inter-electrode

interference and noise inducted due to other artifacts. Another problem is

preictal to interictal samples ratio i.e. very few samples of preictal state are

available in the existing datasets as compared to interictal which leads to

class imbalance problem and as a result limits the classification performance.

In the proposed method, synthetic data has been generated for preictal class
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to mitigate the effect of class imbalance between preictal and interictal

classes.

Figure 3.1: Flow Diagram for Preprocessing of EEG Signals

Figure 3.1 shows the flow diagram of the proposed preprocessing method

for noise removal from EEG signals. EEG signals recorded from scalp or

surface of patient’s brain are preprocessed to increase the SNR of EEG

signals. These signals with increased SNR are more robust for epileptic

seizure prediction. In the first step, EEG recordings have been divided into

fixed length segments with the help of an overlapping/sliding window of

30 seconds with an overlap of 15 seconds. Figure 3.2 represents three time

steps of overlapping window of 30 seconds.

Figure 3.2: Overlapping window selection for EEG Signals with time step representing
each window

Empirical Mode Decomposition (EMD) [168–174] has been applied on

segments of both preictal and interictal classes for extraction of Intrinsic
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Mode Functions (IMF). Hurst exponent is computed and IMFs with value

of exponent less greater than 0.5 have been removed. EMD performs better

denoising of EEG signals than low pass filters [9,175–177] as the important

information of EEG signals required to distinguish between multiple states

is retained and greater SNR is achieved using EMD, however, it does not

remove the power line noise that affects the EEG signals at 50-60 Hz.

To remove the power line noise, time domain EEG signals are first

converted into frequency domain and then band-stop filter is applied to

remove power line noise at 50-60 Hz. Time domain EEG signals can

be converted into frequency domain using Discrete Fourier Transform

(DFT) [178], Fast Fourier Transform (FFT) [102] or Short Time Fourier

Transform (STFT) [179, 180]. EEG signals recorded from epilepsy patients

are non-stationary and frequency changes abruptly in different states of

seizures. Therefore, STFT has been used to convert EEG signals into

frequency domain as it takes a window of EEG signals and convert it into

frequency domain. It assumes that the signal is stationary for short interval

of time. STFT performs better than DFT and FFT as EEG signals are

stationary only for a few seconds window.

3.2 Noise Removal in Spatial Domain

Empirical Mode Decomposition (EMD) [181] decomposes the time domain

signal into multiple signals based on frequency components called Intrinsic

Mode Functions (IMF). EMD has been applied on all channels of EEG

signals using overlapping window of 30 seconds with an overlap of 15

seconds. Signal to Noise ratio is computed for each extracted IMF and

only those IMFs that give greater SNR are kept while others are ignored.

Figure 3.3 shows the single window of EEG signal passed to EMD and

corresponding denoised signal obtained after IMF selection. Analysis of

these figures shows that high frequency component has been removed and

information required for multiple states of seizures has been retained which

is necessary for classification between interictal and preictal states.
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Figure 3.3: (a) 1-Channel of EEG signal before applying EMD (b) Denoised Signal after
applying Empirical Mode Decomposition

Assume X(t) be the window of an EEG signal, an IMF is extracted from

the signal provided it satisfies following conditions:

1. Total number of peaks must be same as total number of zero crossings.

2. At any time in the signal, mean value of local maxima and minima

must be zero.

Algorithm 1 [181] is a standard algorithm for IMF extraction that has been

used in this research to extract IMFs from the input signal X(t).

Algorithm 1: IMF Extraction
Input: X(t)
Output: IMF

1 Apply up-sampling between positive and negative peaks for generating envelopes
max(t) and min(t);

2 Calculate average between minima and maxima m(t);
3 Extract y1(t)=X(t)−m(t);
4 Check whether y1(t) is an IMF by applying two conditions ;
5 Repeat step 1 to step 4 till IMF is confirmed.

Signal to Noise ratio is calculated for each IMF and then decision is

taken based on SNR of that IMF whether to keep that IMF or not. All
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IMFs with greater SNR are kept and combined to form a denoised EEG

signal. To deal with non-stationary EEG signals, three approaches can be

used including Fourier Transform, Wavelet transform and Empirical Mode

Decomposition. Fourier analysis assumes that EEG signals are stationary

for specific non-overlapping window on which Fourier transform has been

applied. Moreover, to localize the state of seizure from EEG signal, a short

window size must be used for Fourier transform.

The shortcomings of Fourier analysis have been removed in wavelet

transform which can be used for the same purpose but still ther is a problem

while interpreting signal’s information in low frequencies. A change that

occurs in low frequency cannot be localized by wavelet transform. More-

over, wavelet transform interprets linear signals and easily localized for

stationary and linear signals, whereas, in epileptic seizure prediction, EEG

signals are considered as non-linear and non-stationary in nature. Therefore

EMD has been used in the proposed method for denoising of EEG signals

instead of Fourier Transform or Wavelet Transform to achieve better SNR

of EEG signals.

3.3 Noise Removal in Frequency Domain

Scalp and intracranial EEG signals are non-stationary and not localized

in time domain, however, frequency domain analysis gives better charac-

terization of these signals. Fast Fourier Transform and Discrete Fourier

Transform can be used to convert EEG signals into frequency domain for

analysis but due to non-stationary nature of these signals, both discrete

Fourier transform and wavelet transform do not represent the changes in

short duration. Therefore, Short Time Fourier Transform (STFT) [182]

has been used for analyzing the frequency spectrum of EEG signals for

overlapping window of short duration. EEG signals of both preictal and

interictal states have been segmented using an overlapping window of 30

seconds with an overlap of 15 seconds and these segments have been used

as input to STFT. Figure 3.4 shows the Spectrogram obtained from STFT.
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Figure 3.4: Spectrogram obtained from STFT after Converting time domain signal into
frequency domain with 30 seconds of overlapping window with an overlap of 15 seconds.

Assume x[n] be an EEG signal recorded from subject’s scalp or surface

and xl[t] represents the extracted segment from the signal using overlapping

window w[t] can be computed using following equation [183].

xl[t] = w[t]x[t + lH] (3.1)

t ∈ {1,....,T} is starting time of the overlapping window, T ∈ N is the

length of the window which is 30 seconds, l ∈ N is the frame number and H

∈ N is the hop size. Fourier transform for each frame xl[t] can be computed

using the equation as follows:
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X [ f , l] =
1
T

F

∑
t=1

xl[t]e− j2π
t f
F (3.2)

Where, f ∈ {1,....,F} is the index of frequency bin and F ∈ N is the

size of DFT. The input sequence of DFT xl[t] has been interpolated with

zero padding as F > T . X [ f , l] is the extracted STFT of EEG signal frame

x[n] and represents the local time frequency behavior of the signal around

the time index lH and the frequency bin k. After converting time domain

EEG signals into frequency domain with STFT, power line noise has been

removed by applying 4th order Butterworth Bandpass filter with pass bands

of 0-40 Hz. and 65-130 Hz. For interictal class samples, spectrogram

obtained from STFT is fed into Convolutional Neural Network (CNN)

for feature extraction, whereas, spectrogram of preictal state samples is

passed into Generative Adversarial Networks (GAN) [184] for generation of

synthetic preictal state samples followed by feature extraction using CNN.

3.4 Mitigation of Class Imbalance Problem

In scalp and intracranial EEG recordings of existing datasets, preictal state

data is very less as compared to interictal state data due to fewer number

of seizure occurrences in specified time of recording these signals. It leads

toward class imbalance problem between preictal and interictal state which

in some cases can be 1:10 samples. Classification performance is adversely

affected due to class imbalance problem as classifier may be over-trained

for interictal class and under-trained for preictal class. Previously, only

a few researchers have used Synthetic Minority Oversampling technique

(SMOTE) [185] for dealing with class imbalance issue. In SMOTE, an

overlapping/sliding window approach is used to increase the samples of

particular class.

Wang et al [109] have added Gaussian Noise with zero mean for aug-

mentation of EEG signals. Zhang et al [110] have applied empirical mode

decomposition on EEG signals for extraction of IMFs and then these IMFs
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are swapped to generate new samples of EEG signals. Luo et al [186],

Lashgari et al [187] and Abdelfattah et al [111] have proposed Generative

Adversarial networks for generating synthetic EEG signals that have im-

proved the classification performance. Based on the results achieved from

GAN have been better compared with 1D oversampling.

An overlapping window of 30 seconds with an overlap of 15 seconds for

both preictal and interictal states by assuming that the desired information

might be available in any time step. This approach has not only increased

the samples of preictal states but also increased for interictal state. The

problem of class imbalance remains the same as the ratio of preictal to

interictal samples is same. To deal with this problem, 1D EEG signals are

first converted into 2D signals with the help of STFT and then synthetic data

has been generated using Generative Adversarial Networks (GAN) [111]

for preictal class only so that samples of class with fewer examples can

be increased. With the help of GANs, proposed method has been able to

generate synthetic preictal class data almost equal to the existing preictal

data.

Figure 3.5: Generation of Preictal States Samples of EEG Signals with Generative
Adversarial Networks.

In the proposed method, synthetic preictal state samples have been gen-

erated with Generative Adversarial Networks. Figure 3.5 shows the flow

diagram of synthetic data generation for preictal state. Initially, prepro-

cessing techniques have been applied on preictal state for noise removal

to increase the SNR. Preprocessed preictal segments are then fed into the

discriminator of GANs. Meanwhile, random noise is passed as input to
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generator for generating synthetic samples. Output of generator is com-

pared by discriminator using original preprocessed preictal sate samples.

In the next iteration generator updates its parameters to minimize the loss

function. The process repeats for 100 iterations and then synthetic samples

are combined with original segments to increase the ratio of preictal to

interictal samples and then used as input for feature extraction.

Figure 3.6: Block diagram of Generative Adversarial Networks for generation of preictal
segments

GAN comprises of generator that generates the synthetic data and dis-

criminator that differentiate between the real and synthetic data. Figure 3.6

shows Block diagram of Generative Adversarial Networks for generation

of preictal segments. The goal is to estimate the distribution of real preictal

class data so that new synthetic data of same distribution can be generated

and optimize the performance of generative. After the estimation of distri-

bution of real data, GAN tries to maintain the Nash Equilibrium of game

theory. Generator creates a distribution of synthetic data after estimating

the distribution of real data while discriminator determines whether the data

is received from real segments or synthetic from generator. To achieve Nash

equilibrium state, both participants need to optimize their abilities of gener-

ating and discriminating the data. Samples which are real but classified as

synthetic and vice versa are known as adversarial samples. Table 3.1 and

3.2 provides the summary of number of parameters required in each layer

of the proposed generator and discriminator.
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Table 3.1: Summary of proposed GAN’s discriminator

Layer Output Shape Parameters
Input (64,112,1) 0
Conv2D (32,56,32) 832
LeakyReLU (32,56,32) 0
Dropout (32,56,32) 0
Conv2D (16,28,64) 18496
Zeropadding (17,30,64) 0
LeakyReLU (17,30,64) 0
Dropout (17,30,64) 0
Batch Normalization (17,30,64) 256
Conv2D (9,15,128) 73856
LeakyReLU (9,15,128) 0
Dropout (9,15,128) 0
Batch Normalization (9,15,128) 512
Conv2D (9,15,256) 295168
LeakyReLU (9,15,256) 0
Dropout (9,15,256) 0
Flatten (34560) 0
Dense (1) 34561
Total parameters 423681

Table 3.2: Summary of proposed GAN’s generator

Layer Output Shape Parameters
Input (100) 0
Dense (57344) 5791744
Reshape (16,28,128) 0
Batch Normalization (16,28,128) 512
Upsampling (32,56,128) 0
Conv2D (32,56,128) 147584
Activation (32,56,128) 0
Batch Normalization (32,56,128) 512
Upsampling (64,112,128) 256
Conv2D (64,112,64) 73792
Activation (64,112,64) 0
Batch Normalization (64,112,64) 256
Conv2D (64,112,1) 577
Activation (64,112,1) 0
Total parameters 6017977

Figure 3.5 shows original preictal state segments and synthetic preictal

state segments generated using GANs. Objective of discriminator is to

minimize the loss function cross entropy similar to traditional sigmoid

based classifiers. Objective function [188] for generator can be described
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Figure 3.7: a) Original preictal state samples recorded from scalp of subjects b) Synthetic
preictal state segments generated using GANs

as follows:

Ob jD(θD,θG) =−
1
2

Ex∼pdata(x)[logD(x)]− 1
2

Ez∼pz(z)[log(1−D(g(z)))]

(3.3)

where D and G denote discriminator and generator respectively. x rep-

resents the real preictal data sampled with distribution pdata, z is sampled

from the normal distribution pz and E represents the expectation.

Discriminator is trained with both real preictal data distribution pdata

and generated synthetic data distribution by generator pg. Due to this, it is

different from traditional classification methods. Objective function of the

generator is to minimize the loss and can be computed as follows:

Ob jD(θD,θG)=−
1
2

∫
x

pdata(x)log(D(x))dx− 1
2

∫
z

pz(z)log(1−D(g(z)))dz

(3.4)

For any (m,n) ∈ R2 \ {0,0} and y ∈ [0,1]

mlog(y)−nlog(1− y) (3.5)

Therefore, given generator G, the objective function achieves its mini-

mum value at
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D∗G =
pdata(x)

pdata(x)+ pg(x)
(3.6)

D∗G gives the optimal solution for discriminator D. Discriminator of

GAN computes the ratio between probability densities between original

and generated preictal data.

3.5 Summary

The proposed epileptic seizure prediction method involves three steps i.e.

preprocessing of EEG signals, feature extraction and classification between

interictal and preictal states. Preprocessing of scalp and intracranial EEG

signals being the key step in epileptic seizure prediction method has been

used to increase the signal to noise ratio so that better characterization of

interictal and preictal states can be achieved. Proposed method involves

noise removal in both time and frequency domain followed by synthetic

data generation of preictal states. Noise removal is necessary for increasing

signal to noise ratio of EEG signals, whereas, generating synthetic EEG

signals of preictal states is required to mitigate the class imbalance problem.

EEG signals have been divided into segments using an overlapping

window of 30 seconds with an overlap of 15 seconds. Empirical mode

decomposition has been applied on these segments of both preictal and

interictal states for noise removal to increase SNR of EEG signals followed

by bandpass filter to remove power line noise. Time domain EEG signals

have been converted into frequency domain with the help of short time

Fourier transform. To mitigate the effect of class imbalance between preictal

and interictal states EEG signals, proposed method consists of synthetic

data generation of preictal state using generative adversarial networks.
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CHAPTER 4
FEATURE EXTRACTION AND

CLASSIFICATION OF EEG SIGNALS

Preprocessing of EEG signals involves noise removal and mitigating the

affect of class imbalance problem by generating synthetic data for preictal

class. After preprocessing of EEG signals, handcrafted and automated

features have been extracted followed by feature selection methods for

formulation of feature vector. Classification between preictal and interictal

states is then performed using this feature vector for prediction of epileptic

seizures. In the proposed method, mean, variance, skewness, kurtosis,

spectral centroid, variational coefficient, spectral skewness, spectral kurtosis

and approximate entropy have been extracted as handcrafted features. A

customized three-layer Convolutional Neural Network (CNN) has been

proposed for automated feature extraction. Proposed method then combines

both handcrafted and automated features. Both filter and wrapper based

methods have been used for feature selection. Feature vector obtained after

selection is then passed to train an ensemble classifier and validated using

k-fold cross validation.

4.1 Feature Extraction

For accurate classification between interictal and preictal states of EEG sig-

nals, effective feature extraction is necessary. Both the handcrafted as well

as the automated features extracted through deep learning are useful. There-

fore, the proposed method combines both handcrafted and the automated
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Figure 4.1: Flow Diagram of Proposed Feature Extraction Method

features followed by feature selection techniques to form a comprehensive

feature set which is required to predict epileptic seizures with high accuracy.

Figure 4.1 shows the flow diagram of proposed feature extraction methodol-

ogy. Researchers have used two common feature extraction approaches. In

the handcrafted feature extraction approach, features are extracted irrespec-

tive of the class of EEG signals, whereas, the automated feature extraction

which is performed with the help of Convolutional Neural Networks [189]

keeps class information under consideration while extracting features. This

fact motivates the use of different CNN architectures for effective feature

extraction.

In the proposed method, after preprocessing of EEG signals, both hand-

crafted and automated features have been extracted followed by feature

selection to get a comprehensive feature vector. Handcrafted features in-

clude temporal and spectral features. Mean, variance, skewness, kurtosis

and approximate entropy have been extracted as temporal features, whereas,

spectral features include spectral centroid, variational coefficient, spectral

skewness and spectral kurtosis. A three layer customized architecture of

Convolutional Neural Network has been proposed to extract the automated

features from preictal and interictal class data. Both handcrafted and auto-

mated features are then combined to form a single feature vector. These

features consist of correlated features and dimensionality is high that can

lead towards curse of dimensionality problem [190]. To minimize the
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curse of dimensionality, feature selection techniques [191] including Pear-

son Correlation Coefficient (PCC) [192] and Particle Swarm Optimization

(PSO) [193] have been applied for feature selection to get a comprehensive

feature set.

4.1.1 Handcrafted Features

In the proposed method, both time and frequency domain features from all

channels of EEG signals have been extracted which distinguish between

interictal and preictal states. Time domain features include mean, variance,

skewness, kurtosis and approximate entropy, whereas, spectral moments

including spectral centroid, variational coefficient, spectral skewness and

kurtosis have been extracted. These features have been extracted by apply-

ing 30 seconds overlapping window with an overlap of 15 seconds on the

preprocessed EEG signals obtained after applying EMD. Denoised signals

using EMD give increased SNR, therefore, handcrafted features extracted

from these preprocessed signals exhibits greater interclass variance. Spec-

tral analysis [194] of IMFs obtained when EMD is applied on EEG signals

in the preprocessing step provides useful information. Spectral analysis

provides useful features for epileptic seizure prediction as change in behav-

ior can be observed in different frequency bands of preictal and interictal

states. Similarly, time domain features also distinguish between both states

of epileptic seizures.

Figure 4.2 illustrates statistical features extracted for preictal and inter-

ictal states. Temporal mean computes the average in time domain from

EEG signals, whereas, variance gives the variation in the distribution of

EEG signals in time domain. Skewness measures the symmetry between

multiple samples of EEG signals and kurtosis detects the abrupt changes

in the time domain EEG signals. Approximate entropy captures the sharp

changes of EEG signals in time domain. All these properties make these

features valuable for classification between preictal and interictal states.

In the same way, spectral moments are also quite useful for classification
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Figure 4.2: a) 2D plot of Mean and Variance b) 2D plot of Skewness and Kurtosis

as the abrupt changes can also be observed in different frequency bands.

Proposed method combines these temporal and spectral features to develop

a handcrafted feature vector.

In the proposed method, after extracting different features including

Hjorth parameters, Lyapunov exponent, Phase locking values, statistical,

spectral moments, entropy and approximate entropy. However, features that

have provided better classification results have been selected for formation

of feature set. These features include statistical, spectral moments and ap-

proximate entropy and have been computed as features from IMFs obtained

after applying EMD on the scalp and intracranial EEG signals. Description

of all handcrafted feature used in this study is as follows:

1. Mean ( f1) computes the average of EEG segment from the IMFs.

Equation 4.1 computes the mean from IMFs.

µt =
1
N

N

∑
i=1

(xi) (4.1)

where N is the length of IMF, t is EEG segment and µ mean of IMF.

2. Variance ( f2) measures the deviation of EEG segment from local

mean. Following equation describes the formula for computing vari-
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ance from IMF obtained after applying EMD to EEG signals.

σ
2
t =

1
N

N

∑
i=1

(xi−µt)
2 (4.2)

3. Skewness ( f3) provides the information about abrupt changes in the

EEG signals. It is zero in case of symmetric signal. Skewness βt can

be computed as follows:

βt =
1
N

N

∑
i=1

(
xi−µt

σt

)3

(4.3)

where N represents is the output samples obtained from EMD after

denoising, µ denotes the mean and σ is the standard deviation.

4. Kurtosis ( f4) identifies the peaks in the EEG signals. Kurtosis of IMF

can be computed using following equation.

Kt = E

[(
xi−µt

σt

)4
]

(4.4)

5. Spectral Centroid ( f5) is the mean of EEG signal in frequency do-

main. Due to abrupt change in preictal state which can be observed in

frequency domain, spectral centroid is a useful feature.

Cs =
∑w wP(w)
∑w P(w)

(4.5)

where P(w) is power spectral density of wth frequency bin in the

spectrum and can be computed as follows:

P(w) =
N

∑
n=1

ry[n]e− jwn (4.6)

ry[n] = E(y[m]+ y[m+n]) (4.7)

6. Variational Coe f f icient ( f6) determines the variance of EEG seg-

ments from mean in frequency domain. Since the spectral variation in
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the IMFs is different for preictal and interictal states in EEG signals,

therefore it can be used for their characterization. This variation can

be calculated as follows: where Cs is the spectral centroid

σ
2
s =

∑w (w−Cs)
2 P(w)

∑w P(w)
(4.8)

7. Spectral Skewness ( f7) is the 3rd spectral moment and measures the

symmetry of EEG segment. Spectral skewness changes positive or

negative based representing the symmetry in frequency distribution

for EEG signals.

βs =
∑w

(
w−Cs

σs

)3
P(w)

∑w P(w)
(4.9)

8. Spectral Kurtosis ( f8) is the 4th spectral moment and provides the

information about the impulsiveness of EEG signal.

Ks =
∑w

(
w−Cs

σs

)4
P(w)

∑w P(w)
(4.10)

9. Approximate Entropy ( f9) measures the fluctuations in the EEG sig-

nals.

Φ(r) =
1

N−m+1

N−m+1

∑
i=1

logCm
i (r) (4.11)

All these features f1 to f9 have been extracted for all channels of EEG

signals using 30 seconds segments of both preictal and interictal states

obtained with non-overlapping window. Datasets used in in this study

consist of 16 and 23 channels. These features from all channels have been

concatenated to form a feature vector. Therefore, in case of 16 channels,

feature vector consists of 144 features and for dataset with 23 channels,

dimension of feature vector is 207.
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4.1.2 Feature Extraction Using CNN

In this method, features are extracted keeping the class of EEG signals

under consideration. Improved results can be achieved as these features

have low intraclass variance and high interclass variance [195].

Figure 4.3: Proposed 3-layers CNN architecture for automated feature extraction

In this study, a customized three-layer convolutional neural network ar-

chitecture for feature extraction from scalp EEG signals has been proposed.

Figure 4.3 shows CNN architecture used for feature extraction. CNN gets

input of mxnxc which is obtained by converting time domain signals into

the frequency domain using STFT, where m,n represent rows and columns

of input matrix and c denotes number of channels for EEG signals. STFT

has been applied on 30 seconds overlapping window with an overlap of 15

seconds EEG signals to get the exact 64x112 signals. c is 23 for scalp EEG

dataset, whereas, it has value of 16 for intracranial EEG dataset. First layer

of CNN consists of convolution with 16 filters of 5x5 followed by activation

layer with leaky ReLU [196] as activation function. Max-pooling [197]

and Batch Normalization [198] is performed after convolution to reduce

the feature map and increase the training process. In the second layer, 16

filters of 3x3 are applied following by activation layer, max pooling and

batch normalization. In the last layer, 32 filters of 3x3 are used followed by

activation layer, max pooling and batch normalization. Leaky ReLU has
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been used instead of simple Relu to avoid vanishing gradient problem [199].

Batch normalization has been applied to speed up the training process. After

using these three layers of CNN, resultant images are flattened to get feature

vector of 1x3584. Table 4.1 provides the summary of our proposed CNN

model.

Table 4.1: Summary of Proposed CNN Model

Layer Output Shape Parameters
Conv2D (64,112,16) 9216
LeakyReLU (64,112,16) 0
Max Pooling (32,56,16) 0
Batch Normalization (32,56,16) 64
Conv2D (32,56,16) 2320
LeakyReLU (32,56,16) 0
MaxPooling (16,28,16) 0
Batch Normalization (16,28,16) 64
Conv2D (16,28,32) 4640
LeakyReLU (16,28,32) 0
Max Pooling (8,14,32) 0
Batch Normalization (8,14,32) 128
Flatten (3584) 0
Total parameters 16432

CNN [189] consists of convolution with suitable filter size followed by

activation function, pooling and batch normalization. If xn represents the

input signal and hk filter, convolution can be performed using the following

equation.

yk =
N−1

∑
n=0

xnhk−n (4.12)

During back-propagation [200] weights/bias for all the layers can be com-

puted following equations.

∆Wl(t +1) =−xλ

r
Wl−

x
n
(

∂C
∂Wl

)+m∆Wl(t)) (4.13)

∆Bl(t +1) =−x
n
(

∂C
∂Bl

)+m∆Bl(t) (4.14)

Where, W represents weights for layer l and B bias. x, n, m and t are

regularization parameters [201]. Max pooling is generally used for down-
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sampling and reducing feature map. Batch normalization helps in reducing

the training time. Assume that zi represents output of neuron then batch

normalization can be performed using the following equations.

µ =
1
m ∑

i
zi (4.15)

σ
2 =

1
m ∑

i
(zi−µ)2 (4.16)

zi
norm =

(zi−µ)√
σ2 + ε

(4.17)

zi = γ.zi
norm +β (4.18)

Where, µ , σ represents mean and standard deviation respectively. γ and

β are trainable parameters.

4.2 Feature Selection

Comprehensive feature set extraction is very important for accurate classi-

fication. High dimensional feature set with increased number of features

may cause curse of dimensionality problem [202]. In this problem, due to

increased number of features the classifier lead towards poor generalization

as feature set might contain many correlated features. Another problem is

to process the high dimensional feature set. To minimize the affect of these

problems, variety of feature selection techniques to decrease the dimension

of feature set have been used by researchers including filter [203–205],

wrapper [206–208] and embedded based methods [209, 210].

In the proposed method, a two-step approach for feature selection has

been used. In the first step, correlation between all features using Pearson

Correlation Coefficient (PCC) is computed and correlated features with

greater value of correlation than specific threshold have been dropped from

the feature set to reduce it’s dimension. In the second step, Particle Swarm
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Figure 4.4: Heatmap of Cross Correlation of ten randomly selected features

Optimization (PSO) have been used for further reduction and to get a

optimal feature set for classification between interictal and preictal states.

Figure 4.4 shows the heatmap of Cross Correlation of ten randomly

selected features. If correlation between two features is more than a specific

threshold say 0.5 or -0.5 in negative side, then it shows that features are

either positive or negative correlated. In either case, both these features

do not add any useful information for classification between preictal and

interictal state rather increases processing power and lead towards curse

of dimensionality. Correlated features add redundancy and do not help in

increasing classification accuracy for prediction of epileptic seizures. PCC
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helps in finding correlation between same features across multiple channels

so that highly correlated features may be dropped to reduce the effect of

curse of dimensionality.

Pearson Correlation Coefficient measures the correlation between dif-

ferent features and based on threshold highly correlated features have been

dropped to select a feature set with less redundant features. Assume that X

and Y be the two distinct features, then correlation between these features

can be computed as follows:

Corr =
∑i(xi− x̄i)(yi− ȳi)√

∑i(xi− x̄i)2
√

∑i(yi− ȳi)2
(4.19)

Although feature reduction after computing Pearson Correlation Coef-

ficient helps in feature selection, yet an efficient algorithm wrapper based

method is needed to get a comprehensive feature set for epileptic seizure

prediction. Evolutionary computing techniques have proved to provide opti-

mal solutions for feature selection. Particle Swarm Optimization (PSO) is a

recent and more robust optimization technique than Genetic Algorithms. It

is less expensive and consume less time in finding optimal solution. PSO re-

duces the feature set by selecting the optimal feature set which increases the

classification performance with minimum number of features. To achieve

this, PSO considers the features as multi-objective problem and gets subset

of feature set. After applying PSO, a subset consisting of 500 features have

been selected from the feature set for classification between preictal and

interictal state.

PSO is an evolutionary computing technique proposed in 1995 by

Kennedy and Eberhart. It is motivated with the bird flocking or fish school-

ing behaviors with the basic principle that the knowledge can be optimized

like social interactions and not by individual behavior. According to the

solution provided by PSO, every solution can be expressed as particle in

swarm. Every particle in a search space has a particular position that can be

expressed with a vector yi = (yi1,yi2, ...,yiD) having D dimension for search

space.
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Particles search optimal solutions in the search space with a velocity

vi = (vi1,vi2, ...,viD). While moving in the group particles update positions

based on their own and neighbor’s experience. pbest represents the best

position of particle that it had previously and gbest is the best position

achieved by the population. Based on these two parameters i.e; pbest and

gbest , PSO updates the velocity and it’s position to find the optimal solution

using equation as follows:

x j+1
id = x j

id + v j+1
id (4.20)

v j+1
id = w∗ v j

id + c1 ∗ r1 ∗ (pid− x j
id + c2 ∗ r2 ∗ (pgd− x j

id) (4.21)

Where, j denotes the jth iteration of evolution process, d represents the

dth dimension in the search space with d ∈ D. w denotes the weight of

velocities, c1 and c2 are constants of acceleration, whereas, r1 and r2 are

uniformly distributed random values between [0, 1], pid and pgd represents

the elements of pbest and gbest in the dth dimension. Figure 4.5 shows the

scatter plot of randomly selected handcrafted and machine learned features

from the feature set selected after applying PSO.

Figure 4.5: Scatter Plot of Randomly Selected Handcrafted and Automated Features
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4.3 Classification

After feature extraction and selection of a feature set, classification is per-

formed between interictal and preictal states using Model Agnostic Meta

Learning (MAML) classifier. In the propsoed method, MAML receives

output from three different classifiers including SVM, CNN and LSTM.

Output probabilities of both classes are same that were obtained while train-

ing the CNN for automated feature extraction with fully connected layers.

The main idea behind using ensemble classification using MAML is to train

the classifier with a smaller number of training examples without overfit-

ting with the help of probabilities of classes obtained from three different

classifiers. Figure 4.6 shows the flow diagram of proposed classification

method.

Figure 4.6: Flow diagram of proposed classification methodology

After extracting feature set by combining handcrafted and automated

features followed by feature selection techniques, it is then passed to three

different classifiers including support vector machine, convolutional neural

networks and long short term memory units. SVMs [211] can be divided

into two types i.e; linear and non-linear SVM [212]. If we have data which

is linearly separable then we can easily find support vectors and with the

help of slope and intercept we can draw a decision boundary. These are

called linear SVM. Generally, we cannot classify data with the help of

linear boundary as data may not be linearly separable. Therefore, SVM
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maps the data into higher dimensional space so that data is easily separable.

Kernel trick is used for this purpose. Some commonly used kernels include

multilayer perceptron [213], linear and Gaussian kernels. In this work, we

have used linear SVM to classify interictal state and preictal state.

CNN consists of fully connected layers for classification after convolu-

tion layers which are used for feature extraction. Propose method uses two

hidden layers with 512 and 256 neurons in layer 1,2 and two neurons in

output layer with Softmax activation function. It is the same experiment

which was performed for automated feature extraction. It gives probabilities

of both classes which are fed into MAML for final classification result.

E =
1
2

m

∑
d=1

(T (d)−O(d))2 (4.22)

O(d) = w0 +w1xd
1 +w2xd

2 + ....+wnxd
n (4.23)

∆wi = ∆wi +η(t−o)xi (4.24)

wi = wi +∆wi (4.25)

Recurrent Neural networks have been used for classification in this

proposed method. A variant of recurrent neural networks known as Long

Short Term Memory Units (LSTMs) [214] has been used to classify preictal

and interictal states. Feature set obtained from CNN are converted into

sequences with sequence length of 50 and fed into LSTMs for classification.

LSTM consists of forget and input gates to store previous information or

forget information. This information is passed from one cell to another

by maintaining cell states. Implementation of forget ( f (t)), input (i(t))

gates, weights of previous layer of LSTM (Ht−1) [215], cell states and new

weights can be computed as follows:

f (t) = σ(W f .[ht−1,xt ]+b f ) (4.26)
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i(t) = σ(Wi.[ht−1,xt ]+bi) (4.27)

Ĉ(t) = tanh(WC.[ht−1,xt ]+bC) (4.28)

C(t) = ft ∗Ct−1 + it ∗Ĉt (4.29)

o(t) = σ(Wo.[ht−1,xt ]+bo) (4.30)

ht = ot ∗ tanh(Ct) (4.31)

Figure 4.7: Architecture of Long Short Term Memory Units (LSTM) 1

Figure 4.7 shows the repeating unit of LSTM. In this proposed method,

LSTM consists of 256 neurons at input and two neurons at output for clas-

sification between preictal and interictal EEG patterns. Proposed method

consists of 775,682 trainable parameters for classification using LSTM.

4.3.1 Ensemble Classification

An ensemble classification using LSTM based Model Agnostic Meta Learn-

ing has been proposed for classification between interictal and preictal
1https://neuronbits.com/en/blog/2020/11/17/lstm-architecture//



4.3 Classification 71

states to predict epileptic seizures. In few shot meta learning approach, a

model is trained with very small training data and is expected to classify test

examples with an increased accuracy. MAML is a technique used for few

shot learning and has been applied as ensemble classifier with probabilities

of three different classifiers fed as input to MAML for both preictal and

interictal classes.

Few shots learning is supervised by machine learning method that takes

the output of any machine /deep learning classifier as input with a goal to

classify preictal and interictal states with increased accuracy. Algorithm 2

and 3 explains Model Agnostic Meta Learning and Model Agnostic Meta

Learning for Few Shot Learning.

Algorithm 2: Model Agnostic Meta-Learning
Input: d(τ):distribution of tasks
Input: α ,β : step size

1 random initialization of θ ;
2 while not completed;
3 Sample batch for tasks τi∼d(τ);
4 for all τi do ;
5 Evaluate ∆θ ζτi( fθ ) with respect to K examples

Algorithm 3: Model Agnostic Meta Learning for Few Shot Learning
Input: d(τ):distribution of tasks
Input: α ,β :step size hyperparameters

1 random initialization θ ;
2 while not completed do;
3 Sample batch for tasks τi∼d(τ);
4 for all τi do Sample n datapoints D = x(i),y( j) from τi , Evaluate ∆θ ζτi( fθ ) using

∆ and ζτi;
5 Compute parameter θ with gradient descent: θ

′
i =θ -α∆θ ζi fθ from τ;

6 Sample the data points D
′
i = x( j),y( j) from τi;

7 meta update;
8 end for;
9 Update θ ← θ -β∆θ ∑τi∼p(τ)

ζτi( f
θ
′
i
);

10 end while;

In Algorithm 2, α is the step size with value 0.01, β is meta step size

which is meta learned and the model parameters are updated using stochastic

gradient descent. It describes the model agnostic meta learning in which
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a meta learner is trained using set of tasks. Loss function is computed for

while training the meta learner with these tasks and objective is to minimize

the loss function. Algorithm 3 presents the few shot learning in which few

batch tasks are considered from the all tasks and gradient is updated for few

samples only to optimize the objective function. It is an extension of MAML

and its purpose is to train the meta learner using only few tasks instead of

all the training data. A small subset of the tasks is used to train the meta

learner. Gradient is updated to train the meta in few iterations. Multilayer

perceptron with two hidden layers of 256, 64 neurons and an output layer

with 2 neurons has been used as meta learner. In the proposed method,

probabilities received from three classifiers SVM, CNN and LSTM have

been used as input to MAML. Output of MAML determines the interictal

and preictal class.

4.4 Summary

After preprocessing of EEG signals, feature extraction and classification be-

tween preictal and interictal state segments is required for epileptic seizure

prediction. In the proposed method, both handcrafted and automated fea-

tures have been extracted from both preictal and interictal state segments of

scalp and intracranial EEG signals. Approximate entropy and statistical mo-

ments including mean, variance, skewness and kurtosis have been extracted

in time domain. A customized three layer architecture of convolutional

neural network has been proposed to extract automated features. These

handcrafted and automated features are then combined and feature selection

techniques have been applied to reduce the effect of curse of dimensionality

and increase the processing time.

Cross correlation between all features have been computed using Pearson

correlation coefficient and features with correlation greater than 0.5 have

been dropped from the feature set. An optimal feature set has been then

selected by using Particle swam optimization. Feature set is then passed to

three different classifiers including support vector machine, convolutional
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neural networks and long short term memory units to get probabilities

of preictal and interictal classes as output. These probabilities have been

used as input to ensemble classifier to get the class label as final output.

LSTM based model agnostic meta learning has been used as ensemble

classification technique.
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CHAPTER 5
RESULTS AND DISCUSSION

In biomedical signal processing applications, accuracy, sensitivity, and

specificity are important performance measures. Therefore, the proposed

method has been trained on scalp and intracranial EEG signals’ datasets

for epileptic seizure prediction. k fold cross validation has been applied

to validate the results obtained from the proposed method. In this chapter,

detailed description of datasets, performance measures and experimentation

results have been presented. Results obtained on scalp and intracranial EEG

signals’ datasets have been compared with recent state of the art epileptic

seizure prediction methods.

5.1 Datasets

To train and evaluate the performance of epileptic seizure prediction meth-

ods, datasets are the necessary requirement. In this study, two publicly

available datasets including scalp EEG dataset and intracranial EEG dataset

have been used. These datasets consist of several hours EEG recordings of

patients affected from epilepsy. Following subsections provide necessary

background information and details of the aforementioned datasets.

5.1.1 CHBMIT Scalp EEG Dataset

Children Hospital Boston and Massachusetts Institute of Technology (CHB-

MIT) collaborated to collect EEG dataset for patients affected from epileptic

seizures which were non-controllable with medication. 22 subjects were
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monitored for several days without any type of medication for controlling

seizures. It includes 5 male and 17 female subjects. EEG signals have

been recorded using 10-20 international system of electrodes placement on

scalp of subjects. All EEG recordings have been renamed with chb01 to

chb22 prefix not to disclose the original patient’s information and saved

in European Data Format (EDF) files after digitizing the signals at 256

Hz. These files contain 644 recordings with mostly one hour recording in

each file. Each file is annotated with start and end of ictal state. Preictal

state is considered as 20 minutes before ictal state, whereas, interictal state

is considered few hours before onset of seizure and atleast one hour after

seizure end. Summary of each subject is provided in a separate file of all

subjects. Table 5.1 provides detail of all subjects for CHBMIT datasets

including age, sex, total number of seizures and length of recordings in

Hours.

Table 5.1: Patient-wise Details of Subjects Data of CHBMIT Dataset

Patient Sex Age No. of
Seizures

Length of
Record (Hrs)

Chb01 Female 11 7 41
Chb02 Male 11 3 35
Chb03 Female 14 6 38
Chb04 Male 22 3 43
Chb05 Female 7 5 39
Chb06 Female 1.5 6 24
Chb07 Female 14.5 3 19
Chb08 Male 3.5 5 29
Chb09 Female 10 4 18
Chb10 Male 3 6 31
Chb11 Female 12 3 39
Chb12 Female 2 6 24
Chb13 Female 3 12 35
Chb14 Female 9 5 39
Chb15 Male 16 14 46
Chb16 Female 7 10 19
Chb17 Female 12 3 21
Chb18 Female 18 6 36
Chb19 Female 19 3 30
Chb20 Female 6 5 29
Chb21 Female 13 4 33
Chb22 Female 9 3 34
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Table 5.2: Summary of CHB-MIT Dataset

Type Subjects Channels Sampling Rate Seizures Recordings (Hrs.)Male Female
Scalp EEG 5 17 23 256 Hz 198 644

Summary of CHB-MIT dataset is presented in Table 5.2. Scalp EEG

signals have been recorded using 23 electrodes and sampled at 256 Hz. The

dataset consists of total 198 seizures and recordings of each subject have

been divided into one hour long sessions which in few cases are upto four

hours.

5.1.2 American Epilepsy Society and Kaggle Seizure Prediction Chal-
lenge Intracranial EEG Dataset

In this study, intracranial EEG signals have also been used to validate the

proposed epileptic seizure prediction method. This dataset was recorded

by American Epilepsy Society in collaboration with Kaggle for seizure

prediction challenge few years ago. Table 5.3 shows the summary of Amer-

ican Epilepsy Society Seizure Prediction Challenge Dataset. Intracranial

EEG dataset recorded for the competition is a publicly available dataset. It

comprises of EEG recordings from 5 Canine and 2 Human subjects. EEG

signals from dogs were recorded using 16 electrodes implanted inside the

brain’s surface of subjects and sampled at 400 Hz. for dogs. EEG signals

have been recorded for long period of time spanning from several months

to year.

Table 5.3: Summary of American Epilepsy Society Seizure Prediction Challenge Dataset

Type Subjects Channels Sampling Rate Seizures Recordings (Hrs.)Canine Human
Intracranial EEG 5 2 16 400/5000 Hz 198 458/21.3

EEG data from Human subjects have been recorded where patients

undergone surgery to get electrodes implanted on the brain surface to locate

the region affected from epilepsy. In such cases, sampling rate has been

kept at 5000 Hz. for human subjects. Dataset contains interictal and preictal
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segments of iEEG signals. EEG segments for more than one week after

the seizure onset have been considered as interictal segments for dogs and

atleast four hours before a seizure takes place is considered as interictal for

human subjects. Similarly, segments which are five minutes before each

seizure are saved as preictal segments in both dogs and human cases.

5.2 Performance Measure

In classification problems, accuracy is considered as one of the most impor-

tant performance measure for evaluating the method. However, in problems

that involve high importance of correct classification of one class than other

class, sensitivity is considered as key measure that reflects the true perfor-

mance of method on positive class. In this research, detection of preictal

class is extremely important and it has less occurrences as compared to

interictal class. Preictal class is considered as positive class, therefore, sen-

sitivity is more important than specificity and accuracy while evaluating the

proposed method. Sensitivity measures the True Positive Rate (TPR) which

is correctly classified preictal state samples, whereas, specificity gives the

True Negative Rate (TNR)and measures correctly classified interictal state

segments. Accuracy, sensitivity and specificity can be defined through

following equations.

Accuracy =
T P+T N

T P+T N +FP+FN
(5.1)

Sensitivity =
T P

T P+FN
(5.2)

Speci f icity =
T N

T N +FP
(5.3)

Where, T P is true positive, which is correctly classified preictal class

examples, T N is true negative, that denotes correctly classified interictal

class examples. Similarly, FP is false positive, an interictal class predicted

as preictal, and FN is false negative, which is preictal class predicted as
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interictal. In epileptic seizure prediction methods, the preictal state is

considered to be positive class and the interictal state as a negative class. It

is extremely important that a proposed method must predicts a preictal class

correctly so that preventive measures can be taken to control the seizure

and at the same time it is also equally important that the method avoids

misclassification of interictal class as preictal. Therefore, upon evaluation, a

seizure prediction method must achieve high sensitivity as well as specificity.

Average anticipation time and Receiver Operating Characteristic (ROC)

curve analysis are also useful performance measures. Average anticipation

time is computed as the difference between the actual onset of the seizure

and detection of first few samples of preictal state. With increased average

anticipation, greater is the margin to control the upcoming seizure with

medication. ROC curve analysis gives the performance of the seizure

prediction method in terms of sensitivity and false alarm rate. Performance

of the proposed method has been evaluated based on sensitivity, specificity,

average anticipation time and ROC curve analysis.

5.3 Results of Proposed Method on Scalp EEG dataset

The proposed epileptic seizure prediction method involves three steps that

include preprocessing of EEG signals for noise removal to increase SNR of

signals, feature extraction and classification between interictal and preictal

classes. Accuracy, sensitivity, specificity, and average anticipation time

have been computed from multiple experiments by varying the techniques in

each step of seizure prediction method. Multiple combinations of different

techniques for all three steps have been tried in experimentation and results

obtained from each experiment have been presented. All these experiments

are patient dependent and training/testing has been done for each patient

separately. 2000-3000 samples of interictal state and 200-500 samples of

preictal states have been obtained after windowing for each subject.
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5.3.1 Performance Evaluation of Preprocessing Techniques

Preprocessing is an important step in seizure prediction method as it reduces

noise and other artifacts in the EEG signals to increase the SNR which is

quite useful in accurate classification between different states of seizures. In

the proposed method, multiple preprocessing techniques have been applied

on EEG signals to increase SNR and remove power line noise. These

methods include Bandpass filtering, Short Time Fourier Transform (STFT),

Empirical Mode Decomposition (EMD) and synthetic data generation using

Generative Adversarial Networks (GAN).

Table 5.4: Performance Evaluation of Epileptic Seizure Prediction Method with no prepro-
cessing, time/frequency domain feature extraction and Classification using SVM

Subject Accuracy (%) Sensitivity (%) Specificity (%) Average Anticipation
Time (minutes)

chb01 78.19 75.00 78.65 2
chb02 76.67 52.78 78.33 5
chb03 82.19 73.06 83.59 7.5
chb04 76.53 68.15 77.36 6.5
chb05 80.60 70.56 81.99 5
chb06 79.72 73.06 80.69 4.5
chb07 78.51 61.85 80.14 5
chb08 71.60 68.33 72.04 6.5
chb09 73.33 68.89 73.79 7
chb10 76.33 72.22 77.06 8
chb11 70.36 68.44 70.50 5.5
chb12 74.64 80.19 61.33 8.5
chb13 74.93 76.79 74.56 9
chb14 73.27 69.29 75.09 2
chb15 76.03 75.89 76.19 4
chb16 67.08 72.78 64.64 5
chb17 69.48 72.89 69.06 8
chb18 75.89 69.17 76.92 11.5
chb19 63.72 48.15 64.75 25.5
chb20 71.19 73.06 70.90 5
chb21 70.82 60.74 72.02 5
chb22 66.82 67.41 66.75 6

Average 74.00 69.03 73.93 6.9

In the first experimental setup, EEG signals have not been preprocessed

to assess the performance of baseline feature extraction technique and clas-

sification algorithm. Time/frequency domain features have been extracted
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and SVM is trained for classification between preictal and interictal states.

Accuracy, sensitivity, specificity and average anticipation time is computed

to assess the performance of the experimental setup. Table 5.4 shows the

performance indicators of all subjects of CHBMIT scalp EEG dataset. It

is observed from the achieved results that without preprocessing of EEG

signals, an epileptic seizure prediction method is unable to achieve better re-

sults on almost all subjects. In this experimental setting, no subject is able to

get more than 80% sensitivity and accuracy. With this experimental settings,

an average accuracy of only 74%, sensitivity and specificity of 69.03% and

73.93% with standard deviations of 0.73,0.71 and 0.56 has been achieved

respectively. An average anticipation time of only 6.9 minutes could be

achieved with this experimental setting. Highest ancitpation time of 25.5

minutes has been achieved on subject chb19 but with very low sensitivity of

48.15% and specificity of 64.75% which depicts that without preprocessing

epileptic seizure prediction method could not achieve good results. It shows

the significance of preprocessing of EEG signals to enhance performance

of epileptic seizure prediction method.

After analysis of results obtained from first experimental setup, it is

concluded that without preprocessing of EEG signals, it is not possible

to achieve better results in terms of all evaluation measures. Therefore,

in the 2nd experimental setup, bandpass filter has been applied to remove

high frequency components and power line noise at 50 Hz. from the EEG

signal. To apply bandpass filter, first the EEG signals have been converted

into the frequency domain by using Short Time Fourier Transform on 30

seconds overlapping window with an overlap of 15 seconds of preictal and

interictal segments. Multiple window sizes have been applied to segment

both preictal and interictal states signals including overlapping and non-

overlapping window. An overlapping window of 30 seconds with overlap

of 15 seconds has been selected as it gives optimal results in terms of

accuracy, sensitivity and specificity. 4th order Butterworth filter with pass

band frequencies from 0 Hz. to 40 Hz. and 60 Hz. to 130 Hz. has been
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Table 5.5: Performance Evaluation of Epileptic Seizure Prediction Method with Bandpass
filtering, time/frequency domain feature extraction and Classification using SVM

Subject Accuracy (%) Sensitivity (%) Specificity (%) Average Anticipation
Time (minutes)

chb01 83.33 82.50 83.45 2.5
chb02 85.22 66.67 86.51 6
chb03 89.48 87.50 89.79 9
chb04 80.99 82.59 80.83 8
chb05 85.19 81.67 85.68 6
chb06 81.06 83.61 80.69 5.5
chb07 83.50 81.48 83.70 6
chb08 85.13 81.67 85.59 8
chb09 80.58 78.89 80.76 8.5
chb10 88.28 91.56 87.70 10
chb11 82.79 80.00 83.00 7
chb12 87.32 89.81 81.33 10
chb13 89.98 86.42 90.69 11
chb14 84.38 85.05 84.07 2.5
chb15 86.90 88.89 84.76 5
chb16 85.42 86.67 84.88 6
chb17 84.00 80.00 84.50 10
chb18 90.11 86.67 90.64 14
chb19 87.77 62.96 89.41 31
chb20 84.68 86.67 84.37 7
chb21 85.41 73.33 86.84 7
chb22 87.94 83.33 88.46 7

Average 85.43 82.18 85.35 8.5

used to remove high frequency components and power line noise.

Feature extraction and classification has been kept same as in first exper-

iment. Table 5.5 provides the performance evaluation of Epileptic Seizure

Prediction Method with Bandpass filtering, time/frequency domain feature

extraction and Classification using SVM. With this experimental setting,

an average accuracy of 85.43%, sensitivity of 82.18% and specificity of

85.35% with standard deviation of 0.69, 0.78 and 0.62 respectively has been

obtained on all subjects. Therefore, it is concluded by comparing results of

both experiments that with preprocessing there is significant improvement

in the performance of seizure prediction method. Average anticipation time

has also been improved and this experimental setup hasbeen able to achieve

average prediction time of 8.5 minutes. This fact motivates to improve the

preprocessing of EEG signals and compute the SNR so that more accurate
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results could be achieved for epileptic seizure prediction.

Comparison of experimental results achieved from first two experiments

which are shown in Table 5.4 and 5.5 motivate to further improve prepro-

cessing of EEG signals to get better classification results as removal of noise

artifacts is inevitable for achieving better accuracy. Therefore, in the 3rd

experiment Empirical Mode Decomposition (EMD) along with Bandpass

filtering is used to increase the SNR of the EEG signals. Only Bandpass

filter has shown good performance for noise removal, however, by simply

applying bandpass filter for removing high frequency components from

EEG signals is not effective as it may result in losing information useful

for classification of related to specific class. Therefore, in this experimental

setup, EMD has been used for removing high frequency components by

combining Intrinsic Mode Functions (IMFs) obtained from low frequency

EEG signals.

Feature extraction and classification have been kept same as in first two

experimental settings. Table 5.6 shows the results obtained after applying

this method on all subjects of CHBMIT scalp EEG dataset. An average

accuracy of 87.66%, sensitivity of 84.78% and specificity of 87.44% with

standard deviation of 0.82, 0.89 and 0.75 respectively has been achieved

which is higher than previous approaches. An average anticipation time has

also increased upto 10.47 minutes. Maximum average anticipation time of

38% has been obtained on subject chb19 but with sensitivity of only 65%.

With these preprocessing methods, highest accuracy, sensitivity and

specificity have been achieved than previous experimental settings. There-

fore, it has been concluded that EMD followed by Bandpass filtering after

converting EEG signals into frequency domain gives better classification

results. Figure 5.1a, b and c shows the bar charts of results achieved on

all subjects of CHBMIT dataset by varying preprocessing methods and

keeping same feature extraction and classification. Figure 5.1c describes

that greater accuracy, sensitivity and specificity has been achieved when

EEG signals are preprocessed using EMD followed by bandpass filtering.
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Figure 5.1: Comparison of a) Accuracy b) Sensitivity and c) Specificity achieved on
CHBMIT scalp EEG dataset after applying three different approaches by keeping fixed

feature extraction and classification, and varying preprocessing techniques; 1) No
preprocessig 2) Bandpass filtering as preprocessing 3) EMD and Bandpass filtering as

preprocessing of EEG signals
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Table 5.6: Evaluation of Epileptic Seizure Prediction Method with EMD and Bandpass
filtering for noise removal, time/frequency domain feature extraction and Classification
using SVM

Subject Accuracy (%) Sensitivity (%) Specificity (%) Average Anticipation
Time (minutes)

chb01 85.45 87.78 85.12 3
chb02 85.83 72.78 86.74 8
chb03 91.22 88.33 91.67 12
chb04 81.91 85.56 81.56 10
chb05 86.00 86.67 85.91 8
chb06 85.57 86.39 85.45 7
chb07 84.52 81.48 84.82 8
chb08 85.69 82.50 86.11 1
chb09 84.40 81.85 84.66 11
chb10 91.01 91.78 90.87 13
chb11 89.32 80.89 89.95 9
chb12 87.97 90.56 81.78 13
chb13 91.00 87.90 91.62 14
chb14 85.84 87.07 85.28 3
chb15 90.63 93.89 87.14 6.5
chb16 87.17 89.17 86.31 8
chb17 88.54 84.89 89.00 13
chb18 91.44 89.17 91.79 18
chb19 92.37 65.19 94.17 38
chb20 85.39 88.06 84.97 9
chb21 87.06 75.93 88.38 9
chb22 90.19 87.41 90.50 9

Average 87.66 84.78 87.44 10.47

Therefore, it is evident from the results obtained by varying different pre-

processing methods that EMD along with bandpass filtering provides better

SNR of EEG signals which lead towards better classification of interictal

and preictal states.

5.3.2 Evaluation of Feature Extraction methods

Feature extraction is the most important step for prediction of epileptic

seizures. Therefore, after evaluating the performance of different prepro-

cessing approaches, both handcrafted as well as automated features have

been extracted to form a comprehensive feature vector. Feature selection

techniques have also been applied to remove the correlated features on the

basis of Pearson correlation coefficient between them and Particle swam
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optimization algorithm has been applied to get features with increased

inter-class variance for preictal and interictal states. Feature selection pro-

vides robustness of epileptic seizure prediction method against curse of

dimensionality. Comparison between results obtained from different feature

extraction methods by keeping the same preprocessing and classification

has been presented.

In the first experiment for selection of feature set, preprocessed EEG

signals are used for feature extraction. Automated features that distinguish

between interictal and preictal classes have been extracted using Convo-

lutional Neural Networks (CNN). While evaluating the performance of

preprocessing techniques, time/frequency domain handcrafted features have

been extracted, therefore, in this experiment automated features have been

extracted using CNN and the performance classification performance of

automated feature has been compared with handcrafted features.

Table 5.7 presents the evaluation of epileptic seizure prediction Method

with EMD and Bandpass filtering for noise removal, time/frequency domain

feature extraction and Classification using SVM. An average accuracy,

sensitivity and specificity of 91.72%, 92.69% and 90.80% with standard

deviation of 0.53, 0.52 and 0.59 respectively and average anticipation

time of 21 minutes have been obtained with this experimental setting.

A significant increase in performance measures has been observed from

comparison of Table 5.6 and 5.7. It shows that keeping preprocessing and

classification same, automated features extracted using CNN gives better

classification accuracy than handcrafted features. This is due to the fact

that CNN extract features by keeping class information under consideration.

In handcrafted features, class information is not kept that leads to reduced

inter-class variance in features.

Both handcrafted features and automated extracted from CNN have been

combined in a feature vector and it’s performance has been then evaluated.

Table 5.8 presents results achieved by keeping the same preprocessing

and classification setting and combining both handcrafted and automated
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Table 5.7: Evaluation of Epileptic Seizure Prediction Method with EMD and Bandpass
filtering for noise removal, feature extraction using CNN and Classification using SVM

Subject Accuracy (%) Sensitivity (%) Specificity (%) Average Anticipation
Time (minutes)

chb01 92.08 97.50 91.31 23.5
chb02 93.55 72.22 95.04 18.5
chb03 95.30 95.28 95.30 21.5
chb04 88.35 91.48 88.04 22
chb05 92.75 96.67 92.20 23.5
chb06 90.57 97.78 89.51 25
chb07 87.95 90.74 87.68 19.5
chb08 93.07 96.11 92.67 21.5
chb09 93.81 88.89 94.32 19
chb10 96.67 98.00 96.43 18
chb11 93.01 84.44 93.65 35.5
chb12 93.99 96.30 88.44 23.5
chb13 93.05 95.06 92.65 12.5
chb14 92.70 93.94 92.13 15.5
chb15 91.38 98.89 83.33 19
chb16 92.58 97.50 90.48 32
chb17 88.69 86.67 88.94 21
chb18 87.59 95.83 86.32 22
chb19 92.46 81.48 93.19 32.5
chb20 88.19 96.67 86.87 12.5
chb21 87.61 92.22 87.06 12
chb22 92.43 95.56 92.08 12

Average 91.72 92.69 90.80 21

features. It is evident that combination of both kind of features is useful in

getting better classification results.

In the next experiment, Pearson Correlation Coefficient has been used to

compute the cross correlation between features. In cases where correlation

is high, such features have been dropped from the feature set to reduce

the size of the feature vector. Features with high correlation values are

redundant in feature vector, take more memory to store during training and

gives no benefit in achieving good results. Therefore, in this experiment

feature vector has been reduced by selecting features after computing PCC.

Table 5.9 shows the results achieved by preprocessing of EEG signals

through EMD and Bandpass filtering, feature selection using PCC after

combining both handcrafted and automated features extracted through CNN

and classification with SVM. It can be concluded by analyzing the results
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Table 5.8: Evaluation of Epileptic Seizure Prediction Method with EMD and Bandpass
filtering for noise removal, combined feature set having both Handcrafted and CNN based
features, and Classification using SVM

Subject Accuracy (%) Sensitivity (%) Specificity (%) Average Anticipation
Time (Minutes)

chb01 91.70 96.94 90.95 23.5
chb02 94.57 76.67 95.81 18.5
chb03 95.63 94.17 95.85 21.5
chb04 92.94 93.70 92.86 22
chb05 92.27 95.28 91.86 23.5
chb06 90.64 95.28 89.96 25
chb07 88.78 92.96 88.37 19.5
chb08 93.79 97.50 93.30 21.5
chb09 94.47 87.41 95.19 19
chb10 95.05 95.78 94.92 18
chb11 94.15 87.11 94.68 35.5
chb12 92.16 95.00 85.33 23.5
chb13 93.29 93.58 93.24 12.5
chb14 94.29 93.33 94.72 15.5
chb15 91.21 96.89 85.12 19
chb16 92.17 95.28 90.83 32
chb17 88.99 93.33 88.44 21
chb18 87.67 93.33 86.79 22
chb19 93.52 75.56 94.71 32.5
chb20 88.15 93.06 87.39 12.5
chb21 86.82 88.52 86.62 12
chb22 92.70 97.04 92.21 12

Average 92.04 92.17 91.33 21

that feature selection has improved the classification accuracy of the method.

Particle Swarm Optimization (PSO) has also been used to get an op-

timized feature vector with low intra-class and high inter class variance

for two classes of EEG signals. 500 features have been obtained by ap-

plying PSO to get final feature vector with automated features dominated

in the final feature set. Therefore, by keeping the experimental settings

of previous experiment and further feature selection with the help of PSO,

epileptic seizure prediction method has been able to achieve very good

results in terms of sensitivity, specificity and accuracy of seizure prediction

system. Table 5.11 provides the performance evaluation of epileptic seizure

prediction method with feature vector formation by feature selection using

PCC and PSO.
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Figure 5.2: Comparison of a) Accuracy b) Sensitivity and c) Specificity achieved on
CHBMIT scalp EEG dataset after applying three different approaches by keeping

preprocessing using EMD and Bandpass filtering, classification with SVM, and varying
feature extraction methods; 1) Automated feature extraction with CNN 2) Feature

selection using Pearson Correlation 3) Feature selection using Pearson Correlation and
Particle Swarm Optimization.



5.3 Results of Proposed Method on Scalp EEG dataset 89

Table 5.9: Evaluation of Epileptic Seizure Prediction Method with EMD and Bandpass
filtering for noise removal, combined feature set having both Handcrafted and CNN based
features, Pearson Correlation Coefficient for feature selection and Classification using
SVM

Subject Accuracy (%) Sensitivity (%) Specificity (%) Average Anticipation
Time (minutes)

chb01 93.58 87.50 94.44 24
chb02 93.91 73.33 95.35 18
chb03 95.63 94.72 95.77 22.5
chb04 92.84 93.70 92.75 20.5
chb05 93.93 96.94 93.51 21.5
chb06 92.45 96.11 91.91 24
chb07 89.47 92.96 89.13 19
chb08 94.93 95.83 94.81 21.5
chb09 94.60 89.26 95.15 12.5
chb10 97.21 96.67 97.30 16
chb11 96.98 89.33 97.55 2
chb12 93.07 94.44 89.78 13.5
chb13 95.21 96.79 94.90 12.5
chb14 91.43 91.11 91.57 15.5
chb15 90.57 97.78 82.86 16
chb16 94.25 88.61 96.67 32
chb17 91.06 92.89 90.83 21
chb18 90.26 94.72 89.57 22
chb19 95.40 82.96 96.23 32.5
chb20 90.62 95.28 89.90 12.5
chb21 87.76 91.11 87.37 12
chb22 94.68 95.56 94.58 12

Average 93.18 92.16 92.82 18.3

Figure 5.2 compares the performance of epileptic seizure prediction

methods on scalp EEG signals by varying feature extraction techniques and

keeping fixed preprocessing and classification. It shows that automated

features performs better in terms of classification accuracy, sensitivity and

specificity as compared to handcrafted features. Figure 5.2 also describes

the performance of seizure prediction method with optimal feature set. Both

handcrafted and automated features have been combined and then correlated

features have been dropped after computing Pearson correlation coefficient.

Particle swarm optimization has been used for further selection of features

to get a comprehensive feature set.
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Table 5.10: Evaluation of Epileptic Seizure Prediction Method with EMD and Bandpass
filtering for noise removal, combined feature set having both Handcrafted and CNN based
features, Particle Swarm Optimization for feature selection and Classification using SVM

Subject Accuracy (%) Sensitivity (%) Specificity (%) Average Anticipation
Time (Minutes)

chb01 93.13 95.00 92.86 24
chb02 94.57 72.22 96.12 19.5
chb03 96.11 93.06 96.58 23.5
chb04 91.78 92.22 91.74 21.5
chb05 93.08 96.39 92.63 22.5
chb06 91.56 97.50 90.69 23.5
chb07 88.25 89.63 88.12 20
chb08 93.50 96.67 93.07 21.5
chb09 93.92 88.15 94.51 14.5
chb10 97.24 97.33 97.22 17.5
chb11 93.60 86.67 94.11 18
chb12 93.73 94.81 91.11 13.5
chb13 94.60 95.80 94.36 15.5
chb14 91.62 92.73 91.11 15.5
chb15 90.52 98.33 82.14 16.5
chb16 94.67 89.17 97.02 32
chb17 90.52 94.22 90.06 21
chb18 87.30 95.83 85.98 22
chb19 94.71 81.48 95.59 32.5
chb20 88.45 96.67 87.18 12.5
chb21 87.25 90.00 86.93 12
chb22 92.66 94.44 92.46 12
Average 92.40 92.20 91.89 19.6

5.3.3 Evaluation of Classifier Performance using Scalp EEG Signals

After preprocessing of EEG signals and feature extraction, classification of

preictal and interictal segments is performed. Three different experiments

have been performed for classifier selection in this phase. Classification

using SVM has been already done to finalize the preprocessing and feature

extraction phases. Now, in this phase, empirical mode decomposition and

bandpass filtering has been used for preprocessing followed by combined

feature set extraction and selection using PCC and PSO. Multiple clas-

sification approaches have been used that include classification through

CNN, LSTM and ensemble classifier using Model Agnostic Meta Learning

(MAML) using all three classifiers including SVM, CNN and LSTM.
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Table 5.11: Evaluation of Epileptic Seizure Prediction Method with EMD and Bandpass
filtering for noise removal, combined feature set having both Handcrafted and CNN based
features, Pearson Correlation Coefficient and Particle Swarm Optimization for feature
selection and Classification using SVM

Subject Accuracy (%) Sensitivity (%) Specificity (%) Average Anticipation
Time (minutes)

chb01 92.08 97.50 91.31 24
chb02 93.55 72.22 95.04 19.5
chb03 95.30 95.28 95.30 21.5
chb04 88.35 91.48 88.04 22.5
chb05 92.75 96.67 92.20 19.5
chb06 90.57 97.78 89.51 23
chb07 87.95 90.74 87.68 18
chb08 93.07 96.11 92.67 20.5
chb09 93.81 88.89 94.32 14.5
chb10 96.67 98.00 96.43 18.5
chb11 93.01 84.44 93.65 12.5
chb12 93.99 96.30 88.44 18.5
chb13 93.05 95.06 92.65 16.5
chb14 92.70 93.94 92.13 21
chb15 91.38 98.89 83.33 23
chb16 92.58 97.50 90.48 28
chb17 88.69 86.67 88.94 19.5
chb18 87.59 95.83 86.32 18.5
chb19 92.46 81.48 93.19 26
chb20 88.19 96.67 86.87 12.5
chb21 87.61 92.22 87.06 12
chb22 92.43 95.56 92.08 14

Average 92.93 92.25 92.46 20 min

In the first experiment of this phase, classification has been done with the

help of CNN. It uses fully connected layers for classification after feature

extraction and two neurons at output layer for class identification. In this

experimental setting, CNN consists of two fully connected layers with 512

and 256 neurons in each layer followed by output layer with 2 neurons

and softmax activation function. Classification component of CNN is same

like an ANN will fully connected layers. Table 5.12 shows the results

obtained from this experimental setting. An average accuracy of 91.67%,

sensitivity of 89.31% and specificity of 91.42% with standard deviation of

0.51, 0.54 and 0.53 respectively has been obtained with this experimental

setup. Average anticipation time of 22.7 minutes has been obtained with this
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method. Comparison of the classification results obtained from CNN and

SVM as classifiers, there is decline in all performance measures obtained

in this method except slight increase in average anticipation time. It is

observed after the analysis of results that SVM gives better classification

accuracy as compared to CNN. This is due to the fact that CNN uses simple

fully connected layers as of ANN which do not perform better than SVM.

Table 5.12: Evaluation of Epileptic Seizure Prediction Method with EMD and Bandpass
filtering for noise removal, combined feature set having both Handcrafted and CNN based
features, Pearson Correlation Coefficient and Particle Swarm Optimization for feature
selection and Classification using CNN

Subject Accuracy (%) Sensitivity (%) Specificity (%) Average Anticipation
Time (minutes)

chb01 93.13 94.44 92.94 26.5
chb02 93.66 69.44 95.35 21.5
chb03 93.96 90.28 94.53 23.5
chb04 92.48 88.52 92.86 23
chb05 92.51 92.22 92.55 21.5
chb06 89.82 89.17 89.92 21.5
chb07 89.24 89.26 89.24 18.5
chb08 96.18 91.94 96.74 21
chb09 92.30 83.70 93.18 20
chb10 95.08 91.56 95.71 19
chb11 92.95 84.00 93.62 15.5
chb12 90.20 91.67 86.67 19.5
chb13 93.09 89.88 93.73 17.5
chb14 91.24 91.11 91.30 21.5
chb15 89.60 97.33 81.31 23.5
chb16 93.17 88.61 95.12 32
chb17 90.07 92.89 89.72 31
chb18 86.78 95.00 85.51 29
chb19 95.03 80.74 95.98 28
chb20 87.71 94.17 86.70 21
chb21 87.02 88.15 86.89 22
chb22 91.61 90.74 91.71 23

Average 91.67 89.31 91.42 22.7

In the 2nd experimental setting, LSTM has been used for classification.

Table 5.13 compares the results obtained from seizure prediction method

that include preprocessing of EEG signals using EMD and Bandpass fil-

tering, feature selection with PCC and PSO and classification between

interictal and preictal states using LSTM. An average accuracy of 92.98%,
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Table 5.13: Evaluation of Epileptic Seizure Prediction Method with EMD and Bandpass
filtering for noise removal, combined feature set having both Handcrafted and CNN based
features, Pearson Correlation Coefficient and Particle Swarm Optimization for feature
selection and Classification using LSTM

Subject Accuracy (%) Sensitivity (%) Specificity (%) Average Anticipation
Time (minutes)

chb01 92.59 95.14 91.87 30
chb02 92.86 82.78 94.26 25
chb03 90.95 94.72 89.79 27
chb04 88.24 92.59 87.39 26.5
chb05 89.20 96.39 87.21 25
chb06 90.22 93.61 89.23 25
chb07 92.91 91.85 93.12 22
chb08 95.73 94.72 96.00 24.5
chb09 91.19 86.67 92.12 23.5
chb10 96.70 94.00 97.66 22.5
chb11 94.88 94.22 94.97 19
chb12 95.71 96.67 91.11 23
chb13 96.74 95.06 97.40 21
chb14 94.20 96.77 91.85 25
chb15 97.23 99.00 93.45 27
chb16 95.96 93.06 98.45 35.5
chb17 90.98 96.89 89.50 34.5
chb18 90.85 90.00 91.11 32.5
chb19 96.15 85.19 97.60 31.5
chb20 89.03 94.72 87.26 24.5
chb21 91.63 89.26 92.19 25.5
chb22 91.56 92.96 91.25 26.5

Average 92.98 93.01 92.49 26.2

sensitivity of 93.01% and specificity of 92.49% with standard deviation

of 0.48, 0.49 and 0.52 respectively has been achieved with this method.

Results obtained from this classification method shows that there is some

improvement in classification accuracy with LSTM compared with ANN

and are comparable to the results achieved from seizure prediction method

with SVM as classifier. The average anticipation time is also increased

compared with SVM. 26.2 minutes prediction time is observed with this

experimental setting.

In the 3rd experiment of classifier selection, an ensemble classifier of

SVM, CNN and LSTM is proposed using Model Agnostic Meta Learning

(MAML) classification method. Output of all classifiers in the form of
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Table 5.14: Evaluation of Epileptic Seizure Prediction Method with EMD and Bandpass
filtering for noise removal, combined feature set having both Handcrafted and CNN based
features, Pearson Correlation Coefficient and Particle Swarm Optimization for feature
selection and Classification using Ensemble Classifier

Subject Accuracy (%) Sensitivity (%) Specificity (%) Average Anticipation
Time (minutes)

chb01 96.02 96.67 95.83 33.5
chb02 94.69 87.22 95.74 34.5
chb03 94.58 94.72 94.53 30.5
chb04 91.76 95.93 90.94 30
chb05 89.38 94.44 87.98 35.5
chb06 92.61 95.00 91.91 28.5
chb07 93.70 92.96 93.84 28.5
chb08 96.05 95.28 96.26 28
chb09 92.11 88.52 92.84 31.5
chb10 97.22 94.89 98.06 29
chb11 95.60 95.56 95.60 32.5
chb12 96.48 97.41 92.00 26.5
chb13 97.16 95.56 97.79 24.5
chb14 94.83 97.58 92.31 28.5
chb15 97.54 99.22 93.93 30.5
chb16 97.76 96.67 98.69 39
chb17 91.60 97.33 90.17 38
chb18 93.17 97.50 91.84 36
chb19 96.67 88.15 97.79 35
chb20 91.04 95.83 89.55 35.5
chb21 92.73 92.96 92.68 29
chb22 92.07 94.44 91.54 33.5

Average 94.31 94.72 93.72 31.72

probabilities has been fed into MAML to obtain the final classification

output. Table 5.14 presents that an average accuracy of 94.31%, sensitivity

of 94.73% and specificity of 93.72% with standard deviation of 0.53, 0.56

and 0.53 respectively has been achieved with this ensemble classification

method. Average anticipation time of all subjects is also 31.7 minutes with

this experimental setup. It shows that there is significant improvement

in classification accuracy, sensitivity, specificity and anticipation time of

epileptic seizure prediction method. Therefore, it is concluded that ensemble

classifier gives the optimal classification performance compared to result

achieved from individual classifiers.

Results achieved from different classifiers have been presented in figure
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Figure 5.3: Comparison of a) Accuracy b) Sensitivity and c) Specificity achieved on
CHBMIT scalp EEG dataset after applying different approaches of classification by

keeping preprocessing using EMD and Bandpass filtering, feature selection using PCC
and PSO from both handcrafted and CNN extracted features, and varying classification
methods; 1) Classification using CNN 2) Classification using LSTM 3) Classification

using ensemble learning.
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5.3. Highest accuracy, sensitivity, specificity and average anticipation time

has been obtained from ensemble classifier, whereas, LSTM and SVM has

performed as classifier compared to CNN which uses fully connected layers

like ANN.
Table 5.15: Evaluation of Epileptic Seizure Prediction Method with EMD and Bandpass
filtering for noise removal, synthetic preictal segments generation using GAN, combined
feature set having both Handcrafted and CNN based features, Pearson Correlation Co-
efficient and Particle Swarm Optimization for feature selection and Classification using
Ensemble Classifier

Subject Accuracy (%) Sensitivity (%) Specificity (%) Average Anticipation
Time (minutes)

chb01 98.80 98.75 98.81 34.5
chb02 97.14 96.11 97.29 35.5
chb03 97.42 95.97 97.86 31.5
chb04 97.03 96.67 97.10 31
chb05 95.34 95.69 95.24 36.5
chb06 94.06 95.83 93.54 29.5
chb07 94.76 95.37 94.64 29.5
chb08 96.49 96.25 96.56 33.5
chb09 94.15 90.93 94.81 32.5
chb10 97.75 96.00 98.37 30
chb11 96.26 96.22 96.26 33.5
chb12 97.55 98.33 93.78 27.5
chb13 97.54 96.17 98.09 28.5
chb14 95.46 98.08 93.06 29.5
chb15 98.18 99.00 96.43 31.5
chb16 98.08 97.08 98.93 40
chb17 93.38 95.78 92.78 39
chb18 93.73 97.92 92.44 37
chb19 97.66 90.74 98.58 36
chb20 93.91 99.31 92.23 36.5
chb21 94.72 96.48 94.30 30
chb22 93.67 95.37 93.29 34.5

Average 96.05 96.28 95.65 33.06

Table 5.15 presents the results obtained using this method for epileptic

seizure prediction method. k-fold cross validation method has been used for

train test splitting using 10-fold validation. An average accuracy, sensitivity

and specificity of 96.05%, 96.28% and 95.65% with standard deviation

of 0.48, 0.51 and 0.53 respectively has been achieved. Average anticipa-

tion time of 30.7 minutes has also been achieved with this method. This

experiment combines the best technique of all phases with an addition of
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resolving class imbalance problem using Generative Adversarial Networks

(GAN). Preictal segments are very less compared with interictal segments.

In most of the subjects, ratio of preictal and interictal is 1:10 that makes

the classification problem difficult and lead towards over-fitting issue to

to less training data of preictal class. Effect of class imbalance has been

mitigated by generating synthetic preictal segments using GAN which gen-

erates synthetic segments by estimating the distribution of original preictal

class segments.

Figure 5.4: Performance evaluation of proposed method, Classification using ensemble
learning after adding synthetic data generated using GANs.

Performance of the proposed method on all subjects in terms of accuracy,

sensitivity and specificity is shown in figure 5.4. This experimental setting

gives highest accuracy and sensitivity with low false positive alarms and in-

creased average anticipation time. Table 5.16 compares the results achieved

by varying experimental settings for prediction of epileptic seizures using

scalp EEG signals. Different experiments include multiple combinations of

preprocessing, feature extraction and classification of interictal and preictal

states. These experiments have been evaluated based on accuracy, sensitiv-

ity, specificity and average anticipation time. On the basis of performance,

method has been improved to get optimal results.
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Figure 5.5: Comparison of results achieved from epileptic seizure prediction method using
different experiments

Preprocessing of EEG signals have been decided based on the results

obtained from first three experiments. Figure 5.5 compares the performance

of different experiments performed in this research. In the 1st experiment,

handcrafted features have been extracted from scalp EEG signals without

preprocessing and classification is done using SVM. EEG signals have been

preprocessed in the 2nd experiment using bandpass filtering to remove high

frequency components from the signals followed by handcrafted feature

extraction and classification using SVM. Comparison of these two experi-

ments shows that there is significant improvement in results achieved from

preprocessed signals. In the 3rd experiment, due to motivation of previous

experiment, preprocessing of EEG signals is further improved and these

signals are preprocessed using empirical mode decomposition followed by

bandpass filter. However, feature extraction and classification has been kept

same as in previous experiments. Further increase in accuracy, sensitiv-

ity, specificity and average anticipation time has been observed with this

experimental setting. Similarly, in experiment 4 to 6, feature extraction

techniques have been varied by keeping same preprocessing and classifica-

tion. Combination of both handcrafted and automated features followed by
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feature selection using Pearson correlation coefficient and particle swarm

optimization has proved to give better classification results.

Experiment 7 to 9 have been performed by keeping the preprocessing

and feature extraction fixed and changing the classifiers for classification be-

tween preictal and interictal states. In 7th experiment, preictal and interictal

states have been classified using LSTM and it achieves results comparable

to classification with SVM in experiment#5. An ensemble classifier is pro-

posed in this method that takes probabilities from SVM, CNN and LSTM

as input and generates output class using few shot MAML. Experiment#9

shows that this ensemble classifier has been able to achieve 94.31% accu-

racy, 94.72% sensitivity, 93.72% specificity with standard deviation of 0.46,

0.48 and 0.51 respectively. An average anticipation time of 31.72 minutes

on all subjects of scalp EEG dataset.

Preictal segments are very few as compared to interictal class segments

due to very less number of seizures present in the recordings of EEG signals

that lead towards class imbalance problem for classification of interictal

and preictal classes. Experiment#10 mitigates the effect of class imbalance

problem by synthetic data generation for preictal class using generative

adversarial networks. Better results have been achieved with the experi-

mental setting of previous experiment and adding more segments which are

synthetically generated using GANs. An average accuracy of 96.05%, sensi-

tivity of 96.28%, specificity of 95.65% with standard deviation of 0.53, 0.56

and 0.54 respectively. An average anticipation time of approximately 33

minutes have been achieved on all subjects of CHBMIT scalp EEG dataset

using this experimental setting. This increased average anticipation time

has been achieved due to better performance of classifier. Once the classifier

is trained with preictal and interictal class samples, a complete session of

EEG recordings is then passed to detect the preictal state samples. Upon

successful detection of 5 consecutive samples of preictal state, the sample is

marked as start of preictal state. Time between onset of the seizure and start

of preictal state is computed and represented as anticipation time. For imple-
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mentation of the proposed method, time required to process each new test

sample is 1 minute and 56 seconds for the final experimental setup. Figure

5.6 illustrates anticipation time in epileptic seizure prediction system. First

window from the left represents the sample where preictal state is detected,

whereas, second window represents onset of seizure. Difference between

these window is computed which is anticipation or seizure prediction time.

Figure 5.6: Illustration of anticipation time in epileptic seizure prediction system

Schelter et al [216] have proposed the method to compute the probability

for alarm generation upon prediction of preictal state which has been used

for statistical validation of the seizure onset and can be computed as follows:

P≈ 1− e−FPR (5.4)

Probability to predict m seizures from total M seizures is computed as:

p = ∑
i≥m

(
M
i

)
Pi(1−P)M−i (5.5)

p has been computed to each subject with FPR and m number of seizures

predicted by the proposed method. It has been concluded that p is less than

0.05 in case of all subjects, therefore the proposed method performs better.
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Results achieved from proposed method have been compared with the

recent state of the art epileptic seizure prediction methods on scalp EEG

dataset. Table 5.17 compares the sensitivity, specificity and average antici-

pation time achieved in recent state of the art epileptic seizure prediction

methods on scalp EEG signals with the proposed method. Proposed method

achieves better results from existing methods on the same dataset. Epileptic

seizures need to be predicted well before the onset of seizure starts with in-

creased accuracy, sensitivity and specificity. If a seizure prediction method

achieves increased average anticipation time with decreased sensitivity and

specificity then its performance is considered as low due to increased num-

ber of false alarms. Increased sensitivity with low specificity can also lead

towards adverse effects as medication due to false alarm affects health of

patient adversely.

Alotaiby et al. [38] have achieved average anticipation time of approx-

imately 68 minutes, however, specificity of 64% has been obtained that

shows the high false alarm rate which affects adversely on patient’s health.

Similarly, method proposed by Chu et al [45] is also able to predict epileptic

seizure 45.3 minutes before onset of a seizure but could not achieve sensitiv-

ity and specificity of more than 86%. Seizure prediction method proposed

by Liu et al [39] have obtained an average sensitivity of 91.5% but could

achieve only 79.5% specificity. CNN has been used for feature extraction

by Khan et al [37], Truong et al [49], Acharya et al [50], Liu et al [39],

Wei et al [40] and Zhang et al [34], however, the proposed architecture of

CNN requires less number of trainable parameters compared with existing

methods.
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Figure 5.7: Comparison of ROC curves of different experiments performed

In comparison with existing methods, the proposed method have achieved

an average sensitivity of 96.8 % with specificity of 95.565 % and an average

anticipation time of 33 minutes on all subjects of CHBMIT scalp EEG

dataset. Another important performance measure is Receiver Operating

Characteristic (ROC) curve that shows the classification performance in

terms of sensitivity vs false positive rate. This experimental setting include

preprocessing of EEG signals using EMD, bandpass filtering and synthetic

data generation using GAN, comprehensive feature set extraction and clas-

sification with ensemble classifier. Figure 5.7 provides a comparison of

ROC curves of different experiments performed in this study. It has been

observed that proposed method is able to achieve increased sensitivity with

low false positive rate.
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5.4 Results of Proposed Method on intracranial EEG dataset

The proposed method for prediction of epileptic seizures has also been

applied on intracranial EEG signals. Dataset of intracranial EEG signals

recorded by American epilepsy association for Kaggle competition has

been used for training and validation of results obtained with the proposed

method. Dataset consists of iEEG recordings of five canine subjects and

two human subjects recorded at 400 Hz. and 5000 Hz respectively. There

is no information present about start and end of epileptic seizure in this

dataset, therefore, average anticipation time cannot be determined by pro-

posed seizure prediction method as it requires annotation of seizure onset.

However, sensitivity and specificity can be computed to evaluate the per-

formance of proposed method. Table 5.18 presents the results achieved

after applying proposed method on iEEG dataset. It has been observed that

an average accuracy of 95.53%, sensitivity of 94.27% and specificity of

95.81% has been achieved on all subjects including canine and human.

Table 5.18: Results achieved on American Epilepsy Association-Kaggle intracranial EEG
dataset

Subject Accuracy (%) Sensitivity (%) Specificity (%)
Dog 1 96.11 95.81 96.17
Dog 2 95.17 95.43 95.13
Dog 3 94.72 96.24 94.43
Dog 4 94.80 93.12 95.13
Dog 5 97.35 95.00 97.94
Human 1 94.96 92.08 95.53
Human 2 95.60 91.75 96.37
Average 95.53 94.20 95.81

These results show that proposed method is not only able to achieve

better results on scalp EEG signals but also performs well on iEEG signals

for predicting epileptic seizures. Figure 5.8 compares the accuracy, sensitiv-

ity and specificity obtained by proposed method on each subject. Highest

accuracy has been achieved on subject#5, whereas, highest sensitivity and

specificity have been achieved on subject#3 and 5 respectively. Average

anticipation time cannot be computed on intracranial EEG dataset as there
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is no information about start and end of seizure is provided in this dataset,

however, preictal and interictal state segments have been provided in sep-

arate files that help in computing sensitivity and specificity. Table 5.19

compares the recent state of the art methods on intracranial EEG signals

with the proposed method in terms of sensitivity and specificity.

Figure 5.8: Performance evaluation of proposed method, Classification using ensemble
learning after adding synthetic data generated using GANs on AES-Kaggle Seizure

Prediction Challenge intracranial EEG signals

Niknazar et al [57] have achieved the lowest sensitivity of 63.75% as they

have not preprocessed the iEEG signals. Similarly, an average sensitivity of

69% have been obtained by Kornek et al [62] without preprocessing of iEEG

signals. Sharif et al [60] have obtained highest sensitivity and specificity

of 91.8% and 92% in recent state of the art epileptic seizure prediction

methods using iEEG signals. The proposed method has achieved increased

average sensitivity of 94.2% with specificity of 95.8% which is greater than

the existing methods. It is due to effective preprocessing, comprehensive

feature set that combines both handcrafted and automated features followed

by optimal feature selection and classification using ensemble classifier.

Therefore, the proposed method gives optimal feature set by combining

both handcrafted and automated features extracted using CNN. In the same

way, ensemble classifier helped to achieve increased sensitivity with low

false positives.
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ROC of Proposed Method for intracranial EEG dataset

Figure 5.9: ROC curve of proposed method on intracranial EEG signals dataset

ROC curves of existing state of the art epileptic seizure prediction meth-

ods on intracranial EEG signals have been compared with the proposed

method in figure 5.9. Proposed method is able to achieve high sensitiv-

ity with low false positive rate on dataset recorded by American epilepsy

society-Kaggle for seizure prediction challenge. It is also evident from

the ROC curves of the proposed method that the method has been able to

achieve better prediction results.

5.5 Summary

EEG signals are divided into two types based on the data acquisition process

including scalp in which electrodes are placed on scalp of subject, whereas,

intracranial EEG in which electrodes are placed on the surface of subject’s

brain. Publicly available datasets have been used in this research of both

scalp and intacranial EEG signals. CHBMIT dataset consists of scalp EEG
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recordings of 22 subjects recorded using 23 electrodes and sampled at 256

Hz. American epilepsy association-kaggle seizure prediction intracranial

EEG signals dataset of 7 subjects including 5 canine and 2 human subjects

has also been used in this study which has been sampled at 400 Hz. and

5000 Hz. for canine and human subjects respectively. Proposed method

has been evaluated based on accuracy, sensitivity and average anticipation

time. Results of these evaluation measures have been computed by vary-

ing techniques in all steps including preprocessing, feature extraction and

classification to get better results. Experimental setting that gives optimal

results have been compared with recent state of the art methods on both

scalp EEG and intracranial EEG datasets. The proposed method performs

better in terms of accuracy, sensitivity, specificity for both scalp and in-

tracranial EEG datasets. It has also achieved greater average anticipation

time for scalp EEG dataset. In case of intracranial EEG signals dataset, no

information about the start and end of seizure is provided, therefore, it is

not possible to compute the average anticipation time for intracranial EEG

dataset. ROC curve analysis is also an important performance measure,

ROC curves of both dataset shows that the proposed method also performs

better than recent state of the art seizure prediction methods.
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CHAPTER 6
CONCLUSION AND FUTURE WORK

6.1 Conclusion

A typical seizure prediction method consists of preprocessing of EEG sig-

nals, feature extraction and classification. In recent years, many researchers

have attempted to predict seizures before the onset of seizure so that it can

be prevented with medication. However, all of them have faced challenges

in predicting epileptic seizures with increased sensitivity and specificity.

These challenges include; effective preprocessing of EEG signals to remove

noise from EEG signals, dealing with class imbalance problem due to very

few preictal state data compared to interictal state and extraction of fea-

tures that give high inter-class variance to help in accurate classification of

preictal and interictal states.

Without preprocessing of EEG signals, researchers have been unable

to achieve better classification results. Researchers have used HVD, FFT,

STFT, Bandpass filtering, EMD and wavelet transform for preprocessing.

However, it is evident from results that HVD, STFT and EMD performs bet-

ter to increase Signal to noise ratio. Researchers have extracted both hand-

crafted features including univariate/multivariate features in time/frequency

domain and automated feature extraction is done using CNN. It has been

observed that features extracted using CNN gives better inter-class variance.

Better classification results have been achieved using CNN and LSTM.

From this comparison we have concluded that there are many gaps in pre-

processing and feature extraction. In preprocessing, there is class imbalance

issue between interictal and preictal data and a customized CNN architec-
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ture is required for feature extraction. These methods have been evaluated

based on sensitivity, specificity, and average anticipation time. Preictal state

is considered as positive whereas interictal as negative class.

Class imbalance problem is not addressed in existing methods. In the

proposed method, preictal data has been generated using Generative Ad-

versarial Networks to solve the class imbalance problem by synthetic data

generation which has similar distribution as original data. It has been ob-

served during experimentation that by applying low pass or bandpass filter,

noise is removed but important information is also removed. Therefore,

EMD is used to preserve the signals’ information to get better character-

ization between preictal and interictal states. Another problem is class

imbalance as there are very few sessions that contain preictal state. Syn-

thetic Minority Over-sampling Technique (SMOTe) is used for dealing

with class imbalance issue by increasing samples of preictal state by using

overlapping window. SMOTe has been used for generating preictal state

samples in the proposed method, it showed improvement on train data but

reduced the performance of method on test data. This reduced performance

might be result of over-fitting as similar samples of preictal state were used

for training. GAN generates synthetic data without oversampling.

A three layer customized CNN to minimize learning parameters. LSTMs

used in proposed method for classification helps in achieving increased

average anticipation time of seizures as gates in LSTMs are useful in

retaining information of previous samples. Significance of our work lies

in the fact that our proposed method has achieved increased sensitivity,

specificity, and average anticipation time on all subjects. Existing methods

have not achieved these three performance measures on all subjects of

dataset and only reported results on selected subjects of dataset. k fold cross

validation has been applied in the proposed work to validate the results

and performance of method. ROC curves analysis have also shown that

our proposed method performs better compared to existing methods by

achieving increased sensitivity with low false alarm rate.
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6.2 Contribution

The main contributions of the thesis is as follows:

• Proposed method has achieved significant improvement in results due

to noise removal from EEG signals.

• Class imbalance problem has been mitigated with the help of synthetic

data generation using generative adversarial networks.

• Proposed method has been able to predict epileptic seizures on both

scalp and intracranial EEG datasets. An average accuracy of 96.05 %,

sensitivity of 96.28 % and specificity of 95.65 % has been achieved

on saclp EEG dataset, whereas, on intracranial EEG dataset 95.53 %,

94.2 % and 95.81 % accuracy, sensitivity and specificity respectively

has been obtained.

• A customized three layer architecture of convolutional neural network

has been proposed with minimum number of existing parameters

that existing architectures for epileptic seizure prediction methods.

Total number of trainable parameters required in the proposed CNN

architecture are very less compared to existing CNN architectures for

feature extraction from EEG signals.

• An ensemble classifier has been proposed in this research which has

not been used earlier in existing methods and it helps in achieving

accurate classification between preictal and interictal states.

6.3 Future Directions

Deep brain electroencephalogram recordings are also used for prediction of

epileptic seizures in which microelectrodes are placed inside the tissues of

brain. In this study, scalp and intracranial EEG signals have been used to

predict epileptic seizures. Deep brain EEG signals also provide EEG record-

ings with high signal to noise ratio and can be used in future for prediction
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of focal seizures. These signals can be used. Heart rate variability can also

be used for prediction of epileptic seizures in combination with EEG signals

as the heart rate changes before and during occurrence of epileptic seizures.

Changes in the short term heart rate recordings can be observed during pre-

ictal state. In future, epileptic seizure prediction method can be improved by

combining heart rate variability with EEG recordings. Proposed epileptic

seizure prediction method can be implemented in real time environment

where EEG signals can be directly processed in a controlled environment

like hospital etc. An optimized system can or a seizure prediction device

can be developed that takes EEG signals as input from subject’s brain in

real time, processes it and generates alarm upon prediction of an upcoming

seizure.

In future, a portable and lightweight seizure prediction system can be

developed by performing simple preprocessing using bandpass filtering,

conversion of time domain signals into frequency domain with the help of

Short Time Fourier Transform and feature extraction followed by classifica-

tion using the proposed CNN architecture. Computational complexity can

be computed in terms of arithmetic operations required for each module

of seizure prediction system including preprocessing, feature extraction

and classification for real time implementation of epilepsy perdiction. This

system will use less resources and will be able to provide acceptable per-

formance in terms of sensitivity and specificity. Hybrid Fourier transform

can be applied in future to convert time domain EEG signals into frequency

domain EEG signals so that both long term and short term frequency com-

ponents can be preserved and used for better characterization of different

states of epileptic seizures.
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