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 ABSTRACT 

 

 

 

Wireless communication systems are evolving with the passage of time and 

resulted in the advanced communication systems such as mobile and Adhoc 

communication systems, sensor networks etc. Two fundamental parameters of 

their performance are higher data rates and better spectral efficiency. In order to 

achieve high data rate and robust communication over wireless the most important 

task to be performed at the receiver side is the channel equalization. The 

transmitted data symbols when pass through the wireless channel suffer various 

types of impairments, such as fading, Doppler shifts and Inter Symbol Interference 

(ISI), degrade the overall performance of the communication system. In order to 

mitigate the channel related impairments many channel equalization algorithms 

have been proposed in the communication systems domain. These algorithms are 

based on either the least squares methods or minimum mean square estimation 

methods. Frequency domain equalization methods are also used for this purpose. 

The channel equalization problem can also be solved as a classification problem 

using Machine Learning (ML) methods. Many researchers have addressed this 

problem however there is a need to compare the performance of the ML based 

equalizers by using the already established communication systems criterion. In 

this thesis the channel equalization has been performed using ML techniques and 

their Bit Error Rate (BER) performance has been compared. Radial Basis 

Functions (RBF), Multi Layer Perceptrons (MLP), Support Vector Machines 

(SVM), and Polynomial based NN’s have been used for channel equalization. The 

work is also extended to the multi-carrier systems where the channel equalization 

of OFDM system is carried out using Long Short Term Memory (LSTM) method. 

The simulation results show improved BER when compared with the LMS based 

traditional channel equalization method. Further the computational complexity of 

all the used ML algorithms has also been formulated theoretically and has been 

verified with the help of simulations. 
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CHAPTER 1  

 

 

 

 INTRODUCTION 

 

 

 

Wireless communication is an evergreen research field. New requirements 

for communication require newer algorithms for robust performance in the 

presence of challenging environments. Digital wireless communication systems 

transmit digital data by modulating the data bits using PAM, QAM or FSK 

modulations. It is the goal of every digital communication system to transfer 

correct message signals from transmitter to receiver. The transmitted signal passes 

through the air gap or space between the receiver and transmitter. The signal as 

received by the receiving antenna is the accumulation of multiple signals that were 

transmitted by a single transmitter. The effect of multiple paths results in 

degradation of the signal in many aspects. This results in the phenomenon known 

as ISI. Hence, the communication signal at the receiver results in either 

constructive interference or destructive interference, thus making the 

communication less reliable. The situation worsens if the channel exhibits delay 

spread longer than the symbol time of the signal. In order to recover the 

transmitted data ISI must be compensated at the receiver. This process of reducing 

channel induced distortion is called channel equalization. 

This chapter is organized as follows. Section 1.1 describes the objectives 

of the thesis. Section 1.2 describes the problem statement. Section 1.3 describes 

the motivation of the work. In the end, section 1.4 presents the thesis layout. 
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1.1 Objectives 

 

The objectives of this research work are as follows. 

 To identify the performance metrics for the existing channel estimation and 

equalization techniques. 

 To identify an improved channel equalization technique for selected wireless 

channel.  

 To critically assess the performance of the various channel equalization 

techniques by performing simulations. 

 

1.2 Problem Statement 

 

In wireless communication systems the performance may be severely 

degraded by the wireless channel. The transmitted signal passing through the 

channel experiences various impairments such as ISI, Doppler shift and fading 

effects. All these effects tend to limit the throughput of the wireless 

communication systems. In order to achieve higher data rates, it is mandatory to 

mitigate the effects of channel induced impairments. This requires designing of an 

adaptive filter for equalization. The purpose of this filter is to nullify the effects of 

wireless channel and recover the originally transmitted data, which results in an 

overall better performance of the communication system. In recent years the use 

of ML techniques especially the ANN based methods have gained interest due to 

their remarkable success in the fields of Computer Vision (CV), Speech 

Recognition and Natural Language Processing (NLP). The technique although 

invented back in the mid of 20
th

 century was not very popular due to the lack of 

required computational power. Due to the availability of high speed computational 

resources and the success of ML in the various other fields have provoked its 

application in the development of robust communication systems. Many 

researchers have proposed the use of ML for designing communication systems 

and have demonstrated improved results in terms of BER. However, its 

application for this requires the solution to following problems. 
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 What maximum performance gain in terms of BER that can be achieved by 

the use of NN and its variants such as MLP, RBF, FLANN, SVM and 

LSTM.  

 Is it possible to train the NN to estimate a wireless channel in real-time as 

required by the modern day channel equalizers to mitigate the channel in 

real-time. Typically, an equalizer is required to train its taps in less than 

few microseconds. What possible methods can be used to achieve this 

task?  

 

The research aims to address the mentioned problems. 

 

1.3 Motivation for Work 

 

The problems highlighted in the previous sub-section provide an 

opportunity for advanced level research which is technologically challenging and 

may extend the knowledge boundaries in many dimensions. 

The research focuses on the fundamentals of many engineering and 

computer science fields such as communication systems, AI, and ML etc. It 

provides a mechanism to implement new and existing ML methods to solve 

complex problem of channel equalization in wireless communication systems that 

is still an active area of research being pursued by the research community. 

The merger of mentioned fields of research will open many new research 

dimensions for the future academic research which will use this work as a 

foundation.  

 

1.4 Thesis Layout 

 

The thesis is structured as follows: 

Chapter 1 describes the research objectives, problem statement and motivation 

for work. 
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Chapter 2 provides the elementary concepts of the basic communication system 

and briefly explains the channel estimation techniques in single-carrier and multi-

carrier systems. This chapter briefly introduces the basics of ML techniques and 

also gives the comprehensive literature review. 

Chapter 3 describes the simulations of the NN based channel equalizers. It also 

discusses the simulation setup which we used to apply NN techniques. The 

simulation parameters of each technique are discussed. The performance is 

evaluated using the BER. The detailed simulation result analysis is also done. 

Chapter 4 focuses on the channel estimation of OFDM systems. The comparison 

of single-carrier and multi-carrier communication is also done in this chapter. This 

chapter also explains the importance of OFDM in simplification of equalization 

process. This chapter also explains the usefulness of pilot structures in channel 

estimation. A comprehensive literature review of the ML based channel estimation 

techniques is also presented. This chapter also verifies the effectiveness of LSTM 

based channel estimation through simulations. 

Chapter 5 summarizes the whole work presented in this thesis and presents some 

suggestions for future work. 

  



5 

 

CHAPTER 2  

 

 

 

 CHANNEL EQUALIZATION USING NEURAL NETWORKS 

 

 

 

Digital wireless communication systems are designed to transmit 

information from source to destination through wireless transmission medium 

which is termed as channel. The wireless channel causes different types of 

impairments to the signal passing through it, such as inter symbol interference, 

which is caused by the multiple signals that combine at the receiver after 

traversing different paths between transmitter and receiver, and the noise which 

gets added to the signal also causes severe degradation [1]. The combination of 

several multiple path signals at the receiver results in either constructive or 

destructive interference along with the added noise, affect the phase and frequency 

of the signal, resulting in degradation of the transmitted signal which can be 

extremely difficult to demodulate at the receiver. In order to mitigate the channel 

effects the receiver attempts to learn the channel and eliminates the impairments 

caused by the channel using a method known as channel equalization. Channel 

equalization is traditionally achieved using adaptive filters such as LMS, NLMS, 

RLS etc. ANN and ML based techniques provide an alternate more robust and 

diverse method for channel equalization. The chapter provides a comprehensive 

overview of the channel equalization techniques used in single-carrier and multi-

carrier systems. ANN based equalization techniques are also discussed. 

This chapter is structured as follows. We first give an overview of a digital 

wireless communication system. This is followed by some discussion related 

performance issues of a wireless communication system. The later sections 

describe the channel equalization techniques, system model and literature review 



6 

 

of NN based equalization techniques. A section on channel equalization for multi-

carrier systems is also provided. 

 

2.1 Overview of a Wireless Communication System 

 

A high level block diagram of the communication system is depicted in 

Figure 2.1. In general, a basic communication system includes three basic blocks; 

transmitter, receiver, and the wireless channel. The transmitter modulates the input 

message signal and transmits it using communication channel. During the course 

of transmission, it experiences various types of impairments such as path loss 

which results in attenuation of the signal, AWGN and multipath effects caused by 

the reflections of the electromagnetic waves from various objects present between 

the receiver and transmitter.  

 

 

Figure 2.1 Overview of digital wireless communication system [1] 

 

The transmitter and receiver block is subdivided into three blocks as 

shown in Figure 2.2. The input digital data is fed into the source encoder which 

effectively transforms the bit stream into the compressed form using Huffman 

encoding. The input can be an audio source, text, binary or any other sensor input, 

which may require A/D conversion prior to feeding to the source encoder block. 

The digital data at this stage can also be secured using encryption algorithms. The 

resulting data sequence at the output of source encoder is passed to the channel 

encoder which adds redundancy in a controlled manner, to help the receiver to 
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detect and correct the channel induced errors. This step should make the data 

robust against harsh channel conditions. In the next step, output of a channel 

encoder is given to a modulator that applies digital modulation methods such as 

BPSK, QPSK or some variant of FSK. The output of the modulator is fed to the 

frequency up-converter which translates the baseband signals to passband 

frequency and finally the signal is amplified to appropriate levels and then 

transmitted through antenna. 

 

 

 

 

Figure 2.2 Transmitter and receiver block [1] 

 

2.1.1 Mathematical Formulation 

 

This section presents the mathematical formulation [1] of the 

communication system. Consider      be the transmitted signal. It is represented 

mathematically as  
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                    (2.1) 

Where      is the baseband signal and the         is the center frequency of 

the passband signal. The received signal is given as 

                   

   

   

      (2.2) 

Where       represents the complex amplitude of the channel,    is the delay of 

the mth multipath and N represents the total number of multi paths.      

represents the AWGN. The resulting received signal can be written as  

                         

   

   

      (2.3) 

             

 

  

              (2.4) 

Where                             
    is the impulse response of the time-

varying channel. It is the goal of wireless communication systems to estimate the 

       which is the channel impulse response for the desired level of performance. 

 

2.1.2 Performance Issues in Wireless Communications 

 

One of the primary goals while designing a communication system is to 

achieve performance as closer to the Shannon’s capacity definition [2].  

              (2.5) 

Where   is the capacity of wireless channel,   represents the bandwidth and    

represents the SNR. This theorem gives the fundamental bound on the achievable 

capacity of the wireless channel. All communication systems tend to achieved 

Shannon capacity. As of today this goal has not been fully achieved due to many 

reasons. Amongst the most notable reasons are: 

1. The Wireless channel 

2. Signal to Noise Ratio (SNR) 
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3. Link budget 

Assuming the availability of required Bandwidth these three objectives 

must be served to achieve desired performance in wireless communication. SNR 

and link budget can be improved using high gain antennas, more transmit power 

and by using better antennas, however the effects caused by channel require more 

sophisticated handling. Its effects must be mitigated using channel equalization 

methods.  

 

2.1.3 Wireless Channel 

 

An insight into the wireless channel is mandatory for the design of 

effective wireless communication system. A wireless channel alters the 

transmitted signal in many ways.  

1. Fading 

2. Doppler shifts 

3. ISI 

Fading refers to the time variation of the received signal power.[1]. The 

variation of the received signal power is caused when either of the transmitter or 

receiver is moving, or when the channel is changing. Fading can be of two types. 

1. The large scale fading (LSF) 

2. The small scale fading (SSF) 

The LSF results when the effect of fading is experienced over a larger 

geographical area where the effects of SSF are experienced over a smaller area, 

comparable to the wavelength of the transmitted signal. This is also termed as 

Rayleigh fading. The channel may consist of multiple paths. 

Another impairment caused by the channel is Doppler shift in the 

frequency experienced by the moving transmitters and receivers, especially at the 

microwave frequencies. Typical Doppler shift is in several kilohertz. This results 

in the severe degradation of the SNR and results in increased BER. In most of the 

cases the channel related impairments can be reversed using channel equalization 

techniques, which nearly eliminate the multipath effects. The receiver estimates 
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the effects caused by estimating the channel and then applying the advanced signal 

processing methods or the ML methods to eliminate them. 

 

2.1.4 Channel Estimation Techniques 

 

Channel estimation techniques are broadly categorized into three main 

types: 

 The Pilot Aided Channel Estimation techniques(PACE) 

 Blind and Semi Blind Channel Estimation techniques(BSB) 

 Decision Directed Channel Estimation techniques (DDCE) 

In the PACE based estimation techniques the transmitter sends a known 

sequence of data symbols to the receiver called pilot symbols. The receiver 

estimates the Channel with the help of received pilots using mathematical 

techniques. Let      represent the transmitted symbols known to both receiver 

and transmitter.       is the channel impulse response and      is the received 

signal. The received signal in frequency domain can be represented as  

                (2.6) 

The estimate of the channel       is obtained as 

       
    

    
 (2.7) 

If the equalizer is employed, then the above equation can be written as 

                        (2.8) 

Where       
 

     
 represents the equalizer. The goal is to 

achieve             . If this is achieved then          . This means that 

the signal is correctly recovered.  

The second technique is the BSB channel estimation technique. In this 

technique the receiver has no information about the input signal of the channel. 

This technique uses the data symbols for channel estimation by employing the 

pre-coding of the symbols at the transmitter. The receiver knows the parameters of 
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the pre-coding used at the transmitter and then uses correlation based methods to 

estimate the channel information [3-5]. The semi-blind technique uses both the 

pilot symbols and the transmitted data symbols. This slightly increases the 

bandwidth but the technique is effective.  

The DDCE technique uses the pilot symbols and the demodulated symbols 

for the channel estimation. In the absence of bit errors, the symbols can be used 

for estimation of the channel impairments and start acting as the pilot symbols. 

This technique proves to be more efficient as compared to the pilot symbol based 

channel estimation techniques because it reduces the bandwidth by saving the 

number of pilots required in pilot based channel estimation techniques.  

 

2.1.5 Channel Equalization 

 

Channel equalization and channel estimation both are interdependent. 

Inverse of the channel estimate can be used for channel equalization. The 

performance of equalizer is proportional to the accuracy of the channel estimation. 

The equalization mechanism can be divided into two modes- a training 

mode and a decision-directed mode. In the first mode, the equalizer is trained by 

sending a training sequence. Training sequence is known apriori to the receiver. 

Equalizer weights are learned using the training sequence. In the second mode, the 

equalizer is operated on the channel to estimate the channel. Various types of 

equalizers are used in the digital communication receiver. Figure 2.3 depicts the 

classification of the equalizers [6]. Equalization is generally divided into two 

categories. The linear equalizers and the nonlinear equalizers, the linear equalizers 

employ only feed forward path and do not use the output of the equalizer in the 

equalization process.  On the other hand, the nonlinear equalizers use the output of 

the equalizer in the determination of the future samples. Both the linear and 

nonlinear equalizers employ adaptive algorithms such as LMS, NLMS, RLS and 

Kalman filtering etc. for the adaptation of the equalizer weights. Amongst the 

nonlinear equalizers is the Maximum Likelihood Sequence Estimator (MLSE). 

This type of equalizer does not use filter for equalizing the channel but instead 
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uses Viterbi algorithm to decode the sequence and chooses the sequence with 

maximum probability as the output.  

 

Equalizer

Linear Non-Linear

Transversal Lattice
ML Symbol 

Detector
MLSEDFE

 

Figure 2.3 The classification of equalization techniques [6] 

 

2.2 Introduction to ML 

 

2.2.1 A Perceptron 

 

ML is a subfield of computer science which focuses on the development of 

algorithms to learn and solve the complex problems. Unlike traditional approach it 

does not use predefined models or set of equations to solve the given problem, 

instead it learns to solve the problem. It consists of human brain like neurons 

termed as perceptrons. A perceptron is a simple mathematical model (function) 

that maps the set of inputs to the set of outputs and performs three basic 

operations: multiplication, summation and activation. Each input value is 

multiplied with its corresponding weight. The previously weighted inputs are then 

summed up and passed through the activation function. The activation function 

determines the output of neuron with respect to its input. The commonly used 

activation functions are threshold, linear, sigmoid and ReLU. 
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Figure 2.4 A single perceptron [7] 

 

Mathematically, a perceptron can be defined as 

                (2.9) 

Here,   is a weight vector,   is a bias and     is a dot product of   and  . 

      

 

   
   (2.10) 

So the equation (2.9) becomes 

           

 

   
      (2.11) 

     is the activation function. A sigmoid and ReLU functions are defined in 

equation (2.12) and (2.13). 

      
 

     
 (2.12) 

                (2.13) 

 

2.2.2 Neural Network (NN) 

 

A single perceptron cannot perform complex nonlinear mappings. So, 

many perceptrons are linked together to make larger structures.  For this, a layered 

network is designed where each layer consists of multiple perceptrons. This 
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arrangement of perceptrons is termed as Neural Networks (NNs). It has at least 

three layers as shown in Figure 2.5. 

Input1

Input3

Input2 Output

Input Layer Hidden Layer Output Layer

 

Figure 2.5 A basic structure of ANN [7] 

 

These layers learn their respective weights through a feedback process called 

back-propagation [7]. The function of this algorithm is to modify the weights of 

the network in an orderly fashion to attain a desired design objective. This is done 

by comparing the output of network with the desired result, and use the difference 

between the outputs to adjust the weights of the connections in the network. The 

technique was known since early 1950’s however it was not popular due to that 

lack of computational resources. In the last decade with the advancement in the 

CPU and GPU technologies, the use of NN has emerged and has revolutionized 

many fields especially the Computer Vision and AI, and has become a useful tool 

for many complex applications including, nonlinear system identification, pattern 

recognition, adaptive channel equalization and optimization [8]. It is also gaining 

attention in the area of wireless communications. Various NN based algorithms 

are employed that are influencing the legacy design methods used in 

communication systems development. 

Training Data

Learning Algorithm

H(x)x y

Predicted OutputTest Input  

Figure 2.6 A basic flow diagram of supervised learning [7] 
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2.2.3 Types of Learning 

 

The learning algorithms can be categorized as. 

 Supervised learning: In this type, some tests are carried out by a human 

expert and his findings are noted down. These findings are arranged to 

form a training dataset that maps the inputs to the outputs. Model learns 

from the training data during a training process and then predicts the 

unseen data. This concept is depicted in Figure 2.6. Classification and 

regression are the examples of supervised learning. 

 Unsupervised learning: In this type, training examples are not used. It is 

used for data analysis to find the grouping of data. It is more complex than 

supervised learning. Clustering is an example of this type of learning. 

 

2.2.4 Building Blocks of a Learning Algorithm 

 

Following are the building blocks of the learning algorithm. 

 Loss function: Error is a difference between the actual output and the 

predicted output. loss function is used to computes this error. Mean Square 

Error (MSE) is the most widely used loss function. 

 Optimization algorithm: The goal of the learning algorithm is to 

minimize the loss function by updating the weights. The well-known 

optimization algorithms are stochastic gradient descent (SGD) and Adam. 

 

2.2.5 Model Evaluation 

 

When a training algorithm is applied to the training dataset a model is 

created. Evaluation of this model is essential for the performance measurement. 

The commonly used performance metrics for classification problems are  
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 Confusion matrix: It is a two dimensional table that summarizes the 

usefulness of the model in predicting the class labels. One dimension 

indicates the actual labels and the other dimension indicates the predicted 

labels.  

 Accuracy: It is defined as the ratio of correctly classified examples to the 

total classified examples. 

 

2.3 Machine Learning Based Channel Equalization Techniques 

 

2.3.1 Related Work 

 

NNs are capable of processing non-linear data and can produce complex 

decision regions. Therefore, NNs can be employed for equalization purpose to 

overcome the difficulties associated with channel nonlinearities [8-10]. The 

performance of NN based equalizer has been reported to be superior to other 

conventional adaptive equalizers. In recent past the use of NNs has gained 

popularity in the design of Software Defined Radios where DNN, CNN and RNN 

have been applied for many of the classical radio operations [11-14].  

In [15] the Deep NNs have been used for the channel estimation of doubly 

selective channels which experience variations both in time and frequency. The 

deep learning based algorithm is trained in three steps. These are the Pre-Training 

step, Training and Testing stages. During the first two steps the model is 

developed offline using training data. During the testing stage the channel is 

estimated and equalized. The results show improved BER performance as 

compared to Linear MMSE. 

In [16] the ML and NN have been used in the Frequency Division 

Duplexing (FDD) systems which is a double selective channel and the results 

show improvements in term of MMSE in prediction of the channel. 

In [17] the NN and DL methods have been used to predict the behavior of 

Rayleigh channel and it has been reported through simulations that the MSE 

performance compared with the traditional algorithms has improved. 
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In [12, 18] DL has been thoroughly investigated and provides a review of 

the various ML based techniques for the wireless communication. It has been 

shown that traditional theories do not meet the higher data rate requirements of 

communication and limits the efficiency due to complex undefined channel 

requirements, fast processing and limited block structure. On the other hand, AI 

based communication systems faces some challenges that needs to be addressed. 

These challenges includes the availability of large amount of data and how easily 

it can be integrated in classical infrastructure [19]. Similarly, ML has been applied 

to the physical layer for modulation recognition and classification [18, 20-23] . 

In the later sections, we will briefly explain the fundamental concepts of 

different types of NNs along with the related work in literature. 

 

2.3.2 Multi Layer Perceptron (MLP) 

 

An MLP is feedforward NN which consists of an input layer, a hidden 

layer and an output layer. It has nonlinear decision making capabilities. The 

training of MLP is done through the back-propagation algorithm [24]. The MLP 

was the first neural network used for channel equalization [9, 10, 25-28]. Its 

structure is depicted Figure 2.7. Gibson et al. [10] introduced a MLP based non-

linear equalizer structure and demonstrated its superior performance over the 

linear equalizer (LMS). The major drawback of the MLP network is its slow 

convergence [29]. This is due to the back-propagation algorithm which operates 

on the basis of first-order information. Genetic algorithm [30] can be used to solve 

this problem. The convergence can be improved by using the second-order data 

like the Hessian matrix, which is defined as the second-order partial derivatives of 

the error performance. 

Zerguine [31] has proposed a MLP-based DF equalizer with lattice filter to 

overcome the convergence problem to improves the performance of MLP. 

However, this improvement increased the complexity of MLP structure. 
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Figure 2.7 The MLP based adaptive equalizer [32] 

 

2.3.3 Radial Basis Function Neural Network (RBFNN) 

 

The RBFNN is a three-layer network which comprises an input layer, a 

nonlinear hidden layer and a linear output layer. The input layer contains the 

source symbols. In the hidden layer, the input space is transformed into a high 

dimensional space by using non-linear basis functions. The output layer linearly 

combines the output of the previous layers. The structure of RBFNN is depicted in 

Figure 2.8. 

 

 

Figure 2.8 The structure of RBFNN [33] 
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Mathematically, the output of RBFNN can be derived using Gaussian radial 

function in hidden layer. A typical Gaussian radial function is expressed as 

follows. 

               
      

  
  (2.14) 

A linear model is expressed as follows. 

         

 

   

           (2.15) 

By substituting equation (2.14) in (2.15), we get  

         

 

   

       
       

 

    (2.16) 

Where   is an input vector at input layer. Hidden layer maps this input vector to 

an output scalar value by using equation (2.16).   indicates the number of neurons 

in hidden layer.    is a center vector at     neuron and     is the weight of the     

neuron of the output layer. 

RBFNN provides an appealing alternative to MLP for channel equalization. Many 

techniques have been developed to solve the equalization problem using RBF [34-

36]. In 1991, Chen et.al [9] used RBFNN for equalization. Similarly, a RBF based 

equalizer has been reported which shows the satisfactory performance [37, 38]. 

Another work has demonstrated the use of RBFNN for equalization and found the 

improvement in BER [39]. The performance of RBFNN is compared with 

maximum likelihood sequence estimator (MLSE) over the Rayleigh fading 

channel [37, 40, 41]. Simulations have confirmed that RBFNN is a reasonable 

choice with low computational complexity. Hen et al. [42] and Cha and Kassam 

[43] have proposed a complex RBF (CRBF) network and  improved performance 

has been observed. 

The drawback of RBFNN is that it is not suitable for hardware implementation. 

The network needs a large number of hidden nodes to achieve a desired 

performance. 
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2.3.4 Functional Link Artificial Neural Network (FLANN) 

 

In the last few years, FLANN has become very famous [44]. It is a single-

layer NN that can form complex decision boundaries. FLANN provides less 

computational complexity and greater convergence speed than other traditional 

NNs. From the perspective of hardware implementation, FLANN has simple 

design, less computational complexity, and higher computation performance [45, 

46]. 

The input dimension is expanded by using nonlinear functions which may 

lead to better nonlinear approximation. The expansion is done using three 

commonly used functions i.e. trigonometric, Chebyshev expansion and Legendre 

expansion. A traditional FLANN uses trigonometric functions, whereas other two 

expansions are based on Legendre [33, 47] and Chebyshev polynomials [48]. 

Their plots are shown in Figure 2.9 and Figure 2.10 respectively. The 

mathematical formulation of the FLANN can be given as follows. 

            (2.17) 

Where       is the decision function or the output of the FLANN,    is the weight 

vector and   
 is the N dimensional vector of the functional each represented as      . 

     
                                     

                                     
    

  (2.18) 

The output      is given as 

              (2.19) 

Where      represents the activation function. In this work               is 

used. The error is computed as 

                   (2.20) 

The weights are adopted using LMS algorithm. As given by equation (2.17) to 

(2.20) , the functional expansion is performed using orthogonal trigonometric 

functions. After the initial training the weights calculation is stopped and the 

equalization is carried out in decision directed mode.  
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Figure 2.9 Legendre polynomials 

 

Figure 2.10 Chebyshev polynomials 

 

 

Figure 2.11 FLANN structure [32] 
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2.3.5 Chebyshev FLANN (Ch-FLANN) 

 

Ch-FLANN is another computational efficient network. It is depicted in 

Figure 2.12. It has many applications in functional approximation [49], nonlinear 

dynamic system identification [50, 51] and nonlinear channel equalization [52]. In 

these networks the expansion is performed using Chebyshev polynomials. These 

polynomials are generated using the equation (2.21). 

                         (2.21) 

The first few polynomials are defined in equation (2.22). 

 

        

        

            

             

                

                   

(2.22) 

Using the above polynomials, the input pattern can be enhanced as: 

                                         (2.23) 

This enhanced expression is then applied to single layer perceptron. 

 

Figure 2.12 Chebyshev FLANN [33] 

 

Ch-FLANN offers comparable efficiency and, in some cases, better than MLP but 

with much lower computational load. 
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2.3.6 Legendre FLANN (Le-FLANN) 

 

Le-FLANN is similar to Ch-FLANN. It is depicted in Figure 2.13. It is 

computationally efficient and gives better performance. The input pattern is 

enhanced into a nonlinear high dimensional using Legendre polynomials. These 

polynomials are generated using the equation (2.24). 

         
 

   
                        (2.24) 

The first few Legendre polynomials are as follows: 

 

        

        

      
 

 
        

      
 

 
         

      
 

 
              

(2.25) 

The input data is reshaped into the high dimensional using these polynomials. The 

enhanced pattern is then given to single layer RBFNN. 

                                         (2.26) 

 

Figure 2.13 Legendre-FLANN [33] 

 

Since there is no hidden layer in both the Ch-FLANN and Le-FLANN networks as 

opposed to RBF, the computational complexity for these networks is 

comparatively lower. As opposed to trigonometric FLANN, Ch-FLANN is more 
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efficient in terms of computational complexity. The downside of this network is 

its increased complexity in an attempt to reduce the BER by increasing its 

dimensions. 

 

2.3.7 Recurrent Neural Network (RNN) 

 

RNN is a popular DL technique which was first introduced for processing 

sequential data [24] and gained a lot of attention in recent past. They have been 

proven better than traditional signal processing methods in modeling and 

predicting nonlinear and time series [53] in a wide variety of applications ranging 

from speech processing and adaptive channel equalization [54-58]. 

Unlike ANN, which does not have memory and cannot deal with temporal 

data, RNN has feedback loops which make them attractive for the equalization of 

nonlinear channels. This means data can be fed back to the same layers. Figure 

2.14 illustrates this concept. It has been demonstrated through simulations that a 

reasonable size of RNN can model the inverse of the channel. RNNs are known to 

outperform FLANN, MLP and RBF [59, 60]. In [61] it has been shown that 

equalizers based on CNN and RNN reduce the channel's fading effects but also 

increase the overall coding gain by more than 1.5 dB. 

 

Figure 2.14 RNN vs ANN [24] 
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RNN has one problem of exploding and vanishing gradient [62]. This 

problem arises when there is a long dependency in a sequence. To solve this 

problem, LSTM has been proposed [63]. LSTM is slightly different than RNN. It 

has some special units in addition to standard units. These special units are called 

memory cells.  These units can retain the information for a long period. This 

means that LSTM can now detect the patterns even in a long sequence. The 

sequence problems can be efficiently solved by LSTM and can also solve the 

channel equalization problem. In this case, future samples can be predicted by 

taking previous symbols into account. This means that variations in a channel can 

be easily tracked. We can specify the number of samples that LSTM can hold for 

prediction of future sequences. If it is selected according to the delay spread of a 

channel, more accurate results may be observed.  

 

2.3.8 Support Vector Machines (SVM) 

 

SVM lies in the category of supervised learning. Originally, it was 

developed for binary classification. Then it has been extended to perform 

regression and multi-class classification problems [64-66]. It has the potential to 

generalize well in classification problems by maximizing the margin. The trained 

classifier contains support vectors on the margin boundary and summarizes the 

information required to separate the data. It uses the parametric learning 

algorithm, in which a model has fixed learnable parameters which are adapted 

during the training process. Once the model is trained, these parameters are then 

used exclusively for testing while discarding all the training examples.  

 

Figure 2.15 Kernel methods in SVM [64] 
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This makes the SVM more computationally efficient. On the other hand, NNs are 

non-parametric as the number of parameters increases with the number of layers. 

NN introduces nonlinearity by using nonlinear activation function whereas SVM 

uses kernel methods that implicitly transform the input space into higher 

dimensions. The concept of kernel methods is illustrated in Figure 2.15. RBF 

kernel is the most commonly used kernel method. The SVM has been suggested to 

address the number of digital communications issues due to its nonlinear 

processing capability.  A DFE, based on SVM has been proposed and it has been 

observed that the performance of this equalizer is superior to MMSE DFE [67]. 

Similar work has been done in [68].  

 

2.3.9 Autoencoder Based Communication System 

 

Autoencoder was first introduced in [69]. It is a feedforward deep NN, 

based on encoder-decoder architecture as shown in Figure 2.16. The model is 

divided into two parts. First part is encoder which maps the input data to a latent 

form or code. The decoder then tries to reproduce the original input data from the 

latent representation. The code layer is used for dimensionality reduction and de-

noising. It has many applications in communication systems as the aim of every 

 

 

Figure 2.16 Autoencoder [69]  

 

communication system is to receive the same transmitted symbols. Keeping this in 

view, a communication system has been proposed, based on Autoencoder in [11, 
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70] which does not use any predefined conventional block based structure. Its 

design is depicted in Figure 2.17. This approach makes the design simple. It 

represents the transmitter, channel, and receiver as a single deep neural network. 

 

 

Figure 2.17 Autoencoder based communication system [11] 

 

In this section NN based channel equalization techniques for the single-carrier 

systems have been critically reviewed. In the next section the multi-carrier OFDM 

based communication systems have been discussed in detail along with the NN 

base channel equalization. 

 

2.4 ANN based Channel Equalization in Multi-carrier OFDM Systems 

 

Multi-carrier communication systems as the name shows use multiple sub 

carriers for the transmission of information [71, 72]. These systems offer 

robustness against ISI and are more bandwidth efficient as compared to single-

carrier system. Channel equalization for multi-carrier systems is based on the 

similar principles as described in the previous sub-sections. The techniques are 

based on legacy communication methods already discussed. The use of NN based 

channel equalization in OFDM is currently an active area of research. The next 

sub-section provides an overview of the OFDM communication system followed 

by the application of NN for channel estimation. 
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2.4.1 Introduction to OFDM 

 

OFDM was introduced in late 60 and with time progressed so rapidly that 

it has become the potential candidate for future wireless communications [73-80]. 

It is basically an extension of a traditional technique, Frequency Division 

Multiplexing (FDM) where sub-carriers were far apart from each other. In OFDM, 

subcarriers are overlapped and closely spaced. This overlapping is allowed due to 

orthogonal subcarriers. This overlapping serves the following benefits listed as: 

 Requires less bandwidth to carry the same amount of data as depicted in 

Figure 2.18. 

 Makes the spectrum of each subcarrier nearly zero at other subcarrier 

frequencies.  

This means sub-carriers will not cause interference to the neighboring subcarriers. 

This phenomenon is called Inter Channel Interference (ICI) and it can further be 

reduced by inserting a Cyclic Prefix (CP), which is a copy of symbols tail placed 

at the front of the symbol. 

 

 

Figure 2.18 FDM vs OFDM 

 

2.4.2 System Model 

 

The overall diagram of OFDM communication system is depicted in the 

Figure 2.20. The transmitter performs these operations listed as: 

 Modulates the input bit sequence using PSK/QAM modulation 
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 Converts it to parallel bit streams 

 Inserts pilots on each stream 

 Performs IFFT 

 Inserts CP 

 Converts back to single serial stream 

At receiver, the reverse operation is employed as follows. 

 Converts the time domain single bit stream to parallel stream 

 Removes CP from each stream 

 Performs FFT 

 Applies channel estimation techniques on each stream using pilots 

 Coverts to serial stream and perform demodulation 

 The original transmitted data is then recovered after demodulation 

Mathematically the OFDM system can be formulated [1] as follows  

        
     

 

   

   

 (2.27) 

Where                     are the complex QAM/QPSK modulated symbols 

and    represents the k
th

 OFDM symbol. In the next step the CP is added to the 

OFDM symbol    this is typically done by copying the last few symbols of    to 

the start of the symbol. This makes the OFDM symbol robust against ISI and also 

makes the OFDM periodic and help in channel estimation and demodulation. The 

symbols are then serialized and transmitted which passes through the time-varying 

channel       . 

                          

 

 

 (2.28) 

Where      is the received signal. It is sampled at   
 

  
. and  is the sampling 

instances. The output of the FFT block is represented as  

     
 

 
    

  
    

  

   

   

 (2.29) 

Where    is given as  
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      (2.30) 

      represents the discrete channel impulse response which is to be equalized. 

 

2.4.3 Channel Estimation in OFDM 

 

The wireless channels are frequency selective and time-varying in mobile 

communication systems [78, 81, 82]. Therefore equalization is mandatory at the 

receiver. OFDM channel estimation techniques can be classified into two 

categories. 

 Blind: These techniques estimate the channel state without the prior 

knowledge. 

 Pilot-aided: The known data is appended to the transmitted signals to 

estimate the channel. This technique is mostly used which employ various 

interpolation techniques to estimate the channel response of the subcarriers 

between pilot symbols [83].  

 

2.4.4 Pilot Structures 

 

There are three different types of pilot structures according to the 

arrangements of pilots: block type, comb type, and lattice type. These are depicted 

in Figure 2.19. The OFDM symbols with pilots are regularly transmitted at all 

subcarriers for channel estimation. A time-domain interpolation is performed 

using these pilots to estimate the channel along the time-axis. To keep track of the 

time-varying characteristics of the channel, the pilot symbols must be positioned 

as often as the coherence time is. It was built under slow fading channel 

assumption. In this type, the channel estimation may be based on either LS or 

MMSE. The MMSE estimation showed a 10-15 dB gain in SNR over LS 

estimation [84]. 
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Figure 2.19 Pilot structures of OFDM [84] 

 

 

Figure 2.20 The system model of OFDM [85] 

 

In comb type block structure, pilot tones are placed periodically along frequency 

axis. In contrast to the block type structure, comb type is suitable for fast fading 

channels. In Lattice type, pilot tones are positioned along both the time and 
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frequency axes at certain given interval. This allows interpolations in both axes to 

estimate the channel. 

 

2.4.5 Related Work 

 

The literature includes many channel estimation techniques for OFDM. 

For example, the work in [86] considers the LS channel estimation for MIMO 

OFDM. This scheme uses the LS algorithm on pilot tones to compute the MSE 

and then derived the expression for the optimal pilot structure and sequence.  This 

work is further improved by using RLS algorithm in which the parameter 

forgetting factor is derived. The simulations have shown that RLS is better and 

can achieve a significant gain in terms of SNR, particularly when a channel is 

time-varying. 

In this work [87], two channel estimation techniques, Maximum likelihood 

Estimation (MLSE) and Bayesian MMSEE have been compared. The plus point 

of MLSE is that it does not require the prior knowledge of the channel statistics, 

thus makes it simple to implement. It is concluded that if pilot tones are greater 

than the channel’s impulse response (CIR’s) than MMSE and MLSE performs 

equally good, however, MMSE is better with high computational complexity.   

In [88], pilot signals with comb type structure, are estimated using LS and 

MMSE algorithms together with interpolation schemes. A similar work is done in 

[89] where channel estimation based on comb type pilot structure is studied. LS 

and LMS algorithms are applied on pilot sub carriers. The channel is interpolated 

using many ways such as linear interpolation, low pass interpolation, spline cubic 

etc. This work also includes the implementation of the DFE. The performance of 

all these techniques is also compared in terms of BER. 

In [90] channel is estimated and equalized using the proposed back 

propagation neural network (BPNN) algorithm for OFDM systems. Channel 

models considered in this work was Rayleigh, Rician and TU6. It was observed 

through simulations that BER is improved but it has a huge computational 

complexity because of the training algorithm. 
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In [85] NN has been applied for the channel estimation and equalization. 

The offline model is used which was trained separately. Deep learning based 

channel estimation shows better BER as compared to MMSE estimator. 

A new design of the receiver using the feed forward neural network is  

proposed [91]. This work has the advantage that only one neural network was used 

for estimation, equalization and demodulation. The downside of this work is that it 

is not computationally efficient due to neural networks. In [92] SVM robust 

version is proposed for demodulation of OFDM symbols in presence of impulse 

noise. This work applies the regression approach instead of classification approach 

of SVM. Simulations showed superior performance. 

 

2.5 Performance Comparison of NN based Channel Equalization Schemes 

 

Up to this point in this work two types of communication systems i.e. the 

single-carrier systems and the multi-carrier OFDM systems have been described. 

Channel equalization methods of the respective systems have also been 

highlighted. A critical review of the methods has been provided. All the methods 

have been found to perform well in Rayleigh communication channels. However 

there is a need to compare the schemes and highlight the best possible NN scheme 

for the channel equalization. To the best of the knowledge of the author this work 

has not been carried out in the literature. In this work the selected NN’s are used 

for channel equalization and their performance has been compared. Simulation 

frameworks as described in the later chapters are developed for the single-carrier 

and for the multi-carrier OFDM systems. The performance criteria used was 

selected to be the BER as this is the primary criteria in communication systems for 

the performance measurement of the equalizers. The results show that the 

performance of the NN based channel equalizers perform better than LMS based 

channel estimators. Further results are discussed in detail in the following 

chapters. 
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2.6 Summary 

 

This chapter provides a comprehensive overview of the channel estimation 

and equalization techniques. Different neural network structures are discussed in 

the context of channel equalization. The MLP network implementation is simple, 

but training takes a lot of time. The main disadvantage of the FLANN structure is 

its computational and time complexity which gradually increases as the number of 

input nodes increases. RBF-based neural network equalizer is an interesting 

alternative and has been successfully used for blind equalization. LSTM 

equalizers are superior to NN feed forwards, including MLPs, RBFs, and 

FLANNs. 
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CHAPTER 3  

 

 

 

 WIRELESS CHANNEL EQUALIZATION USING NEURAL 

NETWORKS 

 

 

 

Wireless communication is one of the most exciting areas in the 

communication field today. It has grown rapidly over the last two decades due to 

the rapid rise in demand for wireless connectivity. Wireless communication, 

however, is not as effective as wired media communication, because of fading and 

other channel induced propagation effects [93]. Thus the techniques for enhancing 

its efficiency and reliability become the basic objectives of current research. To 

enhance the performance of wireless communication, numerous NN based channel 

estimation and equalization techniques have been proposed in the literature. These 

techniques include MLP, RBF, FLANN, SVM, and LSTM.  

This chapter deals with the implementation and simulation of these 

techniques and organized as follows. We first describe the QPSK modulation 

scheme and then describe the channel used in our work. This is followed by the 

description of the simulation parameters of NNs used for channel estimation and 

equalization. At the end of this chapter, a detailed result analysis has been made. 

 

3.1 Implementation of NN based equalizers 

 

ML techniques are setting a path to replace the conventional 

communication techniques and the combination of these two fields has led to a lot 

of successful work. NNs are capable of processing nonlinear data and can produce 
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complex decision regions. Therefore, NNs can be employed for equalization to 

overcome the difficulties associated with channel nonlinearities [8-10]. The 

simulation setup is depicted in Figure 3.1. 

 

 

Figure 3.1 The simulation setup 

 

 

 

 

Figure 3.2 NN based equalizer [94] 

 

A typical NN based channel equalizer is depicted in Figure 3.2. The 

transmitter first transmits the training symbols which are known to both the 

receiver and transmitter and then transmits the actual data. The equalizer uses the 

received training symbols to learn the equalizer weights. The optimization 

criterion is to minimize the MSE. 
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3.1.1 Data Generation and QPSK Modulation 

 

Data is randomly generated using MATLAB rand function. It generates 

uniformly distributed data between 0 and 1. The data is QPSK modulated and then 

passed through the channel filter. QPSK uses two signals I and Q, where I is a in-

phase signal and Q is a quadrature signal. Both of these signals are at     phase 

difference. This modulation is popular due to its simpler design and efficient 

hardware realization. The block diagram of QPSK modulator is shown in Figure 

3.3. The following steps are performed to produce a QPSK modulated signal. 

 The incoming digital data is converted into two streams. One stream 

contains the odd bits and the other takes the even bits from the original 

stream. 

 The streams are then pulse shaped using root raised cosine pulses. The 

duration of the pulse determines the data rate of the transmitter. In this 

phase the incoming data is first up-sampled by a factor N which 

corresponds to the symbol duration and then convolved with the RRC 

pulse. The resulting signal is termed as baseband signal. 

 The resulting I and Q stream are then multiplied with I/Q carrier signals. In 

other words, these streams are amplitude-modulating using I/Q signals. 

 Finally, the two modulated signals are summed up to form a QPSK-

modulated signal. In QPSK, two bits are used in one symbol. 

 

Figure 3.3 Block diagram of QPSK modulator [1] 

 

Mathematically, QPSK modulation can be derived as follows: 
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Let    represent the message signal. Where           is the complex 

representation of the i
th

 message signal. This complex representation represents 

the group of bits together. One is represented as the real and the second one 

represents the imaginary bit. The message signal is QPSK modulated as 

 

                
        

                                               

                                    

(3.1) 

Where            and             are the amplitudes of the pulses.  

                                               (3.2) 

Using trigonometric relations the equation can be simplified as  

                     
 

 
  (3.3) 

From equation (3.3) the four reference constellation points of QPSK modulation 

are given as 

     

                 
               
               
                 

  (3.4) 

And the constellation plot is shown in Figure 3.4. 

 

 

Figure 3.4 Constellation plot of QPSK 

 



39 

 

A typical QPSK receiver is depicted in Figure 3.5. At the received signal is 

demodulated as follows. The received QPSK signal is multiplied with the local 

oscillators which are at 90 degrees phase difference and are called I and Q. The 

resulting signals are low pass filtered using the RRC filters. This result in the 

recovery of the baseband pulses which are further down sampled by N and are 

signal is received. A detailed discussion of the receivers and transmitter can be 

found in [1] 

 

Figure 3.5 QPSK demodulator [1] 

 

The received signal can be expressed mathematically as  

                     (3.5) 

Equation (3.5) shows that the received signal r(t) is the sum of convolution 

of h(t) with transmitted signal s(t) and with noise n(t) added. 

 

3.1.2 Wireless Channel Model 

 

The wireless channel model describes the underlying communication 

medium. The performance of communication system is dependent on the 

condition of the channel. Rayleigh and Rician fading channel models are widely 

used to simulate the channel in that realistic wireless environment. Rayleigh 

fading channel [95-97] is the conceptual model assuming the fact that there are 

several objects in the atmosphere. Due to these objects, the transmitted signal may 

be dispersed and replicated. It is also presumed that the there is no direct path 

between the transmitter and the receiver. On the other hand, Rician channel [95, 

96, 98] assumes that there is a direct path between the transmitter and the receiver. 
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The received signal contains both the dispersed and scattered (or reflected) paths. 

In this case, the scattered (or reflected) paths appear to be weaker than the direct 

path. 

We have considered a complex valued multipath channel mentioned in 

[43]. The scatter plot of this channel is depicted in Figure 3.6. The coefficients of 

this channel are defined as: 

                             (3.6) 

                
       (3.7) 

 

 

Figure 3.6 The scatter plot of channel 

 

3.2 Simulation Parameters of NN 

 

Different NN equalizers were plugged into the configuration of Figure 3.1 

and results were obtained. These configurations and the respective results are 

discussed in the sequel. The primary performance criteria used was BER. Loss 

function analysis and the computational complexity are also calculated. The 

detailed results are compared and discussed in the later sections. 
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3.2.1 The Flowchart of NN based Equalizer 

 

The flow chart of the NN based equalizer is depicted in Figure 3.7. 

 

 

Figure 3.7 The flowchart of NN based equalizer 
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3.2.2 MLP based Equalizer 

 

MLP is a simple three-layer network that maps the input to the output. The 

detailed description of MLP is presented in section 2.3.2. MLP is designed using 

nntraintool of MATLAB. It comprises of an input layer, a hidden layer and an 

output layer. The structure of MLP is shown in Figure 3.8. The input layer 

contains two vectors. One vector is the real part of the input signal (X) and another 

is the complex part of the signal. The output layer generates four vectors Y0 to Y3. 

The MLP is trained with these parameters as shown in Table 3.1. The MATLAB 

output during the training phase is depicted in Figure 3.9. The convergence of the 

loss function is depicted in Figure 3.10. Total epochs run were thirty three. The 

error was reduced significantly.  

 

 

Figure 3.8 MLP based equalizer 

 

Table 3.1 The simulation parameters of MLP 

Parameter Value 

Hidden Nodes 30 

Input Size (X) 1,000,000 

Training Algorithm Scaled Conjugate Gradient (SCG) 

[99] 
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Figure 3.9 The training progress of MLP 

 

 

Figure 3.10 The gradient loss during training 
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3.2.3 RBFNN 

 

It is a three-layer network which comprises an input layer, a nonlinear 

hidden layer and a linear output layer. Radial functions are used as an activation 

function. Radial functions are special functions. The output of these functions 

increases or decreases monotonically with distance from a center. K-MEAN 

algorithm is used to find the centers. So first, centers of clusters are determined in 

an unsupervised manner and then classification is performed to recover the signal. 

We have implemented this work[43] and observed the improved BER. 

 

3.2.3.1 Simulation Parameters 

Table 3.2 depicts the simulation parameters for the RBF NN. 

 

Table 3.2 The simulation parameters of the RBFNN 

Parameter Value 

Data set size 2000 

Noise variance 0.01 

Centers 16 

 

Figure 3.11 The scatter plot of equalized signal using RBF 
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3.2.3.2 Simulation Results 

 

The scatter plot depicts the equalized received signal. It is clear from the 

Figure 3.11 that the RBF based equalizer has removed all the channel related 

impairments. 

 

3.2.4 FLANN 

 

It is a single layer neural network. The main concept of FLANN is to 

convert the input data to a higher dimension by using different functional 

expansions. Due to absence of hidden layers, these networks have following 

advantages listed below. 

 Low computational complexity with very few adjustable parameters. 

 Faster training time. 

 Simple design so can be implemented on hardware. 

Using the work in [33, 46], we have implemented the FLANN based equalizer. 

The block diagram of equalizer is shown in Figure 3.12. 

 

Figure 3.12 The block diagram of the implemented FLANN based 

equalizer. 
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3.2.4.1 FLANN based Equalizer Simulation Parameters 

 

Table 3.3 depicts simulation parameters of the FLANN based NN Equalizer. 

 

Table 3.3 The simulation parameters of FLANN, Le-FLANN and Ch-FLANN 

Parameters Value 

Length of input 2000 

FLANN order 30 

Input size  4 

µ 0.01 

No of iterations 10 

Channel Noise Variance 0.01 

 

3.2.4.2 Simulation Results 

 

Simulation results of trigonometric FLANN are depicted in Figure 3.13. 

 

Figure 3.13 Scatter plot for FLANN 
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3.2.5 SVM Based Channel Equalizer 

 

SVM is a supervised algorithm used for classification problems. Channel 

estimation is a classification problem so it can be used to deal with the nonlinear 

channel effects. In our work, we have implemented a basic SVM model 

equalization. Simulation parameters of the SVM are shown in Table 3.4. The 

generalization error computed during simulations is 0.00001 which indicates the 

best performance. 

 

Table 3.4 The simulation parameters of SVM 

Parameters Value 

 Input Size 1,000,000 

Kernel Function  KNN 

 

3.2.6 LSTM Channel Equalizers 

 

LSTM is a popular RNN based DL technique. It is different from 

feedforward NN which does not have memory and cannot deal with temporal data. 

A detailed description of LSTM is provided in section 2.3.7. The LSTM network 

used in this work is depicted in Figure 3.14. 

 

 

Figure 3.14 The LSTM model 
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3.2.6.1 LSTM Simulation Parameters 

 

The Simulation parameters of LSTM are shown in the Table 3.5. The 

simulation of LSTM was executed in MATLAB. The convergence of the training 

phase is depicted in Figure 3.15. The minimum value of loss function achieved 

was 0.0001. 

 

Table 3.5 The simulation prameters of LSTM model 

Parameters Value 

Training SNR 12dB 

Channel Noise 

Variance 

0.01 

LSTM Nodes 16 

Learning rate 0.01 

 

 

Figure 3.15 Training progress of LSTM model 
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3.3 Simulation Result Analysis 

 

All the simulations executed in the Section 3.2 are compared in this 

section. Figure 3.16 depicts the BER comparison of all the simulated NN’s. 

Generally, the trend verifies already establish theory. As the SNR increases the 

BER performance is getting better and better. The performance of FLANN is 

slightly bad as compared to the rest of the schemes due to its single layer 

architecture. The performance of the traditional LMS algorithm is worst. In this 

work [43] the similar results are observed. All the other ML based schemes are 

having same BER performance. In Figure 3.17 the zoomed version of the BER 

graph is depicted. The LSTM is slightly bearing higher BER then SVM and RBF 

based ML methods. The performance of FLANN when compared with rest is 

almost 4dB poorer than the rest. The performance of LSTM is about 0.7 dB poorer 

then the RBF and SVM and MLP. This may be reduced by further tuning or by 

increasing the size of Neural Network. However, this will be at the cost of time 

and computational resource which can be very expensive in the communication 

systems. 

 

Figure 3.16 The comparison of NN techniques 
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Figure 3.17 The zoomed comparison plot of BER 

 

Loss function is an important parameter of the optimization and is 

therefore discussed. The lesser the value of the loss function the better the 

performance is considered. In Table 3.6 the values of the loss function for all the 

algorithms used in this text are depicted. It shows that all the NN's are well 

trained. The minimum value of the loss function achieved is in the case of SVN 

where the value is 0.00001. The BER results depicted in the Figure 3.16, and 

Figure 3.17 are very much in line with these results. The loss function values of 

RBF, FLANN and LSTM can be further reduced by using more training data and 

by using better optimization algorithms. 

 

Table 3.6 Loss function values of ANN  

ANN Loss function value 

Radial Basis Function 0.001 

SVN (KNN based ) 0.00001 

MLP 0.003 

FLANN 0.005 

LSTM 0.003 
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3.3.1 Computational Complexity 

 

Computational complexity analysis of the algorithms is presented. This 

presents the number of computations resources required to perform the respective 

ANN. Table 3.7 presents the computational complexity of various algorithms. The 

number of additions, multiplications and other computational resources such as 

exponentiation, powers and trigonometric functions are enlisted [100]. This 

analysis is useful for the HW implementations and for estimating the 

computational requirements for embedded systems.  

 

Table 3.7 Computational complexity of various ANN  

ANN 

Computational Complexity 

No of 

Mul 

No of 

Additions 

Divisio

n 
Tanh 

Exp

() 

RBF 

    

    

      

        

      

  

    -    

FLANN 

      

   
    

      

   -    - 

MLP 

        

   

   

     

   

   

     

     

        

   

   

    

      

- - - 

SVM 4Td 3Td   Td 

LSTM 2N+2N         

   is the number of input nodes.    is the ith  node in network.    is the total number of Euclidean distances in 

the KNN based SVM. N is the number of nodes in the convolution layer of LSTM network.      are the 

number of Nerons in the BiLSTM layers [100]. 
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The computational complexity analysis of the mentioned algorithms was 

verified by timing the MATLAB
®
 implementations. The time of all the algorithms 

used in this work was measured using MATLAB
®
 built-in function called 'timeit'. 

Number of iterations performed for each algorithm was 10
6
. Machine used for 

computation was DELL
®
 7920 running MATLAB

®
 2019b. The CPU was Intel

®
 

Xeon(R) Silver 4116 CPU running at 2.1GHz. The time is enlisted in the Table 

3.8. The computational time computed endorses the computational complexity as 

given in the Table 3.7. The minimum computational time achieved is for the 

SVM. SVM is running KNN algorithm which is computationally efficient. Its 

BER results are also amongst the best. RBF and MLP bear good performance but 

their computational time is more. 

 

Table 3.8 Time of various ANN algorithms 

ANN 
Total Time in 

seconds 
Iterations 

Time Single 

Iteration 

(seconds) 

SVM 5.2315 sec 1000000 5.2315x10
-6 

LSTM 102.9576 sec 1000000 1.029576x10
-4 

RBF 12.2729 sec 1000000 1.2273x10
-5 

FLANN 36.3450 sec 1000000 3.6345x10
-5 

MLP 13.0859 sec 1000000 1.3086x10
-5 

 

 

3.4 Summary 

 

This chapter describes the implementation and simulations of NN based 

equalizers. The performance of these equalizers is also compared. Rayleigh fading 

channel with varying noise and multi-paths have been implemented to simulate 

the actual propagation environment. QPSK modulation scheme is applied on data. 

Simulations have confirmed that these techniques are better than the conventional 

methods. BER is used as the primary criterion to measure performance. Other 
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performance parameters which are compared using simulation results are the loss 

function and the computational complexity. The computational complexity 

calculated with the help of simulations is endorsing the mathematical formulations 

of the computational complexity as listed in this chapter. 
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CHAPTER 4  

 

 

 

 CHANNEL EQUALIZATION TECHNIQUES IN OFDM 

 

 

 

The wireless communication has been evolved from the single voice 

transmission (2G) to massive real-time HD video streaming (4G) and is now 

progressing towards 5G. Thus, the requirements for high-speed transmission with 

more capacity are increasing on daily basis. Multi carrier techniques can fulfill 

these requirements. OFDM is a multi-carrier technique which has been utilized for 

many high rate transmission applications such as WiFi and 4G LTE etc. 

Traditionally, in OFDM multiple modulators and demodulators were used at 

transmitter and receiver for the generation of multiple carriers. OFDM has gained 

popularity due to the incorporation of a simple FFT operation, which eliminates 

the need of these modulators. The basic principle behind this transmission 

technique is to split the total available bandwidth into several narrowband sub 

channels that are equally and closely spaced and the spectrum of these sub 

channels are overlapped to save the bandwidth. Other than that, the primary 

motivation for using this technique is its robustness against multi path channel 

effects which makes the equalization process much simpler than in a single-carrier 

communication. Thus, a simple one tap equalizer can be employed that makes the 

design of a receiver much simpler. In OFDM, frequency domain equalization is 

used instead of time domain equalization as in single-carrier communication. 

This chapter is structured as follows. The first section gives an overview of 

the channel estimation techniques in OFDM. Section 4.2 presents the LSTM 

model for channel estimation. The later sections explain the simulation parameters 

and simulation results in comparison with LMS and MMSE. 
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4.1 An Overview of Channel Estimation Techniques in OFDM 

 

OFDM channels suffer from multipath effects, Doppler spreads, timing and 

frequency offsets. Therefore, channel estimation is necessary on the receiver as it 

directly affects the BER performance of the OFDM systems. So, channel 

estimation techniques need to be robust enough to cater all these channel induced 

effects. Extensive work has been done to resolve these issues. LS and MMSE are 

traditional channel estimation methods [101]. LS based estimation is simple and 

does not require any prior knowledge of channel. However, its detection 

performance is not good in comparison with MMSE based estimation, which is 

based on the second order statistics of the channel. The MMSE performs better, 

but at the cost of high computational complexity. OFDM uses multiple carriers to 

transmit data and FFT defines the total number of sub carriers. Some sub carriers 

are used for data symbols. Some sub carriers are reserved only for pilots. The pilot 

sub-carriers are utilized to estimate the channel. LS and MMSE estimation 

techniques are applied on the pilot symbols. The estimated response on these pilot 

symbols are then used on the data symbols. There are also some unused sub 

carriers called null carriers used to avoid interference. 

DL [102] has been successfully applied in many fields and showed up to the 

mark performance over traditional techniques. It is possible because of its 

nonlinear flexibility, which makes the complex problems simple to solve. Due to 

its promising results, it has also been applied in the communication field as well, 

particularly in the domain of channel estimation and showed remarkable results in 

terms of BER. DL based techniques can extract the underlying nonlinear 

characteristics of the channels. This chapter deals with the application of DL 

techniques in channel estimation of OFDM systems. 

 

4.2 Channel Estimation using LSTM based Neural Network 

 

LSTM is a type of RNN which deals with the sequence data and use it to 

predict the future sequence data. It has been successfully applied in video 
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classification, speech recognition and NLP. LSTM has also been considered in the 

communication domain and showed better results. For example, this work [85] 

utilizes LSTM for  joint channel estimation and detection of symbols. Using this 

work as a reference, we have implemented the LSTM based channel estimator 

with slight modifications. We have found similar and sometimes better results 

than MMSE. 

 

4.2.1 Simulation Model 

 

A baseband OFDM system with LSTM model is depicted in Figure 4.1. 

The OFDM system is same as the traditional one and has been discussed in the 

previous chapter. The design involves two stages: 

 In offline stage, a model is trained by using the simulation data. 

 In online stage, the pre-trained model is deployed online into recover the 

data. 

It is obvious from this diagram that the use of LSTM or other NN based OFDM 

receiver structures are simpler when compared with the traditional OFDM 

receivers where the channel estimation is performed in a very complex manner by 

using many of the pilot symbol based techniques already discussed. 

The time domain representation of the transmitted signal      after passing 

through the multipath channel      is: 

                     (4.1) 

Where      represents the Gaussian noise (AWGN).The receiver performs DFT 

on      to recover the data. The frequency domain representation of      is: 

                    (4.2) 

Where                and      are the DFT of their corresponding time 

domain signals.  
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Figure 4.1 OFDM simulation setup [85] 

 

 



58 

 

4.2.2 OFDM Simulation Parameters 

 

OFDM system parameters used in this simulation are listed in Table 4.1 

 

Table 4.1 The simulation parameters of OFDM 

Parameter Value 

Total sub-carriers 64 

Pilots 64 

Sub carrier Modulation QPSK 

Cyclic Prefix 16 

 

4.2.3 The LSTM Model 

 

The block diagram of the LSTM model is shown in the Figure 4.2. It 

consists of input layer, LSTM layer, dense layer, softmax layer and an output 

layer. The number of hidden units in LSTM layer are 16 with learning rate of 0.01. 

 

 

Figure 4.2 The LSTM model 

 

4.2.4 Dataset Generation 

 

The training data is generated through simulations. The simulation 

framework is shown in Figure 4.1. First, OFDM frames are generated which 

consists of one data block and one pilot block. A pilot block contains a fixed 

known sequence, followed by a data block. A data block contains randomly 

generated data symbols. All subcarriers contain the same pilot sequences, thus 
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having a block type pilot structure. After passing through the multipath channel, 

these frames are given as an input to model. The received signal and the originally 

transmitted signals are collected as a training data set. 

 

4.2.5 Model Training 

 

A model is trained on the training dataset. A model compares the 

originally transmitted data with the predicted data of the LSTM and tries to 

minimize the error by using loss function like Mean Square Error (MSE). MSE 

can be expressed as: 

      
       

    
   

 
 (4.3) 

 

4.2.6 Simulation Results 

 

This section presents the simulation results with various multipath 

channels with different path delays. Figure shows the training progress of the 

LSTM model and shows that the training accuracy 98% is achieved just after 10-

15 epochs. However, LSTM converges nearly after 100 epochs in case of second 

multipath channel. The BER plots are shown in the Figure 4.4, Figure 4.5 and 

Figure 4.6 respectively. These plots indicate that the LSTM performs better than 

the LS and is equally good as MMSE. Simulation was run for three different 

Rayleigh channels. In the first simulation the channel is based on Rayleigh 

Narrowband fading channel. Channel consists of twenty multi paths and is defined 

as  

          
  

  

   

 (4.4) 

Where the values of    are complex and selected randomly. The results are 

depicted in Figure 4.4. The results show three plots. It is clear from the graph that 

the MMSE and LSTM are equally performing on low SNR’s. LS is slightly 
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having higher BER at low SNR’s. At higher SNR the performance of LSTM is 

again comparable to MMSE. The LS has slightly lower BER performance when 

compared to LSTM and MMSE. 

 

 

Figure 4.3 The training progress of LSTM model 

 

 

 

Figure 4.4 The BER plot of first channel 
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The channel used for the second simulation is taken from [43]. This channel can 

be given as  

                             (4.5) 

                
       (4.6) 

The results in Figure 4.5 are in line with the results depicted in the Figure 4.4. LS 

is slightly lower in the performance when compared with the LSTM and MMSE 

channel equalizers. The results show that LSTM and the LS are very close in the 

performance terms. 

 

Figure 4.5 The BER plot of second channel 

 

In Figure 4.6 the results are obtained by using another channel from [43] and is a 

non-minimum phase channel. A non-minimum phase channel may rotate the 

symbols more than 90 degrees thus severely degrading the symbols. The channel 

has three coefficients and can be given as  

                                        (4.7) 

                
          

       (4.8) 
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Again the results are very much in line with the results shown in the case of 

previous two simulations depicted in Figure 4.4 and Figure 4.5. 

 

Figure 4.6 The BER plot of third channel 

 

The LS has slightly poor BER performance when compared with the 

LSTM and MMSE. However, the LSTM and MMSE bear almost similar 

performance. Thus the ML methods have potential for usage as a channel 

estimation method in communication systems. 

 

4.3 Summary 

 

In this chapter, we have performed the pilot-aided channel estimation in 

OFDM systems using the LSTM model. A Model is first trained offline using 

simulation data, and then deployed online for recovering the actual symbols. It has 

shown promising results that are comparable to the conventional techniques like 

LS and MMSE.  The simulations have confirmed that DL techniques like LSTM 

can perform equally good. 
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CHAPTER 5  

 

 

 

 CONCLUSIONS AND FUTURE WORK 

 

 

 

This chapter summarizes the whole work reported in this thesis. It also 

specifies the research activities and concludes the work. This chapter also 

highlights future directions that can extend this work. 

 

5.1 Thesis Summary 

 

Communication system is an ever evolving, well established field of 

research and has shown major advances in signal estimation, equalization and 

other fields such as channel coding etc. Channel equalization being very critical 

for achieving high data rates and improved spectral efficiency, has been achieved 

using traditional theory of least squares estimation and minimum mean squares 

estimation techniques such as LMS, NLMS, RLS and Kalman filtering etc. Use of 

NN and SVM based channel equalization methods are currently under the research 

and are proving to be performing better than the conventional methods mentioned 

above.  

In this thesis we have addressed the application of information theory 

based methods for the channel equalization comprising of Neural Networks and 

SVM techniques. It revealed that the methods used in traditional communication 

systems are difficult to understand and implement as compared to the ANN based 

methods. The channel equalization when treated as a classification problem using 

ANN techniques resulted in the simpler receiver structures especially in the case 
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of OFDM. The results achieved are also found to be improved in terms of BER. 

Another advantage with the use of ANN based methods is that this has resulted in 

the relatively simpler way to understand the communication systems and many of 

the computer scientists who are not well versed with the communication systems 

theories can also attempt developing better communication systems by using their 

computer science and software development skills. Our research activities are 

summarized as follows. 

1. We have presented a detailed literature review of various NNs (MLP, 

RBF, FLANN, SVM and LSTM) and discussed their applicability in 

wireless communications, especially in the domain of channel 

estimation and equalization. The literature review also covers the 

background communication systems theories related to single-carrier 

communication systems and the multi carrier OFDM based 

communication systems. The respective channel equalization 

techniques used for both the single-carrier and multi carrier OFDM 

have also been reviewed in detail. 

2. We have developed a comprehensive simulation framework for 

carrying out the simulations where the basic blocks of communication 

system like transmitter, receiver and multipath Rayleigh channel have 

been developed. These blocks can always be replaced to add new 

functionalities such as changing the modulation scheme can be done by 

adding a new block of code. 

3. The implementation of NN based equalizers has been done. Many of 

the NN methods such as RBF, FLANN, LSTM, SVM, etc have been 

implemented in MATLAB
®
. Their performances have also been 

compared. BER and constellation plots have validated the performance 

in simulation. 

4. Training of NNs requires powerful hardware resources to accelerate 

this process. For this purpose, we have used a high-end GPU (RTX 

2080) which uses CUDA toolkit and provides a very fast NN training 

capability. 
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5. Two major learning algorithms used in this work were LMS and RLS 

and it was observed that the convergence performance of the RLS is 

much better than the LMS algorithm.  

6. Channel equalization in multi-carrier systems i.e. OFDM has been 

carried out and the performance of LSTM has been compared with the 

LS and MMSE methods. It has been found that the performance of the 

LSTM and MMSE is better than the performance of LS base channel 

equalizers. 

 

5.2 Future Work 

 

This thesis has laid the foundations for the further research work in this 

field. The fundamental methods used have been critically reviewed. Performance 

of the key algorithm has been compared. This work can be extended in many 

ways. Following is the list of possible emerging research areas. 

1. Computational complexity analysis and computing platform 

optimizations of the algorithms is mandatory for efficient 

implementation on Hardware platforms such as ARM processors and 

FPGA and GPU’S. In this work the preliminary computational 

complexity analysis has been worked out. However this can be further 

extended when the implementation of these algorithms will be carried 

out on the FPGA’s or when optimized for the implementation on the 

microcontrollers and DSP processors.  

2. Two dimensional treatment of the received signal which is similar to 

time frequency analysis where a number of frames are gathered and 

then processed as a block. This will enable the use of advanced neural 

network methods such as CNN, DNN and RNN methods. Existing 

frameworks such as AlexNet etc. may also be used.  

3. Use of channel coding, MMSE and Viterbi for performance evaluation 

of the ANN is also recommended as future work.  
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4. Offline training of channel equalizer weights is another interesting 

research area where this work can be extended. This will be especially 

useful when a computationally less powerful platform is to be utilized.  

5. NN based Channel estimators for the stochastic models of the various 

channels as defined in the literature such as COST-231 [6], Watterson 

model [103] for HF communication etc. 

6. Currently, the performance evaluation is performed using QPSK 

modulation. The performance evaluation using higher order 

constellations such as 16QAM, 64QAM, 8PSK etc may also be carried 

out in the future.  

7. Validation by developing hardware may be carried out. 
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