
LOW LATENCY MONTGOMERY MULTIPLIER FOR CRYPTOGRAPHIC

APPLICATIONS

MUHAMMAD HUZAIFA

01-242181-003

A thesis submitted in fulfilment of the

requirements for the award of the degree

of Master of Science (Computer Engineering)

Department of Computer Engineering

BAHRIA UNIVERSITY ISLAMABAD

APRIL 2020

ii

THESIS COMPLETION CERTIFICATE

Student's Name: Muhammad Huzaifa Registration No. 56187 Program of Study: MS-

CE Thesis Title: LOW LATENCY MONTGOMERY MULTIPLIER FOR

CRYPTOGRAPHIC APPLICATIONS.

It is to certify that the above student's thesis has been completed to my satisfaction

and, to my belief, its standard is appropriate for submission for Evaluation. I have also

conducted plagiarism test of this thesis using HEC prescribed software and found similarity

index at 11% that is within the permissible limit set by the HEC for the MS/MPhil degree

thesis. I have also found the thesis in a format recognized by the BU for the MS/MPhil thesis.

Principal Supervisor’s Signature: _________________________

Date: _________________________ Name: Dr. Khalid Javed

iii

APPROVAL FOR EXAMINATION

Scholar's Name: MUHAMMAD HUZAIFA Registration No. 56187 Program of

Study: MS(CE) Thesis Title: LOW LATENCY MONTGOMERY MULTIPLIER FOR

CRYPTOGRAPHIC APPLICATIONS.

It is to certify that the above scholar's thesis has been completed to my satisfaction

and, to my belief, its standard is appropriate for submission for examination. I have also

conducted plagiarism test of this thesis using HEC prescribed software and found similarity

index 11% that is within the permissible limit set by the HEC for the MS degree thesis. I have

also found the thesis in a format recognized by the BU for the MS thesis.

Principal Supervisor’s Signature ________________________________

Date: ________________________

Name: _______________________

iv

AUTHOR’S DECLARATION

I, MUHMMAD HUZAIFA hereby state that my MS thesis titled “Low Latency

Montgomery Multiplier for Cryptographic Applications” is my own work and has not

been submitted previously by me for taking any degree from this university or anywhere else

in the country/world. At any time if my statement is found to be incorrect even after my

graduation, the University has the right to withdraw/cancel my MS degree.

Author’s Name: Muhammad Huzaifa

Date: __________________________

v

PLAGIARISM UNDERTAKING

I, solemnly declare that research work presented in the thesis titled “Low Latency

Montgomery Multiplier for Cryptographic Applications” is solely my research work with no

significant contribution from any other person. Small contribution / help wherever taken has

been duly acknowledged and that complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and Bahria University towards

plagiarism. Therefore, I as an Author of the above titled thesis declare that no portion of my

thesis has been plagiarized and any material used as reference is properly referred / cited.

I undertake that if I found guilty of any formal plagiarism in the above titled thesis

even after award of MS degree, the university reserves the right to withdraw / revoke my MS

degree.

Author’s Sign: __________________

Author’s Name: Muhammad Huzaifa

vi

DEDICATION

I dedicate thesis to the most merciful Allah, Everlasting praise to Allah the most

Gracious who bestowed me with His great blessings. He who says in Quran:

“Indeed, I am near, I respond to the invocation of supplicant when someone calls

upon me.” (Surah AL-Baqarah; Ayat: 186)

 I also dedicate this thesis to my family, teachers, and friends who carried out kind-

heartedness, devotion and boundless support with me in this whole duration.

My teachers supported me with invaluable help of constructive remarks, suggestions,

great opinions and inspirational thoughts during this journey which made me complete this

research and they guided me to put trust in Allah, have faith in hard work and that so much

could be ended with little. My intense gratitude is for them.

Muhammad Huzaifa

vii

ACKNOWLEDGEMENTS

First and foremost, I am thankful to Almighty Allah for giving me opportunity,

courage and vitality towards my ambition. His endless grace blessings and mercy enabled

me throughout this journey of research, Emphatically, I cannot do anything without his

unlimited succor and blessings. Whosoever helped me throughout the whole duration of my

thesis, whether my parents or any other individual was his will, so assuredly none be worthy

of praise but you.

My beloved parents, who raised me, facilitate me and courage me towards higher

studies all my wholehearted thanks is for them.

I would also like to express my gratitude to my Supervisor Dr. Khaild Javed for his

incredible cooperation and providing help at every phase of this thesis. He has guided me,

encouraged me towards this thesis and his contribution has a major impact. Thank you for

guiding me, often with big doses of patience and politeness.

viii

ABSTRACT

In this modern era, protection of data is very important, to overcome these

circumstances we can deploy different types of cryptographic algorithm such as VPNs, SSL

and IPsec for securing our data from malicious attacks in many communication systems.

Public channels are accessible to everyone, which is not safe for data and it cause high

security risk. By having public-key cryptography, which provided secure communication

between sender and receiver without need of sharing key at the beginning of communication.

Public-key cryptographic systems such as ECC and RSA are implemented for different

security services such as key exchange between sender, receiver and key distribution between

different networks nodes and authentication protocols. Public Key (PK) cryptography is

based on computationally intensive finite field arithmetic operations. Rivest, Shamir,

Adelman (RSA) and Elliptic Curve Cryptography (ECC) are widely adopted public-key

schemes. In these schemes, modular multiplication (MM) is the most critical operation.

Usually, this operation is performed by integer multiplication (IM) followed by a Reduction

Modulo M. However, the reduction step involves a long division operation that is expensive

in terms of area, time and resources. Montgomery multiplication algorithm facilitates faster

modular multiplication operation without the division operation. In this thesis, low latency

hardware implementation of the Montgomery multiplier is proposed. Many interesting and

novel optimization strategies are adopted in the proposed design. The proposed Montgomery

multiplier is based on school-book multiplier, Karatsuba algorithm and fast adder’s

techniques. The Karatsuba algorithm (KA) and School-book multiplier recommends cutting

down the operands into smaller chunks while adders facilitate fast addition for large size

operands. The proposed design is simulated, synthesized and implemented using Xilinx ISE

Design Suite by targeting different Xilinx FPGA devices for different bit sizes (64-1024).

The proposed design is evaluated on the basis of computational time, area consumption, and

throughput. It outperforms the state of the art.

ix

TABLE OF CONTENTS

CHAPTER NO TITLE PAGE

 THESIS COMPLETION CERTIFICATE .. II

 APPROVAL FOR EXAMINATION .. III

 AUTHOR’S DECLARATION .. IV

 PLAGIARISM UNDERTAKING ... V

 DEDICATION .. VI

 ACKNOWLEDGEMENTS .. VII

 ABSTRACT .. VIII

 TABLE OF CONTENTS ... IX

 LIST OF FIGURES ... XII

 LIST OF TABLES ... XIII

 ABBREVIATIONS ...XIV

1. INTRODUCTION ... 1

 1.1. Background Study 1

 1.1.1. Digital System Design 2

 1.1.2. Network Security 5

 1.1.3. Public Key Cryptographic: 7

 1.1.4. Elliptic Curve Cryptography (ECC) 9

x

 1.2. Problem Statement 11

 1.3. Thesis Objectives 12

 1.4. Research Contribution 13

 1.5. Thesis Organization 14

2. LITERATURE REVIEW ... 15

 2.1. Literature Review 15

 2.2. Related Work 17

 2.3. Research Gap 20

3. PROPOSED METHODOLOGY .. 21

 3.1. Integer Multipliers 22

 3.1.1. Operands Splitting 23

 3.1.2. Two-parts splitting 24

 3.1.3. Four-parts splitting 24

 3.1.4. Eight Part Splitting 26

 3.2. Montgomery Algorithm 27

 3.3. FPGA Implementation 27

4. IMPLEMENTATION AND RESULTS ... 28

 4.1. Integer Multiplier 28

 4.1.1. Karatsuba-Ofman Two-part Splitting Multiplier 28

 4.1.2. Karatsuba-Ofman Four-part Splitting Multiplier 31

xi

 4.1.3. School-Book Two-part Splitting Multiplier 35

 4.1.4. School-Book four-part Splitting Multiplier 36

 4.1.5. School-Book Eight-part Splitting Multiplier 37

 4.2. Montgomery Modular Multiplier Architecture 39

 4.3. Implementation Results 41

5. CONCLUSIONS ... 48

 REFERENCES.. 50

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1-1: Basic Concept of SPLDs 3

1-2: Research Flow 12

1-3: Thesis Outline 14

2-1: ECC Algorithm 16

4-1: Two Parts Splitting Multiplication 31

4-2: Four Parts Splitting Multiplication 32

4-3: Montgomery Modular Multiplier for Integer multiplier 41

4-4 Performance Comparison 47

file:///C:/Users/Muhammad%20Huzaifa/Desktop/Updated/Thesis%20062120.docx%23_Toc45130989

xiii

LIST OF TABLES

TABLE NO. TITLE PAGE

1: NIST guidelines for Key Sizes 10

2: Clock Cycle Two Parts Splitting Multiplication 29

3: Clock Cycle four Parts Splitting Multiplication 35

4: Karatsuba-Ofman algorithm Two Part and Four-Part Splitting Multiplier 34

5: Clock Cycle School-Book Multiplication 36

6: School-Book algorithm Two, Four and Eight-Part Splitting Multiplier 37

7: Karatsuba and School-Book Algorithm Clock Cycle for Montgomery Multiplier

 40

8: Montgomery Multiplier for Karatsuba Algorithm 42

9: Montgomery Multiplier for School-Book Algorithm 43

10: Performance Comparison 46

xiv

ABBREVIATIONS

PK - Public Key

RSA - Rivest Shamir Adelman

ECC - Elliptic Curve Cryptography

NIST - National Institute of Standards and Technology

M - Modulo

ENIAC - Electronic Numerical Integrator and Computer

IC - Integrated Circuit

ASIC - Application-specific Integrated circuits

PCB - Printed Board Circuit

SPLDs - Simple programmable logic devices

PAL - Programmable array logic

PLA - Programmable logic array

GAL - Generic array logic

CPLDs - Complex programmable logic devices

FPGA - Field-Programmable Gate Arrays

FPIC - Field-Programmable Interconnect

VHDL - VHSIC Hardware Description Language

xv

CMOS - Complementary Metal Oxide Semiconductor

DES - Data Encryption Standard

AES - Advanced Encryption Standard

DH - Diffie-Hellman

MD5 - Message Digest algorithm 5

RC4 - Rivest Cipher 4

DSA - Digital Signature Algorithm

MM - Modular Multiplication

MMM - Montgomery modular multiplication

CSA - Carry save Adder

DSP - Digital Signal Processor

BNC - Barreto-Naehrig curves

LUT - Lookup Table

KA - Karatsuba-Ofman Algorithm

IOB - Input Output Bounds

SB - School Book

CLB - Configurable Logic Blocks

IM - Integer Multiplier

FA - Full Addition

LR - Load Register

xvi

PPA - Partial Product Addition

PPM - Partial Product Multiplication

L - Load Register

W - Write to Register

A - Addition

C - Compression

S - Subtraction

1

CHAPTER 1.

Introduction

This section provides a detail introduction about the research and research concepts.

This section is organized in multiple sub sections. Section 1.1 provides the background study,

Section 1.2 presents the problem statement of research, Section 1.3 discuss the thesis

objectives, Section 1.4 gives the detail about research contribution, and thesis organization

is presented in Section 1.5.

1.1. Background Study

The purpose of this section is to introduce the background study of multiple concepts,

which has been used in this research. These concepts include:

 Digital System Design.

 Network Security.

 Public Key Cryptographic.

 Elliptic Curve Cryptography (ECC)

2

1.1.1. Digital System Design

Transistors were utilized at first as discrete segments, however with the appearance

of Integrated Circuit (IC) innovation, their utility expanded exponentially. ICs are reasonable

when delivered in enormous numbers, dependable, and devour comparatively less force than

vacuum tubes. IC innovation makes it conceivable to fabricate total computerized

incorporating obstructs with single, minute silicon "chips". The size of transistors has been

contracting since they get introduced to the world, and till today, a total PC is on one chip

(microchip), and even huge systems are being coordinated into a solitary chip (system-on-a-

chip). Chips designed to meet the particular prerequisites of an application are known as

Application-Specific Integrated Circuits (ASICs) or specially crafted chips. The rationale

chip is designed without any preparation. The rationale hardware is designed by the

particulars and afterward executed in a proper innovation. The fundamental bit of leeway of

ASICs are streamlined for a particular application, they perform superior to do practically

comparable circuits worked from off-the-rack ICs or programmable rationale gadgets. They

involve next to no zone, as the entirety of the rationale can be incorporated with one chip. In

this manner, less PCB zone would be expected, prompting some cost reserve funds. The

disservice of ASICs is that they can be legitimate monetarily just when there is mass creation

of ICs. Normally, countless ASICs must be made to recoup the uses which are vital in the

design i.e. assembling and testing stages. Another disadvantage of the special craft approach

is that it requires crafted by exceptionally talented architects in the design, assembling, and

test stages. The design time required for these chips is additionally high, a great deal of

confirmation must be done to check for right usefulness. The hardware in the chip can't be

changed once it is manufactured.

Now a days, DIGITAL SYSTEM DESIGN become increasingly famous in the field

of Signal preparing (either in sound, pictures or other type of information) processing,

correspondence, information stockpiling and numerous different fields thoroughly depend on

system design. Emphatically, digital system become obligation of the computerized world

which can't hold up under a solitary. Practically all hardware system is based after acquiring

complete and careful guidelines. Obviously, certifiable signs are generally simple and

3

interfacing to the outside world requires transformation of a sign (data) to computerized form.

After attaining, effortlessness, adaptability, repeatability, and the capacity to deliver

enormous and unpredictable (undoubtedly) system which financially make them tremendous

for handling and putting away data (information). Summarizing that we conclude no one can

envision without advanced system in the cutting-edge period of 21st century.

Simple Programming logic Devices (SPLDs) assimilate Programmable Logic Arrays

(PLAs) and Programmable Array Logics (PALs). Early SPLDs were basic and comprised of

a variety of AND entryways driving a variety of OR gates. An AND gates (known as an AND

plane or AND exhibit) sustains a lot of OR entryways (an OR plane). This aides in

understanding a capacity in the entirety of-items structure. Following figure 1-1 shows

rudiments of basic programmable rationale gadgets (SPLDs).

These chips have basic structure which ensure better understanding of programmable

switches which permits a client to arrange it effectively to perform various capacities. The

end client (developer) just change the arrangement of these switches. By composing a basic

program in Hardware Description Language such VHDL or Verilog and consume it to chip.

Most sorts of PLDs are reprogrammable for a fixed number of times (by and large, a high

number). This component makes PLDs to turn out to be increasingly famous among the

client, which can utilize it commonly by resetting it. Later it can effectively use in prototyping

Figure 1-1: Basic Concept of SPLDs

4

of standard chip. A designer can program a PLD to play out a specific capacity and afterward

make changes and reinvent it for retesting on a similar chip.

The most acclaimed sort of PLDs include:

 Simple programmable logic devices (SPLDs).

 Programmable array logic (PAL).

 Programmable logic array (PLA).

 Generic array logic (GAL).

 Complex programmable logic devices (CPLDs).

 Field-programmable gate arrays (FPGA).

 Field-programmable interconnect (FPIC).

The same number of these chips having reprogrammable efficacy, so it is efficient

like cost sparing by reuse philosophy which is a peculiar component that contributes in

prototyping. A few focal points of these systems are recorded underneath.

 Ease of Programmability.

 Reduction in cost of Hardware.

 High Speed.

 High Reliability.

 Easy Design.

 Result reproduction is easy.

The fundamental impediment of PLDs is that they may not be the best performing.

The presentation of a practically proportional ASIC or standard chip is probably going to be

better. This is on the grounds that all capacities must be acknowledged from existing squares

of rationale inside the PLD. Various kind of PLDs have diverse inward circuit which allude

various disservices.

5

1.1.2. Network Security

System security comprises of approaches and practices which are actualized to

forestall and follow illegitimate access, abuse, adjustment or dismissal of a PC arrange and

accessible system assets. Security is a hazard evaluation. Secure condition doesn't show up,

they can be designed and created through exertion. Secure arrangements must be finished in

all angles, one shortcoming may concord the entire secure system.

Presently, increasingly associated by means of Internet, PCs, TV's, and web-based

business deal, and all other online world secure system condition are consistently developing.

Shortcomings inside the system have prompted the fast development of wholesale fraud and

day by day PC infection flare-ups. Programming engineers and system chairmen are being

considered responsible for concords inside their systems, while aggressors stay unknown.

Inside the security network, there conquer explicit implications, though different

words normally connected with PC security.

Vulnerability: A deformity or shortcoming in the possibility, design, usage, activity, or

upkeep of a system.

Threat: A foe who is able and aroused to misuse a vulnerability.

Attack: The utilization or misuse of a vulnerability. This term is neither pernicious nor

considerate. A trouble maker may assault a system, and a hero may tackle an issue.

Attacker: The individual or procedure that starts an assault. This can be synonymous with

danger.

Exploit: exploit tends better and effective use of resources. Resources that can be utilized for

an assault. A solitary weakness may prompt various adventures, yet few out of every odd

defencelessness may have an endeavour (e.g., hypothetical vulnerabilities).

6

Target: An individual, organization, or system that is forthright defenceless and affected by

the adventure. A few endeavours have numerous effects, with both essential (fundamental)

targets and auxiliary (accidental) targets.

Attack vector: The way from an assailant to an objective. This incorporates devices and

procedures.

Defender: The individual or procedure that mitigates or forestalls an assault.

Compromise: The effective abuse of an objective by an assailant.

Risk: A subjective evaluation depicting the probability of an assailant/danger utilizing an

endeavour to effectively sidestep a protector, assault a powerlessness, and bargain a system.

Characteristic mental attitude determines that security is utilized to keep out

maddening components and keep fair individuals legit. In fact, security doesn't simply mean

sparing the system from miscreants and noxious programming. Security implies saving

information respectability, giving approved access, and looking after protection. Along these

lines, keeping a client from inadvertently erasing or defiling a significant record is similarly

as fundamental to security as halting a vindictive client. By far most of security issues are

focused on information insurance and protection issues, guaranteeing that clients don’t

accomplish something. There are numerous approaches to analyse, organize security issues.

As a rule, a danger can either originate from a record on the system (neighbourhood get to),

or from a system over a system (remote access). Be that as it may, somebody with physical

access to a system may further represent a risk.

Security does not signify "safe." Even the most verified PC system will presumably

lose information in the event that it is close to a solid electromagnetic heartbeat (i.e., atomic

impact). Security implies that in a general-use condition, the system won't be

straightforwardly defenceless against assaults, information misfortune, or protection issues.

Assailants may even have the option to get verified by a system. However, it will be

considerably harder for them, and assaults might identify effectively.

7

1.1.3. Public Key Cryptographic:

There are three fundamental ways to deal with verifying data i.e. counteraction,

limitation, and cryptography. Access to data can be forestalled. In the event in which an

aggressor doesn’t have access to data, at that point the data is protected from the assailant.

For organize security, separated systems and prohibitive models are commonly adequate

hindrances Public-key cryptography, or deviated cryptography. They are cryptographic

system that utilizations set of keys i.e. open keys which might be dispersed broadly. Private

keys are known uniquely to the proprietor. The age of such keys relies upon cryptographic

calculations. They dependent on scientific issues to deliver single direction capacities.

Powerful security requires private key not to disclose; the open key can be straightforwardly

conveyed without trading off security. Encryption and decoding are done utilizing two unique

keys. The two keys in such a key pair are alluded to be the open key and the private key.

Cryptography is the most widely recognized methodology for verifying systems.

Cryptography encodes information by having primarily objective of solitary which expect

devisee can interpret the message. Cryptographic systems incorporate irregular number

generators, hashes, figures, and encryption calculations. Concealing data is generally

connected with cryptographic calculations, this phenomenon is said to be Steganography.

Each cryptographic procedure has five fundamental components i.e. the calculation,

condition, key, plaintext, and cipher text. Encryption required all of these segments.

However, an assailant may know at least one of these necessary components and use them to

decide different components.

Cryptography is utilized to shield information from unintended beneficiaries. The

decoded information is called plaintext, however the information may not really be content.

Pictures and double records may further be scrambled. Scrambled plaintext is called cipher

text. Cipher text gives secrecy by keeping unapproved beneficiaries from review the

plaintext.

8

An encryption calculation is utilized to change over plaintext (P) into cipher text (C)

and the other way around. This requires encryption (E) and decoding (D) capacities, with the

end goal that

E (P) = C

D(C) = P

Every encryption makes cipher text that can be unscrambled into plaintext. Rehashed

encryptions may produce diverse cipher text, yet the first plaintext can generally be recouped.

Cryptographic conditions indicate usage explicit alternatives. Encryption calculations

(e.g., DES, Blowfish, and AES), hash capacities (e.g., RC4, MD5), and key trades (e.g., DH

and ADH) are all around characterized however shift between stages. For instance, the Diffie-

Hellman key trade (DH) can utilize enormous whole numbers. One usage may utilize 64-

piece whole numbers, while another utilization 256-piece numbers. Albeit distinctive piece

sizes do not affect the science behind the calculation, it impacts stage similarity. In the event

that the earth is obscure, it tends to be as compelling at hindering an assailant. It got happen

by utilizing a novel encryption system.

Cryptographic calculations convert plaintext to cipher text in a no predictable manner.

The subsequent cipher text cannot be foreordained from the plaintext. Most cryptographic

systems join irregular number calculations. The irregular number generator (R) is seeded

with a particular worth. The seed and plaintext create the cipher text. A key (K) might be

utilized as the seed esteem or joined with a hash capacity to create the underlying seed esteem.

E (K, P) = C

D (K, C) = P

Without a key, the calculation perform encoding, not an encryption. The equivalent

plaintext will consistently produce the equivalent cipher text. Any assailant realizing the

calculation can promptly decipher the cipher text. Encryption calculations use keys to change

the cipher text; plaintext encoded with various keys creates distinctive cipher text. Without

knowing the right key, an aggressor can't decipher the cipher text.

9

1.1.4. Elliptic Curve Cryptography (ECC)

An open key encryption method dependent on ecliptic curve hypothesis that can be

utilized to make quicker, little and progressively productive cryptographic keys. ECC creates

keys utilizing properties of the elliptic curve condition rather than the conventional strategy

for age as the result of exceptionally enormous prime numbers. The ECC (Elliptic Curve

Cryptography) calculation was initially freely recommended by Neal Koblitz (University of

Washington), and Victor S. Mill operator (IBM) in 1985.

In spite of the fact that the ECC calculation was proposed for cryptography in 1985,

it has had a moderate beginning and it took about twenty years, until 2004 and 2005, for the

plan to increase wide acknowledgment. ECC (Elliptic Curve Cryptography) is a generally

new calculation that makes encryption keys dependent on utilizing focuses on a curve to

characterize people in general and private keys.

As more individuals moving towards cell phones, ECC key is useful for the present

age. Perhaps, use of Smartphone stretches out to develop. There is rising requirement for a

progressively adaptable encryption for business to meet with expanding security necessities.

Beside this, we contrast with the RSA and DSA calculations, at that point 256-piece ECC is

equivalent to 3072-piece RSA key. The purpose for keeping short key is the utilization of

less computational force, quick and secure association, perfect for smartphone and tablet as

well. The US government and the National Security Agency have guaranteed ECC

encryption technique. The scientific issue of the ECC calculation is more diligently to break

for programmer’s contrast with RSA and DSA, which implies the ECC calculation

guarantees site and framework wellbeing than customary strategies in a progressively secure

way.

If we inspect Table 1, there is an extensive development in DSA and RSA key than

ECC key size. A more drawn out key requires more space, more data transmission, and extra

processor power. Emphatically, it will set aside an effort to create a key, encode information,

and decode the information.

10

Table 1: NIST guidelines for Key Sizes

Encryption specialists are squeezed to discover perpetually compelling strategies,

estimated in security and execution, in light of the fact that dangers exhibited by programmers

are ever more worthy. Mostly on the grounds that the programmers themselves become

progressively complex in their assaults, and furthermore that the aftermath from an assault

gets always hazardous as our utilization of information develops.

It makes an earnestness of new calculations with an objective to give more significant

level of security by having keys that are increasingly hard to break, while offering better

execution over the system and focusing that they are working with huge informational

collections. A few variables are adding to its expanding notoriety. Most importantly, the

security of 1024-piece encryption is debasing, because of quicker processing and a superior

comprehension and examination of encryption strategies. While beast power is still

improbable to split 1024-piece encryption. Different methodologies including exceptionally

escalated equal figuring in disseminated registering clusters are bringing about increasingly

advanced assaults. These assaults have diminished the adequacy of this degree of security.

As, even 2048-piece encryption is evaluated by the RSA security to be compelling just until

2030.

Date
Security

Bit

(AES) Symmertic

Algorithms
RSA ECC ECC:AES RSA:ECC

2010 80 2-key triple DES 1024 160 2:1 6.4:1

2011-2030 112 3-key triple DES 2056 224 2:1 9.14:1

>2030 128 AES-128 3072 256 2:1 12:1

>>2030 192 AES-192 7680 384 2:1 20:1

>>>2030 256 AES-256 15360 512 2:1 30:1

11

Entrepreneur require information regarding web server models. Many web servers

running on a solitary area name can deal with RSA, DSA, and ECC arrangement. Meanwhile,

not many web servers are be able to deal with various calculations and can use a solitary

endorsement on a solitary web server.

RSA, DSA, and ECC have assorted speed for confirmation and verification. RSA is

a quick calculation as far as customer confirmation while ECC is quicker regarding server

verification. Mark confirmation got quick if there come an occurrence of RSA key

contrasting with ECC key. There are exchange types, the preparing intensity of the gadget;

stockpiling limit, transmission capacity, and utilization of intensity additionally impact the

calculation choice.

Numerous administration elements have begun to acknowledge DSA and ECC. They

required for government subcontracts, government branches for their inward trade of

correspondence.

The quantity of associations assumes an imperative job in choosing calculation

standard. ECC can deal with more associations. Simultaneously more contrasts with RSA

calculation can be assigned. An organization needs to keep up the harmony between security,

client experience, and IT-framework cost engaged with arrange process.

1.2. Problem Statement

In every Public-key cryptosystem, the modular multiplication is the important

operation. The most broadly utilized calculation for the execution of modular multiplication

is the Montgomery modular multiplication architecture of school-book multiplier and

Karatsuba algorithm with different splitting parts which enable us to utilize suite in dedicated

FPGA multipliers. The problem statement of this thesis is described as, Modular multiplier

effectuate as bottleneck in many public key cryptographic schemes. The modular multiplier’s

overall performance affects the performance of the cryptographic high-speed scheme. This

12

work proposed dedicated hardware accelerated to compute modular multiplier operation for

different bit sizes.

1.3. Thesis Objectives

Entire research is done in a very systematic way. Figure 1-2 represent the stepwise

flow of research. In first step we identify the problem. Then proposed the ideal solution for

the problem which was presented earlier. We carry out a detailed and comprehensive

literature review which helps us to identify the optimal solution for the problem. We reviewed

the researches carried out related to our proposed solution, analyse and compared it.

The proposed solution includes the Hardware implementation of public key

cryptographic algorithms. Montgomery modular multiplier pay significant role. This

proposed methodology provide a full-word implementation of Montgomery modular

Figure 1-2: Research Flow

13

multiplication which enhance the execution speed of Elliptic-curve cryptography (ECC) and

RSA cryptographic algorithms on hardware. We also utilized the school-book multiplier and

Karatsuba–Ofman algorithm to calculate the 64-1024.

Multiplication using Xilinx FPGA devices. We optimized the Model using the

school-book multiplier and Karatsuba–Ofman algorithm techniques to divide the operand on

different size according to Xilinx FPGA devices and the adders enable fast addition by

reducing long carry propagation delay. The proposed methodology has been validated by

computational time, area consumption, and throughput. It significantly surpass the state of

the art.

1.4. Research Contribution

Contributions in this research includes split the operands in different parts using

school-book multiplier and Karatsuba-Ofman algorithm, apply the multiplication operation

on the splitting part of the operands by using the applications of Montgomery modular

multiplication. Detailed set of contributions of the proposed approach are as follows:

 We have utilized the model of Montgomery multiplication shift and add operations

replacing the cost of the division operation.

 We have presented a model, which divide the operands into two, four and eight equivalent

small parts to overcome the complexity.

 This model consists of a School-Book algorithm which can do fast multiplication

operation and Karatsuba-Ofman algorithm which can save one multiplication operation.

 We have provided validation of our work with different splitting parts which enable us to

utilize suite in dedicated FPGA multipliers.

14

1.5. Thesis Organization

Figure 1-3 represent the organization of thesis. Chapter 1 prescribe introduction

having detailed background study about the concepts used in the research, problem statement,

research contribution and thesis organization. Chapter 2 contains the literature review which

provide a description of work done in the field of Montgomery multiplication using school-

book multiplier and Karatsuba-Ofman algorithm. In Literature review, we also highlight the

research gaps that we encountered. It covers the detail of proposed methodology used for

identification of problem. Chapter 3 presents the detailed implementation regarding the

proposed model, Montgomery multiplication, school-book multiplier and Karatsuba-Ofman

algorithm. It provides the validation performed for our proposed methodology by comparing

with other Montgomery multiplication models. Chapter 4 contains a brief analysis of our

proposed work with previous researches. Chapter 5 include a brief discussion on the work

done, contains the limitations to our research, conclude the research, and recommends a

future work for the research.

Figure 1-3: Thesis Outline

15

CHAPTER 2.

Literature Review

 This chapter presents brief review of Montgomery Multiplier for Cryptographic

Applications and existing work of efficient implementation of Montgomery modular

Multiplier. After a brief literature review of work conducted in this area, we enlightened the

research gaps that we found in previous works.

2.1. Literature Review

Cryptography has generally two type’s i.e. symmetric cryptography and asymmetric

cryptography [36]. In symmetric cryptography, encryption and decryption use the same key

format but in asymmetric cryptography there is a pair of keys like public key and private key

for encryption and decryption, it’s called public key cryptography. The key represents itself,

the public key is open accessible for everyone, but the private or personal key solely known

by the message receiver. Both keys have mathematical relation in-between. In asymmetric

cryptography, for the encryption of data public key is used while for decryption only private

key is used. It is impossible to derivate the private key from the public key. It is allowed to

freely exchange public key over the network.

Public key cryptographic algorithms are widely used in RSA and ECC [37]. Elliptic

curves on finite fields are supported on the algebraic structures in the ECC. In public key

cryptography, algorithms need arithmetic operations like modular multiplication,

addition/subtraction and inversion/division functions with large size operands. Increased

security schemes use large operands in operations. In RSA large operands are used for the

16

same security level as compared to ECC. In public key cryptographic algorithms, the ECC is

preferred scheme, particularly when affected resource environments are used.

Figure 2-1: ECC Algorithm

The software implementation of ECC at the cost of time, occur complexities with a

high level of flexibility [38]. The hardware implementation of ECC is done with high

working speed due to effective utilization of modular multipliers. These layers of modular

multipliers consist of mathematical operations like multiplication, addition, subtraction, and

inversion.

The operations as modular multiplication and addition are mostly utilized as the

hardware resources and cost of time. The modular multiplication is comparatively faster in

terms of hardware and software in modular inversion function. Extra multiplications are

added to remove the complexity of the modular inversion and the affected projective by

differing the coordinate system. Adopting the projective coordinate system in ECC algorithm

the total performance depends on the modular multiplication, which causes the bottleneck in

cryptosystems. For increment in the performance of the ECC algorithm, we use the common

methods.

Extensively, modular multipliers divided into three types. The regular technique for

modular multiplication is division-using modulus M. In division the expensive operation in

terms of execution and consumption of resources is Modulus M. The second type of modular

multipliers is interleaved modular multiplication, which can do the reduction during

Point

Multiplication

Point Doubling Point Addition

Modular Operations

Add Subtract Multiply Invert

ECC Scheme

17

multiplication. The last type of modular multiplier is Montgomery modular multiplication,

which is faster for the large operands as compare to the other methods [41]. Large operand

divided into a number of small parts and then use the school-book (SB) and Karatsuba-ofman

algorithm (KA) [12] which give us best output in term of area and performance.

Cryptography applications deploy in several smart devices like mobiles and Wi-Fi

devices. The Cryptography applications utilized the large size of mathematical operands

starting from 160 to 2048 bits. Extended the security of the devices by increasing the size of

the keys. For fast computing, it is required to speed up the computation and cut down the

resources. With the public key crypto algorithms to scale down the computational cost in

terms of space and delay to fulfil the requirement of portable devices. Cryptography

applications uses the modular multiplication, which utilized the high space. Speeding up the

cryptography applications is depending on space and time complexity. In modular

multiplication operation, mostly use carry-save adder and high-radix multipliers, which

create the carry propagation and caused the longest path delay and hardware complexity.

Montgomery modular multiplication mostly uses the implementation of the RSA algorithm.

An array of AND gates and carry-save adder are used to intermediate additions to

implementation of the multiplier in hardware.

2.2. Related Work

As, concept of efficient implementation of Montgomery modular multiplier based on

hardware. All the concept of implementation is divided into two major classes. Word wise

implementations and bitwise implementations. In modern FPGA dedicated multipliers are

not used in bitwise implementations, it uses only standard FPGA. The utilization of dedicated

multipliers on FPGA is faster than the standard design-based FPGA. The word wise

implementation divides the operands into different parts and these parts utilize the dedicated

multipliers for multiplication, which offer faster speed in time-critical applications.

18

Dedicated multipliers are used for several implementations and for additional use of

the fast carry adders. Mondal et al. in [1] a provided concept to use 64x64 bit cores

architecture for different implementation and their resources regarding hardware architecture

Brinci et al. in [2] presented concept for the multiplier of Barreto-Naehrig curves. They

allotted the special prime number for implementations of BN curves and utilized the non-

standard division to adjustment of the FPGA Digital Signal Processor (DSP) block. Kiang et

al. in [3] extended concept to high speed & low-cost Montgomery multiplication algorithm

with the Carry-Save Adder for added operations. Carry-Save Adder is used to cut off the

extra clock cycles for implementation and conversion. Rezai et al. [4] advanced the concept

of high-speed. Montgomery multiplier architecture using the digit serial computation. It uses

the binary multiplication in high-radix partial multiplication. Consecutive zero-

bit multiplications can be functioned within one clock cycle. The structural unit is using

changed right-to-left modular operands architectures. K. Javeed [5] bestowed the concept

with the addition of 512-bit and multiplication of 256-bit utilization of the carry chain of 64-

bit with soft-core multiplier and succeed to 188 MHz frequency. Yang et al. in [6] elaborated

concept of implementation scheme of using IP cores of the FPGA with the addition of 512-

bit and 256-bit multiplication to achieve 50% better results as compared to standard

implementations. C. J. McIvor [7] contributed to implement the hardware processor for ECC.

Full block Montgomery modular multiplication with the 256-bit integer multiplier is intended

of 16-bit cascading unsigned multipliers and this method is sustained until the specified size

of the multiplier is achieved. Fast carry look-ahead adders are used for the addition of the

modular multiplication. M. Morales-Sandoval [8] put up the design concept to divide the

operands and performing computations on it. The complexity is not depending on the operand

size, it relies on the divided part of the operand.

To increase the efficiency of Montgomery modular multiplication architecture many

solutions are provided using the Karatsuba algorithm. Gong et al. in [9] contributed that the

design concept of 256-bit Montgomery modular multiplication using the dedicated multiplier

on FPGA with pipelining stages. Using the Karatsuba algorithm, the operands are divided

into two parts to cut down the number of the multiplier on FPGA. The hardware architecture

decreased the clock cycle of the output and providing limited frequency. S. Ghosh [10] put

up the design concept of a series of nine multipliers of 64bits to create a block to deploy the

19

Karatsuba algorithm-based number multiplier. The number multiplier can be used to create

a huge block of 256-bit Montgomery modular multiplier. The design provides low space

architecture and path delay cost is decreased to increased iterations. G. C. Chow [11]

presented the design concept when FPGA working of high-frequency, routing delay is

increased in large multipliers. For decreasing the routing delay dividing the operands into

small parts and these parts are using the dedicated multipliers to increase the efficiency of

the hardware. I. San, N. At [12] extended the design concept of the Karatsuba-ofman

algorithm (KA) to dividing the operand into two parts and use in the Montgomery modular

multiplication algorithm with higher radix. Architecture uses the dedicated blocks of the

multiplier, which increase the space of the hardware. X. Yan [13] advanced the design

concept of the Karatsuba algorithm divided into 4 levels use in Montgomery modular

multiplier. Using the splitting method operand is divided into two parts. The divided part

again divided into two other parts in the reappearance style until the divided parts are length

matches with the DSP blocks of an FPGA. Utilized the LUTs on FPGA rather than the

dedicated multipliers. K. Javeed [14] enlightened the design concept of LUT use on the

hardware implementation rather than the FPGA dedicated multipliers. Radix-4 based

modular multiplier with the serial interleaved. K. Javeed [15] came up with the design

concept of parallel interleaved modular multiplier implementation of hardware architecture.

According to the architecture, an operand is working on four parallel processing elements to

complete the dedicated task according to the algorithm. S. B. Ors [16] presented the design

concept to deploy of systolic architecture array in Montgomery modular

multiplier. Systolic architecture array repeating the structures in parallel to overcome the path

delay. K. Javeed [17] provided the design concept to deploy a radix-4 serial multiplier in

Montgomery modular multiplication with the laddering method of power to cut off the 50%

in clock cycles.

Modular multiplication implementation presents four essential methods like

multiplication and division [18], Brickell algorithm [19], Montgomery modular

multiplication architecture [20], multiplication and minimization of interleaved [18].

Multiplication minimization of interleaved and Montgomery modular multiplication

architecture has less hardware which is said to be computational technique [18]. The

multiplication and minimization of interleaved, the n-bit number A and B are multiplied

20

which results as the product is 2n-bits. Then the result is divided by the mod M to get the

again result which is n-bit ((A x B) mod M). In the multiplication algorithm, there he utilized

Shift and addition operation to minimize the result in every step [18]. Brickell algorithm is

the utilization of the integer carry delay [19]. Sign estimation is the combination of this

scheme and correction by Omura's algorithm [18]. Residue integer System [21], systolic

architecture array [22], LUT [23] and pipeline architecture [24] are also utilized the hardware

architecture optimization schemes. The minimization Interleaved Multiplication [25], [26]

Montgomery modular multiplication architecture is used for the implementation of a binary

base [27] FPGA architecture.

2.3. Research Gap

The proposed solution includes a cost-effective Montgomery multiplier design based

on school-book multiplier, Karatsuba algorithm and adders. School-book multiplier and

Karatsuba algorithm with different splitting parts enable us to utilize suite in dedicated FPGA

multipliers. The adders enable fast addition by reducing long carry propagation delay. The

design will be optimized for speed and hardware resource. The architecture will be

synthesized and implement using Xilinx ISE 14.1 Design Suite for Virtex-5, Virtex-6, and

Virtex-7. The architecture will be suitable for ECC and RSA implementation with different

field sizes from 64-1024 bits. It gives the best outcomes as far as throughput and delay-area,

so it tends to be proficiently utilizable in the Public key cryptography scheme field.

https://www.powerthesaurus.org/cost-effective/synonyms

21

CHAPTER 3.

Proposed Methodology

In Public key crypto system, the modular multiplication (MM) is the basic operation.

Montgomery modular multiplier (MMM) algorithm is most widely used for the

implementation of modular multiplication. To increase the efficiency of Montgomery

modular multiplier algorithm, employed the School-book multiplier and Karatsuba-Ofman

algorithm. Reduce the complexity of multiplication utilize the School-book multiplier and

Karatsuba-Ofman algorithm which divide the operands into smaller chunks. Before

multiplication, the operands can be divided into number of parts. The number of

multiplications increase when we further decrease the chunks size of the operands. In this

thesis we have optimize hardware resources and optimize simultaneously computation time.

Utilizing the School-book multiplier and Karatsuba-Ofman algorithm (KA) to splitting the

operands into two parts and then applied the same technique to divide the operands into four

parts and eight parts. We have worked on three method i.e. two-part spiting, four-part and

eight parts splitting. After the splitting of operands, these operands utilize the integer

multiplier architecture and the Montgomery modular Multiplier algorithm. In the

Montgomery modular Multiplication algorithm, the most important operation is integer

multiplier architecture. Therefore, increase the speed of integer multiplier can help to enhance

the overall efficiency of Montgomery modular Multiplier. The proposed design is simulated,

synthesized and implemented using Xilinx ISE Design Suite by targeting different Xilinx

FPGA devices for different bit sizes (64-1024). The proposed design of Montgomery

modular multiplier is evaluated on the bases of computational time, area consumption, and

throughput. It surpass the state of the art.

22

3.1. Integer Multipliers

In this algorithm multiplication complexity is overcome by dividing the operands into

equivalent small chunks. A school-book multiplication complexity is Ꝺ(𝑛2). The strategy

found by Karatsuba-Ofman [29] dividing the operand into parts to decrease the complexity

to Ꝺ(𝑛1.58). In Two numbers multiplication A and B, the parts splitting algorithm suggested

to divide these into the higher and lower parts as given below:

𝐴1 = (𝑎𝑛−1 … … … … 𝑎[𝑛/2])

𝐴0 = (𝑎[𝑛/2]−1 … … … … 𝑎0)

𝐵1 = (𝑏𝑛−1 … … … … 𝑏[𝑛/2])

𝐵0 = (𝑏[𝑛/2]−1 … … … … 𝑏0)

The operand A and B can be written as:

𝐴 = 𝐴0 + 2𝑛𝐴1

𝐵 = 𝐵0 + 2𝑛𝐵1

Now the multiplication result is given below:

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐴 𝑥 𝐵 = 𝐴0𝐵0 + 2𝑛(𝐴0𝐵1 + 𝐴1𝐵0) + 22𝑛𝐴1𝐵1 (1)

Four multiplications are required if schoolbook method is adopted as show in above

equation. They utilize the four DSP block for multiplication. The result of student book

multiplier is fast but the use the resources.

However, using Karatsuba technique, the required number of multiplications are three

as show in equation below:

 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐴 𝑥 𝐵 = 𝐴0𝐵0 + 2𝑛(𝐴1𝐵1 + 𝐴0𝐵0 − (𝐴1 − 𝐴0)(𝐵1 − 𝐵0)) + 22𝑛𝐴1𝐵1 (2)

23

The number of multiplications is required to multiply the two operands in the

Karatsuba algorithm, which can save one multiplication operation and increase the adders

and subtraction. They also utilized the sign bit operations. Which decrease the speed of the

multiplication but they utilized the less resources of hardware. The repeated division of

operands into the small parts until reaching the required size of the operand. Utilizing the

school-book multiplier improves the speed of multiplication and Karatsuba algorithm use the

less resources of hardware.

3.1.1. Operands Splitting

Operands may be divided into any number of parts and utilize the School-book (SB)

or Karatsuba technique for the multiplication. The Table 2 shows the number of multipliers

required according to operand parts with two different techniques of multiplication.

When we further divide, the operand size is decreasing, but the number of a multiplier

is also increased with the addition of adder and subtraction to produce the last output. Further

part of the operand may not be suitable because the area of the hardware is increased.

Table 2: Comparison of size and Multipliers for KA and SB

 School-Book (SB) Method Karatsuba Algorithm (KA)

Division Size Multiplier Size Multiplier

02-Part N/2 04 N/2 03

03-Part N/3 09 N/3 06

04-Part N/4 016 N/4 010

05-Part N/5 025 N/5 015

24

3.1.2. Two-parts splitting

Karatsuba algorithm says operands are split into two parts. Calculate the difference

of divided operands (𝐴1 − 𝐴0) 𝑎𝑛𝑑(𝐵1 − 𝐵0), it is the effective and vital part of the

Karatsuba calculation. Then compute the product of the divided operand(𝐴1 −

𝐴0) 𝑎𝑛𝑑(𝐵1 − 𝐵0). The result of these two operations is (𝐴1𝐵1 + 𝐴0𝐵0 − (𝐴1 − 𝐴0)(𝐵1 −

𝐵0))which is saved in one multiplier this is the beauty of Karatsuba algorithm (KA). Latest

FPGA devices contain DSP blocks which consist of dedicated multipliers. In Xilinx ISE

design suite Virtex-5 and Virtex-6 DSP blocks consist of 18x25 asymmetrical signed

dedicated multiplier. The size of the dedicated multiplier is n-bit the output of the

multiplication is 2n-bits. Which can use the three dedicated multipliers for the 2n-bits

multiplication, the hardware architecture utilized the three dedicated multipliers. Operand

size is less than 2n-bits it always utilizes the three dedicated multipliers in the hardware

architecture. It is a generalized theory of multiplication. The old FPGA devices do not support

a dedicated multiplier. The latest FPGA devices are fast for the multiplication due to the

dedicated multiplier inside the DSP blocks which also perform the addition inside the

dedicated multiplier.

3.1.3. Four-parts splitting

Repeatedly school-book multiplier and Karatsuba-Ofman calculation got applied on

the operands. Four sections obtain after the applied splitting operation calculation on the two

parts of the operands. The four sections of the operands are given below:

𝐴 = 𝐴0 + 2𝑛𝐴1 + 22𝑛𝐴2 + 23𝑛𝐴3

𝐵 = 𝐵0 + 2𝑛𝐵1 + 22𝑛𝐵2 + 23𝑛𝐵3

The general output of the multiplication is given below:

25

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐴 ∗ 𝐵 = 𝐴0𝐵0 + 2𝑛(𝐴0𝐵1 + 𝐴1𝐵0)

+22𝑛(𝐴2𝐵0 + 𝐴1𝐵1 + 𝐴0𝐵2) + 23𝑛(𝐴3𝐵0 + 𝐴2𝐵1 + 𝐴1𝐵2 + 𝐴0𝐵3)

+24𝑛(𝐴3𝐵1 + 𝐴2𝐵2 + 𝐴1𝐵3) + 25𝑛(𝐴2𝐵3 + 𝐴3𝐵2) + 26𝑛𝐴3𝐵3 (3)

The above condition demonstrates that 16 multiplications and 15 adders are

needed for the output of the equation. The size of operand part is equal to DSP block size

than we needed 16 dedicated multipliers to perform the multiplication of the equation. If

restricted in the size of the multiplication, which uses only one DSP block than completion

of task relies on performing it with 16 DSP blocks. After applying the Karatsuba-Ofman

calculation on the same equation the output is:

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐴 ∗ 𝐵 = 𝑃00 + 2𝑛(𝑃11 + 𝑃00 − 𝐷10)

+22𝑛(𝑃22 + 𝑃11 + 𝑃00 − 𝐷20) + 23𝑛(𝑃33 + 𝑃22 + 𝑃11 + 𝑃00 − 𝐷30 − 𝐷21)

+24𝑛(𝑃33 + 𝑃22 + 𝑃11 − 𝐷31) + 25𝑛(𝑃33 + 𝑃22 − 𝐷32) + 26𝑛(𝑃33) (4)

After comparing both equations, it is observed that reduction occur in the number of

multiplications from 16 to 10 and increase the 15 adder and 18 subtractions. The operands

size remains the same one-fourth of the first operands. If the Single multiplication utilize the

single DSP block than 10 numbers of DSP block are acquired to do complete multiplication.

6 numbers of the DSP block saved through Karatsuba-Ofman calculation. These numbers of

operations utilize in the main equation:

𝑃00 = 𝐴0𝐵0

𝑃11 = 𝐴1𝐵1

𝑃22 = 𝐴2𝐵2

𝑃33 = 𝐴3𝐵3

𝐷10 = (𝐴1 − 𝐴0)(𝐵1 − 𝐵0)

𝐷20 = (𝐴2 − 𝐴0)(𝐵2 − 𝐵0)

26

𝐷30 = (𝐴3 − 𝐴0)(𝐵3 − 𝐵0)

𝐷21 = (𝐴2 − 𝐴1)(𝐵2 − 𝐵1)

𝐷31 = (𝐴3 − 𝐴1)(𝐵3 − 𝐵1)

𝐷32 = (𝐴3 − 𝐴2)(𝐵3 − 𝐵2)

3.1.4. Eight Part Splitting

Repeatedly school-book multiplier calculation got applied on the operands. Eight

sections obtain after the applied splitting operation calculation on the two parts of the

operands. The eight sections of the operands are given below:

A = A0 + 2nA1 + 22nA2 + 23nA3 + 24nA4 + 25nA5 + 26nA6 + 27nA7

B = B0 + 2nB1 + 22nB2 + 23nB3 + 24nB4 + 25nB5 + 26nB6 + 27nB7

The general output of the multiplication is given below:

𝐴 𝑥 𝐵 = 𝐴0𝐵0 + 2𝑛(𝐴0𝐵1 + 𝐴1𝐵0) + 22𝑛(𝐴2𝐵0 + 𝐴1𝐵1 + 𝐴0𝐵2) + 23𝑛(𝐴3𝐵0 + 𝐴2𝐵1 +

𝐴1𝐵2 + 𝐴0𝐵3)+24𝑛(𝐴4𝐵0 + 𝐴3𝐵1 + 𝐴2𝐵2 + 𝐴1𝐵3 + 𝐴0𝐵4)+25𝑛(𝐴5𝐵0 + 𝐴4𝐵1 + 𝐴3𝐵2 +

𝐴2𝐵3 + 𝐴1𝐵4 + 𝐴0𝐵5)+26𝑛(𝐴6𝐵0 + 𝐴5𝐵1 + 𝐴4𝐵2 + 𝐴3𝐵3 + 𝐴2𝐵4 + 𝐴1𝐵5 +

𝐴0𝐵6)+27𝑛(𝐴7𝐵0 + 𝐴6𝐵1 + 𝐴5𝐵2 + 𝐴4𝐵3 + 𝐴3𝐵4 + 𝐴2𝐵5 + 𝐴1𝐵6 + 𝐴0𝐵7)+28𝑛(𝐴7𝐵1 +

𝐴6𝐵2 + 𝐴5𝐵3 + 𝐴4𝐵4 + 𝐴3𝐵5 + 𝐴2𝐵6 + 𝐴1𝐵7)+29𝑛(𝐴7𝐵2 + 𝐴6𝐵3 + 𝐴5𝐵4 + 𝐴4𝐵5 +

𝐴3𝐵6 + 𝐴2𝐵7)+210𝑛(𝐴7𝐵3 + 𝐴6𝐵4 + 𝐴5𝐵5 + 𝐴4𝐵6 + 𝐴3𝐵7)+211𝑛(𝐴7𝐵4 + 𝐴6𝐵5 +

𝐴5𝐵6 + 𝐴4𝐵7)+212𝑛(𝐴7𝐵5 + 𝐴6𝐵6 + 𝐴5𝐵7)+213𝑛(𝐴7𝐵6 + 𝐴6𝐵7)+214𝑛𝐴7𝐵7 (5)

The above condition demonstrates that 64 multiplications and 63 adders are

needed for the output of the equation. The size of operand part is equal to DSP block size

than we needed 64 dedicated multipliers to perform the multiplication of the equation. If

restricted in the size of the multiplication, which uses only one DSP block than completion

of task relies on performing it with 64 DSP blocks.

27

3.2. Montgomery Algorithm

In [28] a strategy for quickly measured multiplication has presented in 1985 by Peter

L. Montgomery. Montgomery modular multiplication architecture measured A x B mod M,

where A and B are certain whole numbers and M is a large prime number. Regular

methodologies for processing the remainder of the division task is the cost. In Montgomery

multiplication shift and adds operations replacing the costly of the division operation. Shift

and adds operations strategy work only in the Montgomery domain. Before the task, the

operand first transformed into the domain of Residue Number System. After completing the

operation, the output is re-transformed. Word length must be selected in the power of two

in the selection of radix R and modulus must be smaller than radix R. For the run of algorithm

R and M must be a prime number. Whether for M (modulus) n bit is a positive number of A

and B are two n bit operands. In modular multiplication, Output = A x B mod M where

0 < A; B < M.

3.3. FPGA Implementation

Integrated circuits such as FPGA (Field Programmable Gate Arrays) could be

programmed by user after fabrication. FPGA devices contain CLB (Configurable Logic

Blocks) which are associated through programmable interconnects. This ability of the FPGA

devices has made it for suitable hardware accelerators for different applications and they are

largely deployed in cryptographic applications. The modern FPGA devices provide the

dedicated portion for software and hardware cores and configurable blocks. In modern Xilinx

FPGAs different memory, cores and dedicated blocks for the arithmetic operations are

available which are already tailored for high speed and low power application. These cores

are easily changeable according to requirement and utilize the multiple blocks at the same

time. Configurable Logic Blocks provide the facility to the programmer to minimize the code

to maximize the speed of the hardware.

28

CHAPTER 4.

Implementation and Results

This chapter deals with the brief description of implementation and the results of our

proposed methodology.

4.1. Integer Multiplier

The Performance of the Montgomery modular multiplier totally depends on the

integer multiplier efficiency. In this thesis, we have deployed school-book multiplier and

Karatsuba-Ofman algorithm to increase the performance of the integer multiplier (IM). We

adopt the three approaches to increase the efficiency of integer multiplier i.e. two-part

splitting four-part splitting and eight part splitting. They are discussed with their results.

4.1.1. Karatsuba-Ofman Two-part Splitting Multiplier

Figure 4-1 show the architecture for two-part splitting multiplier and algorithm-1

describe the steps involved in synthesized of final result. In two-part splitting algorithm the

operands can be split into two equal parts using Karatsuba-Ofman algorithm. In Figure 4-1

at the start of the multiplication, the input operands can store in the register A and B. In the

next step, divide the operand into two part using Karatsuba-Ofman algorithm than generate

the product using Integer multiplier. Two unsigned multipliers of N/2 bits and one signed

29

multiplier of (N/2 + 1) bits to generate the third partial product. Three multiplication executed

in parallel with the help of multiplier.

In algorithm-1 steps 1 to 12 explain the generation of partial product. In equation 2

the output utilizes the three multipliers. The reduction of multiplier is achieved through

Karatsuba-Ofman algorithm. In the algorithm-1 step 13 to 15 show that the result of partial

product will utilize as the inputs for the adders. The N/2 bits fast carry chain adders add the

partial product shown in figure 4-1. Step 16 is the final addition to generate the product. The

splitting depth of the operand is 1.

Table-2 shows the clock cycle for the two-part splitting multiplier. The complete

product takes seven-clock cycle. In the figure 4-1 the first operation is to load the operand

into the input register. In the Table-2, the LR show the load register which required one clock

cycle.

The second operation in the Table-2 is computation of the Partial product, which is

PPM Partial product multiplication, which utilized one clock cycle. The third operation in

the figure is PPA partial product addition, which add the partial product in four-clock cycle.

PPA is final stage. Final addition FA of the product, which add the PPA in one clock cycle.

The whole multiplication utilized the seven-clock cycle for full product.

Table 2: Clock Cycle Two Parts Splitting Multiplication

Clock Cycle Task

1st LR Load Register

2nd PPM Partial Product Multiplication

3rd -6th PPA Partial Product Addition

7th FA Final Addition

30

Algorithm 1: Two Parts Splitting Multiplication Algorithm

1 Input A, B

2 𝐴 = ∑ 2𝑖𝑘1

𝑘=0
𝐴𝑖

3 𝐵 = ∑ 2𝑖𝑘1

𝑘=0
𝐵𝑖

4 Output Out=A x B

5 for i = 1; i ≥ 0; i = i-1 do

6 j = i-1

7 𝑃𝑖,𝑖⃪ 𝐴𝑖 × 𝐵𝑖

8 while j ≥ 0 do

9 𝐷𝑖,𝑖⃪ (𝐴𝑖 − 𝐴𝑗) × (𝐵𝑖 − 𝐵𝑗)

10 j ⃪ j – 1

11 end

12 End

13 𝑆0 ⃪ 𝑃00

14 𝑆1 ⃪ 𝑃11 + 𝑃00 − 𝐷10

15 𝑆2 ⃪ 𝑃11

16 𝑂𝑢𝑡 ⃪ ∑ 2𝑖𝑘2

𝑘=0
𝑆𝑖

17 return Out

31

Figure 4-1: Two Parts Splitting Multiplication

4.1.2. Karatsuba-Ofman Four-part Splitting Multiplier

In four parts splitting method, the splitting depth is two. It means that each part of

operand is further divided into two parts. The main advantage of four-part splitting multiplier

is to optimize the hardware resources. Four-part splitting multiplier utilized the basic

multiplier of DSP block in Virtex-6.

Figure 4-2 show the architecture for four-part splitting multiplier and algorithm-2

describe the steps involved in synthesized of final result. In four-part splitting algorithm, the

operands can be split into four equal parts using to Karatsuba-Ofman algorithm. In Figure 4-

32

2 at the start of the multiplication, the input operands can store in the register A and B. In the

next step, divide the operand into four part using Karatsuba-Ofman algorithm than generate

the product using Integer multiplier. Four unsigned multipliers of N/4 bits and six signed

multipliers of (N/4 + 1) bits to generate the ten partial products. Ten multiplication executed

in parallel with the help of multiplier. In algorithm-2 steps 1 to 12 explain the generation of

partial product. In equation-4 the output utilizes the ten multipliers. The reduction of

multipliers is achieved through Karatsuba-Ofman algorithm. In the algorithm-2 step 13 to 19

show that the result of partial product utilizes as the inputs for the adders. The N/4 bits fast

carry chain adders add the partial product shown in figure 4-2. Step 20 is the final addition

to generate the product. The splitting depth of the operand is two.

Figure 4-2: Four Parts Splitting Multiplication

33

Algorithm 2: Four Parts Splitting Multiplication Algorithm

1 Input A,B

2 𝐴 = ∑ 2𝑖𝑘3

𝑘=0
𝐴𝑖

3 𝐵 = ∑ 2𝑖𝑘3

𝑘=0
𝐵𝑖

4 Output Out=A x B

5 for i = 3 ; i ≥ 0 ; i = i-1 do

6 j = i-1

7 𝑃𝑖,𝑖⃪ 𝐴𝑖 × 𝐵𝑖

8 while j ≥ 0 do

9 𝐷𝑖,𝑖⃪ (𝐴𝑖 − 𝐴𝑗) × (𝐵𝑖 − 𝐵𝑗)

10 j ⃪ j – 1

11 end

12 end

13 𝑆0 ⃪ 𝑃00

14 𝑆1 ⃪ 𝑃11 + 𝑃00 − 𝐷10

15 𝑆2 ⃪ 𝑃22 + 𝑃11 + 𝑃00 − 𝐷10 − 𝐷20

16 𝑆3 ⃪ 𝑃33 + 𝑃22 + 𝑃11 + 𝑃00 − 𝐷30 − 𝐷21

17 𝑆4 ⃪ 𝑃22 + 𝑃11 + 𝑃33 − 𝐷31

18 𝑆5 ⃪ 𝑃22 + 𝑃33 − 𝐷32

19 𝑆6 ⃪ 𝑃11

20 𝑜𝑢𝑡 ⃪ ∑ 2𝑖𝑘6

𝑘=0
𝑆𝑖

21 return Out

34

Table 3: Karatsuba-Ofman algorithm Two Part and Four-Part Splitting Multiplier

 Size LUT DSPs SR F CC Period Time TP

 Bits - - - MHz - Ns ns GOPS
V

ir
te

x
 5

KA Two Part Splitting Multiplier

64 387 12 395 126.22 7 7.92 55.46 0.018

128 1303 36 967 85.43 7 11.70 81.93 0.012

256 5246 168 1927 65.66 7 15.23 106.62 0.009

512 22003 693 3870 45.18 7 22.14 154.95 0.006

KA Four Part Splitting Multiplier

64 744 11 317 246.71 7 4.05 28.37 0.035

128 1941 40 1751 126.22 7 7.92 55.46 0.018

256 5797 120 4079 85.43 7 11.70 81.93 0.012

512 21719 560 8111 65.66 7 15.23 106.62 0.009

V
ir

te
x
 6

KA Two Part Splitting Multiplier

64 387 12 395 133.37 7 7.50 52.49 0.019

128 1303 36 967 95.87 7 10.43 73.02 0.014

256 5246 168 1927 76.53 7 13.07 91.46 0.011

512 21967 693 3870 54.73 7 18.27 127.90 0.008

KA Four Part Splitting Multiplier

64 777 10 351 277.66 7 3.60 25.21 0.040

128 1877 40 1686 133.37 7 7.50 52.49 0.019

256 5669 120 3950 95.87 7 10.43 73.02 0.014

512 21463 560 7854 76.53 7 13.07 91.46 0.011

V
ir

te
x
 7

KA Two Part Splitting Multiplier

64 387 12 395 155.42 7 6.43 45.04 0.022

128 1303 36 967 109.08 7 9.17 64.17 0.016

256 5246 168 1927 88.01 7 11.36 79.54 0.013

512 21967 693 3870 63.93 7 15.64 109.49 0.009

1024 86748 2394 7731 42.41 7 23.58 165.07 0.006

KA Four Part Splitting Multiplier

64 777 10 351 297.49 7 3.36 23.53 0.042

128 1877 40 1686 155.42 7 6.43 45.04 0.022

256 5669 120 3950 109.08 7 9.17 64.17 0.016

512 21463 560 7854 88.01 7 11.36 79.54 0.013

1024 93071 2310 15706 63.93 7 15.64 109.49 0.009

SR: Slice Registers f: Frequency CC: Clock Cycle TP: Throughput

GOPS: Giga Operation per Second ns: Nano Seconds

35

Table 4: Clock Cycle four Parts Splitting Multiplication

Clock Cycle Task

1st LR Load Register

2nd PPM Partial Product Multiplication

3rd -6th PPA Partial Product Addition

7th FA Final Addition

Table-4 shows the clock cycle for the four-part splitting multipliers. The complete product

takes seven-clock cycle. In the figure 4-2, the first operation is to load the operand into the

input register. In the Table-4, the LR show the load register which required one clock cycle.

The second operation in the Table-4 is computation of the Partial product, which is PPM

partial product multiplication. Which utilized one clock cycle. The third operation in the

figure is PPA partial product addition, which add the partial product in four-clock cycle. PPA

is final stage. Final addition FA of the product, which add the PPA in one clock cycle. The

whole multiplication utilized the seven-clock cycle for full product.

4.1.3. School-Book Two-part Splitting Multiplier

In School-book algorithm the operands can be split into two equal parts. The start of

the multiplication, the input operands can store in the register A and B. In the next step, divide

the operand into two part using spiting algorithm than generate the product using Integer

multiplier. Two unsigned multipliers of N/2 bits. Four multiplication executed in parallel

with the help of multiplier. In equation-1, the output utilizes the four multipliers.

Table-5 shows the clock cycle for the two-part splitting multiplier. The complete product

takes two-clock cycle. The first operation is to load the operand into the input register. The

LR show the load register which required one clock cycle. The second operation is Final

addition FA of the product, which add the PPA in one clock cycle. The whole multiplication

utilized the two-clock cycle for full product.

36

Table 5: Clock Cycle School-Book Multiplication

Clock Cycle Task

1st LR Load Register

2nd FA Final Addition

4.1.4. School-Book four-part Splitting Multiplier

In four parts splitting method, the splitting depth is two. It means that each part of

operand is further divided into two parts. The main advantage of four-part splitting multiplier

is to optimize the hardware resources. Four-part splitting multiplier utilized the basic

multiplier of DSP block in Virtex-6.

In four-part splitting algorithm, the operands can be split into four equal parts using

to spiting algorithm. In the start of the multiplication, the input operands can store in the

register A and B. In the next step, divide the operand into four part using splitting algorithm

than generate the product using Integer multiplier. Sixteen unsigned multipliers of N/4 bits

to generate the sixteen partial products. In equation-3, the output utilizes the sixteen

multipliers. The splitting depth of the operand is two.

Table-5 shows the clock cycle for the four-part splitting multipliers. The complete

product takes two-clock cycle. The first operation is to load the operand into the input

register. In the Table-5, the LR show the load register which required one clock cycle. The

second operation is Final addition FA of the product, which add the PPA in one clock cycle.

The whole multiplication utilized the two-clock cycle for full product.

37

4.1.5. School-Book Eight-part Splitting Multiplier

In Eight parts splitting method, the splitting depth is three. It means that each part of

operand is further divided into two parts. The main advantage of Eight-part splitting

multiplier is to optimize the hardware resources. Four-part splitting multiplier utilized the

basic multiplier of DSP block in Virtex-6 and virtex7.

In Eight-part splitting algorithm, the operands can be split into eight equal parts using

to spiting algorithm. In the start of the multiplication, the input operands can store in the

register A and B. In the next step, divide the operand into eight part using splitting algorithm

than generate the product using Integer multiplier. Sixty-four unsigned multipliers of N/8

bits to generate the sixty-four partial products. In equation-5, the output utilizes the sixty-

four multipliers. The splitting depth of the operand is three.

Table 6: School-Book algorithm Two, Four and Eight-Part Splitting Multiplier

 Size LUT DSPs SR F CC Period Time TP

 bits - - - MHz - ns ns GOPS

V
ir

te
x
 5

SB Two Part Splitting Multiplier

64 255 16 330 126.215 2 7.92 15.85 0.063

128 1139 48 899 85.434 2 11.70 23.41 0.043

256 5135 224 1794 65.655 2 15.23 30.46 0.033

512 19691 924 3608 45.177 2 22.14 44.27 0.023

SB Four Part Splitting Multiplier

64 560 16 585 427.332 2 2.34 4.68 0.214

128 1151 64 1518 126.215 2 7.92 15.85 0.063

256 4815 192 3983 85.434 2 11.70 23.41 0.043

512 21055 896 7950 65.655 2 15.23 30.46 0.033

SB Eight Part Splitting Multiplier

64 1168 64 1169 506.047 2 1.98 3.95 0.253

128 2336 64 2289 427.332 2 2.34 4.68 0.214

256 4703 256 6270 126.215 2 7.92 15.85 0.063

512 19455 768 16319 85.434 2 11.70 23.41 0.043

38

V
ir

te
x
 6

SB Two Part Splitting Multiplier

64 255 16 330 133.369 2 7.50 15.00 0.067

128 1139 48 912 95.865 2 10.43 20.86 0.048

256 5135 224 1794 76.533 2 13.07 26.13 0.038

512 19619 924 3608 54.73 2 18.27 36.54 0.027

SB Four Part Splitting Multiplier

64 560 16 585 533.86 2 1.87 3.75 0.267

128 1151 64 1518 133.369 2 7.50 15.00 0.067

256 4815 192 3996 95.865 2 10.43 20.86 0.048

512 21055 896 7950 76.533 2 13.07 26.13 0.038

SB Eight Part Splitting Multiplier

64 1143 65 1052 436.462 2 2.29 4.58 0.218

128 2336 64 2289 533.86 2 1.87 3.75 0.267

256 4703 256 6270 133.369 2 7.50 15.00 0.067

512 19455 768 16332 95.865 2 10.43 20.86 0.048

V
ir

te
x
 7

SB Two Part Splitting Multiplier

64 255 16 330 155.424 2 6.43 12.87 0.078

128 1139 48 898 109.077 2 9.17 18.34 0.055

256 5135 224 1794 88.009 2 11.36 22.72 0.044

512 19619 924 3608 63.93 2 15.64 31.28 0.032

1024 67403 3192 7214 42.405 2 23.58 47.16 0.021

SB Four Part Splitting Multiplier

64 560 16 585 568.134 2 1.76 3.52 0.284

128 1151 64 1518 155.424 2 6.43 12.87 0.078

256 4815 192 3982 109.077 2 9.17 18.34 0.055

512 21055 896 7950 88.009 2 11.36 22.72 0.044

1024 79503 3696 15930 63.93 2 15.64 31.28 0.032

SB Eight Part Splitting Multiplier

64 1052 65 1143 480.273 2 2.08 4.16 0.240

128 2336 64 2289 568.134 2 1.76 3.52 0.284

256 4703 256 6270 155.424 2 6.43 12.87 0.078

512 19455 768 16318 109.077 2 9.17 18.34 0.055

1024 84607 3584 32574 88.009 2 11.36 22.72 0.044

SR: Slice Registers f: Frequency CC: Clock Cycle TP: Throughput

GOPS: Giga Operation per Second ns: Nano Seconds

39

4.2. Montgomery Modular Multiplier Architecture

The architecture of Montgomery modular multiplier (MMM) is shown in algorithm-

3. In this algorithm, there are three n-bit Integer multiplier. The overall efficiency of the

Montgomery multiplier algorithm is dependent on the Integer multiplier. In this thesis, we

present an efficient Montgomery modular multiplier (MMM) implemented on modern FPGA

devices.

The proposed architecture of

Montgomery multiplier is shown in

figure 4-3. This architecture consists of n-

bit integer multiplier. The intermediate

multiplication results holding in 2n-bit

register. The holding result in register is

utilized in next steps. All the three

multiplication are executed in series. In

this architecture the result of the first

integer multiplication is stored in the

register. The stored result than got added

in the third multiplication result. The final step is reduction that utilize to compute the

Montgomery multiplication.

In the Table-7 the proposed architecture, performs the series of operation for executing the

Montgomery modular multiplication. In the first clock cycle the operands is loaded in

Register A and B which is represented by Load Register (L). The first integer multiplication

operation utilizes the input operands A and B. When the multiplier gets the operands A and

B, the multiplication operation started. It consumes the seven-clock cycle in Karatsuba

Algorithm and two-clock cycle in School-book Algorithm to compute the multiplication of

the operands and 2n-bit product result stored in the register, which is represented by W in

Table-7. The result of the product written in the register file utilize the one clock cycle. Table-

7 show that three multiplication were executed in series.

Algorithm 3: Montgomery Multiplier

𝐼𝑛𝑝𝑢𝑡: 𝐴 , 𝐵 , 𝑀 , 𝑛 = log2 𝑀 , 𝑅 = 2𝑛

𝑀1 = −𝑀−1 𝑚𝑜𝑑 𝑅

𝑅𝑒𝑠𝑢𝑙𝑡: 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐴 × 𝐵 × 𝑅−1 𝑚𝑜𝑑 𝑀

𝐷 ← 𝐴 × 𝐵

𝐸 ← 𝐷 × 𝑀1 𝑚𝑜𝑑 𝑅

𝑂𝑢𝑡𝑝𝑢𝑡 ← (𝐷 + 𝐸 × 𝑀)/𝑅

𝐼𝑓 𝑂𝑢𝑡𝑝𝑢𝑡 > 𝑀 𝑡ℎ𝑒𝑛 𝑟𝑒𝑡𝑢𝑟𝑛 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑀

𝐸𝑙𝑠𝑒 𝑟𝑒𝑡𝑢𝑟𝑛 𝑂𝑢𝑡𝑝𝑢𝑡

40

 During the operation Load Register new operands got loaded in the input register A

and B. The second multiplication utilize modulus of first multiplication output and M1 as

operand. The second multiplication also utilize the seven-clock cycle in Karatsuba Algorithm

and two-clock cycle in School-book Algorithm to compute the product and one-clock cycle

required to store the result in register file. For the three-multiplication required twenty-six

clock cycle in series in Karatsuba Algorithm and eleven-clock cycle in School-book

Algorithm.

In the last step, three more clock cycle required for the addition of the product of the

three multiplications according to the algorithm-3. Comparison and subtraction operation

compute if required. In this way, Montgomery modular multiplication architecture required

twenty-nine clock cycle in Karatsuba Algorithm and fourteen-clock cycle in School-book

Algorithm to compute the complete result

Table 7: Karatsuba and School-Book Algorithm Clock Cycle for Montgomery Multiplier

Karatsuba Algorithm

Clock Cycle
Operations

School-Book Algorithm

Clock Cycle

1st L Load Register 1st

2nd-8th IR Integer Multiplication 2nd-3rd

9th WR Write to Register File 4th

10th L Load Register 5th

11th -17th IR Integer Multiplication 6th -7th

18th WR Write to Register File 8th

19th L Load Register 9th

20th-26th IR Integer Multiplication 10th-11th

27th A Addition 12th

28th C Comparison 13th

29th S Subtraction 14th

41

Figure 4-3: Montgomery Modular Multiplier for Integer multiplier

4.3. Implementation Results

 In the previous sections, the proposed architectures are not specific design to FPGA

family. The length of the operand at the root level of four-part splitting is selected for the

implementation in serval FPGA devices.

In the proposed architectures of two-part splitting, four-part splitting and eight-part splitting

are calculated for five common operands i.e. bit sizes 64,128,256,512 and 1024 . The

proposed architectures of Montgomery modular multiplier have been designed in

42

Table 8: Montgomery Multiplier for Karatsuba Algorithm

 Size LUT DSPs SR F CC Period Time TP

 bits - - - MHz - ns ns GOPS
V

ir
te

x
 5

Montgomery Multiplier with KA Two Part Splitting Technique

64 875 12 912 102.15 29 9.79 283.91 0.004

128 2265 36 1996 68.96 29 14.50 420.52 0.002

256 7155 168 3980 50.79 29 19.69 571.01 0.002

Montgomery Multiplier with KA Four Part Splitting Technique

64 1232 11 834 225.01 29 4.44 128.89 0.008

128 2903 40 2780 102.05 29 9.80 284.18 0.004

256 7706 120 6132 68.94 29 14.50 420.64 0.002

512 25523 560 12212 40.28 29 24.83 720.03 0.001

V
ir

te
x
 6

Montgomery Multiplier with KA Two Part Splitting Technique

64 810 12 912 109.31 29 9.15 265.30 0.004

128 2135 36 1996 79.05 29 12.65 366.84 0.003

256 6680 168 3980 59.87 29 16.70 484.36 0.002

512 24782 693 7971 43.70 29 22.89 663.69 0.002

Montgomery Multiplier with KA Four Part Splitting Technique

64 1200 10 868 277.66 29 3.60 104.44 0.010

128 2709 40 2715 109.17 29 9.16 265.65 0.004

256 7103 120 6003 78.99 29 12.66 367.16 0.003

512 24278 560 11955 53.66 29 18.64 540.43 0.002

V
ir

te
x
 7

Montgomery Multiplier with KA Two Part Splitting Technique

64 810 12 912 123.22 29 8.12 235.36 0.004

128 2135 36 1996 88.12 29 11.35 329.11 0.003

256 6680 168 3980 66.23 29 15.10 437.85 0.002

512 24782 693 7971 48.64 29 20.56 596.20 0.002

1024 92328 2394 16162 33.84 29 29.55 856.87 0.001

Montgomery Multiplier with KA Four Part Splitting Technique

64 1200 10 868 297.49 29 3.362 97.48 0.010

128 2709 40 2715 123.04 29 8.128 235.71 0.004

256 7103 120 6003 88.03 29 11.360 329.43 0.003

512 24278 560 11955 66.19 29 15.109 438.17 0.002

1024 98651 2310 23903 34.62 29 28.888 837.74 0.001

SR: Slice Registers f: Frequency CC: Clock Cycle TP: Throughput

GOPS: Giga Operation per Second ns: Nano Seconds

43

Verilog hardware description language and synthesis has been done in Xilinx ISE Design

Suite 14.1 on different devices (Virtex-5, Virtex-6, Virtex-7). Table-8 shows the

implemented results for two part and four-part splitting Montgomery modular multiplier in

FPGA device. Table 9 shows the implemented results for two part, four and eight-Part

splitting Montgomery modular multiplier for school-book. The table shows that the eight-

part splitting architectures utilize the less DSP blocks for same operand length comparatively

to two-part splitting and four-part splitting. The advantage of saving DSP blocks is only for

higher operand length. The reason behind the saving DSP block is chunks the length of the

operands have. When the operands splitting depth is two and after splitting the length of the

operands is less than the length of the multiplier provided by the DSP blocks then

Montgomery modular multiplier implementation results show that the time increased in

Eight-part splitting method.

Table 9: Montgomery Multiplier for School-Book Algorithm

 Size LUT DSPs SR F CC Period Time TP

 bits - - - MHz - ns ns GOPS

V
ir

te
x
 5

Montgomery Multiplier with SB Two Part Splitting Technique

64 742 16 846 126.22 14 7.92 110.92 0.009

128 2100 48 1927 85.43 14 11.70 163.87 0.006

256 7043 224 3846 65.66 14 15.23 213.24 0.005

512 118225 693 8209 40.27 14 24.83 347.67 0.003

Montgomery Multiplier with SB Four Part Splitting Technique

64 1062 16 1026 255.01 14 3.92 54.90 0.018

128 2112 64 2546 126.22 14 7.92 110.92 0.009

256 6723 192 6034 75.87 14 13.18 184.52 0.005

512 96512 728 12690 40.27 14 24.83 347.67 0.003

Montgomery Multiplier with SB Eight Part Splitting Technique

64 1662 64 1594 255.01 14 3.92 54.90 0.018

128 3312 64 3122 135.94 14 7.36 102.99 0.010

256 6611 256 8322 75.87 14 13.18 184.52 0.005

512 90456 636 21122 40.27 14 24.83 347.67 0.003

V
ir

te
x
 6

Montgomery Multiplier with SB Two Part Splitting Technique

64 677 16 846 133.37 14 7.50 104.97 0.010

128 1970 48 1940 95.87 14 10.43 146.04 0.007

256 6566 224 3846 76.53 14 13.07 182.93 0.005

512 22431 924 7708 53.66 14 18.64 260.90 0.004

44

Montgomery Multiplier with SB Four Part Splitting Technique

64 977 16 1026 293.84 14 3.40 47.65 0.021

128 1982 64 2546 133.37 14 7.50 104.97 0.010

256 6246 192 6048 95.87 14 10.43 146.04 0.007

512 23867 896 12050 53.66 14 18.64 260.90 0.004

Montgomery Multiplier with SB Eight Part Splitting Technique

64 1565 65 1568 293.84 14 3.40 47.65 0.021

128 3182 64 3122 179.24 14 5.58 78.11 0.013

256 6134 256 8322 100.69 14 9.93 139.04 0.007

512 22267 768 20418 53.66 14 18.64 260.90 0.004

V
ir

te
x
 7

Montgomery Multiplier with SB Two Part Splitting Technique

64 677 16 846 155.42 14 6.43 90.08 0.011

128 1970 48 1926 109.08 14 9.17 128.35 0.008

256 6566 224 3846 88.01 14 11.36 159.07 0.006

512 22431 924 7708 63.93 14 15.64 218.99 0.005

1024 72980 3192 15410 34.62 14 28.89 404.43 0.002

Montgomery Multiplier with SB Four Part Splitting Technique

64 997 16 1026 337.01 14 2.97 41.54 0.024

128 1982 64 2546 155.42 14 6.43 90.08 0.011

256 6246 192 6034 109.08 14 9.17 128.35 0.008

512 23867 896 12050 66.39 14 15.06 210.89 0.005

1024 85080 3696 24126 34.62 14 28.89 404.43 0.002

Montgomery Multiplier with SB Eight Part Splitting Technique

64 1568 65 1568 337.01 14 2.97 41.54 0.024

128 3182 64 3122 212.98 14 4.70 65.73 0.015

256 6134 256 8322 122.68 14 8.15 114.12 0.009

512 22267 768 20418 66.39 14 15.06 210.89 0.005

1024 90184 3584 40770 34.62 14 28.89 404.43 0.002

SR: Slice Registers f: Frequency CC: Clock Cycle TP: Throughput

GOPS: Giga Operation per Second ns: Nano Seconds

Table 10 show that the performance differences with other design architectures on same

platform. The proposed design of 256bit Montgomery modular multiplier architectures run

at frequency 95.87 MHz and utilized fourteen clock cycles to compute result. The proposed

design consumes 192 DSP blocks. The other proposed design of 256bit Montgomery modular

multiplier architectures run at frequency 78.985 MHz and utilized twenty-nine clock cycles

to compute result. The proposed design consumes 120 DSP blocks. Mondal et al. In [1]

45

utilized the school-book architectures to compute the Montgomery modular multiplier. It put

up the concept to consume 16 64x64 bit soft cores architecture operated at 102MHz

frequency. Their resources regarding hardware architecture consumed double as compare to

purposed design. 29% less frequency is achieved here.

 Brinci et al. In [2] presented a concept for the multiplier of Barreto-Naehrig curves.

They provided the special prime number for implementations of B-N curves and utilized the

non-standard division for adjustment of the FPGA Digital Signal Processor (DSP) block.

This architecture achieves 208 MHz frequency. However, they are only flexible with Barreto-

Naehrig curves. This is the main drawback of this architecture. They utilized 50% more DSP

block as compare to proposed architecture. K. Javeed [5] elaborated the concept with the

addition of 512-bit and multiplication of 256-bit utilization of the carry chain of 64-bit with

soft-core multiplier. They utilized the school multiplier in Montgomery modular multiplier

and succeed to 188 MHz frequency. They utilized 200% more DSP block comparatively to

proposed architecture. Yang et al. In [6] advanced concept of implementation scheme of

using IP cores of the FPGA with the addition of 512-bit and 256-bit multiplication to

achieve50% better results as compared to standard implementation. They improved the low

frequency and high latency in this architecture.

In this architecture, they achieve 40MHz frequency, which is too low for high-speed

applications. The drawback of this architecture is observed in schoolbook multiplier in

Montgomery modular multiplier, which utilized the too much area. C. J. McIvor [7] presented

concept to implement the hardware processor for ECC. Full block Montgomery modular

multiplication with the 256-bit integer multiplier (IM) is intended to 16-bit cascading

unsigned multipliers and this method is sustained until the specified size of the multiplier is

achieved. Fast carry look-ahead adders are required for the addition of the modular

multiplication. The drawback of this architecture in term of time is long duration for synthesis

comparatively to our purposed architecture.

G. C. Chow [11] put up the design concept when FPGA working of high frequency

and routing delay is increased in large multipliers. For decreasing the routing delay dividing

the operands into small parts by using the Karatsuba algorithm and these parts are using the

dedicated multipliers to increase the efficiency of the hardware with deep pipeline stages.

46

The number of pipeline stage and time for Montgomery modular multiplier is not mentioned

in this paper. The drawback of this architecture is utilized more than 50 clock cycle. Our

purposed architecture utilized only 29-clock cycle for one Montgomery modular multiplier.

Table 10: Performance Comparison

Design Device Size Area F CC Period Time TP

 Bits LUT DSPs MHz Ns ns GOPS

Proposed SB Four Part Splitting Montomery Multiplier

[Proposed] Virtex-6

64 977 16 293.84 14 3.40 47.65 0.021

128 1982 64 133.37 14 7.50 104.97 0.010

256 6246 192 95.87 14 10.43 146.04 0.007

512 23867 896 53.66 14 18.64 260.90 0.004

Proposed KA Four Part Splitting Montomery Multiplier

[Proposed] Virtex-6

64 1200 10 277.66 29 3.60 104.44 0.010

128 2709 40 109.17 29 9.16 265.65 0.004

256 7103 120 78.99 29 12.66 367.16 0.003

512 24278 560 53.66 29 18.64 540.43 0.002

[1] Virtex-6 256 - 256 102.67 - 9.74 - -

[2] Virtex-6 258 - 176 208.00 - 4.81 - -

[5] Virtex-6 256 - 256 188.00 42 5.32 223.40 0.004

[6] Virtex-6 256 24000 256 40.06 50 24.96 1248.13 0.001

[7] Virtex-6 256 1420 256 45.68 32 21.89 700.53 0.001

[10] Virtex-6 256 3900 144 96.00 42 10.42 437.50 0.002

[11] Virtex-6 256 17000 108 336.00 50 2.98 148.81 0.007

[13] Virtex-6 256 22500 108 205.76 29 4.86 140.94 0.007

[14] Virtex-6 256 3900 - 95.20 130 10.50 1365.55 0.001

[15] Virtex-6 256 6300 - 166.00 132 6.02 795.18 0.001

SR: Slice Registers f: Frequency CC: Clock Cycle TP: Throughput

GOPS: Giga Operation per Second ns: Nano Seconds

I. San, N. At [12] presented the design concept of the Karatsuba algorithm to dividing

the operand into two chunks and use in the Montgomery modular multiplication algorithm

with higher radix. Architecture uses the dedicated blocks of the multiplier. The drawback of

this architecture is increasing the space of the hardware. X. Yan [13] put up the design

concept of the Karatsuba algorithm divided into 4 levels use in Montgomery modular

multiplier. Using the splitting method operand is divided into two parts. The divided part

47

again divided into two other parts in the reappearance style until the divided parts are length

matches with the DSP blocks of an FPGA. Utilized the LUTs on FPGA rather than the

dedicated multipliers. They utilized same number of clock cycle as in our purposed

architecture. The results is better in terms of time. Our purposed architecture is better in term

of utilization of hardware resources and time delay.

Figure 4-4 Performance Comparison

We also discussed the result of Montgomery modular multiplier with bit-wise

implementation. In modern FPGA dedicated multipliers are not used in

bitwise implementations, it uses only standard FPGA. The utilization of dedicated multipliers

on FPGA is faster than the standard design-based FPGA. The purposed architecture in [17]

consume the 256bit interleaved modular multiplier. In this architecture, they achieve 96MHz

frequency.

The results of our purposed architecture are 4 time better in terms of time for

Montgomery modular multiplier and throughput. K. Javeed [14] presented the design

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Purposed Purposed [6] [7] [10] [11] [13] [14] [15]

Performance Comparison

Throughput x 10^5 Frequency x 10 LUT x10^3

48

concept of LUT used on the hardware implementation rather than the FPGA dedicated

multipliers. Radix-4 based on modular multiplier with the serial interleaved. In table 10,

shown that our purposed architecture is 4 time better comparatively to design of K.

Javeed [15] who presented the similar design concept of parallel interleaved modular

multiplier implementation of hardware architecture. According to the architecture,

an operand is working on four parallel processing elements to complete the dedicated task

according to the algorithm. The results of our purposed architecture are 2.5 time better in

terms of time period and throughput.

49

CHAPTER 5.

Conclusions

In the hardware implementation of public key cryptographic algorithms, Montgomery

Modular Multiplier pay a vital role. This thesis provides a full-word implementation of

Montgomery Modular multiplication which enhance the execution speed of Elliptic-curve

cryptography (ECC) and RSA cryptographic algorithms on hardware. We have utilized the

Karatsuba–Ofman and school-book algorithm to calculate the 64-1024 Bits.

Multiplications are done by using Xilinx FPGA devices. In this work we exploit the

efficiency of Karatsuba-ofman (KA) and School-book (SB) algorithm to deploy a 1024-bit

Montgomery modular multiplier architecture. We implement the Karatsuba–Ofman (KA)

and Schook-book (SB) techniques to divide the operands on different size according to Xilinx

FPGA devices. The proposed design is evaluated on computational time, area consumption,

throughput and it will significantly surpass the state of the art.

50

REFERENCES

[1] A. Mondal, S. Ghosh, A. Das, D. R. Chowdhury, Efficient FPGA implementation of

Montgomery multiplier using dsp blocks, in: Progress in VLSI Design and Test, Springer,

2012, pp. 370-372.

[2] R. Brinci, W. Khmiri, M. Mbarek, A. B. Raba^a, A. Bouallegue, F. Chekir, Efficient

multiplier for pairings over barreto-naehrig curves on virtex-6 FPGA, IACR Cryptology

EPrint Archive 2013 (2013) 5.

[3] S.-R. Kuang, K.-Y. Wu, R.-Y. Lu, Low-cost high-performance vlsi architecture for

montgomery modular multiplication, IEEE Transactions on Very Large-Scale Integration

(VLSI) Systems 24 (2) (2016) 434-443.

[4] A. Rezai, P. Keshavarzi, High-throughput modular multiplication and exponentiation

algorithms using multibit-scan-multibit-shift technique, IEEE Transactions on Very Large

Scale Integration (VLSI) Systems 23 (9) (2015) 1710-1719.

[5] K. Javeed, X. Wang, Efficient Montgomery multiplier for pairing and elliptic curve-based

cryptography, in: Communication Systems, Networks & Digital Signal Processing

(CSNDSP), 2014 9th International Symposium on, IEEE, 2014, pp. 255-260

[6] Y. Yang, C. Wu, Z. Li, J. Yang, Efficient FPGA implementation of modular

multiplication based on Montgomery algorithm, Microprocessors and Microsystems 47

(2016) 209-215.

51

[7] C. J. McIvor, M. McLoone, J. V. McCanny, Hardware elliptic curve cryptographic

processor over rmgf (p), IEEE Transactions on Circuits and Systems I: Regular Papers 53 (9)

(2006) 1946-1957.

[8] M. Morales-Sandoval, A. Diaz-Perez, Scalable gf (p) Montgomery multiplier based on a

digit-digit computation approach, IET Computers & Digital Techniques 10 (3) (2016) 102-

109

[9] Y. Gong, S. Li, High-throughput FPGA implementation of 256-bit Montgomery modular

multiplier, in: Education Technology and Computer Science (ETCS), 2010 Second

International Workshop on, Vol. 3, IEEE, 2010, pp. 173-176.

[10] S. Ghosh, I. Verbauwhede, D. Roychowdhury, and Core based architecture to speed up

optimal ate pairing on FPGA platform, in: International Conference on Pairing-Based

Cryptography,

Springer, 2012, pp. 141-159.

[11] G. C. Chow, K. Eguro, W. Luk, P. Leong, A karatsuba-based Montgomery multiplier,

in: Field Programmable Logic and Applications (FPL), 2010 International Conference on,

IEEE, 2010, pp. 434-437.

[12] I. San, N. At, Improving the computational efficiency of modular operations for

embedded systems, Journal of Systems Architecture 60 (5) (2014) 440-451.

[13] X. Yan, G. Wu, D. Wu, F. Zheng, X. Xie, An implementation of Montgomery modular

multiplication on FPGA in: Information Science and Cloud Computing (ISCC), 2013

International Conference on, IEEE, 2013, pp. 32-38.

52

[14] K. Javeed, X. Wang, M. Scott, High performance hardware support for elliptic curve

cryptography over general prime field, Microprocessors and Microsystems 51 (2017) 331-

342.

[15] K. Javeed, X. Wang, Low latency exible FPGA implementation of point multiplication

on elliptic curves over gf (p), International Journal of Circuit Theory and Applications 45 (2)

(2017) 214-228.

[16] S. B. Ors, L. Batina, B. Preneel, J. Vandewalle, Hardware implementation of an elliptic

curve processor over gf (p), in: Application-Speci c Systems, Architectures, and Processors,

2003. Proceedings. IEEE International Conference on, IEEE, 2003, pp. 433-443.

[17] K. Javeed, X. Wang, M. Scott, Serial and parallel interleaved modular multipliers on

FPGA platform, in: Field Programmable Logic and Applications (FPL), 2015 25th

International Conference on, IEEE, 2015, pp. 1-4.

 [18] Francisco Rodriguez, N.A. Saquib et al, "Cryptographic Algorithms on Reconfigurable

Hardware", Springer, 2006. pp 105-108

[19] E.F. Brickell, "A Fast-Modular Multiplication Algorithm with Application to Two key

Cryptography," in Advances in Cryptology, Proceedings of Crypto 86, pages 51-60

[20] P.L. Montgomery, "Modular Multiplication without Trial Division," Mathematics of

Computation, Vol. 44, 1985, pp 519-521.

[21] K. Posch and R. Posch, “Modulo Reduction in Residue Number Systems,” IEEE Trans.

Parallel and Distributed Systems, Vol. 6, No. 5, pp. 449-454, 1995.

53

[22] C. McIvor, M. McLoone, and J. V. McCanny, “High-radix systolic modular

multiplication on reconfigurable hardware,” in Proc. IEEE International Conference on

Field-Programmable Technology 2005 (ICFPT’05), Dec. 2005, pp. 13–18.

[23] Elbert, A.J., and Paar, C. "Towards an FPGA Architecture Optimized for Public-Key

Algorithms’. Presented at the SPIE Symposium on Voice, Video and Communications, Sept.

1999

[24] Miaoqing Huang, Kris Gaj, Tarek El-Ghazawi, "New Hardware Architectures for

Montgomery Modular Multiplication Algorithm," in IEEE Transactions on Computers,

Vol.60, Issue 7, July 2011.

[25] Miroslav Knezevic, Frederik Vercauteren, Ingrid Verbauwhede, "Faster Interleaved

Modular Multiplication Based on Barrett and Montgomery Reduction Methods "IEEE

Transactions On Computers, Vol. 59, No. 12, December 2010.

[26] Buminov V. Schimmler, Manfred "Area and time efficient modular multiplication of

large integers," Proceedings of IEEE International Conference on Application-Specific

Systems, Architectures, and Processors, 24-26 June 2003.

[27] V. Buminov M. Schmimmer, “Area-Time Optimal Modular Multiplication,” Embedded

Cryptographic Hardware: Methodologies and Architectures, 2004, ISBN 1594540128.

[28] P. L. Montgomery, Modular multiplication without trial division, Mathematics of

computation 44 (170) (1985) 519-521.

[29] A. Karatsuba, Y. Ofman, Multiplication of many-digital numbers by automatic

computers, in: Doklady Akad. Nauk SSSR,Vol. 145, 1962, p. 85

54

[30] P.M. Kogge and H.S. Stone, "A Parallel Algorithm for the Efficient Solution of a

General Class of Recurrence Equations," IEEE Transactions on Computers, Vol. 22, No. 8,

pp. 786-792, August 1973.

[31] Neil H.E. Weste, David Money Harris," CMOS VLSI Design: A Circuits and Systems

Perspective, “Fourth Edition, Addison Wesley

[32]. K V Gowreesrinivas, P Samundiswary, “Comparative Study of Performance of Single

Precision Floating Point Multiplier Using Vedic Multiplier and different types of Adders”

Proceedings of International Conference on Control, Instrumentation, Communication and

Computational Technologies, Kanyakumari, Tamilnadu, pp.558-563, Dec 2016.

[33]. N Jitendra Babu, Rajkumar Sarma, “A Novel Low Power and High Speed Multiply

Accumulate (MAC) unit Design for Floating-Point Numbers,” Proceedings of International

Conference on Smart Technologies and Management for Computing Communication,

Controls, Energy and Materials, Chennai, pp.411-411, May 2015.

[34]. Darjn Esposito, Davide De Caro,”Variable Latency Speculative Parallel Prefix Adders

for Unsigned and Signed Operands”, IEEE Transactions On Circuits And Systems-I,Vol. 63,

NO. 8, Aug 2016

[35]. Giorgos Dimitrakopoulos, Dimitris Nikolos, “High-Speed Parallel Prefix VLSI Ling

Adders”, IEEE TRANSACTIONS ON COMPUTERS, VOL.54, NO.2, FEB 2005

[36] W. Diffie, M.E. Hellman, New directions in cryptography, IEEE Trans. Inf. Theory 22

(6) (2006) 644–654.

55

[37] R.L. Rivest, A. Shamir, L.M. Adleman, A method for obtaining digital signatures and

public-key cryptosystems, Commun. ACM 21 (2) (1978) 120–126.

[38] N. Koblitz, Elliptic curve cryptosystems, Math. Comput. 48 (177) (1987) 203–209.

[39] V.S. Miller, Use of elliptic curves in cryptography, in: H.C. Williams (Ed.), Advances

in Cryptology - CRYPTO ’85 proceedings, 218 Springer-Verlag, 1986, pp. 417–426.

[40] P.L. Montgomery, Modular multiplication without trial division, Math. Comput. 44

(170) (1985) 519–521.

[41] A. Mondal, S. Ghosh, A. Das, D. R. Chowdhury, Efficient fpga implementation of

montgomery multiplier using dsp blocks, in: Progress in VLSI Design and Test, Springer,

2012, pp. 370-372.

