
i 

 

A DEEP LEARNING APPROACH FOR COW UDDER DETECTION 

 

 

 

 

 

ARIF ZAMAN 

01-242172-008 

 

 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

MS (Computer Engineering) 

 

 

 

DEPARTMENT OF COMPUTER ENGINEERING 

 

BAHRIA UNIVERSITY ISLAMABAD 

 

FEBRUARY 2020  



i 

 

THESIS COMPLETION CERTIFICATE 

Student's Name: ARIF ZAMAN  Registration No. 53357    Programme of Study: MS-CE 

Thesis Title: A DEEP LEARNING APPROACH FOR COW UDDER DETECTION 

It is to certify that the above student's thesis has been completed to my satisfaction and, 

to my belief, its standard is appropriate for submission for Evaluation. I have also 

conducted plagiarism test of this thesis using HEC prescribed software and found 

similarity index at 9% that is within the permissible limit set by the HEC for the 

MS/MPhil degree thesis. I have also found the thesis in a format recognized by the BU 

for the MS/MPhil thesis.  

 

 

 

Principal Supervisor’s Signature: _________________________  

 

Date:_________________________                                          Name: Dr. Khalid Javed 

 

 

 

 

 

 

 

 

 



ii 

 

APPROVAL FOR EXAMINATION 

Scholar's Name:  ARIF ZAMAN    Registration No. 53357   Programme of Study: MS 

(CE) ThesisTitle: A DEEP LEARNING APPROACH FOR COW UDDER 

DETECTION. 

It is to certify that the above scholar's thesis has been completed to my satisfaction and, 

to my belief, its standard is appropriate for submission for examination. I have also 

conducted plagiarism test of this thesis using HEC prescribed software and found 

similarity index 9% that is within the permissible limit set by the HEC for the MS degree 

thesis. I have also found the thesis in a format recognized by the BU for the MS thesis.  

 

Principal Supervisor’s Signature   ________________________________ 

Date: ________________________ 

Name: _______________________ 

 

 

 

 

 

 

 

 

 



iii 

 

DECLARATION 

I, ARIF ZAMAN hereby state that my MS thesis titled A DEEP LEARNING 

APPROACH FOR COW UDDER DETECTION   is my own work and has not been 

submitted previously by me for taking any degree from this university BAHRIA 

UNIVERSITY ISLAMABAD or anywhere else in the country/world.  

At any time if my statement is found to be incorrect even after my graduation, the 

University has the right to withdraw/cancel my MS degree.  

 

 

 

 

Name of scholar: ARIF ZAMAN  

Date:        07 FEBRUARY 2020 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

PLAGIARISM UNDERTAKING 

I, solemnly declare that research work presented in the thesis titled “A DEEP 

LEARNING APPROACH FOR COW UDDER DETECTION” is solely my research 

work with no significant contribution from any other person. Small contribution / help 

wherever taken has been duly acknowledged and that complete thesis has been written 

by me.  

I understand the zero tolerance policy of the HEC and Bahria University towards 

plagiarism. Therefore I as an Author of the above titled thesis declare that no portion of 

my thesis has been plagiarized and any material used as reference is properly referred / 

cited.  

I undertake that if I am found guilty of any formal plagiarism in the above titled thesis 

even after award of MS degree, the university reserves the right to withdraw / revoke my 

MS degree and that HEC and the University has the right to publish my name on the HEC 

/ University website on which names of scholars are placed who submitted plagiarized 

thesis.  

 

 

Scholar / Author’s Sign: ___________  

Name of the Scholar:  ARIF ZAMAN 

 

 

 

 

 

 

 



v 

 

 

 

 

 

 

DEDICATION 

 

 

 

 

In memory of my father 

To my beloved mother with love and eternal appreciation 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

ACKNOWLEDGEMENT 

In preparing this thesis, I was in contact with many people, researchers, 

academicians, and practitioners. They have contributed towards my understanding and 

thoughts. In particular, I wish to express my sincere appreciation to my thesis supervisor, 

Professor Dr. Shujjat Khan, for encouragement, guidance, critics and friendship. I am 

also very thankful to my principal supervisor Professor Dr. Khalid Javed. Without their 

continued support and interest, this thesis would not have been the same as presented 

here. 

My fellow postgraduate students should also be recognized for their support. My 

sincere appreciation also extends to all my colleagues and others who have provided 

assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it 

is not possible to list all of them in this limited space. I am grateful to all my family 

members. 

 

 

 

  



vii 

 

ABSTRACT 

Image recognition with deep learning focuses on identifying one or more specific 

objects, class or feature in a specified image or video frame. Deep learning has received 

a lot of attention recently and is yielding unprecedented results. Image recognition is used 

in different applications, such as Medical diagnosis, Automatic inspection of 

manufacturing products and tasks like pedestrian detection. In the dairy industry, teat 

spraying is essential in order to prevent the spread of diseases like mastitis. However, the 

current automatic teat spraying/cup attachment methods have a lot of issues. For example, 

teat location coordinates are assumed to be fixed and are pre-stored while in reality, it is 

more likely that the cow might be more mobile, hence it is a flawed approach. Secondly, 

IR based systems are inconsistent due to the light absorption property of IR which has no 

guidance for exact detection.  To address this problem, it is required to attach the cup or 

spray the teats only when the udder is detected. This thesis makes use of deep learning 

for the detection of cow udder which can be of great importance in the dairy industry 

which is currently relying on conventional methods that are inefficient and inconsistent. 

Though Deep Convolutional Neural Network is the most advanced technique for image 

recognition but it demands a great deal of training time and computational power.  

Focusing on the problem of image recognition with limited time for training and restricted 

computing power in mind, a technique called “Transfer Learning” is used in this thesis. 

This technique makes use of the pre-trained model in order to accelerate the process of 

learning. Trainable parameters from Xception Deep Convolution Neural Network 

(DCNN) model were transferred for identifying cow udder. The model training was done 

in three stages; the data collection or dataset building stage which includes acquiring cow 

udder images and manual segmentation then training stage and finally the 

validation/testing phase. The model is trained on our custom made cow udder dataset. 

With overall miou_1.0 of 0.88. The model was successful in accurately detecting udder. 

 



viii 

 

TABLE OF CONTENT 

CHAPTER    TITLE                 PAGE 

DECLARATION III 

          PLAGIARISM UNDERTAKING          IV 

DEDICATION V 

ACKNOWLEDGEMENT VI 

ABSTRACT VII 

TABLE OF CONTENT VIII 

LIST OF FIGURES X 

LIST OF TABLES XII 

LIST OF ABBREVATIONS XIII 

1 INTRODUCTION 1 

1.1 Overview 1 

1.2 Problem Statement 1 

1.3 Objective 2 

1.4 Methodology 2 

1.5 Structure of the report 3 

2 BACKGROUND 4 

2.1 Deep Learning 5 

2.2 Artificial Neural Network 5 

2.3 Convolutional Neural Network 7 

2.3.1 Convolution Layer 7 

2.3.2 Non-Linear Layer 8 

2.3.3 Pooling Layer 9 

2.3.4 Fully Connected Layer 9 

2.4 Transfer Learning 9 

2.5 Image Segmentation 9 

3 LITERATURE REVIEW 10 

3.1 Deeplab V3 11 

3.1.1 Artrous Convolution 12 

3.1.2 Artrous Spatial Pyramid Pooling (ASPP) 13 



ix 

 

3.1.3 Decoder Module 14 

3.2 DeepLab Networks Backbones 14 

3.2.1 Xception 15 

3.2.2 MobileNet V2 16 

3.2.3 Inception v3 17 

3.2.4 ResNet 18 

4 IMPLEMENTATION 20 

4.1 Preparing Dataset 20 

4.2 Annotation 20 

4.3 Tools 21 

4.3.1 LabelMe 21 

4.3.2 TensorFlow 22 

4.3.3 Google Colaboratory 23 

4.4 Model Building 25 

4.5 Implementation 26 

4.5.1 Xception 65 Retraining and Evaluation 26 

5 RESULTS 31 

6 DISCUSSION 35 

6.1 Model Comparison 35 

6.2 Conclusion 37 

6.3 Future Work 38 

REFERENCES 39 

APPENDICES 42 

 

    

 

 

 

 

 

 



x 

 

LIST OF FIGURES  

FIGURE NO.      TITLE                PAGE 

2.1                 Structure of single neuron of a neural model 5 

2.2                  Multi-layer perceptron 6 

2.3                 Kernel calculation in the convolution layer[11] 8 

3.1                 Artrous convolution with 3x3 filter [41] 13 

3.2                 Schematic of deeplab v3+ aspp module[41] 13 

3.3                 Decoder deeplab v3+[41] 14 

3.4                  Xception 65 architecture used in deeplab v3[48] 16 

3.5                 Mobilenet v2 architecture[50] 17 

3.6                  Inception module[52] 18 

3.7                  Resnet architecture with 50 and 101 layers[53] 19 

4.1                  Ground truth images along with annotations. 21 

4.2                   User interface of labelme 22 

4.3                  Google colaboratory running in google chrome 24 

4.4                  Installation of required libraries for model training 26 

4.5                  Setting up working directories 27 

4.6                 Training parameters of the model 27 

4.7                  Training related log 28 

4.8                  Evaluating the trained model 29 

4.9                 Output accuracy of the model 29 



xi 

 

4.10               Visualization result of trained model over unseen data, images in upper  

row are from eval set while images in second row show prediction of 

model. 30 

5.1                 Total training loss function 32 

5.2                 Accuracy of udder class 33 

5.3                 Accuracy of background class 33 

5.4                 Accuracy of the model over 5000 iterations 34 

6.1                 Accuracy vs computational power[55] 36 

6.2                 Accuracy comparison xception and inception[52] 37 

6.3                  Performance comparison of models steps/sec and accuracy 37 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

LIST OF TABLES 

TABLE NO.    TITLE                 PAGE 

4.1              Hardware specification of google colaboratory 24 

5.1              Output accuracy of the model 31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 

 

LIST OF ABBREVATIONS 

ANN   ARTIFICIAL NEURAL NETWORK 

CNN   CONVOLUTIONAL NEURAL NETWORK 

DCNN   DEEP CONVOLUTIONAL NEURAL NETWORK 

RNN   RECURRENT NEURAL NETWORK 

GPU     GRAPHICS PROCESSING UNIT 

CRF   CONDITIONAL RANDOM FIELD 

SPP   SPATIAL PYRAMID POOLING 

ASPP   ARTROUS SPATIAL PYRAMID POOLING 

ReLU   RECTIFIER LINEAR UNIT 

TPU   TENSOR PROCESSING UNIT 

MIOU   MEAN INTERSECTION OVER UNION 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

CHAPTER 1 

1 INTRODUCTION 

This chapter presents the problem statement, objective and structure of the thesis. 

1.1 Overview 

Machines are becoming intelligent with time as humans have always tried to bring 

computers up to the mark of human efficiency. In order to behave like humans, computers 

need to understand language, memorize, learn and deduct. All of this is achieved under 

the realm of artificial intelligence[1, 2]. With the advancement in computer technology, 

artificial intelligence has become one of the leading branch of computer studies due to its 

exceptional results in terms of performance and efficiency in variety of fields. 

Deep learning is a subset of machine learning. It uses multi-dimensional non-linear 

structure for analyzing data[2, 3]. Deep learning makes use of hidden patterns from the 

training set with the aim of processing it like a human. Number of deep learning 

architectures are available like deep neural network, deep belief network and deep 

convolution neural network for ranges of tasks like speech recognition, bioinformatics 

processing, computer visualization and natural language processing, all of which are 

progressing exceptionally well [4, 5].  

Deep learning for image recognition is also made to work as a human, starting from 

observation, gaining information from the observation and presenting it in intensity value, 

region or a specific shape. Models are created from large scale data in an attempt to make 

accurate representation[6]. 

1.2 Problem Statement  

In mechanized dairy farms, inefficient cow teat cupping and spraying is one of the 

main problem. Current attachment/spraying systems have severe limitations in udder 



2 

 

detection consistency because these approaches employ conventional sensor or rigid 

methods. These detection methods for udder requires a controlled environment and can 

be disturbed by slight movement or minor object in front of them. Furthermore these 

detection methods do not perform well with changing light, cow tones, udder shape and 

position of the cow. Deep learning in the recent past has improved greatly and has 

achieved high accuracy in image recognition tasks. The dairy industry can benefit from 

the advancing deep learning technology by having a generalized system that can adapt to 

ambient conditions. 

1.3 Objective 

The main goal of this thesis was to segment the cow udder using deep learning 

technique. The main objectives of this research work are as follow. 

 Training a deep learning model for reliable udder detection, in order to improve 

the current teat spraying/cup attachment system in the dairy industry. 

 To find and make the udder dataset which can be used in future too. 

 Building a model which in future can be employed for udder anomaly detection.  

1.4 Methodology 

The research work focuses on detecting cow udder using technique of “Transfer 

Learning”. For better use of the technique, a range of pre-trained models were studied. 

Along with it, research specific dataset was compiled by collecting images from different 

dairy farms and some taken from online sources such as Google database; because of its 

global access. The acquired images were then carefully labeled using computer software 

“Lableme”. The dataset was split into two sets i-e training and testing/evaluation. The 

training set contains 90% of the images while 10% goes to testing/evaluation set. For fair 

comparison and to reduce overfitting of the model the testing/evaluation images were not 

presented during training. The process was concluded in four major steps. Starting from 

acquiring images for the dataset, then the images were labeled properly, in the next step 

pre-trained model was selected and was trained on our custom dataset and finally, the 



3 

 

model was tested/evaluated on test data. Further details are discussed in later sections of 

this thesis. 

1.5 Structure of the report 

The thesis is presented in five chapters. It opens with the first chapter titled 

“Introduction”, followed by a chapter titled “Background” which consults existing 

research to inform and describe the concepts and terminologies which are later used in 

this thesis. The “Literature review” chapter includes different relevant researches along 

with the critique of different existing models.  It is followed by the “Implementation” 

chapter, which discusses the relevant methods and enlists detail of all the experiment 

related steps for the proposed solution, then the “Results” and finally the “Discussion” 

chapter presents comments and analysis of the proposed method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

CHAPTER 2 

2 BACKGROUND 

For almost a century there has been a practice of automating the dairy industry to 

decrease the labor cost. There has been considerable advancement in the automation of 

the dairy industry and number of tasks has been automated. The process of milking in 

dairy farms is repetitive and will benefit significantly from automation. Several automatic 

milking systems have been developed with the aim of reducing the labor cost. However, 

the development of a system for automation of the milking process which includes cup 

attachment has posed some technical considerations. Accurately positioning the robotic 

arms have some major problems, like tail may come in way of the arm, cow may be in a 

different position, or teat of cow may not be in the exact same position. The said problems 

have been looked into for many years and different systems has been developed for it, 

like an automatic cup attachment system invented by Notsuki and Ueno[7] which requires 

position of individual cow teat to be stored in the memory of the system, the said system 

also requires the cow to be always in the same position. One similar system invented by 

Akerman [8] uses sensors that require physically approaching and touching the teat for 

identification with no information about cow positioning. An infrared-based system also 

exists for detection of the teat, as the temperature difference in cow udder and teat is 

slightly different though not different enough for reliable detection, however, the 

temperature gradient was used by adjusting the sensor to the different temperature 

gradient and creating different level of sensitivity so that the teat can be detected. All the 

detection systems in current commercial automatic milking market uses laser systems, in 

which the camera is used for detection of the location of laser stripe. To triangulate the 

position of the teat stripe in the camera, image is coupled with relative distance between 

camera and laser’s incidence angle[9]. The laser-based system fails with even a small 

obstacle in front of it.  Deep Neural Network is said to be the most disruptive class of 

technology in the next decade, however, the technology still waits to be in use for 

commercial purposes in the dairy industry. Machine vision is of great importance in 

automation, as the technology has seen tremendous improvement in the recent past. 



5 

 

2.1 Deep Learning 

Machine learning has always been limited in processing natural data in its original 

form. It requires careful engineering to transform raw data into suitable feature vector, 

from which classifier can classify patterns[10]. The solution to this problem is deep 

learning which allows building complex non-linear functions whose weights can be 

changed during training for learning a specific task. These features are part of the learning 

process and are organized in a hierarchy. Each layer’s output is input for its successor 

layer. The model becomes deeper as the number of layers increases hence called deep 

learning. Deep learning is evolving with a fast pace as new architectures are regularly 

designed[11]. These architectures includes the standard architecture which is the fully 

connected multi-layer network, the Recurrent Neural Network (RNN) and Convolution 

Neural Network (CNN) which are further discussed in section 2.3. Deep learning can 

either be supervised or unsupervised.  The dataset used in this thesis was labeled data 

with no preprocessing hence making it supervised learning. 

2.2 Artificial Neural Network  

The construction of Artificial Neural Network (ANN) was inspired by the human 

brain. ANNs are made up of neurons, which just like human nerve cells are connected to 

each other[6]. ANNs comprises of nodes which have weighted inputs and outputs along 

with activation function. The basic structure of neuron can be seen in figure 2.1 

 

Figure 2.1 Structure of single Neuron of a Neural Model 

As given in the figure the output of the neural model is function of input xi and weight 

wi. The output is computed as follow: 



6 

 

Output = f(∑ (𝑤𝑖𝑥𝑖 + 𝑏)3
𝑖=0 )                  (2.1.1) 

Every input value is weighted, multiplied by corresponding weight along with the 

addition of bias b and is then passed through an activation function. 

A neural network is a combination of large number of such neurons with number 

of layers. Each layer in a neural network is connected to the one following it which means 

the output of each layer becomes the input for the upcoming layer. Figure 2.2 shows a 

simple feed-forward neural network known as multi-layer perception[12]. 

 

Figure 2.2 Multi-Layer Perceptron 

As obvious in figure 2.2, neurons are grouped in each layer and every layer is 

connected to its subsequent layer. Each layer has its own bias parameter used for 

computing output of the given neuron. The layer to the very left is called the input layer, 

the one in the middle is known as the hidden layer, whose value cannot be seen during 

the training process, while the layer to the rightmost is known as output layer[13]. The 

correct size of the hidden layer is of great importance in the implementation of ANNs. If 

a proper amount of neurons are not determined in the hidden layer, the system may not 

be able to generalize the unseen instances. If too many nodes are used in the hidden layer 

it may cause over-fitting and the system may not find the desired output as discussed by 

Kon and Plaskota [14]. ANNs have a main advantage in processing data with high 

dimensional features like images but this comes with a cost, that is the requirement of 

high processing power and its complexity for an average user[15, 16]. 



7 

 

2.3 Convolutional Neural Network 

A Convolutional Neural Network (CNN) is a common deep neural network made 

of auto optimizing neurons that were first introduced in [17]. With the growth of the 

computational power of computers (use of GPUs) CNNs are well-spread. Compared to 

ANN, Convolutional neural network has a wide range of application in pattern 

recognition in images. As it encodes specific features of images into the network 

architecture, which makes it more suitable for image feature learning[18]. CNN consists 

of five basic elements; the input layer which holds the pixel value of the image, the 

Convolutional Layer calculates convolution of the input layer, the non-linear layer which 

applies non-linear transformation on previous layers output, the pooling layer reduces the 

number of parameter of activation by performing sampling operation and finally the fully 

connected layer show score of class from activations, which are used for 

classification[19]. Further explained below. 

2.3.1 Convolution Layer 

 Convolution is the front layer of CNN and it performs heavy calculation of the 

CNN operation[20]. As a convolution neural network extracts various features from the 

input, the convolution layer is assigned to extract low-level features from the image, like 

lines, corners and edges. One of the key feature of the convolution layer is the usage of 

kernel. Kernels are also known as filters or feature detectors. Generally kernels are of 

small spatial dimension but can spread along the whole input[21, 22]. The convolution 

layer convolves each filter to the overall input and generates a two-dimensional activation 

map.  Different activation map for every kernel is stacked along the depth. Therefore it 

is necessary to have same depth of input and filter[23, 24]. The basic operation of the 

kernel is visualized in Figure 2.3. The kernel glides through the entire vector after which 

the output generated which is the scalar product of every value inside the kernel. 



8 

 

 

Figure 2.3 Kernel Calculation in the Convolution layer[11] 

Commonly kernel operation starts from the top left of the image and keeps sliding 

around the whole pixels of the image and multiplies the value of the kernel with image 

pixel value which is then summed up. Every input part generates its own number. When 

a kernel is passed through all parts of the image, an output array is generated called the 

feature map. CNN compared to ANN reduces the complexity of the model using a kernel. 

Depth, stride and zero-padding need great consideration in designing the convolution 

layer. Depth corresponds to the number of kernels, by reducing depth we can reduce the 

number of neurons in the network which can degrade the performance of CNN. Stride 

corresponds to steps of the sliding kernel if set as 1 the kernel will move just one pixel at 

a time. By setting stride to higher value amount of overlapping area will be reduced. 

Filling zeros around the borders is called zero-padding, which gives us control over the 

spatial size of the output. All of these parameters can either increase or decrease the 

spatial dimensionality of output [25]. 

2.3.2 Non-Linear Layer 

In order to identify features from a hidden layer, a convolution neural network 

uses non-linear transformation. In ANN the non-linear transformation functions are 

hyperbolic tangent or sigmoid. In image processing, the greater the sparsity of data, the 

better the results. 



9 

 

2.3.3 Pooling Layer 

The pooling layer is used to reduce computational complexity, dimensionality and 

number of parameters. It also helps in making features strong against distortion. Two 

classic pooling functions are average pooling and max pooling. 

2.3.4 Fully Connected Layer 

Previous layers are repeated several times after which data comes to a fully 

connected layer. In fully connected layer neuron are connected to two adjacent layer’s 

neurons. Fully connected layer add up weights of features that come from earlier layer 

and show the probability of class[26]. 

2.4 Transfer Learning 

Transfer learning refers to storing gained knowledge while training a model for a 

specific task and use that stored knowledge for another task which can be similar. Some 

approaches use doing category adaptation which doesn’t need training for the new task, 

while some uses transfer learning for initialization which requires training for the new 

task. 

2.5 Image Segmentation 

Image segmentation is the process of assigning labels to each pixel in an image and 

partitioning it into multiple parts. Segmentation changes the representation of an image 

into something meaningful which can be easier to analyze. In this thesis, segmentation 

was used for labeling cow udder.  

 

 

 

 



10 

 

CHAPTER 3 

3 LITERATURE REVIEW 

Object recognition has always been a challenging task in computer vision, some of 

which are documented and can be traced back to the 1960s[27]. Initially, the constraint 

setting was included and main issues like light variation and clutter were ignored and 

only object under varying viewpoints was in focus. The first work on object 

categorization started in 1980 with a limited number of classes like digits and faces under 

a very controlled environment[28, 29]. Recently, the task of classification is focused on 

natural settings using a wider range of classes[30, 31]. This challenge has helped in the 

development of new advanced classifiers. A number of CNN based models are available 

currently which are performing exceptionally well in object recognition. Several pre-

trained models are available for segmentation and classification tasks which can be 

modified using transfer learning. These models are trained on larger datasets like 

ImageNet and Pascal VOC for a specific task [32]. These trained CNNs models with 

weightless binary checkpoints are commonly used as weight initializers for training the 

same model for another task. It has also been tested that using these pre-trained models 

can give great improvement in the classification task[33]. Deeplab provides different 

modern techniques for better segmentation with pre-trained models which are discussed 

in Section 3.1. Transfer learning has been used in a lot of research works for 

classification. This thesis has some similarities with  [34]. They used deep learning 

technique with transfer learning for artificially weaning of calves by deterring them from 

suckle, which requires to detect udder from a certain distance. The trained model is 

embedded into a device and mounted on collar of calves. The method they have used is 

bounding box detection, which although gives better accuracy when compared to 

segmentation models but the bounding box are mostly overconfident about area, which 

results in too small or too large mask. This makes the bounding box not suitable for the 

task that requires accurate segmentation with different shapes.  

A transfer learning technique being used for trees classification from images 

acquired from satellite [35]. Initially, images are segmented and pre-trained model VGG-



11 

 

16 was used to classify the subject. Result when compared with Random Forest shows 

that the VGG-16 network outperforms both Random Forest and Gradient Boosting with 

an accuracy of 92.13% [35]. D. Rathi et al. [36]describe a method to classify fish species. 

Using image pre-processing, noise is removed from the dataset and then DCNN is used 

for the classification task. Wang et al.[37] has used a pre-trained CNN model for action 

recognition task with a small training dataset and has achieved significant accuracy. 

YOLO model has been used in [38] for the detection of flame in the video segment and 

compared with other methods and accuracy of 76% is obtained. Some inspiration for this 

thesis comes from a machine learning approach explored by Warner, D., et al. for 

detection and monitoring of lameness in dairy herds, in which both decision tree based 

and machine learning approach are used, the machine learning approach has achieved 

better result comparatively[39]. Yang, A., et al. has used image analysis technique based 

on fully convolutional neural network for recognition of sow drinking, feeding, 

movement, activity and inactivity for facilitating farmer for improving livestock 

management[40]. 

3.1 Deeplab V3 

The architecture of DeepLab has different versions: version v1[41],v2[42],v3+[43], 

each of them on their release achieved state-of-art performance. DeepLab v1 and v2 

architecture are integrated with two main components: a Deep Convolution Neural 

Network (DCNN) for coarse pixel-wise prediction and for edge refinement fully 

connected Conditional Random Field (CRF) is used. For multiple scales, version 2 uses 

artrous spatial pyramid pooling ASPP module for effective segmentation. The CRF is 

excluded in version 3 and an improved ASPP module is added. The current v3+ version 

is an improvement over version v3 as a decoder module is added at the end of the network 

for refine localization particularly along the boundary of the object. For this research 

thesis, we have used the current version v3+ of Deeplab architecture. Three main 

problems in the application of DCNNs in semantic segmentation are addressed in 

DeepLab architecture: signal resolution reduction, spatial invariance and objects at 

multiple scales[44]. 

  The problem of signal resolution is resolved by applying atrous convolution also 

called dilated convolution. Zeros are added between active filter taps for upsampling the 



12 

 

filters, this helps in enlarging filters field of view and densely mapping computing feature 

without increasing computational cost or losing receptive. The problem of spatial 

invariance occurs due to the usage of DCNNs for semantic segmentation task. Correct 

prediction of the image-level label with spatial accuracy is not important in image-level 

classification but in sematic segmentation spatial accuracy is of great importance. This 

problem is addressed in DeepLab v3+ by using a decoder module at the very end of the 

network to restore local spatial information. Decoder module help in the recovery of 

accurate object boundary without post-processing. CRF was used for this function in 

previous versions of DeepLab[45]. Chen et al. show that the decoder module gives better 

performance than CRF at object boundaries[42]. The third issue is addressed by applying 

artrous spatial pyramid pooling (ASPP) with varied artrous rates of different fields of 

view and combining the result into one feature map. With solving these problems of 

DCNN, DeepLab v3+ has achieved a state of art performance over PASCAL VOC 2012 

dataset[43].  

3.1.1 Artrous Convolution 

Inspired by artrous algorithm for wavelet decomposition the artrous uses modified 

convolution operation[46]. In order to increase the receptive field of convolution filter 

without increasing model parameters, artrous convolution is used. Practically it adds 

zeros between active filters taps. Artrous rate parameter defines the number of zeros. 

Mathematically it can be expressed as follow. 

𝑌(𝑖) = ∑ 𝐹(𝑖 + 𝑘)𝐺(𝑘)𝑘                        (3.1.1) 

Y, F and G are two-dimensional value. While F represents the input signal, G is filter and 

Y is output value. An additional parameter: artrous rate r is introduced in artrous 

convolution as follows. 

             𝑌(𝑖) = ∑ 𝐹(𝑖 + 𝑟𝑘)𝐺(𝑘)𝑘                        (3.1.2) 

The factor r dilates the input signal F during convolution while G remains constant the 

make it easy to tune the artrous rate to calculate feature response at various scales. The 

concept can be seen in Figure 3.1. 



13 

 

 

Figure 3.1 Artrous Convolution with 3x3 filter [41] 

As shown above, the number of parameters are kept the same while the filter’s 

field of view increases with artrous rate. For capturing contextual information at different 

scales we need to constantly down-sample the signal, if artrous convolution is not used. 

Artrous convolution can be used for computing feature map densely without having to 

increase the cost of computation or model complexity. 

3.1.2 Artrous Spatial Pyramid Pooling (ASPP) 

In ASPP there is a parallel convolution of feature map with various artrous rates 

and the output features map from various branches are combined to from final output. He 

et al. [47]was first to implement SPP in CNN and ASPP is inspired from it. The ASPP 

module is positioned at the end of the last convolutional layer of the encoder. 

Convolutional feature map sampling is done using 3x3filter and changing the artrous rate. 

Figure 3.2 shows the ASPP module. 

 

Figure 3.2 Schematic of DeepLab V3+ ASPP Module[41] 



14 

 

The output feature map of DCNN becomes an input for ASPP and its structure is 

depended on the network backbone. For capturing multiscale context the feature map is 

sampled with changing artrous rate. There are 256 filters in each convolution branch of 

ASPP thus giving an output of 256. Concatenated outputs from all branches are passed 

through 1x1 convolutions with 256 filters. The output of ASPP modules goes to the 

decoder module. 

3.1.3 Decoder Module 

For tasks where accurate spatial information is needed like human pose 

calculation, semantic segmentation and object detection, Encoder-Decoder networks are 

proved successful[43]. Encoder module is used to encode input to smaller resolution 

feature vector with rich semantic information but most of the spatial information is lost. 

Encoder output can be used for classification. For semantic segmentation decoder module 

is used for recovering lost spatial information. The decoder module combines low-level 

rich semantic segmentation information along with accurate spatial information from the 

previous layer of the network. Decoder Structure is shown in Figure 3.3. 

 

Figure 3.3 Decoder DeepLab V3+[41] 

3.2 DeepLab Networks Backbones 

Deep comprises of different network backbones. Backbone here means DCNN 

block which is the most important part responsible for feature learning and representing 



15 

 

objects to be segmented. Different models like Xception, MobileNet v2, ResNet are 

discussed in detail in the upcoming section. Xception has numbers of variants like 41, 65 

and 71, ResNet has two variants 50 and 101; the number next to the model represents the 

depth of the network. 

3.2.1 Xception 

Xception has spatial correlation and cross channel in the CNN feature map which 

can be decoupled[48]. This is different from the common convolution method in which 

each filter learns both spatial correlation and cross-channel. The ideas came from the 

Inception architecture in which cross-channel and spatial correlation is partly 

decoupled[49]. In inception architecture, the input layer is convolved with various 

parallel filters. To reduce dimension convolution of 1x1 filter and each of the parallel 

branches is performed. Xception pushes this to an extreme as the name suggests “Extreme 

Inception” by complete decoupling of cross-channel and spatial correlation. Xception 

uses depth-wise separable convolution in which first spatial convolution is performed on 

every channel, followed by 1x1 convolution for capturing of cross-channel correlation. 

Inception has a better performance compared to inception in different classification tasks 

without the need to increase model parameters. Xception architecture contain 36 

layers[48]. The modified Xception architecture have more layers, max-pooling has been 

replaced with batch normalization and ReLU activation after 3x3 convolution. Modified 

Xception model architecture can be seen in Figure 3.4. For this thesis, the Xception 65 

model is used. 



16 

 

 

Figure 3.4 Xception 65 Architecture used in Deeplab V3[48] 

3.2.2 MobileNet V2 

Proposed by Sandler et al.[50] MobileNet v2 is deep neural network architecture 

with lightweight for mobile devices. Just like Xception, MobileNet v2 also uses depth-

wise separable convolution to minimize the computation cost without effecting accuracy. 

Depth wise separable convolution with k sized kernel reduces the computational cost by 

a factor of k2 when compared to standard convolution. There is an extension of two 

components in original architecture: linear bottleneck and inverted residual. In ResNets 

residual connection connects input and output of block, while to reduce channels 1x1 

bottleneck is used. However, in MobileNet v2 the intermediate layer is expanded by a 

factor known as expansion ration. The problem of traditional activation which discards 

information as negative values are set to zero is often tackled by the addition of more 

channels. In MobileNet v2 1x1 bottleneck is removed. Sandler et al.[50] Shows that linear 

activation improves the performance of the model. For fast interface and reduced 

accuracy Deeplab decoder and ASPP modules are dropped. Architecture can be seen in 

Figure 3.5 



17 

 

 

Figure 3.5 MobileNet v2 Architecture[50] 

3.2.3 Inception v3 

Inception v3 has 44 layers and learnable parameters of 21 million[51]. The 

inception module shown in Figure 3.6 is the main block for Inception, which works on 

the hypothesis that spatial correlation should be separately mapped from that of cross-

channel[49]. These correlations are simultaneously correlated by a regular convolution 

kernel. Using 1x1 filter the inception module first finds cross-channel correlations, higher 

numbers of input features are mapped to the lower number of output feature map. Then 

the spatial correlations of every output feature map are found using 5x5 and 3x3 

convolution kernels. The inception module uses a small 3x3 filter for spatial covering of 

smaller areas for accurate detail of the image, while the 5x5 filter is used for larger areas. 

Along with inception module Factorization of filters are used which uses two 3x3 

cascaded filter replacing 5x5 to reduce computational power, as both of them have the 

same output result[51]. Using batch normalization data is whitened and the response for 

all the neural map is made in the same range with zero mean value. This allows the use 

of a high learning rate with faster speed by minimization of regularization requirements. 



18 

 

 

Figure 3.6 Inception Module[52] 

3.2.4 ResNet 

To solve the problem DNNs training ResNet was created. Though, it was 

acknowledged that depth was important in the performance of the model however earlier 

deep network had 16 to 30 layers. Simply adding more layers doesn’t solve the problem 

as it degrades gradient to a small number when it backpropagation through the network. 

Different normalization schemes were introduced to address this problem. Along with 

degraded gradient performance also decreases when layers are increased. By effectively 

deactivating layers with the help of simple mapping by keeping the input same, denser 

model can perform better compared to shallow models. He et al.[53] Added direct 

connection around the convolution layer which made it easier to execute identity 

mapping. The residual network implemented in DeepLab v3+ has 50 and 101 layers, 

which can be seen in Figure 3.6. 



19 

 

 

Figure 3.7 ResNet Architecture with 50 and 101 layers[53] 

 

 

 

 

 

 

 

 

 



20 

 

CHAPTER 4 

4 IMPLEMENTATION 

4.1 Preparing Dataset 

Data is of key importance in machine learning. In order to get a proper dataset for 

this research work all public datasets were checked, no such dataset was publically 

available for this task. Further different research groups were also contacted in order to 

get the required data if available. Data used in this research work is a custom made dataset 

with raw images of cows in natural ambient conditions. Data acquisition was the most 

laborious part of this research work due to the unavailability of already acquired images, 

access to the dairy farm and lack of data acquisition system. After image acquisition, each 

sample of udder had to be manually labeled. The ground truth annotation process is 

presented below. 

4.2 Annotation 

Manual annotation of images is a tedious and time-consuming task. There is no 

auto annotation tool that is accurate enough for this critical task. LabelMe Annotation 

tool was used for the annotation task of this research work. Although larger datasets are 

meant for large size and greater accuracy, but due to time constraint, we had limited 

ourselves to a sufficiently large dataset that can produce a better-segmenting model. In 

our dataset preparation, 600 images were selected and subjected to annotation. Figure 4.1 

shows dataset samples of ground truth overlaid annotations 



21 

 

 

Figure 4.1 Ground truth images along with annotations. 

Each image was labeled using polygon annotation by defining vertices. Based on 

visuals pixels belonging to udder were annotated. Each udder was labeled carefully so 

that no extra region is included to make it easy for the model to efficiently separated 

udder. Based on angle some udders are few pixels large while some are big enough and 

in some cases, the teats are not visibly separated in which case no gaps were left between 

the teats in polygon label. 

4.3 Tools 

Different tools both hardware and software used in this research work directly or 

indirectly, are discussed in this section. This section will also focus on the advantages of 

these tools and why were they chosen. 

4.3.1 LabelMe 

A graphical image annotation tool used in the annotation of data in this thesis, 

LabelMe is written in Python while for graphical interface Qt is used[54]. In order to 

annotate images in LabelMe, a single image or whole folder can be loaded. One dataset 

is loaded in it, a random image is displayed over screen. With the help of a mouse, the 

user can draw a polygon around the object, after closing the ends of a polygon a popup 

opens from where the user can select a label or create a new label. Once the annotation is 

complete the label is auto-saved to the same directory from where the file is loaded. The 

saved polygon label can also be deleted or changed later. Each class of label is displayed 



22 

 

with a different color which we can choose. The output label is saved in JSON format 

which can later be converted to the user’s desired format such as PASCAL VOC, which 

was used in this thesis. The python script for the conversion is free available on the 

LabelMe GitHub directory. This software was download and used on Ubuntu 18.04. The 

software interface of LabelMe is shown in Figure 4.2. 

 

Figure 4.2 User Interface of LabelMe 

4.3.2 TensorFlow 

Tensor Flow is a framework for deep learning developed by Google for internal 

use. Released in 2015 as open-source software for developing and training neural models 

and since then a lot of users are contributing to it. Tensor Flow is written in python, 

whereas data expression is in the form of a multi-dimensional array known as a tensor. 

Each node represents arithmetic operation, the distinct calculation is visualized as a 

dataflow graph. Computation can be deployed over multiple CPUs or GPUs due to its 

flexible architecture, this significantly increases the processing speed.  Apart from this 

TensorFlow offer a range of tools like graph visualization and tensor board. To interact 

with computational graphs TensorFlow uses sessions. The main purpose of the session is 

graph initialization for all variables as well as running the graph. Google being the highest 

investor in artificial intelligence has developed a new processing unit known as Tensor 



23 

 

processing unit or TPU, specially designed for machine learning tasks and it run 

flawlessly with TensorFlow. The TPU hardware is optimized for machine learning tasks. 

The second generation of TPU was released in 2017 with a better performance of two 

hundred teraflops.  TensorFlow GPU version 1.14 was used in this thesis for the creation 

of a new model using transfer learning from existing models. Further detail about model 

training is in later section of this chapter. 

4.3.3 Google Colaboratory 

Google Colaboratory or simply known as Google Collab is a project of Google 

created to spread machine learning. Collab is a Jupyter notebook except that it doesn’t 

require any setup and can be run on the cloud. It comes with support for major machine 

learning libraries with ease of use. It is entirely free to use with a session time of 12hrs. 

As discussed in the earlier section that Google had developed a new processing unit TPU 

for machine learning, it is free available on the Collab platform. Apart from this Collab 

also offer support of GPU for free with an aim to make it standard for machine learning. 

Figure 4.1 Show Google Colaboratory running in Google Chrome.  The main features 

that Collab offers are as follows. 

 Supports Python 2 & 3 

 Support for upload/create/download of the notebook. 

 Import from Github 

 Data access from Google Drive 

 Dataset can be imported from external sources like Kaggle 

 Libraries like Keras, TensorFlow, PyTorch and OpenCV 

 Free Cloud GPU service 



24 

 

 

Figure 4.3  Google Colaboratory running in Google Chrome 

The amount of available hardware resources varies over time on Google Collab, 

there is no way for self-selection of hardware. Google auto allot memory based on usage 

and computation the user is doing. The user if used more hardware resources recently are 

more likely to get lower resources temporarily, Moreover Collab also offers runtime over 

a local machine. Though the hardware resources vary on Google Collab, the available 

resources during the training of the model were as follows. 

Table 4.1 Hardware Specification of Google Colaboratory 

CPU Model  

CPU Clock 

Available  Disk Space 

Available Memory 

GPU Model 

GPU Memory  

Intel (R) Xeon (R)  

2.30 GHz 

 68Gb 

12GB 

Tesla T4  

15GB 

 



25 

 

4.4 Model Building 

Model in machine learning means training a machine learning algorithm on a 

dataset, which can then be applied on novel data to predict the output. There are certain 

steps to follow. First, we need to collect data, prepare the collected data, select a model, 

train the model, evaluate and then visualize the model. The first step which is data 

collection is of great importance in machine learning, as the success of the model depends 

mostly on data. For the purpose of this research, the required dataset wasn’t available as 

discussed in the Dataset section and was manually collected. The dataset consists of two 

classes including the background with a total number of 600 images. The data preparation 

stage was the most time consuming, as for this research work segmentation task was done 

manually. After properly segmenting the data, the dataset needs to be converted into a 

proper format which will be compatible with the selected model. The output format from 

the annotation software LabelMe was JSON file which was not the required format for 

the selected model and needed to be converted into PASCAL VOC format. Through 

public available python script on LabelMe GitHub directory the JSON format annotation 

was converted to PASCAL VOC format which consist of four main directories: JPEG 

Images which contain the raw images files or the dataset, SegmentationClass contain png 

label for each of the image, the third directory SegmentationClassRaw contain raw 

labeled images and the ImageSet directory contain three txt files train, val and trainval, 

each of these files contain list of names of images names. The train has the largest portion 

of images, train contain images from which the model learns, val contain images that the 

model use to evaluate itself and infer model accuracy. The val set contain images that are 

not presented to the model during the training phase and unknown data for the model. 

Now the next step is model selection. Based on studying various models for the required 

task, the model that best suits this task was Xception 65. Then comes the fourth step or 

the training step in which the prepared data was fed into the model for learning iteratively, 

different convolution filters are applied for identifying classes. During the process of 

training neural network optimizes its parameter after every epoch to reduce the loss in 

output. The prediction of the model at the start of training is poor, however, it learns over 

every epoch and gets better, however, the training must be stopped after a certain epoch 

in order to avoid bias. In the evaluation step, the model predicts the output on unknown 

data, if the output probability value is high this means the model has good accuracy. 

 



26 

 

4.5 Implementation  

The implementation of the project work particularly training the model, then 

evaluation and finally visualization of the model is discussed in this section. For this 

thesis method of transfer learning was used for model building. 

4.5.1 Xception 65 Retraining and Evaluation 

For retraining the Xception 65 which has been pre-trained on PASCAL VOC 

2012 dataset. First, we needed to install TensorFlow and clone the TensorFlow models 

GitHub directory on the machine. However for this thesis, Google Collab was used which 

comes with TensorFlow 2.0 pre-installed, but due to some issues of Deeplab with 

TensorFlow 2.0, we have used TensorFlow GPU 1.14. Figure 4.4 Show installation of 

Tensorflow and other required libraries on Google Collab along with cloning TensorFlow 

models GitHub directory.   

 

Figure 4.4 Installation of required libraries for model training 

As discussed in the earlier section the Google Collab session is allotted to a user 

for 12hrs of duration after which the virtual machine data is lost. To solve this problem 

and make the data persistent we mounted google drive onto Google Collab, the 

TensorFlow models directory was also cloned on Google drive so that the data and 

changes don’t vanish after the closing of the session. 

from google.colab import drive 

drive.mount('/content/drive') 

Listing 1: Command for mounting Google Drive in Google Collab. 

The dataset conversion step was discussed in Section 4.4. However, in order to 

make it work with the required model, the dataset was first converted into a TF Record 



27 

 

format. The Conversion script was available in Deeplab directory, simply running the 

required script converted the dataset into TF Record format. The whole dataset in the zip 

file was first uploaded to Google Drive and the extracted to the required location within 

Google Collab. In the next step, the working directories were set upped and directory 

models was added to the python environment, along with this the pre-trained checkpoint 

were copied locally into google drive. Figure 4.5 shows all of the above steps. 

 

Figure 4.5 Setting up working directories 

Now the training steps actually begins here, after changing the current directory to 

model/research/deeplab , train.py python script located in the said directory was executed 

with changed parameters. Figure 4.6 shows the detail code for training. 

 

Figure 4.6 Training parameters of the model 

In Figure 4.6 ${TF_INIT_CKPT} is the path where we have downloaded our pre-

trained checkpoint, which is PASCAL VOC training checkpoint, $TRAIN_LOGDIR is 

directory path where we want to write our training checkpoints and events while the 

${Udder} is directory path in which our dataset resides. The atrous rate and output strides 



28 

 

were discussed in earlier section. As the dataset was small, shallow fine-tuning was used, 

which means tuning only the last few layers, for this purpose we have disabled the fine-

tune batch normalization. The numbers of iteration were set to 5000. The learning rate 

for Adam optimizer was set to 0.001 with decay factor 0.1 for every 2000 steps. During 

each iteration, random 10 images are selected and sent to the last layer and results are 

compared with the correct label, and then compute the loss. The model then goes back to 

previous layers where weights are adjusted. This way the model improves its accuracy. 

After every few iterations, the output log was saved to the TRAIN_LOGDIR. Figure 4.7 

shows the training log and loss during training. 

 

Figure 4.7 Training related log 

Once the training was completed the model checkpoints were saved to the 

TRAIN_LOGDIR. 

The next step now was to evaluate our trained model. The Evaluation python 

script was also available in the DeepLab directory as eval.py. Figure 4.8 shows the 

running evaluation script along with the setting parameters. 



29 

 

 

Figure 4.8 Evaluating the trained model 

After training the model it was necessary to check the performance of the model 

over unseen data, in order to know how our model will perform over real-world data. 

Evaluation of model checks the accuracy of the model over unseen data or data which is 

not provided during training. Figure 4.9 shows the accuracy of the model in the form of 

mean intersection over union (miou). 

 

Figure 4.9 Output accuracy of the model 

The evaluation shows the accuracy of each class and overall. As we had two classes 

background and udder, mean intersection over union for both classes were calculated 

separately. Class_0 shows background miou_1.0 of 0.97 while that of the udder was 0.78 

and overall 0.88. In the final step, the model was visualized to see the result of the 

evaluation set and prediction made by the model. The result from visualization is shown 

in Figure 4.10. 

!python vis.py \ 

Listing 2: Command to run visualization script. 



30 

 

 

Figure 4.10 Visualization result of trained model over unseen data, images in upper 

row are from eval set while images in second row show prediction of model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

 

CHAPTER 5 

5 RESULTS 

This section discusses results in order to have an insight into how the model 

performed. The overall accuracy achieved by the model is given in Table 5.1. 

Table 5.1 Output accuracy of the model 

Class Accuracy 

Background 

Udder 

Overall 

97% 

78% 

88% 

  

Loss is one of the most important function in model performance. The loss 

actually interprets how well the model is performing. Loss is the summarization of error 

made for each iteration in training. The total training loss is shown in Figure 5.1 which 

shows how the loss decreased with the iterations starting very high to low (from 4.5 at 

first iteration to 0.2 at the end of the training). This number shows the model has 

converged well over the training data is expected to exhibit high accuracy. Reducing the 

loss is one of the main objectives in a learning model by changing the weights. The value 

of loss actually shows how good or bad the model is performing after each iteration. 

Generally, the loss reduces as the number of the iteration increases. The model is 

evaluated based on miou_1.0. MIoU refers to mean intersection over union which is the 

overlap area between the ground truth and predicted segmentation divided by area of 

union between them. Following is the equation for MIoU. 

MIoU =  
(Area of overlap )

(Area of union)
 



32 

 

The MIoU value ranges from 0-1 or 0-100%. 0 mean there is no overlap between 

the predicted and ground truth that is model is performing bad or is total garbage, while 

1 signifies perfection or shows that model is perfectly segmenting the data. When the 

number of classes are two or more than two the MIoU is calculated by taking average of 

MIoU of each class. 

 

 

Figure 5.1 Total Training loss function 

Accuracy of the model can only be determined once the model has learned. Once 

training is complete, test data is fed into the model to calculate its accuracy, which is then 

compared to the target value in the form of a percentage. Figure 5.2 Show accuracy of 

class_1 while the accuracy of BACKGROUND is shown in Figure 5.3. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Lo
ss

Epoch

Training Loss



33 

 

     

 

Figure 5.2 Accuracy of udder class 

 

Figure 5.3 Accuracy of background Class 

The overall accuracy of the model over both of the classes is shown in Figure 5.4. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
cc

u
ra

cy

Epoch

Accuracy Class_1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
cc

u
ra

cy

Epoch

Models Accuracy Class_0



34 

 

 

Figure 5.4 Accuracy of the model over 5000 iterations 

Once the model procedure was completed and the desired result was obtained, the saved 

checkpoint created at the end of the training was used to export the frozen inference 

graph, which will be our network for udder detection. 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
cu

rr
ac

y

epoch

Overall Accuracy



35 

 

CHAPTER 5 

6 DISCUSSION 

For this thesis several methods of auto image segmentation were studied, however, 

due to the complexity of the task it wasn’t possible through simple image processing 

methods and a proper deep learning approach was needed. Before finalizing the 

framework, several architectures were studied and finally Deeplab v3+ system was used 

for the process of segmentation and detecting the udder. The Xception model of DeepLab 

reached an overall good miou_1.0 of 0.88 for the segmentation task by successfully 

segmenting udder in the image. The accuracy for the validation sample was encouraging 

given that the dataset was manually annotated. From the given result of the model, it can 

be concluded that it provides proof of automated udder detection using deep learning. 

Data acquisition has been one of the most laborious and tedious parts of this research. 

All of the images were manually captured on different dairy farms in different operating 

conditions. The second most time-consuming part was the manual annotation of the data. 

Due to careful annotation and using appropriate learning model, such a small dataset has 

significantly contributed to generalize the results. The given model will further benefit if 

a larger dataset is used for classifying different classes of udders, individual teat, and 

other skin anomalies. In future an automated method for annotation of data can be used 

for speeding up the process of data generation. The system is dependent on DCNNs for 

the task of segmentation. As we have seen some major improvement in recent past and 

hopefully will continue to improve, which will directly be beneficial for segmentation 

tasks 

6.1 Model Comparison 

The pre-trained model’s performance has been evaluated on accuracy and 

computational complexity in[55]. The performance of the identified models is shown in 

Figure 6.1.In order to have suitable model for the selected task, a model that have 



36 

 

optimum accuracy and computation complexity is selected.[48] Shows that Xception 

have better accuracy with slight higher computational complexity. Different models of 

CNN like VGGnet, requires a large amount of computational power for evaluation. While 

the Xception which is successor of inception model was made for functioning under 

computational limitations. The Xception design uses three times less parameters when 

compared to VGGnet. While other lighter models like MobileNet lack accuracy when 

compared to Xception. This justifies the use of Xception model, when data need to be 

processed at relatively low computational cost and better accuracy[55]. 

 

Figure 6.1 Accuracy vs computational power[55] 

Varaich et.al [52] have made a comparison of Inception v3 and Xception on 

similar tasks with weight initialization, the result from which shows Xception is 

performing better in accuracy with similar model shown in figure. 

 



37 

 

 

Figure 6.2 Accuracy comparison Xception and Inception[52] 

 

Moreover in Kaggle leaderboard scores and raking also shows that Xception 

outperforms Inception v3 ResNet and VGG in term of accuracy which have almost the 

same computational complexities. 

 

Figure 6.3 Performance Comparison of models steps/sec and accuracy 

6.2 Conclusion  

The main focus of the research was to determine whether the problem of udder 

detection can be solved through deep learning or not. The model was successful in 

narrowing down the region of interest from the image i.e udder using deep learning 

technique. The outcomes of this research clearly demonstrate the feasibility of using a 

transfer learning model for accurate detection of cow udder in the dairy farm environment 

with an acceptable accuracy. With 88% accuracy the model detected udder successfully. 

There definitely is room for improvement, a larger dataset can lead to better training 

results. Without a doubt, the results obtained are almost close to human vision and can 

be used in an autonomous milking system for udder detection. Furthermore the dataset 

made can be used in other dairy farm related problems. 



38 

 

6.3 Future Work 

Automated udder detection is one of the primary constraints in smart dairy farming. 

The proposed research brings up the solution for detecting cow udder in ambient 

environments without adding any specialized lighting or any wearable sensors.  Accuracy 

of around 90% suffices most of the skin related researches yet it could be further 

improved for subpixel accuracy applications for robotic application. This can be achieved 

by adding more training data.  

Fixed small-sized images can be used for speeding up the processing. Few other 

models can be implemented with adjustment of various parameters, like learning rate and 

number of layers. This can lead to picking better models easily but will also require more 

time. If the dataset is updated with more classes of date for a healthy udder, infected udder 

and non-milk-able teats then this can truly become a smart system for automatic milking 

in dairy farms. 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

References 

1. Arel, I., D.C. Rose, and T.P. Karnowski, Deep machine learning-a new frontier 

in artificial intelligence research. IEEE computational intelligence magazine, 

2010. 5(4): p. 13-18. 

2. Selvaraj, D. and R. Dhanasekaran, A review on tissue segmentation and feature 

extraction of MRI brain images. International Journal of Computer Science and 

Engineering Technology (IJCSET), 2013. 4(10): p. 1313-1332. 

3. Bengio, Y., A. Courville, and P. Vincent, Representation learning: A review and 

new perspectives. IEEE transactions on pattern analysis and machine intelligence, 

2013. 35(8): p. 1798-1828. 

4. Mitchell, R., J. Michalski, and T. Carbonell, An artificial intelligence approach. 

2013: Springer. 

5. Cheng, B. and D.M. Titterington, Neural networks: A review from a statistical 

perspective. Statistical science, 1994: p. 2-30. 

6. Gavrila, D.M., The visual analysis of human movement: A survey. Computer 

vision and image understanding, 1999. 73(1): p. 82-98. 

7. Notsuki, I. and K. Ueno, System for managing milking-cows in stanchion stool. 

1977, Google Patents. 

8. Akerman, D., Verfahren und Vorrichtung zum Melken. Dt. Offenlegungsschr., 

1979. 28(49): p. 227. 

9. Andersson, L. and M. Nilsson, Apparatus and method for recognizing and 

determining the position of a part of an animal. 2001, Google Patents. 

10. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. nature 521. 2015. 

11. Goodfellow, I. and Y. Bengio, Aaron Courville Deep Learning. 2016, MIT press 

Cambridge, MA. 

12. Kadam, D.B., Neural network based brain tumor detection using MR images. 

2012. 

13. Joshi, D.M., N. Rana, and V. Misra. Classification of brain cancer using artificial 

neural network. in 2010 2nd International Conference on Electronic Computer 

Technology. 2010. IEEE. 

14. Kon, M.A. and L. Plaskota, Information complexity of neural networks. Neural 

Networks, 2000. 13(3): p. 365-375. 

15. Khan, A., et al., A review of machine learning algorithms for text-documents 

classification. Journal of advances in information technology, 2010. 1(1): p. 4-20. 

16. Kotsiantis, S.B., I. Zaharakis, and P. Pintelas, Supervised machine learning: A 

review of classification techniques. Emerging artificial intelligence applications 

in computer engineering, 2007. 160: p. 3-24. 

17. LeCun, Y., et al. Handwritten digit recognition with a back-propagation network. 

in Advances in neural information processing systems. 1990. 

18. Litjens, G., et al., A survey on deep learning in medical image analysis. Medical 

image analysis, 2017. 42: p. 60-88. 

19. Vedaldi, A. and K. Lenc. Matconvnet: Convolutional neural networks for matlab. 

in Proceedings of the 23rd ACM international conference on Multimedia. 2015. 

ACM. 

20. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. nature, 2015. 521(7553): p. 

436. 



40 

 

21. Li, Y., S. Hara, and K. Shimura. A machine learning approach for locating 

boundaries of liver tumors in ct images. in 18th International Conference on 

Pattern Recognition (ICPR'06). 2006. IEEE. 

22. Hinton, G.E., S. Osindero, and Y.-W. Teh, A fast learning algorithm for deep 

belief nets. Neural computation, 2006. 18(7): p. 1527-1554. 

23. Bengio, Y., Learning deep architectures for AI. Foundations and trends® in 

Machine Learning, 2009. 2(1): p. 1-127. 

24. Nagalkar, V. and S. Asole, Brain tumor detection using digital image processing 

based on soft computing. Journal of signal and image processing, 2012. 3(3): p. 

102-105. 

25. Lawrence, S., et al., Face recognition: A convolutional neural-network approach. 

IEEE transactions on neural networks, 1997. 8(1): p. 98-113. 

26. LeCun, Y., Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 2015. 

521(7553): p. 436-444. 

27. Duin, R.P.W., On the choice of smoothing parameters for Parzen estimators of 

probability density functions. IEEE Transactions on Computers, 1976(11): p. 

1175-1179. 

28. LeCun, Y., et al., Gradient-based learning applied to document recognition. 

Proceedings of the IEEE, 1998. 86(11): p. 2278-2324. 

29. Le Cun, Y., et al., Handwritten digit recognition: applications of neural net chips 

and automatic learning, in Neurocomputing. 1990, Springer. p. 303-318. 

30. Ponce, J., et al., Dataset issues in object recognition, in Toward category-level 

object recognition. 2006, Springer. p. 29-48. 

31. Thomas, A., et al. Towards multi-view object class detection. in 2006 IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition 

(CVPR'06). 2006. IEEE. 

32. Deng, J., et al. Imagenet: A large-scale hierarchical image database. in 2009 

IEEE conference on computer vision and pattern recognition. 2009. Ieee. 

33. Hu, F., et al., Transferring deep convolutional neural networks for the scene 

classification of high-resolution remote sensing imagery. Remote Sensing, 2015. 

7(11): p. 14680-14707. 

34. Katamreddy, S., et al. Visual Udder Detection with Deep Neural Networks. in 

2018 12th International Conference on Sensing Technology (ICST). 2018. IEEE. 

35. Xinyue, Z., et al. Inversion of Heavy Metal Content in a Copper Mining Area 

Based on Extreme Learning Machine Optimized by Particle Swarm Algorithm. in 

2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS). 

2018. IEEE. 

36. Rathi, D., S. Jain, and S. Indu. Underwater fish species classification using 

convolutional neural network and deep learning. in 2017 Ninth International 

Conference on Advances in Pattern Recognition (ICAPR). 2017. IEEE. 

37. Sargano, A.B., et al. Human action recognition using transfer learning with deep 

representations. in 2017 International joint conference on neural networks 

(IJCNN). 2017. IEEE. 

38. Shen, D., et al. Flame detection using deep learning. in 2018 4th International 

Conference on Control, Automation and Robotics (ICCAR). 2018. IEEE. 

39. Warner, D., et al., A machine learning based decision aid for lameness in dairy 

herds using farm-based records. Computers and Electronics in Agriculture, 2020. 

169: p. 105193. 



41 

 

40. Yang, A., et al., An automatic recognition framework for sow daily behaviours 

based on motion and image analyses. Biosystems Engineering, 2020. 192: p. 56-

71. 

41. Chen, L.-C., et al., Deeplab: Semantic image segmentation with deep 

convolutional nets, atrous convolution, and fully connected crfs. IEEE 

transactions on pattern analysis and machine intelligence, 2017. 40(4): p. 834-

848. 

42. Chen, L.-C., et al., Rethinking atrous convolution for semantic image 

segmentation. arXiv preprint arXiv:1706.05587, 2017. 

43. Chen, L.-C., et al. Encoder-decoder with atrous separable convolution for 

semantic image segmentation. in Proceedings of the European conference on 

computer vision (ECCV). 2018. 

44. Chen, L.-C., et al., Semantic image segmentation with deep convolutional nets 

and fully connected crfs. arXiv preprint arXiv:1412.7062, 2014. 

45. Krähenbühl, P. and V. Koltun. Efficient inference in fully connected crfs with 

gaussian edge potentials. in Advances in neural information processing systems. 

2011. 

46. Yu, F. and V. Koltun, Multi-scale context aggregation by dilated convolutions. 

arXiv preprint arXiv:1511.07122, 2015. 

47. He, K., et al., Spatial pyramid pooling in deep convolutional networks for visual 

recognition. IEEE transactions on pattern analysis and machine intelligence, 

2015. 37(9): p. 1904-1916. 

48. Chollet, F. Xception: Deep learning with depthwise separable convolutions. in 

Proceedings of the IEEE conference on computer vision and pattern recognition. 

2017. 

49. Szegedy, C., et al. Going deeper with convolutions. in Proceedings of the IEEE 

conference on computer vision and pattern recognition. 2015. 

50. Sandler, M., et al. Mobilenetv2: Inverted residuals and linear bottlenecks. in 

Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition. 2018. 

51. Szegedy, C., et al. Rethinking the inception architecture for computer vision. in 

Proceedings of the IEEE conference on computer vision and pattern recognition. 

2016. 

52. Varaich, Z.A. and S. Khalid. Recognizing Actions of Distracted Drivers using 

Inception v3 and Xception Convolutional Neural Networks. in 2019 2nd 

International Conference on Advancements in Computational Sciences (ICACS). 

2019. IEEE. 

53. He, K., et al. Deep residual learning for image recognition. in Proceedings of the 

IEEE conference on computer vision and pattern recognition. 2016. 

54. Wada, K., labelme: Image Polygonal Annotation with Python. 2016. 

55. Bianco, S., et al., Benchmark analysis of representative deep neural network 

architectures. IEEE Access, 2018. 6: p. 64270-64277. 

 

 



42 

 

Appendices 

Project Code 

 

 



43 

 

 

 

 



44 

 

 

 

 

 

 

 

 


