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Abstract 

 

The main aim of software fault prediction is the identification of such classes and 

methods where faults are expected. Fault prediction used properties of the software 

project to predict faults at the early stage of SDLC. Early-stage prediction of software 

faults supports software quality assurance activities. 

Evaluation of code smells for anticipating software faults is basic to ensure its 

importance in the field of software quality. In this thesis, we will investigate that how 

code smells help in software fault prediction at the class level and method level. 

Previous studies show the impact of code smells on fault prediction. However, using 

code smells for class level faults prediction and method level fault prediction needs 

more concern. 

We make use of the defects4j repository to create the dataset that we use for training 

and testing of the software fault prediction model. We use pseudo labeling for class 

level prediction and bagging for method level prediction. We use accuracy, precision, 

recall, f1 score, and 10-fold cross-validation method for the evaluation of models. 

To do validation, we use a case study. We extract code smells from different classes 

and methods, and we then make use of these code smells for fault prediction. We 

compare our prediction results with actual results and see if our prediction is correct.  
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Chapter 1:  Introduction: 
Software engineering field have many prediction approaches for example fault 

prediction, test effort prediction, cost prediction, usability prediction and many others. 

Every approach has their own importance but, among all these predictions approaches 

many are in the preliminary phase and required more research to reach robust models. 

Among all these prediction approaches, Softwareafault predictionais the most 

populararesearch area. 

Faultgprediction modelsgare used totimproveg.software quality andg.to assist software 

inspectionbby locating possible faults.f.Software fault is a conditionsthat makes a 

system comesup short in performinggout its necessary function.[1] Faultsis a basic 

explanationsbehind system breakdown and is equivalent to the generally used term 

bug. Efforts are necessary to minimize software faults. However, all these efforts cost 

time and resources. Early fault prediction strategy is required so that it helps in the 

reduction of faults and improves the overall quality of software. It is verified that the 

sooner a fault is detected lesser it costs [2]. So, early-stage software prediction can save 

many resources (time, money, human). 

Code smells are defined as properties of source code that indicate expected faults or 

deeper problems [3]. At first 21 different types of code, smells were introduced [4] 

shown in table 1 and 2. Code smells are now an accepted concept that is used to refer 

to such design aspects and patterns, which may cause problems at the later stage of 

software systems like development and maintenance. [4, 5]. Regardless, code smells 

are not incorrect but instead, their essence point towards instability in design, which 

fails in the system and expected bugs in the future. The primary focus of empirical 

evaluation of code smell is to see whether the code with smells is more expected to 

have faults than the code without smells.  

Despite the accepted importance of code smells, Fault prediction using code smells is 

a under rated field as compared to object-oriented metrics. Different researchers use 

only a few kinds of code smells and usesdifferentemethods.oSome used regression and 

some used machine leaninggtechniques. Somegfault predictiongmodels 

havegproposed, but mostly give inadequateginformation.gThere isga need 

ofgfaultspredictionsmodel which uses class and method-level code smells and predicts 

faults not only at class level but also at method level.  

 

1.1 Motivation: 

Softwaresdefectspredictionsis a key processein software engineeringsto improve the 

quality and assurancesofgsoftware in less timesand minimum cost. Itgis 

implementedgbefore the testingsphasesof the softwaresdevelopment lifescycle. 

Softwaresfault predictionsmodels providesdefects. Software development is becoming 

an emerging field with the enhancement of applications used in day-to-day life and it 
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is increasing interaction with technology at a rapid pace. This vast usage of applications 

enhances the importance of Quality Assurance. Bugs found after production release 

can be very costly. Limiting the number of bugs in software is an exertion key to 

software engineering, faulty code neglects to satisfy the reason it was composed for, 

lastly fixing it costs time and money. resources in a software development life cycle 

are quite often restricted and thusly ought to be allocated to where they required 

most to avoid bugs, they ought to center around the most fault-prone areas of the 

project. Having the option to predict where such areas may be would permit a greater 

turn of events and testing endeavors to be allocated to the correct places. 

 

1.2 Research Gap: 

Most of the existing work focused on fault prediction using Object-oriented or process 

metrics. Metrics that are used in these models are commonly “Halstead’s software 

metrics”[6], “McCabe Cyclomatic complexity metrics” [7], and “object-oriented 

metrics” [8-11]. And different modeling techniques used to predict faults. Statistical 

modeling technique (univariate or multivariate logistic regression) [12]. And machine 

learning techniques [13-15] are used for software fault prediction. 

Conventional bug prediction approaches that use above mention metrics for prediction 

have certain issues. For instance, it is more than obvious that if a class or codebase has 

an enormous line of codes, it is more error prone. Yet this is not proved that a class or 

method having less line of codes has a smaller number of bugs. In this manner, some 

other metrics for fault prediction should use in research.  

Some previous studies showed a significant effect of code smells on fault prediction. 

In literature, different types of code smell metrics have been proposed and used for 

fault prediction models. These metrics help in the construction of the prediction model. 

Fault prediction models used data gathered from such projects where faults have been 

identified previously [16]. 

However, mostgof thosegapproaches predictsbugs ongclass level or file level. This 

approach often put a considerable amount of effort on tester’s shoulder to examine all 

classes or file until the bug is located.  This specific problem isgreinforced by the fact. 

that large files are. typically predicted as the most bug prone.  

In previous studies, researchers predict faults at a class level, no work is done for faults 

prediction at the method level using code smells. Using faultspredictionsmodelsgat the 

levelsof individual methodsgrathergthan at class-level/file-levelsscan save effortsin 

term of time and cost. Moreover, this approach increasesgthe granularity of 

thegpredictionsand thus reduce.manual inspection efforts for developers.  

In previous work where code smells were used for software fault prediction, the 

researcher creates their datasets by using CK and some other object-oriented and 

process metrics for code smells presence. Moreover, researchers have worked only 
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with 4-8 types of code smells for fault prediction. However, fault prediction using code 

smells considering more types, needs more concern and we intend to find out if code 

smell would be beneficial or not.  

1.3  Problem statement: 

Code smells for fault prediction is a under rated field as compare to other object-

oriented metrics. We note that not all code smells found are faults but some of the code 

smells can become a fault at the later stage of development. Code smells in software 

fault prediction require an exclusive evaluation and validation which assist with 

analyzing the effect of code smells on software fault prediction. In addition to this using 

method level code smells to predict faults at the method level is also requires.  

 

1.4 Research question: 

Q1- How can we make use of code smells to detect faults at class level and method 

level?  

Q2- How can we make use of machine learning algorithm to detect faults? 

Q3. What is the prediction model performance at the class and method level using code 

smells? 

 

1.5 Objective: 

Objectivesof thissresearch is to propose a fault prediction model using code smells that 

help in predict faulty classes and faulty methods to make testing efficient. With the 

help of predicted faulty modules using code smells at the early stage of SDLC, we 

reduce the prior mentioned cost of the project and we can schedule our projects more 

accurately.  

The proposed model:  

• Identify the faulty classes present in different applications. 

• Identify the faulty methods present in faulty classes of applications. 

 

1.6 Contribution: 

The overall contribution of work in this dissertation is to propose a methodology to 

predict faults at the class level and method level. While working on supervised machine 

learning we tried random forest model to find the solution to our problem. Also, 

evaluate the solution that is proposed. To validate the proposed solution with the help 

of a case study of around 30 classes and methods of the open-source project. We have 
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labeled and unlabeled dataset of code smells at class level and labeled dataset of code 

smells at method level. We have trained our model on that dataset and tested it to give 

predictions. We have trained our model via Random Forest classifier. During the 

training phase of the model label data set used. During the validation phase of the 

model, we have passed only code smells and the model automatically predicts that 

which class and method is faulty. 

 

1.7 Thesis Organization: 

 

       

  

 

    Figure 1: Thesis Organization 

 

 

Chapter 2: This chapter presents a referential literature review that has already been 

done by researchers. 

The first section, explains what code smells are and provide a definition and description 

of all known code smells. The second section, explains thegwork thatghasgbeen done 

by authors ingthe field ofgsoftware fault prediction. The third section describes 

software fault prediction using code smells. The last section is about the work done in 

the field of method-level fault prediction.  

Chapter 3: This chapter gives an overall description of the proposed methodology, its 

validation, and the whole research process. Each step is explained in detail. 

Chapter 4: This chapter of the thesis describes the complete implementation details. 

In this chapter, we explained the implementation of the proposed methodology with 

the help of a case study. We also present the results of our experiment in this chapter. 

Chapter 5: This chapter describes the results and discussion of our work. We also 

present a comparison with existing studies in this chapter. 

Chapter 6: The last chapter concludes our research and represents future work on this 

research. 
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Chapter 2: Literature Review 

Ingrecentgyears,gsoftware faultsprediction is the most arising research field. Withgthe 

increase in the field of softwaresdevelopmentland demandsfor softwaresproducts, 

quality concerns also increasing day by day. Early-stage prediction of faults is one the 

most important quality aspect. With the help of this, we not only improve the product 

quality, but we also save time and cost. Many researchers have work in this field and 

use many different techniques, most common techniques are following: Logistic 

Regression [17-19], Naïve Bayes [20, 21], Support Vector Machines [22], K-Nearest 

Neighbors [23], Decision Tree [24], Random Forest [25], Linear or Multiple 

Regression[26, 27], Neural Networks[28, 29], HySOM [30]. 

 

2.1 Code smells: 

Code smells are properties of source code. They are not bugs but they may cause bugs 

at later stage of integration. Code smells are an infraction of basic coding standards 

that.decrease the quality.of code [31]. A software having code smells still works, it 

would still give output, but it increases the chances of faults in future. Moreover, it may 

increase the processing time of software.  

From above it is indicating that code smells may cause deeper problems, but they are 

quick to spot. The best.smell is something.easy to find.but will lead to an.interesting 

problem, likegclassesgwith datasand no behavior. Codessmells can be easily 

detected.with the help.of tools. 

At first, 21 different types of code smells were introduced shown in Table 1 and 2. 

Later on, different researchers introduced different new code smells shown in Table 3 

and 4.  

 

Table 1: List of first introduced code smells and definitions (Class level) 

Sr 

no.  

Code smell Definition  

1 Duplicated code A similar code structure is in the program in more 

than one spot.[4]  

2 Large class A class with a lot of functionality and having many 

instance variables. [4] 

3 Divergent change One class is regularly changed in various manners for 

various reasons.[4] 
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4 Shotgun surgery It is code duplication and refers to when a single 

change is made in multiple classes.[4] 

5 Data clumps Same data items always together in multiple classes. 

[4] 

6 Primitive obsession When the code depends a lot on primitives that it 

starts controlling the logic in a class.[4]  

7 Switch Statements Using switch statements with a type of code to get 

different behavior or data instead of using subclasses 

and polymorphism.[4] 

8 Parallel Inheritance 

Hierarchies 

Parallel creation of subclasses of super classes.[4] 

9 Lazy Class A class that isn't doing what's necessary.[4] 

10 Speculative 

Generality 

Code that writes to handle special cases that are not 

required.[4] 

11 Temporary Field When many inputs are required by an algorithm 

temporary field came into use.[4] 

12 Message Chains To fulfill the client’s request each object start calling 

another object. [4] 

13 Middleman A class that starts behaving like a delegate and doing 

nothing. [4] 

14 Inappropriate 

Intimacy 

One unique class utilizes the inner fields and 

functions for another unique class.[4] 

15 Alternative Classes 

with Different 

Interfaces 

The same functionality is performed by 2 classes with 

different method names. [4] 

16 Incomplete Library 

Class 

When libraries stop meeting user needs.[4] 

17 Data Class A class that only contains fields, getters, and setters. 

They are just dumb data holders.[4] 

https://en.wikipedia.org/wiki/Library_(computing)
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18 Refused Bequest Refer to when child class uses only a few methods 

inhered from the parent class.[4] 

   

 

Table 2: List of first introduced code smells and definitions (Method level) 

Sr no. Code smell Definition 

1 Feature envy It refers to a method that accesses data of other 

objects more than its data.[4] 

2 Long Parameter List Any method in a class having more than 3 

parameters.[4] 

3 Long method Method having many parameters and temporary 

variables.[4] 

 

 

Table 3: List of additional code smells and definition (Class level) 

Sr 

no. 

Code smell Definition 

1 God class It refers to such a class that performs too much 

functionality and has a huge number of lines of 

code.[32] 

2 Tradition breaker Subclass should provide methods and functionality 

that are not related to its superclass. [32] 

3 Schizophrenic Class When 2 or more key abstractions are captured in a 

single class.[32] 

4 Brain class A class that performs too much but have strong 

cohesion. [32] 

5 Anti-singleton A class that gives mutable variables, which thusly 

could be utilized as global variables.[16] 

6 Blob class When from 2 coupled classes one class is doing too 

much and more than the other class.[16] 
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7 Complex Class One method of a class having a high value of 

cyclomatic complexity and LOCs. [16] 

8 Swiss Army Knife  It refers to such a class that provides a huge number 

of interfaces and uses it. [16] 

9 Interface 

Segregation 

Principal Violation 

Interfaces and abstraction should not be forced. [33] 

10 Cyclic 

Dependencies 

When 2 or more modules required each other to 

perform the proper function. [33] 

11 Distorted Hierarchy Such inheritance hierarchy is restricted and deep. [33] 

  

 

Table 4: List of additional code smells and definition (Method level) 

Sr 

no. 

Code smell Definition 

1 Blob Operation It is a complex and huge operation that centralizes 

class functionality.[33] 

2 God method A method that performs too much functionality and 

provides full class functionality in a single 

method.[33] 

3 Extensive coupling A method that communicates too much with other 

methods, but provider method dispersed in many 

classes.[32] 

4 Intensive coupling A method of a class binds with other methods, but the 

provider method is only dispersed in few classes. [32]  

5 Brain method A method that performs too much but has strong 

cohesion.[32] 

    

2.2  Software fault prediction using software metrics: 

 

Researchers explored that Software fault prediction utilizing the softwareqmetricsais 

the most usually utilized and most ideal approach to foresee faults. Software metrics 
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significant to quantify the nature of the product item as far as different factors, for 

example,gcoupling, cohesion,greliability,gaccuracy, .completeness, complexity, 

inheritance etc.[34].gCommonly used metricsset are..CKgmetrics[8], McCabesmetrics 

[7], Halsteadsmetrics [6]. Datassets fromgPROMISE repository [35] and NASAqare 

mostlyqusedqinqthisqresearchqarea. 

In a study, the author picked promise repository and use machine learning techniques 

for prediction. He used 5 different machine learning models. The performance of all 

these 5 models was evaluated using accuracy and F-mean.[32].  

In another study author used 3 different techniques he first trained data using artificial 

neural network ANN. Aftereffects of this methodology are contrasted and 

ANNqwithout pre-trainingqandqsupportqvectorqmachines. The results of these 

experiments showed that all 3 methods can be used for different datasets. [37].  Another 

proposed a novel way to deal with anticipate faulty classes. In this examination, 

HyGRAR strategy is carried out. HyGRAR technique depends on supervised learning. 

In his experiment, he joins artificial neural network and rule mining techniques that 

help in the classification of faulty and non -faulty data. 

In a study author used ensemble methods for prediction. The author claimed that 

because of using different methods, the results provided by ensemble methods are 

better than other methods. Linear and non-linear methods are used. As base learning 

techniques he used genetic programming and linear regression. For performance 

evaluation Relative error and accuracy are used [36].  

The author proposed fuzzy inference system-based approach for fault prediction. KC1, 

KC2, KC3 datasets are used. Preprocessing and feature selection in done. McCabe 

metrics are used in this study. Author claim that prediction that is performed by using 

expert knowledge is better than simple supervised learning approaches. He compared 

his method results with naïve based and random forest [37]. 

In this study, the author has 2 types of data, supervised and unsupervised. He used a 

semi-supervised technique. he performed prediction on both datasets. After that DFCM 

clusteringsapproachsapplied. It works by creatingsor updating the DFCM 

membershipsand finding the clusterscenter. Clusterscenters computed for both subsets 

of datasset (labeledsor unlabeled). Cluster centers computedsby DFCM clustering. 

samplingsapproach random under used to balancesthe 

featuresqfromqbothothewsubsets ofqdataset. resultsQareMevaluated in termssof F-

mean and area under the curve and resultssshowed that the DFCM approachsprovides 

acceptablesresults for labeledsand unlabeled data [38]. 

Another studysvalidated the impactsof different inheritancesmetrics on 

faultsprediction. 65 public datasets used. The authors divide the dataset into 2 groups 

inheritance with CK and inheritance without CK.  Artificial neural networks were used 

to build the model. Performancesof the model is evaluated by accuracy, precision and 
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recall. Results of experiments showedsthat inheritancesmetrics are effectivesin 

predicting softwaresfaults [39]. 

 

Table 5: Software fault prediction using software metrics 

Paper Id                       Contribution                   Model 

[40] the author used 3 different techniques he first 

trained data using artificialqneuralqnetwork 

ANN. Aftereffects of this methodology are 

contrasted and ANNqwithoutqpre-training 

andwsupportwvector machines. The results of 

these experiments showed that all 3 methods 

can be used for different datasets. 

ANN 

[36] In a study author used ensemble methods for 

prediction. The author claimed that because of 

using different methods, the results provided 

by ensemble methods are better than other 

methods. Linear and non-linear methods are 

used. As base learning techniques he used 

genetic programming and linear regression. 

Relative error and accuracy are used for the 

performance evaluation of the model.  

Ensemble method  

[41] In another study, the author proposed a model 

for SFP. Boehm'swmodel-based classification 

actedwinwthiswstudy. The COCOMO model 

is utilized towclassifyqthe projectswinto 

variousqclassifications. projects accumulated 

into 3 classes i.e., embedded, semidetached 

and organic datasets. KLOCqmetricqusedqin 

this investigation. prediction arewdonewin 

twowdistinct manners i.e., insideqdatasetqor 

crosswdataset. As assessment measures, TPR, 

NNge,m  

DTNB,q 

PART,q 

Conjunctive rules,  

regression tree,  

oneR,  
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FPR, F-measure, precision, AUC, and 

accuracy are utilized 

C4.5,  

ripper down rules and  

JRip classifiers  

[37] The author proposed fuzzy inference system-

based approach for fault prediction. McCabe 

metrics are used in this study. Author claim 

that prediction that is performed by using 

expert knowledge is better than simple 

supervised learning approaches. He compared 

his method results with naïve based and 

random forest 

Fuzzy inference 

system (FIS) 

[39] In this study, 65 public datasets were used. The 

authors divide the dataset into 2 groups 

inheritance with CK and inheritance without 

CK.  Performancesof the model is evaluated 

by accuracy, precision, and recall. Results of 

experiments showedsthat inheritancesmetrics 

are effectivesin predicting softwaresfaults.  

Artificial neural 

network (ANN) 

 

2.3 Software fault prediction using code smells: 

The work done previously using code smells for faulty prediction showed that code 

smells affect faults. In literature, many code smells metrics have been proposed and 

used for the fault prediction model. These metrics help in the construction of the 

prediction model. Fault prediction models used data gathered from such projects where 

faults have been identified previously [16]. From some time, fault prediction is an 

important aspect. In literature, many different types of code smell metrics have been 

proposed and used for the fault prediction model. These metrics help in the construction 

of the prediction model. Fault prediction models used data gathered from such projects 

where faults have been identified previously [16]. 

Smelly classes changed more frequently as compared to non-smelly classes. This point 

is evaluated in a study where it explained that in 2 open source projects (“Azureus and 

Eclipse”)  smelly classes change frequently as compared to non-smelly classes [42].  In 
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another study, it is found by investigating open source projects that those methods 

which had been cloned, change frequently as compared to other methods [43].  

In another study, author claim that some code like shotgun surgery, God class, and God 

method is directly connected with faults. To support his claim, he experimented on 3 

releases of the eclipse project [44].  

Initially, 22 different types of code smells were introduced [4]. An author study, what 

results in severalscodessmells can causestogether. He explained the 

relationshipsamong different code smells [45]. Another studysdescribes the 

DomainsSpecific tailoringsof Code Smell. They think thesheuristics of codessmell [4] 

is quite wide, they tailorsthe heuristicsOofodomain-specificoof codessmell 

toomakestheoheuristicsotoofitmthe specificsdomain [46].   

Two initial taxonomies were proposed for code smell [43, 44]. 40 different anti-

patterns described for the object-oriented system by focusing on implementation and 

design. 2 famous patterns “blob and spaghetti code” included in these 40 different anti-

patterns. This study has an in-depth, Wide view of heuristic, code smells, and anti-

patterns, for the academic audience [12]. 

Recently, more considerations pulled into exploring that how faults and code smells 

are related to each other. This study proved by giving empirical evidence that code 

smells are helpful in fault prediction. They usedosourceucodeymetrics andkcodesmells 

metricslin theirystudy and used NaïvebBayes, RandomrForest, and 

LogisticgRegression techniques. [53]. 

In a study, the author used code smells and community smells and compare their results 

for fault prediction. The results showed that community smells improve prediction 

model performance up to 3% in terms of AUC. While code smells improve prediction 

model performance up to 17% in terms of AUC. [47]  

In another study, the author assesses the benefaction of a proportion of the intensity of 

code smells. for this, they add code smells to the existing prediction model which used 

process and product metrics. they compare both existing and new models. As of result 

of this experiment by adding code smells a predictor, the accuracy of the prediction 

model increases. [54]. 

In another study, the author study code smells in web applications. He extracts PHP 

code smells and uses them in his study. The results of this study show that code smells 

can help in fault prediction and it helps developers to identify faults and plan projects 

accordingly. [48] 

In another study, the author selects 3 projects BIRT, Aspect J, and SWT. Extract code 

smells from them and studies how code smells are associated with bugs. His study 

shows that code smells and fault have a strong correlation. Lazy class, complex class, 

message chain, and long method have a strong correlation with faults. [49] 
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The author in another study evaluates class level change-prone prediction power using 

code smells. they used many machine learning approaches. The result of this 

experiment indicates positive relation between code smells and class change proneness 

with a probability superior to 70%. [55]. 

In this study, the author proposed a model in which he used code smells from literature 

and designate smells. the author used 97 different real projects. The results of this study 

showed that the model improves 5% in terms of AUC. He concludes that designated 

smells are a good addition and they help with code smells in prediction.[50].  

Another study looks into that that how code smells and fault prediction are related. To 

study this relation, they used many techniques like ADTree, Naïve Bayes, Logistic 

regression, and Multilayer perceptron. Results of this study showed that the combined 

model improves F-measure up to 20%. [56]. 

Another author in his study confirms that code smells are directly related to software 

faults and the performance of fault prediction models. They used naïve Bayes and 

logistic regression [57]. 

Another study focused on inspecting tool design for software code smell detection. In 

their work, they explained that source code split is used to automatically detect code 

smells. Besides, they portrayed how the code smell idea might be extended to 

incorporate coding standard conformance. To investigate the feasibility of the given 

approach they used a case study, developed a prototype tool, and test it on the software 

system. [51] 

In another study, the author picked one metric of code smells and investigate its impact. 

He used the God class metric and see how God classes can help to improve the quality 

of software. The result of their study showed that in some cases God class are more 

susceptible to faults [52] 

Industrial system and 6 different code smell used to study the relationship between 

faults and code smells. It is found because of this study that “Shotgun Surgery” 

presence identifies with a factually critical higher likelihood of faults [44].  

But, another author found in his study that there is no relation between faults and code 

smells and code smell does not affect the presence of faults [53]. So, in literature, the 

relationship between faults and code smells has not come to an agreement. 

A tool was built that is used to rank code smells according to severity based on 3 

standards: “past component modification, important modifiability situations for the 

system, and importance of the sort of smell” [54]. Another author studied the 

importance of bad smells, and found bad smell resolution’ importance and present 

ordinarily occurring bad smells [55]. 

A study surveyed that how bad smells affect whole software and especially software 

maintainability. It proposed that by examining historical information it is possible to 
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see how bad smells affect software maintainability. It is presumed that; the quality can 

assess by code smells. By detecting and visualizing code smell quality can be improved 

[56] 

Another study examines experimentally the connection between class error probability 

and code smells in the threeoerrorrseverityelevels and finishes up his investigation as 

that anticipated models can work agreeably for predicting the errors when all is said in 

done. Badqcodeqsmellsqcouldaanticipateatheaclassqerroralikelihoodaandqfoundqthat 

some bad codeosmells could at present predictqclasswerrorqprobability. The result of 

experiment also proposes that when refactoring a class, not only it helps in improving 

theaqualityaofaarchitecture,abutaitaalsoahelpsainareducesqthemprobabilityqofqtheqcl

assqhaving blunders later [57]. 

Another study gives observational proof about how code smell metrics (Brain class and 

God class) contributes towards the quality of software system. They used 3 very 

common open-source software systems and study the effect of brain class and God 

class on these systems without standardization regarding the size. The investigation 

shows that God and Brain Classes have a negative impact estimated as far as change 

frequency, change size, and number of weighted defects. [58]. 

 

Table 6: Software fault prediction using code smells 

Paper  Contribution  Model  

[59] This study proved by giving empirical 

evidence that code smells are helpful in 

fault prediction. They usedosource 

codeometricsoand code smells metrics 

inotheirostudy  

Naive Bayes,  

Random Forest, 

Logistic Regression 

[60] Author in another study evaluate class 

level change prone prediction power 

using code smells. they used many 

machine learning approaches. The 

result of this experiment indicates 

positive relation between code smells 

and faults. 

Naive Bayes, 

Logistic Regression, 

Decision tree 

[61] Author in another study evaluate class 

level change prone prediction power 

Naïve bayes, 
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using code smells. The result of this 

experiment indicates that Code smell 

can predict classochangeuproneness 

with ayprobability superior to 70%. 

Multilayeruperceptron, 

LogitBoost, 

Decision tree 

[62] Another study investigates the effect of 

code smells of predictions of faults. 

Results of this study showed that 

combined model improve F-measure up 

to 20% 

ADTree, 

Naïve bayes, 

Logistic regression, 

Multilayer perceptron 

[63] Another author in his study confirms 

that code osmellsoareodirectly related 

to software faults and performance of 

fault prediction models.  

Naive Bayes  

Logistic Regression 

[16] The creator discovered devotion 

linkingocodeosmell locationoandothe 

consequences of the fault prediction. In 

any case, the creator noticed that 

utilizing code smell identification 

resultsocanoimproveothe review of 

bugoprediction. 

Multivariable logistic 

regression model 

[64] Author researched the commitment of 

code smell force with regards to bug 

prediction. Results showed that the 

power in every case decidedly adds to 

best-in-class prediction models, in any 

event, when they as of now have 

superior exhibition 

Naïve Bayes 

Logistic regression 

Decision tree 
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2.4 Software fault prediction at method level: 

Many researchers work in field of fault prediction, all use different approaches, 

different techniques and cover different aspects of software development. Such 

modelssachievedogood predictionsperformance, guidingsdevelopersotowardsothose 

partsoofotheir systemswhere aolarge sharesof bugsocanoexpect. However, mostoof 

thosesapproaches predictsbugs onofile-level. Thisooftensleaves developersswith a 

considerablesamount of effortsto examinesall methodsoof aofilesuntil a bugsis located. 

This problemsreinforced by the factsthat large files are typicallyspredicted as the most 

bugsprone. 

In a studysauthorsproposed bugspredictionsmodels at the levelsof individualsmethods. 

This increases the granularitysof the predictionsand thus reducessmanual 

inspectionsefforts for developers. Thesmodels are basedson changesmetrics and 

sourcescodes metrics that are typically used in bugsprediction. Experimentsperformed 

onv21mJavanopenasourcea(sub)asystems.AExperimentsshowHthatkpredictionsmode

lsmreachoanprecisionsand  recallnofn84%oand 88%,orespectively [65]. 

In this study, authorsreplicate previous researchson methodslevel bugsprediction 

onsdifferent systems/timespans. Afterwards, they reflectson the evaluationsstrategy 

and proposesa more realisticsone. Key results of this studysshow that the 

performancesof the method-level bug predictionsmodel is like what previously 

reported. Even so, when same strategy is applied with more realistic parameters all 

modelsashowsaadramaticsdropainaperformancesexhibitingaresultsgclosegtomthatbof

anrandomn classifier [66]. 

To the best of our knowledge, efforts in the field of software fault prediction at the 

method level used process metrics, change metrics, and object-oriented metrics. No 

work is done for fault prediction at the method level using code smells. This is a fact 

that faults predicted at the method level rather than at class level or file level can save 

time and cost. Moreover, predicting faults at method level reduce inspection effort for 

developer and testers. Thus, a method that can predict software faults at the method 

level using code smells is highly desired.  

2.5 Summary: 

This chapter presented a referential literature review that has already been done by 

researchers. In the first section, it explained the work that has been done by authors in 

the field of software fault prediction using software metrics. In the second section, it 

explained the work in the field of software fault prediction using code smells. In third 

section it describes about software fault prediction at method level. We have studied 

the literature in detail and identified different prediction models proposed by 

researchers. 
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Chapter 3: Research methodology and our approach 

3.1 Introduction: 

This chapter presents the research methodology and the research process that has been 

used for software fault prediction using code smells at the class level and at the method 

level. Various steps and phases are involving in the research process including data 

gathering, data pre-processing and cleaning, model training, and testing and evaluation.        

The applied methodology consists of 3 parts, Preprocessing, Model development 

phase, and Postprocessing phases.  First, is the preprocessing phase which includes 

code smells selection, dataset pre-processing/cleaning, dataset merge, and dataset 

normalization and outlier detection. We select dataset with code smells shown in table 

5, this dataset will help in the training model that we will use for software fault 

prediction. We then, in the 2nd phase, do preprocess and cleaning of dataset. we 

preprocess and clean datasets to remove unused smells and to identify null values in 

our dataset. we then do Data normalization and outlier analysis. 

Second is the model development phase which includes test/train split, training 

supervised model, and evaluation. First, we split training data into train and test split. 

Then, we built a software fault prediction classifier and trained the classifier using the 

data. Later, we evaluated our classifier using performance evaluation metrics. we 

employ accuracy, precision, recall, and F1-score [25]. 

Next is postprocessing phase. This phase includes code smells extraction, prediction, 

and validation. For code smells extraction, there are many tools and techniques 

available. We used iPlasma tool to extract code smells. after getting the code smell of 

the class/method, we predict faulty instances. we input code smells to the classifier and 

our classifier predicts faulty instances.  The last phase is of validation phase, in this 

phase we have fault information of about 30 classes/methods, and we compare our 

prediction results with actual results and check how accurately we predict faulty 

instances. 

The research strategy uses to conduct this research is Applied Research that is to 

resolve a specific problem of the software Industry. We know the testing problems 

faced by industries. To resolve the problem, we have proposed a software fault 

prediction model using code smells whose validation is done through the open-source 

application. We describe our research process below with all the steps involve in the 

process of research.  

3.2 Our methodology: 

Our research process comprises 3 steps: preprocess phase, Model development phase, 

and postprocess phase. Figure 2 demonstrates the whole research process with all the 

steps taken in between the process. 
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 Preprocessing phase              Model Development phase                        Postprocessing phase

              

 Figure 2: Research process 

 

3.2.1 Preprocessing phase:  

3.2.1.1. Selection: 

The code smells we are using at class level are God class (GC), Shotgun surgery (SS), 

Feature envy (FE), Brain class (BC), Tradition breaker (TB), Brain method (BM), 

Extensive coupling (EC), Parent bequest (PB), Intensive coupling (IC), Long parameter 

list (LPL), Schizophrenic Class (SC), Data class (DC) and code smells we are using at 

method level are Feature envy (FE), Brain method (BM), Extensive coupling (EC), 

Intensive coupling (IC), Shotgun surgery (SS) and Long parameter list (LPL). The 

criteria of selecting code smells are, these are important and most used basic code 

smells [59-63], most of the published literature used these code smells [32], tools are 

available to extract these code smells from the source code of the application and 

unlabeled dataset of these code smells are publicly available.  

3.2.1.2. Pre-processing/cleaning phase: 

We do clean operation in our dataset to clean dataset. from dataset we remove unused 

code smells. We check for any null value in our dataset and null value percentage for 

each column of dataset.  

 

 

Selection  

Preprocessing/ 

cleaning 

Merge  

Normalization/

outlier  

Code smell 

extraction  

Prediction  

Validation  

        Class level 

Pseudo labeling 

Train/test split 

Random forest 

evaluation 

Method level 

 Train/test split 

Bagging classifier 

Evaluation  
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Table 7: list of selected code smells 

No.  Name Definition  

1 God class It refers to such a class that perform too much 

functionality and have huge number of lines of code. 

2 Shotgun surgery It is code duplication and refer to when single change 

made in multiple classes. 

3 Feature envy It refers a method that access data of other object 

more than data of object. 

4 Brain class A class that performs too much but have strong 

cohesion 

5 Tradition breaker Sub class should provide methods and functionality 

that is not related to its super class. 

6 Brain method A method that performs too much but have strong 

cohesion. 

7 Extensive coupling A method that communicates too much with other 

methods, but provider method dispersed in many 

classes 

8 Parent bequest Refer to when child class uses only few methods 

inhered from parent class. 

9 Intensive coupling A method of a class binds with other methods, but 

provider method is only dispersed in few classes.   

10 Long parameter list Any method in class having more than 3 parameters.  

11 Schizophrenic 

Class 

When 2 or more key abstraction are captured in a 

single class. 

12 Data class Refer to when child class uses only few methods 

inhered from parent class 

      

3.2.1.3 Merge: 

All datasets have the same number of attributes, so we merge all datasets into one. We 

use the discrete value of label bug, i.e., 1 and 0.  1 label depict faulty instance whereas, 

0 label depict non- faulty instance.  
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3.2.1.4 Normalization: 

At last, we analyze our dataset for the existence of outlier and data normalization. Our 

dataset doesn’t have any outlier and it is in binary form, so we don’t need data 

normalization as well.  

3.2.2 Model Development phase: 

3.2.2.1 Train and test split: 

After getting cleaned and combined dataset we perform train and test split. We split 

our dataset into the ratio of 70:30, 70% training data, and 30% testing data. we use train 

split to train our classifier and test split is used to test our classifier.  

3.2.2.2 ML Model: 

We propose a fault prediction model for early-stage fault prediction at the class and 

method level. We use dataset of code smells for the training classifier. We use 

supervised and semi supervised machine learning approach to build and train the 

classifier. After training classifier, we use performance evaluation metrics to evaluate 

the performance of our classifier.  

3.2.2.2.1 Class level prediction: 

We have less quantity of labeled and an enormous quantity of unlabeled dataset 

available. To use both types of datasets in training classifiers we use a semi-supervised 

machine learning technique named pseudo-labeling [67]. 

3.2.2.2.1.1 Pseudo labeling: 

Pseudo Labeling is an effortless and proficient strategy to do semi-supervised learning.  

 

 

 

 

 

    Figure 3: Semi-supervised learning method 

 

Pseudo labeling technique uses less amount of labeled dataset and big amount of 

unlabeled dataset and improves the model’s exhibition. It first uses labeled data to train 

the model, 2nd it predicts pseudo labels for unlabeled data, third it merges both labeled 

and pseudo labeled data into one, and 4th it retrains the model with merged data.  

Some labeled 

data 

Lots of 

unlabeled data 

Model  
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Figure 4: Pseudo-labeling learning method 

 

3.2.2.2.1.2  Random forest: 

We use the random forest machine learning technique to train our classifier. We have 

2 class problem and it is supposed that SVM performed well with 2 class problem but 

in our case, we have imbalance data, and SVM performed poorly due to class imbalance 

[68]. Previous studies showed that the random forest technique is more powerful for 

fault prediction as compared to SVM or other techniques [69, 70]. Random forest is a 

sort of supervised machine learning calculation dependent on ensemble learning. In 

ensemble learning, sometimes we join different algorithms or sometimes we join the 

same algorithm at different times to improve accuracy. The combined dataset is used 

for training and testing random forest classifier. Accuracy, and performance evaluation 

metrics used to evaluate classifier. 

3.2.2.2.2 Method level prediction: 

We extract method-level dataset from defects4j. this dataset is in a small amount so, to 

increase the amount of dataset we use a technique named Bagging. Bagging not only 

increases the amount of data but also improves accuracy, loss, bias, and variance and 

improves the performance of the classifier.   

3.2.2.2.2.1 Bagging: 

Bagging classifier is a technique that divides dataset into subsets and then fits the base 

classifier on each subset of dataset. after that, through voting or the average method it 

aggregates the results and gives a final prediction. Bagging not only increase the 

amount of data but also improves accuracy, loss, bias, and variance and improves the 

performance of classifier.    
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As a base classifier, we are using random forest tree. The number of bags we are 

using is 10. each bag has 500 data points and the number of features we are using is 

6.  

3.2.2.3 Evaluation: 

To evaluate classification performed by the model we use performance evaluation 

metrics. We pick Accuracy, Precision, Recall, and F1-score for the appraisal of the 

models. In the prediction model, the positive class is the damaged class, and the 

negative class is the non-flawed class. Precision is characterized as the closeness of 

estimated values with real worth. Here it addresses the quantity of the all-out right 

expectations to an absolute number of inaccurate and right predictions. precision 

estimates the number of positive class expectations that have a place with the positive 

class. The recall is the extent of accurately grouped flawed occasions to every one of 

the real cases that are deficiency inclined. Also, F1 score gives a solitary score that 

adjusts both the worry of precision and recall in one worth. It is the consonant mean of 

precision and recall. 

3.2.3 PostProcessing Phase: 

3.2.3.1 Code smells extraction: 

We extract our selected code smells from the source code. There are many tools 

available for code smell extraction. Some tools are limited in the number of code 

smells, so we select and use such a tool that is easily available and extract all selected 

code smells.  

3.2.3.2 Prediction: 

The above phase extracted code smells then input them to the classifier so that our 

classifier predicts faulty instances, as shown in figure 5. Our classifier predicts which 

class and method are more expected to have faults.    

3.2.3.3. Validation: 

We have fault information of 30 classes and methods. In the validation stage, we 

compare these actual results with our classifier prediction and see how accurately our 

classifier is predicting faulty instances.  

 

 

 

 

 

Figure 5: fault prediction 
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3.3 Summary: 

This chapter provided overall description of the proposed methodology. It is divided 

into 3 main phases which have further phase. The preprocess phase includes selection, 

preprocessing/cleaning, merge, and normalization. The process phase includes train 

and test split, supervised model, and evaluation. And the last post process phase 

includes code smells extraction, prediction, and validation.  
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Chapter 4: Implementation: 

This chapter describes the steps involved in preprocessing, model development and 

postprocessing phases.  

4.1 Fault prediction at class level: 

4.1.1 Preprocessing phase: 

The preprocessing phase for software fault prediction at class level model comprises 

various steps including selection, pre-processing/cleaning, and normalization. 

4.1.1.1. Selection: 

Faulty classes data for the development of fault prediction model collected from two 

different sources. 

4.1.1.1.1 Primary dataset: 

The primary dataset is the labeled dataset. This labeled dataset is extracted from 

projects available at defects4j [3]. defects4j is an open-source repository which has 

complete detail of active bugs of multiple java projects. It provides complete 

information of faults which includes the package name, class name, method name, and 

exact location of fault [71]. Table 8 shows the description of selected datasets. we have 

complete details of faults now for code smells we use the tool iPlasma [72]. iPlasma is 

an environment that helps in the extraction of code smells from source code with 

addition to this, the object-oriented system used it for quality analysis. After getting 

code smells of all projects as shown in table 8, the reports of code smells are generated 

in comma separated version (CSV) extension. we add labels e.g., 0 or 1. 0 if no faults 

and 1 if the fault is present in that class.  

 

Table 8: labeled dataset 

Sr 

no.  

Identifier  Project name Instances  Faults 

1 Chart  Jfreechart 61 12 

2 Mockito Mockito 90 26 

3 Lang commons-lang 130 43 

4 Closure closure-compiler 184 92 

5 Cli commons-cli 85 18 

6 Math commons-math 124 68 

7 Jsoup Jsoup 81 37 
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4.1.1.1.2 Secondary dataset: 

The secondary dataset is publicly available unlabeled dataset of code smells [73]. This 

dataset comes from Qualitas Corpus (QC). Code smells of 76 different systems are in 

the corpus.  

4.1.1.2. Preprocessing/cleaning: 

We remove unused code smells from our target sets. We check for any null value in 

our dataset and null value percentage for each column of the dataset.  

4.1.2 Model Development phase: 

The process phase for software fault prediction at class level model comprises of 

various steps including train and test split, model, and evaluation. 

4.1.2.1 Train and test split: 

We split our dataset into the ratio of 70:30, 70% training data, and 30% testing data. 

we use train split to train our classifier and test split to test our classifier.  

4.1.2.2 ML Model: 

Both primary and secondary datasets are used to design and train the classifier. 

4.1.2.2.1 Algorithm: 

We present our algorithm for training classifier in algorithm 1. We first select unlabeled 

datasets containing code smells (M= M1…. Mm). we merge datasets into one and 

removed unused code smells. after that, we select a labeled dataset containing code 

smells. we merge datasets into one. Then we train the algorithm using labeled dataset 

and predict pseudo labels for unlabeled dataset. after predicting pseudo labels, we 

concatenate labeled and unlabeled datasets, split combined data into 70% train and 30% 

test data, and retrain the model. Finally, we use accuracy, precision, recall, and F1 score 

to evaluate our classifier.  

Algorithm 1: Algorithm for Training Classifier 

Input: A set of labeled and unlabeled datasets, containing a set of code smells (M= 

M1…. Mm). 

Output: software fault prediction model with overall classifier (Cf) evaluation. 

Start: 

1. Select unlabeled datasets (Dul1, Dul2, ….., Duln) //all containing set of selected 

code smells (M=M1….., Mm) 

2. Combine datasets into one. 

            DUL= ∑ (𝐷𝑢𝑙𝑘)
𝑛
𝑘=1  
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3. Remove unused code smells M1, M2, ….., Mm →Mc 

4. DUL ← apply data cleaning (DUL) 

5. Gather labeled datasets (Dl1, Dl2, ….., Dln) //all containing set of selected code 

smells (M=M1….., MM) 

6. Combine datasets into one. 

DL= ∑ (𝐷𝑙𝑘)
𝑛
𝑘=1  

7. DL ← apply data cleaning (DL) 

8. Train algo using labeled dataset DL. 

9. Predict pseudo labels for unlabeled datasets DUL. 

10. Combine both datasets  

D= DL + DUL  

11. Spilt the combined Dataset (D) into train and test spilt (70:30). 

12. Train and test the random forest classifier (Cf) on cleaned combined dataset (D) 

with code smells Mc. 

13. Calculate precision, recall, and f1 score. 

END 

4.1.2.2.2 Software specification: 

For the development of the fault prediction model at the class level we have used the 

Jupyter notebook. Python language provides a great platform for building machine 

learning algorithm which is very concise and easy to understand. It provides several 

libraries for data analysis, visualization, text classification, and natural language 

processing. Python library NumPy is used for data storage at runtime array. We have 

used Panda library to read data from csv file (code smells dataset). Pandas is a general 

information control library based on the top of NumPy. Scikit-learn is based on top of 

two Python libraries NumPy and SciPy and has become the most mainstream Python 

ML library for creating ML calculations. Scikit-learn has a wide scope of regulated and 

solo learning calculations that deal with a reliable interface in Python. The library can 

likewise use for information mining and information investigation. The principal 

machine learning works that the Scikit-learn library can deal with are classification, 

relapse, grouping, dimensionality decrease, model choice, and preprocessing. 

4.1.2.2.3 Training classifier: 

We have small amount of labeled (primary) and huge amount of unlabeled (secondary) 

dataset is available. To use both types of datasets in the training classifier we use a 

semi-supervised machine learning technique named pseudo-labeling [67]. 

4.1.2.2.3.1 Pseudo labeling: 

For pseudo labels, we first train the model using labeled dataset, then predict pseudo 

labels for the unlabeled dataset. after that concatenate both label and pseudo label data. 
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     Figure 6: pseudo labeling code  

 

4.1.2.2.3.2 Random forest: 

After concatenating both label and pseudo label data, we split dataset into 70:30 and 

training model using Random forest algorithm. 

 

Figure 7: Random forest algorithm code 

4.1.2.3.  Evaluation: 

For evaluation of our model, we use performance evaluation metrics which include 

Accuracy, Precision, Recall, and F1-score for the assessment of the models. With 

performance metrics, for completely unbiased results we have use the 10-folds cross-

validation method.  

4.2 Fault prediction at method level: 

4.2.1 Preprocessing phase: 

The preprocessing phase for software fault prediction at the method level model 

comprises various steps including selection, pre-processing/cleaning, and 

normalization. 
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4.2.1.1. Selection: 

The labeled dataset is extracted from projects available at defects4j [3]. defects4j is an 

open-source repository which has complete detail of active bugs of multiple java 

projects. It provides complete information of faults which includes the package name, 

class name, method name, and exact location of fault [71]. Table 9 shows the 

description of selected datasets. we have complete details of faults now for code smells 

we use the tool iPlasma [72]. iPlasma is an environment that helps in the extraction of 

code smells from source code with addition to this, the object-oriented system used it 

for quality analysis. After getting code smells of all projects shown in table 9, the 

reports of code smells are generated in comma-separated version (CSV) extension. we 

add labels e.g., 0 or 1. 0 if no faults and 1 if the fault is present in that class. 

Table 9: Selected Dataset 

Sr 

no.  

Identifier  Project name Instances  Faults 

1 Chart   Jfreechart 61 12 

2 Mockito  Mockito 90 26 

3 Lang  Commons-lang 130 43 

4 Closure closure-compiler 184 92 

5 Cli  Commons-cli 85 18 

6 Math commons-math 124 68 

7 Jsoup Jsoup 81 37 

8 Compress  Compress  53 20 

 

4.2.1.2. Preprocessing/cleaning: 

We check for any null value in our dataset and null value percentage for each column 

of dataset.  

4.2.2 Model Development phase: 

The process phase for software fault prediction at the method level model comprises 

various steps including train and test split, model, and evaluation. 

4.2.2.1 Train and test split: 

We split our dataset into the ratio of 70:30, 70% training data, and 30% testing data. 

we use train split to train our classifier and test split to test our classifier.  

4.2.2.2 ML Model: 

The labeled dataset is used to design and train classifier. 
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4.2.2.2.1 Algorithm: 

We present our algorithm for training classifier in algorithm 2. We first select labeled 

datasets containing code smells (M= M1…. Mm). we merge datasets into one and 

removed unused code smells. after merge we split combined data into 70% train and 

30% test data, and train model using classifier. Finally, we use accuracy, precision, 

recall and F1 score to evaluate our classifier.  

Algorithm 2: Algorithm for Training Classifier 

Input: A set of labeled datasets (D1, D2, D3…., Dn), containing code smells (M= M1…. 

Mm). 

Output: software fault prediction model with overall classifier (Cf) evaluation. 

Start: 

1.        Select labeled datasets (D1, D2, D3….,Dn) // all containing code smells (M= 

M1….Mm). 

2.         Combine datasets into one. 

     D= ∑ (𝐷𝑘)
𝑛
𝑘=1  

3.         D ← apply data cleaning (D) 

4.         Spilt the combined Dataset (D) into train and test spilt (70:30). 

5.         Apply Bagging classifier (Cf) with random forest as base classifier on the 

cleaned dataset. 

6.          Calculate precision, recall, and f1 score. 

END 

4.2.2.2.2 Software specification: 

For the development of the fault prediction model at the method level we have used the 

Jupyter notebook. Python language provides a great platform for building machine 

learning algorithm which is very concise and easy to understand. It provides several 

libraries for data analysis, visualization, text classification, and natural language 

processing. Python library NumPy is used for data storage at runtime array. We have 

used Panda library to read data from csv file (code smells dataset). Pandas is a general 

information control library based on the top of NumPy. Scikit-learn is based on top of 

two Python libraries NumPy and SciPy and has become the most mainstream Python 

ML library for creating ML calculations. Scikit-learn has a wide scope of regulated and 

solo learning calculations that deal with a reliable interface in Python. The library can 

likewise use for information mining and information investigation. The principal 

machine learning works that the Scikit-learn library can deal with are classification, 

relapse, grouping, dimensionality decrease, model choice, and preprocessing. 

 4.2.2.2.3 Training classifier: 
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At the method level, dataset of code smells is not available publicly so we extract the 

method level dataset. this dataset is in a small amount so, to increase the amount of 

dataset we use a technique named Bagging. Bagging not only increases the amount of 

data but also improves accuracy, loss, bias, and variance and improves the performance 

of the classifier.   

4.2.2.2.3.1 Bagging: 

1. Value of loss, bias, and variance without bagging: 

 

Figure 8: Values without Bagging code 

2. Value of loss, bias, and variance with bagging. 

 

    Figure 9: Values with Bagging code 

 

4.2.2.2.3.2 Bagging classifier and Random forest: 

We are using random forest as the base classifier for bagging. We create 10 bags of 

dataset, each with 500 data points.  

4.2.2.3 Evaluation: 
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For evaluation of our model, we use performance evaluation metrics which include 

Accuracy, Precision, Recall, and F1-score for the assessment of the models. With 

performance metrics, for neutral results, we use 10-fold cross validation method.  

 

Figure 10: Bagging classifier and random classifier code 
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Chapter 5: Result and Discussion: 

5.1 Fault prediction at class level: 

To demonstrate the validity of our proposed model, we took a project Joda-time from 

defect4j. Joda-timeoprovidesoreplacementoforojava dateoandotime class. It allows 

multiple calendars systems. Joda-Timeosolvesooneocriticaloproblem stale time zone 

data. [74]. There is a total of 145 different classes. We extract code smells from the 

project using a tool named IPlasma. We extract code smells of 30 classes. From 145 

classes we picked only business logic classes. other classes that are platform depended 

are not considered. As per our proposed model we are interested to predict the faulty 

class through a trained Random forest classifier.  

5.1.1 Training of Model  

We have 2 datasets that we used to train our model primary dataset which is labeled 

and a secondary dataset which is unlabeled. we use a semi-supervised machine learning 

approach pseudo-labeling to label unlabeled dataset. Our training dataset has 13 

columns. first 12 Columns names are “BrainMethod-IPLASMA”, 

“ExtensiveCoupling-IPLASMA”, “IntensiveCoupling-IPLASMA”, “SchizoClass-

IPLASMA”, “BrainClass-IPLASMA”, “TraditionBreaker-IPLASMA”, “GodClass-

AGGREGATE”, “FeatureEnvy-AGGREGATE”, “DataClass-AGGREGATE”, 

“LongParamList-AGGREGATE”, “ShotgunSurgery-AGGREGATE”, 

“RefusedParentBequest-AGGREGATE” which are defined as X_train while 13th 

column is our labeled column named “fault” which is defined as Y_train. Initially, we 

train our model on both X_train and Y_train. As we have to do pseudo labeling on an 

unlabeled dataset so that we can increase our training dataset we have X_test on which 

we predict labels.   

After pseudo-labeling, we concatenate data and labels and create one complete labeled 

dataset. we split our data into 70 and 30. we are using 70% of the dataset for model 

training while the rest of 30% is used for testing to ensure the test results of the trained 

model. 

5.1.2 Model evaluation: 

We are using random forest classifier. To select the most optimal value for the number 

of trees we calculate accuracy with the different number of trees and select the optimal 

number of trees. Initially, We have achieved 99.78% of test accuracy with 10 trees, 

99.74% of test accuracy with 20 trees, 99.60% of test accuracy with 30 trees, 99.53 

with 40 trees, and 99.23 with 100 trees. We observe that accuracy is decreasing with 

increasing the number of trees so the optimal number of trees with the highest accuracy 

is 10 as shown in figure 11. 

So, we have achieved 99.78% of test accuracy with our dataset. 
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for neutral results, we have use 10-fold cross-validation method. We present the 

accuracy, precision, recall, and f1-scores’ result of each fold in table 10. 

 

Table 10: 10-folds cross validation (Class) 

Folds Accuracy Precision  Recall  F1-score 

1 0.993 0.968 0.954 0.961 

2 0.995 0.976 0.969 0.973 

3 0.996 0.977 0.977 0.977 

4 0.994 0.991 0.946 0.968 

5 0.996 0.992 0.962 0.980 

6 0.996 0.969 0.984 0.977 

7 0.995 0.962 0.984 0.973 

8 0.997 0.970 1 0.984 

9 0.996 0.976 0.976 0.976 

10 0.998 0.984 0.992 0.988 

 

We can view the class error prediction in figure 12. We assess the classifier utilizing 

performance evaluation metrics which include precision, recall, and F1 score as shown 

in figure 13 and table 8. In classification, precision is the negligible part of significant 

occasions among the recovered cases, while recall is the small portion of applicable 

cases that were recovered. Both accuracy and recall are hence founded on significance. 

F1-score is characterized as a proportion of a model's precision on a dataset. It is 

utilized to assess parallel classification frameworks, which order models into 'positive' 

or 'negative'. 

 

Figure 11: Accuracy graph (Class) 

 



34 
 

Table 12: performance evaluation table (class) 

 

   

 

5.1.3 Model validation: 

Our proposed model helps in software fault prediction. We performed a case study on 

a project named Joda-time from defects4j. We picked business logic classes. platform 

depended classes are not considered. We have source code and complete information 

about faulty classes of the project. The model helps the tester to identify where in the 

application we have high chances of occurrence of faults. It helps the organization to 

plan their testing activities from the early stages of the software development life cycle 

because faults become costly when the applications go live. 

  

    

 

               Figure 12: Class prediction error graph (class) 

Accuracy  Precision  Recall  F1 score 

99.78% 98% 97% 98% 
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Figure 13: Classification report (class) 

 

As we have developed a model via machine learning in Random forest based on which 

we predict software faults. For validation of our model, we used a project named CSV 

from defects4j. we have complete information of source code and faulty classes of the 

project. We picked 30 different classes of the project and extract smells of these classes 

using smells extraction tool iPlasma. Among these 30 classes, 15 classes are faulty and 

15 classes are non-faulty. we generate csv file of smells. After that, we input this csv 

file into our model and our model predicts faulty classes. our model predicts 13 faulty 

classes and 17 non-faulty classes as shown in Table 12 and figure 14.  

Table 12: Predicted and actual results (Class) 

Sr no.  Classes  Actual   Predicted   

1 C1 F NF 

2 C2 NF NF 

3 C3 F F 

4 C4 F F 

5 C5 F  F 

6 C6 NF NF 

7 C7 NF NF 

8 C8 F F 



36 
 

 

   

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To check that how efficient our prediction is we use a strategy named Percentage of 

right prediction to check the percentage of right prediction, as shown in Equation1 and 

we use the percentage of wrong prediction to check the percentage of our wrong 

prediction, as shown in Equation 2. This methodology helped in reducing testing effort 

and time.  

      % of Right Prediction = classes predicted right/ total number of classes* 100 (1) 

            = 28/30 

            = 93.33% 

9 C9 F  F 

10 C10 NF NF 

11 C11 NF NF 

12 C12 F  F 

13 C13 F  F 

14 C14 F  F 

15 C15 NF NF 

16 C16 F F 

17 C17 NF NF 

18 C18 NF NF 

19 C19 NF NF 

20 C20 NF NF 

21 C21 F NF 

22 C22 F F 

23 C23 NF NF 

24 C24 NF NF 

25 C25 F F 

26 C26 F F 

27 C27 NF NF 

28 C28 NF NF 

29  C29 NF NF 

30 C30 F F 
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     % of Wrong prediction = classes predicted wrong/ total number of classes* 100 (2) 

           = 2/30 

           = 6.66% 

 

 

Figure 14: Actual and predicted Results (Class)  

 

5.2 fault prediction at method level: 

To demonstrate the validity of our proposed model, we took a project Joda-time from 

defect4j. Joda-timeoprovidesoreplacementoforOjava dateoandotime class. It allows 

multiple calendars systems. Joda-Timeosolvesooneocriticaloproblem stale time zone 

data. [74]. There is a total of 145 different classes. We extract code smells from the 

project using a tool named IPlasma. We extract code smells of 30 methods of these 30 

classes. from 145 classes we picked only business logic classes. other classes that are 

platform depended are not considered. As per our proposed model we are interested to 

predict the faulty method through a trained Bagging classifier.  

5.2.1 Training of Model  

We have a dataset of method level which we used to train our model. Our training 

dataset has 7 columns. The first 6 Columns names are “Brain Method”, “Extensive 

Coupling”, “Feature Envy”, “Intensive Coupling”, “LongParaList”, “Shotgun 

Surgery” while the 7th column is our labeled column. 

we split our data into 70 and 30. we are using 70% of the dataset for model training 

while the rest of 30% is used for testing to ensure the test results of trained model. 

We are using Bagging Classifier with Random forest as base classifier. Bagging uses 

a basic methodology that appears in measurable examinations over and over to improve 

the gauge of one by joining the assessments of many. Bagging construct and grouping 
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classifiers utilizing bootstrap testing of the preparation information and afterward 

consolidates their prediction to create a final meta-prediction. 

5.2.2 Model evaluation: 

We are using random forest classifier. To select the most optimal value for the number 

of trees we calculate accuracy with the different number of trees and select the optimal 

number of trees. Initially, We have achieved 85.18% of test accuracy with 10 trees, 

86.41% of test accuracy with 20 trees, 85.16% of test accuracy with 30 trees, 85.13% 

of test accuracy with 40 trees. We observe that accuracy is decreasing with increasing 

the number of trees so the optimal number of trees with the highest accuracy is 20 as 

shown in figure 15. 

So, we have achieved 86.41% of test accuracy with our dataset. 

for neutral results, we have use 10-fold cross validation method. We present accuracy, 

precision, recall, and f1-scores’ result of each fold in table 13. 

Table 13: 10-fold cross validation (Method) 

Folds  Accuracy  Precision  Recall  F1-score 

1 0.94 0.836 0.816 0.813 

2 0.842 0.829 0.800 0.830 

3 0.848 0.830 0.810 0.930 

4 0.874 0.834 0.834 0.909 

5 0.851 0.843 0.843 0.904 

6 0.96 0.837 0.837 0.837 

7 0.872 0.831 0.829 0.829 

8 0.816 0.810 0.701 0.718 

9 0.813 0.838 0.73 0.73 

10 0.821 0.812 0.80 0.70 

 

We can view the class error prediction in figure 16. We assess the classifier utilizing 

performance evaluation metrics which are precision, recall, and F1 score as shown in 

figure 17 and table 14. In classification, precision is the negligible part of significant 

occasions among the recovered cases, while recall is the small portion of applicable 

cases that were recovered. Both accuracy and recall are hence founded on significance. 

F1-score is characterized as a proportion of a model's precision on a dataset. It is 

utilized to assess parallel classification frameworks, which order models into 'positive' 

or 'negative'. 

Table 14: performance evaluation table (method) 

Accuracy  Precision  Recall  F1 score 

86.41% 83% 80% 82% 
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Figure 15: Accuracy graph (Method) 

 

 

Figure 16: Class prediction error graph (method) 

 

5.2.3 Model validation: 

Our proposed model helps in software fault prediction. We performed case study on a 

Joda-time project from defects4j. We picked business logic classes. platform depended 

classes are not considered. We have source code and complete information about the 

faulty methods of the project. The model helps the tester to identify where in the 

application we have high chances of occurrence of faults. It helps the organization to 

plan their testing activities from the early stages of the software development life cycle 

because faults become costly when the applications go live. 
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Figure 17: Classification report (method) 

 

As we have developed a model via machine learning in Random forest based on which 

we predict software faults. For validation of our model, we used a project named CSV 

from defects4j. we have complete information of source code and faulty methods of 

the project. We picked 30 different methods of the project and extract smells of these 

methods using smells extraction tool iPlasma. Among these 30 methods, 15 methods 

are faulty, and 15 methods are non-faulty. After that, we input csv file into our model 

and our model predict faulty methods. our model predicts 10 faulty methods and 20 

non-faulty methods as shown in Table 15 and figure 18.  

Table 15: Predicted and actual results (Method) 

Sr no.  Method  Actual  Predicted   

1 M1 NF NF 

2 M2 F F 

3 M3 F NF 

4 M4 NF NF 

5 M5 F F 

6 M6 F NF 

7 M7 NF NF 

8 M8 NF NF 

9 M9 NF NF 
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To check that how efficiently our model predicts, we use a strategy named Percentage 

of right prediction to check the percentage of right prediction, as shown in Equation 3 

and we use percentage of wrong prediction to check the percentage of our wrong 

prediction, as shown in Equation 4.  

% of Right Prediction = methods predicted right/ total number of methods* 100 (3) 

            = 25/30 

            = 83.33% 

10 M10 NF NF 

11 M11 F NF 

12 M12 F F 

13 M13 F F 

14 M14 NF NF 

15 M15 NF NF 

16 M16 F NF 

17 M17 NF NF 

18 M18 F F 

19 M19 F F 

20 M20 F NF 

21 M21 NF NF 

22 M22 NF F 

23 M23 NF NF 

24 M24 NF NF 

25 M25 F F 

26 M26 NF NF 

27 M27 NF NF 

28 M28 F F 

29  M29 F NF 

30 M30 F F 
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   % of Wrong prediction = methods predicted wrong/ total number of methods* 100(4) 

           = 5/30 

           = 16.66% 

 

 

Figure 18: Actual and Predicted Results (Method) 

 

Software development life cycle has many phases among them quality is one of the 

most important stages. Early-stage fault prediction plays an important role in 

improving the quality of software. It saves time and cost. Software development is 

becoming an emerging field with the enhancement of applications used in day-to-day 

life and it is increasing interaction with technology at a rapid pace. This vast usage of 

applications enhances the importance of Quality Assurance. Bugs found after 

production release can be very costly. Limiting the number of bugs in software is an 

exertion key to software engineering, faulty code neglects to satisfy the reason it was 

composed for, lastly fixing it costs time and money. resources in a software 

development life cycle are quite often restricted and thusly ought to be allocated to 

where they required most to avoid bugs, they ought to center around the most fault -

prone areas of the project. Having the option to predict where such areas may be 

would permit a greater turn of events and testing endeavors to be allocated to the 

correct places.  

Utilizing bug prediction models at the degree of individual methods can save effort in 

many aspects. It saves effort in terms of time and terms of cost. Moreover, this approach 

of predicting faults at the method level reduces manual inspection efforts for 

developers.  
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5.3 Comparison: 

We do comparison of our methodology with some other proposed methodologies. The 

basic criterion of comparison is at which level faults are predicted. After level, the next 

criteria is number of code smells used for fault prediction at class level and accuracy, 

Precision, recall, and f1 score of our methodology and other methodology.  

We find several fault prediction approaches providing fault prediction at the class level 

and the method level. A study proved by giving empirical evidence that code smells 

are helpful in fault prediction.  The metrics they used in their study are source code and 

code smells with different machine learning techniques like Naïve Bayes, random 

forest, and Logistic Regression techniques. [53] 

The author in another study evaluates class level change-prone prediction power using 

code smells. they used many machine learning approaches. The result of this 

experiment indicates positive relation between code smells and class change proneness 

with a probability superior to 70%. [55]. 

Another study looks into that that how code smells and fault prediction are related. To 

study this relation, they used many techniques like ADTree, Naïve Bayes, Logistic 

regression, and Multilayer perceptron. Results of this study showed that the combined 

model improves F-measure up to 20%. [56]. 

Another author in his study confirms that code smells are directly related to software 

faults and the performance of fault prediction models. They use Naive Bayes and 

Logistic Regression techniques. [57] 

In another study, the author assesses the benefaction of a proportion of the intensity of 

code smells. for this, they add code smells to the existing prediction model which used 

process and product metrics. they compare both existing and new models. As of result 

of this experiment by adding code smells a predictor, the accuracy of the prediction 

model increases [54] 

It is worth mentioning that most of the approaches do fault prediction at the class level 

leaving method level predictions. Instead, we predict faults at both class and method 

levels. We validate our methodology using a few case studies. We show a comparison 

of different fault prediction techniques proposed by different authors with our approach 

as shown in Table 16.  
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Table 16: Comparison 

 

 

 

 

 

     Papers                         Fault prediction 

              Class level  

Method 

level 

   

Prediction 

   

Attributes 

 

Accuracy  

 

Precision 

 

Recall 

F1-

score 

[59]         ✓       5 99.73% 83% 95% 88% X 

[60]         ✓       6 - 76% 84% 80%                   

X 

[61]         ✓       2 - 80.61% 90.98% -           

X 

[62]         ✓       6 - - - 75%           

X 

[75]         ✓       5 - 90% 72.7% 50%           

X 

[16]         ✓       8 - - 62% -           

X 

[52]         ✓       1 - - - -           

X 

[76]        ✓       8 54.09% - - -           

X 

[77]        ✓       1 86.68% - - 61% X 

Our 

methodology 
       ✓      12 99.78% 98% 97% 98% ✓ 
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Chapter 6: Conclusion: 

This chapter discusses the conclusion of our work on software fault prediction using 

cod smells, results, and summarization of our research work. In the addition, this 

chapter also provides an overview of performed research and future work.  

Different researchers as discussed in literature do research work on fault prediction 

using code smells at the class level. Different authors use different types of code smells 

and use different machine learning or regression techniques for fault prediction. All 

this work is done at the class level. 

 There are more than 30 code smells in the literature, but the authors used 5-8 different 

code smells. Impressive work has been done to predict faults at the class level but very 

few studies are there to predict faults at the method level. Researchers that are 

predicting faults at the method level used process metrics or software metrics for 

example CK metrics. no work is done in the field of fault prediction at the method level 

using code smells. 

We proposed an effective and efficient model. We use pseudo labeling technique with 

random forest at class level fault prediction and we use bagging classifier with random 

forest as the base classifier for fault prediction at method level. The model developed 

using these techniques can predict software faults at class and method level using code 

smells. The model can enhance and used for object-oriented or process metrics 

provided with the structured dataset. The dataset used in the model building consists of 

different types of code smells that are extracted from source code. For class-level 

prediction we are using 12 different code smells and for method level we use 6 different 

method level code smells. The labeled dataset is collected from projects available at 

defects4j. the dataset is pre-processed and structured according to the requirements of 

the model being implemented. Our contribution in this research work is the model 

developed to predict software faults using code smells at class level and method level 

via machine learning technique.  

The accuracy and performance of our model depend upon training dataset. Our system 

generated 99% and 86% test accuracy under semi/supervised machine learning 

algorithm for class level prediction and method level prediction respectively.  

In addition to accuracy, we use performance evaluation metrics to evaluate our model. 

Performance evaluation metrics have precision, recall, and F1-score, for unbiased 

evaluation we use 10 cross-validations. 

For validation of our model, we use defects4j. we extract code smells from projects 

available at dafects4j and input these code smells to our model, as output our model 

predict faulty instances. We use the percentage of the right prediction and the 

percentage of the wrong prediction to check the efficiency of our predictions. We 

achieved a satisfactory percentage of right prediction both at the class level and at 

method level.  
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From our experiment and results, we observe that we can predict faults using code 

smells and code smells are a good index for software fault prediction at class level and 

method level.  

For future work we are planning to use code smells with deep learning, and we are 

planning to use some other software metrics or process metrics with machine learning 

and deep learning to predict faults at the method level.  
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