

IMPACT OF CODE SMELLS ON SOFTWARE

FAULT PREDICTION AT CLASS LEVEL AND

METHOD LEVEL

Supervisor

Dr. Tamim Ahmed Khan

Submitted by

Um-E-Safia

01-241191-019

MS (Software Engineering)

A thesis submitted to the Department of Software Engineering, Bahria University,

Islamabad in the partial fulfillment for the requirements of a Master’s degree in

Software Engineering.

April 2021

ii

Approval Sheet

Thesis Completion Certificate

Scholar’s name: Um-e-Safia Registration no: 01-241191-019

Programme of study: MS Software Engineering

Thesis Title: Impact of code smells on software fault prediction at class level and method

level

It is to certify that the above student's thesis has been completed to my satisfaction and, to my

belief, its standard is appropriate for submission for Evaluation. I have also conducted plagiarism

test of this thesis using HEC prescribed software and found similarity index at _12%_ that is within

the permissible limit set by the HEC for the MS/MPhil degree thesis. I have also found the thesis in

a format recognized by the BU for the MS/MPhil thesis.

Principal Supervisor’s Signature: __________________________

Date: __25-april-2021_____ Name: __Um-e-Safia__________

iii

Certificate of Originality

This is certify that the intellectual contents of the thesis

Impact of code smells on software fault prediction at class level and method level.

are the product of my own research work except, as cited property and accurately in the
acknowledgements and references, the material taken from such sources as research journals,
books, internet, etc. solely to support, elaborate, compare and extend the earlier work. Further,
this work has not been submitted by me previously for any degree, nor it shall be submitted by me
in the future for obtaining any degree from this University, or any other university or institution.
The incorrectness of this information, if proved at any stage, shall authorities the University to
cancel my degree.

Signature: _____ _____ Date: 25-april-2021

Name of the Research Student: Um-e-Safia

iv

Abstract

The main aim of software fault prediction is the identification of such classes and

methods where faults are expected. Fault prediction used properties of the software

project to predict faults at the early stage of SDLC. Early-stage prediction of software

faults supports software quality assurance activities.

Evaluation of code smells for anticipating software faults is basic to ensure its

importance in the field of software quality. In this thesis, we will investigate that how

code smells help in software fault prediction at the class level and method level.

Previous studies show the impact of code smells on fault prediction. However, using

code smells for class level faults prediction and method level fault prediction needs

more concern.

We make use of the defects4j repository to create the dataset that we use for training

and testing of the software fault prediction model. We use pseudo labeling for class

level prediction and bagging for method level prediction. We use accuracy, precision,

recall, f1 score, and 10-fold cross-validation method for the evaluation of models.

To do validation, we use a case study. We extract code smells from different classes

and methods, and we then make use of these code smells for fault prediction. We

compare our prediction results with actual results and see if our prediction is correct.

v

Dedication

This dissertation is dedicated to my beloved parents and siblings who always supported me and

stood by my side.

vi

Acknowledgments

Gratitude to Almighty ALLAH, the Most Merciful and Beneficent, who provided us

thinking power and gifted us the most signified and distinctive place among all his

creatures. I thank ALLAH, the almighty for giving me the ability and strength to

complete this dissertation and for blessing me with many great people who have been

my greatest support. I would like to extend my deep gratitude to my supervisor, Dr.

Tamim Ahmed khan for his kind supervision, enthusiasm, immense knowledge, and

guidance. I am indebted to my parents and my siblings for supporting me spiritually.

vii

Table of Contents
Approval Sheet .. ii

Certificate of Originality ... iii

Abstract ... iv

Dedication .. v

Acknowledgement .. vi

Table of content .. vii

List of Tables ... x

List of Figures ..xi

Chapter 1: Introduction ... 1

1.1 Motivation .. 1

1.2 Research Gap ... 2

1.3 Problem statement .. 3

1.4 Proposed solution .. 3

1.5 Objectivs ... 3

1.6 Contribution .. 3

1.7 Thesis Organization .. 4

Chapter 2: Literature Review .. 5

2.1 Code smells .. 5

2.2 Software fault prediction using software matrics .. 8

2.3 Software fault prediction using code smells .. 11

2.4 Software fault prediction at method level ... 16

2.5 Summary .. 17

Chapter 3: Research Methodology and Our Approach .. 18

3.1 Introduction ... 18

3.2 Our Methodology .. 18

3.2.1 Preprocessing phase ... 19

3.2.1.1. Selection .. 19

3.2.1.2. Preprocess/cleaning…….. .. 20

3.2.1.3. Merge .. 20

3.2.1.4. Normalization ... 20

3.2.2 Model development phase ... 21

3.2.2.1. Test and train split ... 21

viii

3.2.2.2. ML Model ... 21

3.2.2.2.1 Class level prediction…………………..…………………………………………….......21

3.2.2.2.1.1 Pseudo labeling ... 21

3.2.2.2.1.2 Random forest ... 22

3.2.2.2.2 Method level prediction ... 22

3.2.2.2.2.1 Bgging ... 22

3.2.2.3 Evaluation ... 23

3.2.3 Post Processing phase .. 23

3.2.3.1 Code smell extraction ... 23

3.2.3.2 Prediction ... 23

3.2.3.3 Validation……………………………………………………………................................23

3.3 Summary .. 24

Chapter 4: Implementation .. 25

4.1 Fault prediction at class level ... 25

4.1.1 Preprocessing phase ... 25

4.1.1.1 Selection ... 25

4.1.1.1.1 Primary dataset ... 25

4.1.1.1.2 Secondary dataset .. 25

4.1.1.2 preprocess/cleaning ... 25

4.1.2 Model development phase ... 26

4.1.2.1 Train and test split .. 26

4.1.2.2 ML Model ... 26

4.1.2.2.1 Algorithm .. 26

4.1.2.2.2 Software specification .. 27

4.1.2.2.3 Training classifier ... 27

4.1.2.2.3.1 Pseudo labeling ... 27

4.1.2.2.3.2 Random forest ... 28

4.1.2.3. Evaluation .. 28

4.2 fault prediction at method level ... 28

4.2.1 Preprocessing Phase ... 28

4.2.1.1. Selection .. 28

4.2.1.2. Preprocess/cleaning ... 29

4.2.2 Model development phase ... 29

ix

4.2.2.1. Train and test split ... 29

4.2.2.2. ML Model .. 29

4.2.2.2.1 Algorithm .. 29

4.2.2.2.2 Software specification .. 30

4.2.2.2.3 Training classifier ... 30

4.2.2.2.3.1 Bagging .. 31

4.2.2.2.3.2 Bagging with random forest classifier ... 31

4.2.3. Evaluation ... 32

Chapter 5: Results and discussion ... 33

5.1 Fault prediction at class level ... 33

5.1.1 Training of model ... 33

5.1.2 Model evaluation .. 33

5.1.3 Model Validation .. 34

5.2 Fault prediction at method level .. 37

5.2.1 Training of model ... 37

5.2.2 Model evaluation .. 39

5.2.3 Model Validation .. 40

5.3 Comparison .. 43

Chapter 6 ... 45

Conclusion .. 45

References .. 47

x

List of Tables

Table 1 List of first introduced code smells and definitions(Class level) 5

Table 2 List of first introduced code smells and definitions(Method level) 5

Table 3 List of additional code smells and definitions(Class level) ... 7

Table 4 List of additional code smells and definitions(Method level) .. 7

Table 5 Fault prediction using software metrics ... 9

Table 6 Fault prediction using code smells .. 13

Table 7 List of selected code smells ... 18

Table 8 Labeled dataset (Class) .. 24

Table 9 Dataset (Method) .. 28

Table 10 10-folds cross-validation(Class)... 34

Table 11 Performance evaluation table (Class) ... 35

Table 12 Predicted and actual results(class) ... 36

Table 13 10-folds cross-validation (Method) ... 39

Table 14 Performance evaluation table (Method) .. 39

Table 15 Predicted and actual results (Method) ... 41

Table 16 Comparison .. 45

xi

List of Figures

Figure 1 Thesis organization .. 4

Figure 2 Research Process .. 18

Figure 3 Semi-supervised learning method .. 20

Figure 4 Pseudo-labeling learning method ... 21

Figure 5 Fault prediction ... 22

Figure 6 Pseudo labeling code .. 27

Figure 7 Random forest algorithm code .. 27

Figure 8 Values without Bagging code .. 30

Figure 9 Values with Bagging code .. 30

Figure 10 Bagging classifier and random classifier code .. 31

Figure 11 Accuracy Graph (Class) .. 33

Figure 12 Class prediction error graph (Class) .. 34

Figure 13 Classification report (Class) .. 34

Figure 14 Actual and predicted Results (Class) ... 36

Figure 15 Accuracy Graph (Method) .. 38

Figure 16 Class prediction classification report (method) ... 38

Figure 17 Classification report (method) .. 39

Figure 18 Actual and predicted Results (Class) ... 41

1

Chapter 1: Introduction:
Software engineering field have many prediction approaches for example fault

prediction, test effort prediction, cost prediction, usability prediction and many others.

Every approach has their own importance but, among all these predictions approaches

many are in the preliminary phase and required more research to reach robust models.

Among all these prediction approaches, Softwareafault predictionais the most

populararesearch area.

Faultgprediction modelsgare used totimproveg.software quality andg.to assist software

inspectionbby locating possible faults.f.Software fault is a conditionsthat makes a

system comesup short in performinggout its necessary function.[1] Faultsis a basic

explanationsbehind system breakdown and is equivalent to the generally used term

bug. Efforts are necessary to minimize software faults. However, all these efforts cost

time and resources. Early fault prediction strategy is required so that it helps in the

reduction of faults and improves the overall quality of software. It is verified that the

sooner a fault is detected lesser it costs [2]. So, early-stage software prediction can save

many resources (time, money, human).

Code smells are defined as properties of source code that indicate expected faults or

deeper problems [3]. At first 21 different types of code, smells were introduced [4]

shown in table 1 and 2. Code smells are now an accepted concept that is used to refer

to such design aspects and patterns, which may cause problems at the later stage of

software systems like development and maintenance. [4, 5]. Regardless, code smells

are not incorrect but instead, their essence point towards instability in design, which

fails in the system and expected bugs in the future. The primary focus of empirical

evaluation of code smell is to see whether the code with smells is more expected to

have faults than the code without smells.

Despite the accepted importance of code smells, Fault prediction using code smells is

a under rated field as compared to object-oriented metrics. Different researchers use

only a few kinds of code smells and usesdifferentemethods.oSome used regression and

some used machine leaninggtechniques. Somegfault predictiongmodels

havegproposed, but mostly give inadequateginformation.gThere isga need

ofgfaultspredictionsmodel which uses class and method-level code smells and predicts

faults not only at class level but also at method level.

1.1 Motivation:

Softwaresdefectspredictionsis a key processein software engineeringsto improve the

quality and assurancesofgsoftware in less timesand minimum cost. Itgis

implementedgbefore the testingsphasesof the softwaresdevelopment lifescycle.

Softwaresfault predictionsmodels providesdefects. Software development is becoming

an emerging field with the enhancement of applications used in day-to-day life and it

2

is increasing interaction with technology at a rapid pace. This vast usage of applications

enhances the importance of Quality Assurance. Bugs found after production release

can be very costly. Limiting the number of bugs in software is an exertion key to

software engineering, faulty code neglects to satisfy the reason it was composed for,

lastly fixing it costs time and money. resources in a software development life cycle

are quite often restricted and thusly ought to be allocated to where they required

most to avoid bugs, they ought to center around the most fault-prone areas of the

project. Having the option to predict where such areas may be would permit a greater

turn of events and testing endeavors to be allocated to the correct places.

1.2 Research Gap:

Most of the existing work focused on fault prediction using Object-oriented or process

metrics. Metrics that are used in these models are commonly “Halstead’s software

metrics”[6], “McCabe Cyclomatic complexity metrics” [7], and “object-oriented

metrics” [8-11]. And different modeling techniques used to predict faults. Statistical

modeling technique (univariate or multivariate logistic regression) [12]. And machine

learning techniques [13-15] are used for software fault prediction.

Conventional bug prediction approaches that use above mention metrics for prediction

have certain issues. For instance, it is more than obvious that if a class or codebase has

an enormous line of codes, it is more error prone. Yet this is not proved that a class or

method having less line of codes has a smaller number of bugs. In this manner, some

other metrics for fault prediction should use in research.

Some previous studies showed a significant effect of code smells on fault prediction.

In literature, different types of code smell metrics have been proposed and used for

fault prediction models. These metrics help in the construction of the prediction model.

Fault prediction models used data gathered from such projects where faults have been

identified previously [16].

However, mostgof thosegapproaches predictsbugs ongclass level or file level. This

approach often put a considerable amount of effort on tester’s shoulder to examine all

classes or file until the bug is located. This specific problem isgreinforced by the fact.

that large files are. typically predicted as the most bug prone.

In previous studies, researchers predict faults at a class level, no work is done for faults

prediction at the method level using code smells. Using faultspredictionsmodelsgat the

levelsof individual methodsgrathergthan at class-level/file-levelsscan save effortsin

term of time and cost. Moreover, this approach increasesgthe granularity of

thegpredictionsand thus reduce.manual inspection efforts for developers.

In previous work where code smells were used for software fault prediction, the

researcher creates their datasets by using CK and some other object-oriented and

process metrics for code smells presence. Moreover, researchers have worked only

3

with 4-8 types of code smells for fault prediction. However, fault prediction using code

smells considering more types, needs more concern and we intend to find out if code

smell would be beneficial or not.

1.3 Problem statement:

Code smells for fault prediction is a under rated field as compare to other object-

oriented metrics. We note that not all code smells found are faults but some of the code

smells can become a fault at the later stage of development. Code smells in software

fault prediction require an exclusive evaluation and validation which assist with

analyzing the effect of code smells on software fault prediction. In addition to this using

method level code smells to predict faults at the method level is also requires.

1.4 Research question:

Q1- How can we make use of code smells to detect faults at class level and method

level?

Q2- How can we make use of machine learning algorithm to detect faults?

Q3. What is the prediction model performance at the class and method level using code

smells?

1.5 Objective:

Objectivesof thissresearch is to propose a fault prediction model using code smells that

help in predict faulty classes and faulty methods to make testing efficient. With the

help of predicted faulty modules using code smells at the early stage of SDLC, we

reduce the prior mentioned cost of the project and we can schedule our projects more

accurately.

The proposed model:

• Identify the faulty classes present in different applications.

• Identify the faulty methods present in faulty classes of applications.

1.6 Contribution:

The overall contribution of work in this dissertation is to propose a methodology to

predict faults at the class level and method level. While working on supervised machine

learning we tried random forest model to find the solution to our problem. Also,

evaluate the solution that is proposed. To validate the proposed solution with the help

of a case study of around 30 classes and methods of the open-source project. We have

4

labeled and unlabeled dataset of code smells at class level and labeled dataset of code

smells at method level. We have trained our model on that dataset and tested it to give

predictions. We have trained our model via Random Forest classifier. During the

training phase of the model label data set used. During the validation phase of the

model, we have passed only code smells and the model automatically predicts that

which class and method is faulty.

1.7 Thesis Organization:

 Figure 1: Thesis Organization

Chapter 2: This chapter presents a referential literature review that has already been

done by researchers.

The first section, explains what code smells are and provide a definition and description

of all known code smells. The second section, explains thegwork thatghasgbeen done

by authors ingthe field ofgsoftware fault prediction. The third section describes

software fault prediction using code smells. The last section is about the work done in

the field of method-level fault prediction.

Chapter 3: This chapter gives an overall description of the proposed methodology, its

validation, and the whole research process. Each step is explained in detail.

Chapter 4: This chapter of the thesis describes the complete implementation details.

In this chapter, we explained the implementation of the proposed methodology with

the help of a case study. We also present the results of our experiment in this chapter.

Chapter 5: This chapter describes the results and discussion of our work. We also

present a comparison with existing studies in this chapter.

Chapter 6: The last chapter concludes our research and represents future work on this

research.

Literature

Review Conclusion Validation Implementation
Proposed

Methodology

5

Chapter 2: Literature Review

Ingrecentgyears,gsoftware faultsprediction is the most arising research field. Withgthe

increase in the field of softwaresdevelopmentland demandsfor softwaresproducts,

quality concerns also increasing day by day. Early-stage prediction of faults is one the

most important quality aspect. With the help of this, we not only improve the product

quality, but we also save time and cost. Many researchers have work in this field and

use many different techniques, most common techniques are following: Logistic

Regression [17-19], Naïve Bayes [20, 21], Support Vector Machines [22], K-Nearest

Neighbors [23], Decision Tree [24], Random Forest [25], Linear or Multiple

Regression[26, 27], Neural Networks[28, 29], HySOM [30].

2.1 Code smells:

Code smells are properties of source code. They are not bugs but they may cause bugs

at later stage of integration. Code smells are an infraction of basic coding standards

that.decrease the quality.of code [31]. A software having code smells still works, it

would still give output, but it increases the chances of faults in future. Moreover, it may

increase the processing time of software.

From above it is indicating that code smells may cause deeper problems, but they are

quick to spot. The best.smell is something.easy to find.but will lead to an.interesting

problem, likegclassesgwith datasand no behavior. Codessmells can be easily

detected.with the help.of tools.

At first, 21 different types of code smells were introduced shown in Table 1 and 2.

Later on, different researchers introduced different new code smells shown in Table 3

and 4.

Table 1: List of first introduced code smells and definitions (Class level)

Sr

no.

Code smell Definition

1 Duplicated code A similar code structure is in the program in more

than one spot.[4]

2 Large class A class with a lot of functionality and having many

instance variables. [4]

3 Divergent change One class is regularly changed in various manners for

various reasons.[4]

6

4 Shotgun surgery It is code duplication and refers to when a single

change is made in multiple classes.[4]

5 Data clumps Same data items always together in multiple classes.

[4]

6 Primitive obsession When the code depends a lot on primitives that it

starts controlling the logic in a class.[4]

7 Switch Statements Using switch statements with a type of code to get

different behavior or data instead of using subclasses

and polymorphism.[4]

8 Parallel Inheritance

Hierarchies

Parallel creation of subclasses of super classes.[4]

9 Lazy Class A class that isn't doing what's necessary.[4]

10 Speculative

Generality

Code that writes to handle special cases that are not

required.[4]

11 Temporary Field When many inputs are required by an algorithm

temporary field came into use.[4]

12 Message Chains To fulfill the client’s request each object start calling

another object. [4]

13 Middleman A class that starts behaving like a delegate and doing

nothing. [4]

14 Inappropriate

Intimacy

One unique class utilizes the inner fields and

functions for another unique class.[4]

15 Alternative Classes

with Different

Interfaces

The same functionality is performed by 2 classes with

different method names. [4]

16 Incomplete Library

Class

When libraries stop meeting user needs.[4]

17 Data Class A class that only contains fields, getters, and setters.

They are just dumb data holders.[4]

https://en.wikipedia.org/wiki/Library_(computing)

7

18 Refused Bequest Refer to when child class uses only a few methods

inhered from the parent class.[4]

Table 2: List of first introduced code smells and definitions (Method level)

Sr no. Code smell Definition

1 Feature envy It refers to a method that accesses data of other

objects more than its data.[4]

2 Long Parameter List Any method in a class having more than 3

parameters.[4]

3 Long method Method having many parameters and temporary

variables.[4]

Table 3: List of additional code smells and definition (Class level)

Sr

no.

Code smell Definition

1 God class It refers to such a class that performs too much

functionality and has a huge number of lines of

code.[32]

2 Tradition breaker Subclass should provide methods and functionality

that are not related to its superclass. [32]

3 Schizophrenic Class When 2 or more key abstractions are captured in a

single class.[32]

4 Brain class A class that performs too much but have strong

cohesion. [32]

5 Anti-singleton A class that gives mutable variables, which thusly

could be utilized as global variables.[16]

6 Blob class When from 2 coupled classes one class is doing too

much and more than the other class.[16]

8

7 Complex Class One method of a class having a high value of

cyclomatic complexity and LOCs. [16]

8 Swiss Army Knife It refers to such a class that provides a huge number

of interfaces and uses it. [16]

9 Interface

Segregation

Principal Violation

Interfaces and abstraction should not be forced. [33]

10 Cyclic

Dependencies

When 2 or more modules required each other to

perform the proper function. [33]

11 Distorted Hierarchy Such inheritance hierarchy is restricted and deep. [33]

Table 4: List of additional code smells and definition (Method level)

Sr

no.

Code smell Definition

1 Blob Operation It is a complex and huge operation that centralizes

class functionality.[33]

2 God method A method that performs too much functionality and

provides full class functionality in a single

method.[33]

3 Extensive coupling A method that communicates too much with other

methods, but provider method dispersed in many

classes.[32]

4 Intensive coupling A method of a class binds with other methods, but the

provider method is only dispersed in few classes. [32]

5 Brain method A method that performs too much but has strong

cohesion.[32]

2.2 Software fault prediction using software metrics:

Researchers explored that Software fault prediction utilizing the softwareqmetricsais

the most usually utilized and most ideal approach to foresee faults. Software metrics

9

significant to quantify the nature of the product item as far as different factors, for

example,gcoupling, cohesion,greliability,gaccuracy, .completeness, complexity,

inheritance etc.[34].gCommonly used metricsset are..CKgmetrics[8], McCabesmetrics

[7], Halsteadsmetrics [6]. Datassets fromgPROMISE repository [35] and NASAqare

mostlyqusedqinqthisqresearchqarea.

In a study, the author picked promise repository and use machine learning techniques

for prediction. He used 5 different machine learning models. The performance of all

these 5 models was evaluated using accuracy and F-mean.[32].

In another study author used 3 different techniques he first trained data using artificial

neural network ANN. Aftereffects of this methodology are contrasted and

ANNqwithout pre-trainingqandqsupportqvectorqmachines. The results of these

experiments showed that all 3 methods can be used for different datasets. [37]. Another

proposed a novel way to deal with anticipate faulty classes. In this examination,

HyGRAR strategy is carried out. HyGRAR technique depends on supervised learning.

In his experiment, he joins artificial neural network and rule mining techniques that

help in the classification of faulty and non -faulty data.

In a study author used ensemble methods for prediction. The author claimed that

because of using different methods, the results provided by ensemble methods are

better than other methods. Linear and non-linear methods are used. As base learning

techniques he used genetic programming and linear regression. For performance

evaluation Relative error and accuracy are used [36].

The author proposed fuzzy inference system-based approach for fault prediction. KC1,

KC2, KC3 datasets are used. Preprocessing and feature selection in done. McCabe

metrics are used in this study. Author claim that prediction that is performed by using

expert knowledge is better than simple supervised learning approaches. He compared

his method results with naïve based and random forest [37].

In this study, the author has 2 types of data, supervised and unsupervised. He used a

semi-supervised technique. he performed prediction on both datasets. After that DFCM

clusteringsapproachsapplied. It works by creatingsor updating the DFCM

membershipsand finding the clusterscenter. Clusterscenters computed for both subsets

of datasset (labeledsor unlabeled). Cluster centers computedsby DFCM clustering.

samplingsapproach random under used to balancesthe

featuresqfromqbothothewsubsets ofqdataset. resultsQareMevaluated in termssof F-

mean and area under the curve and resultssshowed that the DFCM approachsprovides

acceptablesresults for labeledsand unlabeled data [38].

Another studysvalidated the impactsof different inheritancesmetrics on

faultsprediction. 65 public datasets used. The authors divide the dataset into 2 groups

inheritance with CK and inheritance without CK. Artificial neural networks were used

to build the model. Performancesof the model is evaluated by accuracy, precision and

10

recall. Results of experiments showedsthat inheritancesmetrics are effectivesin

predicting softwaresfaults [39].

Table 5: Software fault prediction using software metrics

Paper Id Contribution Model

[40] the author used 3 different techniques he first

trained data using artificialqneuralqnetwork

ANN. Aftereffects of this methodology are

contrasted and ANNqwithoutqpre-training

andwsupportwvector machines. The results of

these experiments showed that all 3 methods

can be used for different datasets.

ANN

[36] In a study author used ensemble methods for

prediction. The author claimed that because of

using different methods, the results provided

by ensemble methods are better than other

methods. Linear and non-linear methods are

used. As base learning techniques he used

genetic programming and linear regression.

Relative error and accuracy are used for the

performance evaluation of the model.

Ensemble method

[41] In another study, the author proposed a model

for SFP. Boehm'swmodel-based classification

actedwinwthiswstudy. The COCOMO model

is utilized towclassifyqthe projectswinto

variousqclassifications. projects accumulated

into 3 classes i.e., embedded, semidetached

and organic datasets. KLOCqmetricqusedqin

this investigation. prediction arewdonewin

twowdistinct manners i.e., insideqdatasetqor

crosswdataset. As assessment measures, TPR,

NNge,m

DTNB,q

PART,q

Conjunctive rules,

regression tree,

oneR,

11

FPR, F-measure, precision, AUC, and

accuracy are utilized

C4.5,

ripper down rules and

JRip classifiers

[37] The author proposed fuzzy inference system-

based approach for fault prediction. McCabe

metrics are used in this study. Author claim

that prediction that is performed by using

expert knowledge is better than simple

supervised learning approaches. He compared

his method results with naïve based and

random forest

Fuzzy inference

system (FIS)

[39] In this study, 65 public datasets were used. The

authors divide the dataset into 2 groups

inheritance with CK and inheritance without

CK. Performancesof the model is evaluated

by accuracy, precision, and recall. Results of

experiments showedsthat inheritancesmetrics

are effectivesin predicting softwaresfaults.

Artificial neural

network (ANN)

2.3 Software fault prediction using code smells:

The work done previously using code smells for faulty prediction showed that code

smells affect faults. In literature, many code smells metrics have been proposed and

used for the fault prediction model. These metrics help in the construction of the

prediction model. Fault prediction models used data gathered from such projects where

faults have been identified previously [16]. From some time, fault prediction is an

important aspect. In literature, many different types of code smell metrics have been

proposed and used for the fault prediction model. These metrics help in the construction

of the prediction model. Fault prediction models used data gathered from such projects

where faults have been identified previously [16].

Smelly classes changed more frequently as compared to non-smelly classes. This point

is evaluated in a study where it explained that in 2 open source projects (“Azureus and

Eclipse”) smelly classes change frequently as compared to non-smelly classes [42]. In

12

another study, it is found by investigating open source projects that those methods

which had been cloned, change frequently as compared to other methods [43].

In another study, author claim that some code like shotgun surgery, God class, and God

method is directly connected with faults. To support his claim, he experimented on 3

releases of the eclipse project [44].

Initially, 22 different types of code smells were introduced [4]. An author study, what

results in severalscodessmells can causestogether. He explained the

relationshipsamong different code smells [45]. Another studysdescribes the

DomainsSpecific tailoringsof Code Smell. They think thesheuristics of codessmell [4]

is quite wide, they tailorsthe heuristicsOofodomain-specificoof codessmell

toomakestheoheuristicsotoofitmthe specificsdomain [46].

Two initial taxonomies were proposed for code smell [43, 44]. 40 different anti-

patterns described for the object-oriented system by focusing on implementation and

design. 2 famous patterns “blob and spaghetti code” included in these 40 different anti-

patterns. This study has an in-depth, Wide view of heuristic, code smells, and anti-

patterns, for the academic audience [12].

Recently, more considerations pulled into exploring that how faults and code smells

are related to each other. This study proved by giving empirical evidence that code

smells are helpful in fault prediction. They usedosourceucodeymetrics andkcodesmells

metricslin theirystudy and used NaïvebBayes, RandomrForest, and

LogisticgRegression techniques. [53].

In a study, the author used code smells and community smells and compare their results

for fault prediction. The results showed that community smells improve prediction

model performance up to 3% in terms of AUC. While code smells improve prediction

model performance up to 17% in terms of AUC. [47]

In another study, the author assesses the benefaction of a proportion of the intensity of

code smells. for this, they add code smells to the existing prediction model which used

process and product metrics. they compare both existing and new models. As of result

of this experiment by adding code smells a predictor, the accuracy of the prediction

model increases. [54].

In another study, the author study code smells in web applications. He extracts PHP

code smells and uses them in his study. The results of this study show that code smells

can help in fault prediction and it helps developers to identify faults and plan projects

accordingly. [48]

In another study, the author selects 3 projects BIRT, Aspect J, and SWT. Extract code

smells from them and studies how code smells are associated with bugs. His study

shows that code smells and fault have a strong correlation. Lazy class, complex class,

message chain, and long method have a strong correlation with faults. [49]

13

The author in another study evaluates class level change-prone prediction power using

code smells. they used many machine learning approaches. The result of this

experiment indicates positive relation between code smells and class change proneness

with a probability superior to 70%. [55].

In this study, the author proposed a model in which he used code smells from literature

and designate smells. the author used 97 different real projects. The results of this study

showed that the model improves 5% in terms of AUC. He concludes that designated

smells are a good addition and they help with code smells in prediction.[50].

Another study looks into that that how code smells and fault prediction are related. To

study this relation, they used many techniques like ADTree, Naïve Bayes, Logistic

regression, and Multilayer perceptron. Results of this study showed that the combined

model improves F-measure up to 20%. [56].

Another author in his study confirms that code smells are directly related to software

faults and the performance of fault prediction models. They used naïve Bayes and

logistic regression [57].

Another study focused on inspecting tool design for software code smell detection. In

their work, they explained that source code split is used to automatically detect code

smells. Besides, they portrayed how the code smell idea might be extended to

incorporate coding standard conformance. To investigate the feasibility of the given

approach they used a case study, developed a prototype tool, and test it on the software

system. [51]

In another study, the author picked one metric of code smells and investigate its impact.

He used the God class metric and see how God classes can help to improve the quality

of software. The result of their study showed that in some cases God class are more

susceptible to faults [52]

Industrial system and 6 different code smell used to study the relationship between

faults and code smells. It is found because of this study that “Shotgun Surgery”

presence identifies with a factually critical higher likelihood of faults [44].

But, another author found in his study that there is no relation between faults and code

smells and code smell does not affect the presence of faults [53]. So, in literature, the

relationship between faults and code smells has not come to an agreement.

A tool was built that is used to rank code smells according to severity based on 3

standards: “past component modification, important modifiability situations for the

system, and importance of the sort of smell” [54]. Another author studied the

importance of bad smells, and found bad smell resolution’ importance and present

ordinarily occurring bad smells [55].

A study surveyed that how bad smells affect whole software and especially software

maintainability. It proposed that by examining historical information it is possible to

14

see how bad smells affect software maintainability. It is presumed that; the quality can

assess by code smells. By detecting and visualizing code smell quality can be improved

[56]

Another study examines experimentally the connection between class error probability

and code smells in the threeoerrorrseverityelevels and finishes up his investigation as

that anticipated models can work agreeably for predicting the errors when all is said in

done. Badqcodeqsmellsqcouldaanticipateatheaclassqerroralikelihoodaandqfoundqthat

some bad codeosmells could at present predictqclasswerrorqprobability. The result of

experiment also proposes that when refactoring a class, not only it helps in improving

theaqualityaofaarchitecture,abutaitaalsoahelpsainareducesqthemprobabilityqofqtheqcl

assqhaving blunders later [57].

Another study gives observational proof about how code smell metrics (Brain class and

God class) contributes towards the quality of software system. They used 3 very

common open-source software systems and study the effect of brain class and God

class on these systems without standardization regarding the size. The investigation

shows that God and Brain Classes have a negative impact estimated as far as change

frequency, change size, and number of weighted defects. [58].

Table 6: Software fault prediction using code smells

Paper Contribution Model

[59] This study proved by giving empirical

evidence that code smells are helpful in

fault prediction. They usedosource

codeometricsoand code smells metrics

inotheirostudy

Naive Bayes,

Random Forest,

Logistic Regression

[60] Author in another study evaluate class

level change prone prediction power

using code smells. they used many

machine learning approaches. The

result of this experiment indicates

positive relation between code smells

and faults.

Naive Bayes,

Logistic Regression,

Decision tree

[61] Author in another study evaluate class

level change prone prediction power

Naïve bayes,

15

using code smells. The result of this

experiment indicates that Code smell

can predict classochangeuproneness

with ayprobability superior to 70%.

Multilayeruperceptron,

LogitBoost,

Decision tree

[62] Another study investigates the effect of

code smells of predictions of faults.

Results of this study showed that

combined model improve F-measure up

to 20%

ADTree,

Naïve bayes,

Logistic regression,

Multilayer perceptron

[63] Another author in his study confirms

that code osmellsoareodirectly related

to software faults and performance of

fault prediction models.

Naive Bayes

Logistic Regression

[16] The creator discovered devotion

linkingocodeosmell locationoandothe

consequences of the fault prediction. In

any case, the creator noticed that

utilizing code smell identification

resultsocanoimproveothe review of

bugoprediction.

Multivariable logistic

regression model

[64] Author researched the commitment of

code smell force with regards to bug

prediction. Results showed that the

power in every case decidedly adds to

best-in-class prediction models, in any

event, when they as of now have

superior exhibition

Naïve Bayes

Logistic regression

Decision tree

16

2.4 Software fault prediction at method level:

Many researchers work in field of fault prediction, all use different approaches,

different techniques and cover different aspects of software development. Such

modelssachievedogood predictionsperformance, guidingsdevelopersotowardsothose

partsoofotheir systemswhere aolarge sharesof bugsocanoexpect. However, mostoof

thosesapproaches predictsbugs onofile-level. Thisooftensleaves developersswith a

considerablesamount of effortsto examinesall methodsoof aofilesuntil a bugsis located.

This problemsreinforced by the factsthat large files are typicallyspredicted as the most

bugsprone.

In a studysauthorsproposed bugspredictionsmodels at the levelsof individualsmethods.

This increases the granularitysof the predictionsand thus reducessmanual

inspectionsefforts for developers. Thesmodels are basedson changesmetrics and

sourcescodes metrics that are typically used in bugsprediction. Experimentsperformed

onv21mJavanopenasourcea(sub)asystems.AExperimentsshowHthatkpredictionsmode

lsmreachoanprecisionsand recallnofn84%oand 88%,orespectively [65].

In this study, authorsreplicate previous researchson methodslevel bugsprediction

onsdifferent systems/timespans. Afterwards, they reflectson the evaluationsstrategy

and proposesa more realisticsone. Key results of this studysshow that the

performancesof the method-level bug predictionsmodel is like what previously

reported. Even so, when same strategy is applied with more realistic parameters all

modelsashowsaadramaticsdropainaperformancesexhibitingaresultsgclosegtomthatbof

anrandomn classifier [66].

To the best of our knowledge, efforts in the field of software fault prediction at the

method level used process metrics, change metrics, and object-oriented metrics. No

work is done for fault prediction at the method level using code smells. This is a fact

that faults predicted at the method level rather than at class level or file level can save

time and cost. Moreover, predicting faults at method level reduce inspection effort for

developer and testers. Thus, a method that can predict software faults at the method

level using code smells is highly desired.

2.5 Summary:

This chapter presented a referential literature review that has already been done by

researchers. In the first section, it explained the work that has been done by authors in

the field of software fault prediction using software metrics. In the second section, it

explained the work in the field of software fault prediction using code smells. In third

section it describes about software fault prediction at method level. We have studied

the literature in detail and identified different prediction models proposed by

researchers.

17

Chapter 3: Research methodology and our approach

3.1 Introduction:

This chapter presents the research methodology and the research process that has been

used for software fault prediction using code smells at the class level and at the method

level. Various steps and phases are involving in the research process including data

gathering, data pre-processing and cleaning, model training, and testing and evaluation.

The applied methodology consists of 3 parts, Preprocessing, Model development

phase, and Postprocessing phases. First, is the preprocessing phase which includes

code smells selection, dataset pre-processing/cleaning, dataset merge, and dataset

normalization and outlier detection. We select dataset with code smells shown in table

5, this dataset will help in the training model that we will use for software fault

prediction. We then, in the 2nd phase, do preprocess and cleaning of dataset. we

preprocess and clean datasets to remove unused smells and to identify null values in

our dataset. we then do Data normalization and outlier analysis.

Second is the model development phase which includes test/train split, training

supervised model, and evaluation. First, we split training data into train and test split.

Then, we built a software fault prediction classifier and trained the classifier using the

data. Later, we evaluated our classifier using performance evaluation metrics. we

employ accuracy, precision, recall, and F1-score [25].

Next is postprocessing phase. This phase includes code smells extraction, prediction,

and validation. For code smells extraction, there are many tools and techniques

available. We used iPlasma tool to extract code smells. after getting the code smell of

the class/method, we predict faulty instances. we input code smells to the classifier and

our classifier predicts faulty instances. The last phase is of validation phase, in this

phase we have fault information of about 30 classes/methods, and we compare our

prediction results with actual results and check how accurately we predict faulty

instances.

The research strategy uses to conduct this research is Applied Research that is to

resolve a specific problem of the software Industry. We know the testing problems

faced by industries. To resolve the problem, we have proposed a software fault

prediction model using code smells whose validation is done through the open-source

application. We describe our research process below with all the steps involve in the

process of research.

3.2 Our methodology:

Our research process comprises 3 steps: preprocess phase, Model development phase,

and postprocess phase. Figure 2 demonstrates the whole research process with all the

steps taken in between the process.

18

 Preprocessing phase Model Development phase Postprocessing phase

 Figure 2: Research process

3.2.1 Preprocessing phase:

3.2.1.1. Selection:

The code smells we are using at class level are God class (GC), Shotgun surgery (SS),

Feature envy (FE), Brain class (BC), Tradition breaker (TB), Brain method (BM),

Extensive coupling (EC), Parent bequest (PB), Intensive coupling (IC), Long parameter

list (LPL), Schizophrenic Class (SC), Data class (DC) and code smells we are using at

method level are Feature envy (FE), Brain method (BM), Extensive coupling (EC),

Intensive coupling (IC), Shotgun surgery (SS) and Long parameter list (LPL). The

criteria of selecting code smells are, these are important and most used basic code

smells [59-63], most of the published literature used these code smells [32], tools are

available to extract these code smells from the source code of the application and

unlabeled dataset of these code smells are publicly available.

3.2.1.2. Pre-processing/cleaning phase:

We do clean operation in our dataset to clean dataset. from dataset we remove unused

code smells. We check for any null value in our dataset and null value percentage for

each column of dataset.

Selection

Preprocessing/

cleaning

Merge

Normalization/

outlier

Code smell

extraction

Prediction

Validation

 Class level

Pseudo labeling

Train/test split

Random forest

evaluation

Method level

 Train/test split

Bagging classifier

Evaluation

19

Table 7: list of selected code smells

No. Name Definition

1 God class It refers to such a class that perform too much

functionality and have huge number of lines of code.

2 Shotgun surgery It is code duplication and refer to when single change

made in multiple classes.

3 Feature envy It refers a method that access data of other object

more than data of object.

4 Brain class A class that performs too much but have strong

cohesion

5 Tradition breaker Sub class should provide methods and functionality

that is not related to its super class.

6 Brain method A method that performs too much but have strong

cohesion.

7 Extensive coupling A method that communicates too much with other

methods, but provider method dispersed in many

classes

8 Parent bequest Refer to when child class uses only few methods

inhered from parent class.

9 Intensive coupling A method of a class binds with other methods, but

provider method is only dispersed in few classes.

10 Long parameter list Any method in class having more than 3 parameters.

11 Schizophrenic

Class

When 2 or more key abstraction are captured in a

single class.

12 Data class Refer to when child class uses only few methods

inhered from parent class

3.2.1.3 Merge:

All datasets have the same number of attributes, so we merge all datasets into one. We

use the discrete value of label bug, i.e., 1 and 0. 1 label depict faulty instance whereas,

0 label depict non- faulty instance.

20

3.2.1.4 Normalization:

At last, we analyze our dataset for the existence of outlier and data normalization. Our

dataset doesn’t have any outlier and it is in binary form, so we don’t need data

normalization as well.

3.2.2 Model Development phase:

3.2.2.1 Train and test split:

After getting cleaned and combined dataset we perform train and test split. We split

our dataset into the ratio of 70:30, 70% training data, and 30% testing data. we use train

split to train our classifier and test split is used to test our classifier.

3.2.2.2 ML Model:

We propose a fault prediction model for early-stage fault prediction at the class and

method level. We use dataset of code smells for the training classifier. We use

supervised and semi supervised machine learning approach to build and train the

classifier. After training classifier, we use performance evaluation metrics to evaluate

the performance of our classifier.

3.2.2.2.1 Class level prediction:

We have less quantity of labeled and an enormous quantity of unlabeled dataset

available. To use both types of datasets in training classifiers we use a semi-supervised

machine learning technique named pseudo-labeling [67].

3.2.2.2.1.1 Pseudo labeling:

Pseudo Labeling is an effortless and proficient strategy to do semi-supervised learning.

 Figure 3: Semi-supervised learning method

Pseudo labeling technique uses less amount of labeled dataset and big amount of

unlabeled dataset and improves the model’s exhibition. It first uses labeled data to train

the model, 2nd it predicts pseudo labels for unlabeled data, third it merges both labeled

and pseudo labeled data into one, and 4th it retrains the model with merged data.

Some labeled

data

Lots of

unlabeled data

Model

21

Figure 4: Pseudo-labeling learning method

3.2.2.2.1.2 Random forest:

We use the random forest machine learning technique to train our classifier. We have

2 class problem and it is supposed that SVM performed well with 2 class problem but

in our case, we have imbalance data, and SVM performed poorly due to class imbalance

[68]. Previous studies showed that the random forest technique is more powerful for

fault prediction as compared to SVM or other techniques [69, 70]. Random forest is a

sort of supervised machine learning calculation dependent on ensemble learning. In

ensemble learning, sometimes we join different algorithms or sometimes we join the

same algorithm at different times to improve accuracy. The combined dataset is used

for training and testing random forest classifier. Accuracy, and performance evaluation

metrics used to evaluate classifier.

3.2.2.2.2 Method level prediction:

We extract method-level dataset from defects4j. this dataset is in a small amount so, to

increase the amount of dataset we use a technique named Bagging. Bagging not only

increases the amount of data but also improves accuracy, loss, bias, and variance and

improves the performance of the classifier.

3.2.2.2.2.1 Bagging:

Bagging classifier is a technique that divides dataset into subsets and then fits the base

classifier on each subset of dataset. after that, through voting or the average method it

aggregates the results and gives a final prediction. Bagging not only increase the

amount of data but also improves accuracy, loss, bias, and variance and improves the

performance of classifier.

22

As a base classifier, we are using random forest tree. The number of bags we are

using is 10. each bag has 500 data points and the number of features we are using is

6.

3.2.2.3 Evaluation:

To evaluate classification performed by the model we use performance evaluation

metrics. We pick Accuracy, Precision, Recall, and F1-score for the appraisal of the

models. In the prediction model, the positive class is the damaged class, and the

negative class is the non-flawed class. Precision is characterized as the closeness of

estimated values with real worth. Here it addresses the quantity of the all-out right

expectations to an absolute number of inaccurate and right predictions. precision

estimates the number of positive class expectations that have a place with the positive

class. The recall is the extent of accurately grouped flawed occasions to every one of

the real cases that are deficiency inclined. Also, F1 score gives a solitary score that

adjusts both the worry of precision and recall in one worth. It is the consonant mean of

precision and recall.

3.2.3 PostProcessing Phase:

3.2.3.1 Code smells extraction:

We extract our selected code smells from the source code. There are many tools

available for code smell extraction. Some tools are limited in the number of code

smells, so we select and use such a tool that is easily available and extract all selected

code smells.

3.2.3.2 Prediction:

The above phase extracted code smells then input them to the classifier so that our

classifier predicts faulty instances, as shown in figure 5. Our classifier predicts which

class and method are more expected to have faults.

3.2.3.3. Validation:

We have fault information of 30 classes and methods. In the validation stage, we

compare these actual results with our classifier prediction and see how accurately our

classifier is predicting faulty instances.

Figure 5: fault prediction

Code smells

extracted from
class/method 1

Code smells

extracted from

class/method n

Faulty

class/method n

Faulty

class/method 1

Software fault

prediction model

23

3.3 Summary:

This chapter provided overall description of the proposed methodology. It is divided

into 3 main phases which have further phase. The preprocess phase includes selection,

preprocessing/cleaning, merge, and normalization. The process phase includes train

and test split, supervised model, and evaluation. And the last post process phase

includes code smells extraction, prediction, and validation.

24

Chapter 4: Implementation:

This chapter describes the steps involved in preprocessing, model development and

postprocessing phases.

4.1 Fault prediction at class level:

4.1.1 Preprocessing phase:

The preprocessing phase for software fault prediction at class level model comprises

various steps including selection, pre-processing/cleaning, and normalization.

4.1.1.1. Selection:

Faulty classes data for the development of fault prediction model collected from two

different sources.

4.1.1.1.1 Primary dataset:

The primary dataset is the labeled dataset. This labeled dataset is extracted from

projects available at defects4j [3]. defects4j is an open-source repository which has

complete detail of active bugs of multiple java projects. It provides complete

information of faults which includes the package name, class name, method name, and

exact location of fault [71]. Table 8 shows the description of selected datasets. we have

complete details of faults now for code smells we use the tool iPlasma [72]. iPlasma is

an environment that helps in the extraction of code smells from source code with

addition to this, the object-oriented system used it for quality analysis. After getting

code smells of all projects as shown in table 8, the reports of code smells are generated

in comma separated version (CSV) extension. we add labels e.g., 0 or 1. 0 if no faults

and 1 if the fault is present in that class.

Table 8: labeled dataset

Sr

no.

Identifier Project name Instances Faults

1 Chart Jfreechart 61 12

2 Mockito Mockito 90 26

3 Lang commons-lang 130 43

4 Closure closure-compiler 184 92

5 Cli commons-cli 85 18

6 Math commons-math 124 68

7 Jsoup Jsoup 81 37

25

4.1.1.1.2 Secondary dataset:

The secondary dataset is publicly available unlabeled dataset of code smells [73]. This

dataset comes from Qualitas Corpus (QC). Code smells of 76 different systems are in

the corpus.

4.1.1.2. Preprocessing/cleaning:

We remove unused code smells from our target sets. We check for any null value in

our dataset and null value percentage for each column of the dataset.

4.1.2 Model Development phase:

The process phase for software fault prediction at class level model comprises of

various steps including train and test split, model, and evaluation.

4.1.2.1 Train and test split:

We split our dataset into the ratio of 70:30, 70% training data, and 30% testing data.

we use train split to train our classifier and test split to test our classifier.

4.1.2.2 ML Model:

Both primary and secondary datasets are used to design and train the classifier.

4.1.2.2.1 Algorithm:

We present our algorithm for training classifier in algorithm 1. We first select unlabeled

datasets containing code smells (M= M1…. Mm). we merge datasets into one and

removed unused code smells. after that, we select a labeled dataset containing code

smells. we merge datasets into one. Then we train the algorithm using labeled dataset

and predict pseudo labels for unlabeled dataset. after predicting pseudo labels, we

concatenate labeled and unlabeled datasets, split combined data into 70% train and 30%

test data, and retrain the model. Finally, we use accuracy, precision, recall, and F1 score

to evaluate our classifier.

Algorithm 1: Algorithm for Training Classifier

Input: A set of labeled and unlabeled datasets, containing a set of code smells (M=

M1…. Mm).

Output: software fault prediction model with overall classifier (Cf) evaluation.

Start:

1. Select unlabeled datasets (Dul1, Dul2, ….., Duln) //all containing set of selected

code smells (M=M1….., Mm)

2. Combine datasets into one.

 DUL= ∑ (𝐷𝑢𝑙𝑘)
𝑛
𝑘=1

26

3. Remove unused code smells M1, M2, ….., Mm →Mc

4. DUL ← apply data cleaning (DUL)

5. Gather labeled datasets (Dl1, Dl2, ….., Dln) //all containing set of selected code

smells (M=M1….., MM)

6. Combine datasets into one.

DL= ∑ (𝐷𝑙𝑘)
𝑛
𝑘=1

7. DL ← apply data cleaning (DL)

8. Train algo using labeled dataset DL.

9. Predict pseudo labels for unlabeled datasets DUL.

10. Combine both datasets

D= DL + DUL

11. Spilt the combined Dataset (D) into train and test spilt (70:30).

12. Train and test the random forest classifier (Cf) on cleaned combined dataset (D)

with code smells Mc.

13. Calculate precision, recall, and f1 score.

END

4.1.2.2.2 Software specification:

For the development of the fault prediction model at the class level we have used the

Jupyter notebook. Python language provides a great platform for building machine

learning algorithm which is very concise and easy to understand. It provides several

libraries for data analysis, visualization, text classification, and natural language

processing. Python library NumPy is used for data storage at runtime array. We have

used Panda library to read data from csv file (code smells dataset). Pandas is a general

information control library based on the top of NumPy. Scikit-learn is based on top of

two Python libraries NumPy and SciPy and has become the most mainstream Python

ML library for creating ML calculations. Scikit-learn has a wide scope of regulated and

solo learning calculations that deal with a reliable interface in Python. The library can

likewise use for information mining and information investigation. The principal

machine learning works that the Scikit-learn library can deal with are classification,

relapse, grouping, dimensionality decrease, model choice, and preprocessing.

4.1.2.2.3 Training classifier:

We have small amount of labeled (primary) and huge amount of unlabeled (secondary)

dataset is available. To use both types of datasets in the training classifier we use a

semi-supervised machine learning technique named pseudo-labeling [67].

4.1.2.2.3.1 Pseudo labeling:

For pseudo labels, we first train the model using labeled dataset, then predict pseudo

labels for the unlabeled dataset. after that concatenate both label and pseudo label data.

27

 Figure 6: pseudo labeling code

4.1.2.2.3.2 Random forest:

After concatenating both label and pseudo label data, we split dataset into 70:30 and

training model using Random forest algorithm.

Figure 7: Random forest algorithm code

4.1.2.3. Evaluation:

For evaluation of our model, we use performance evaluation metrics which include

Accuracy, Precision, Recall, and F1-score for the assessment of the models. With

performance metrics, for completely unbiased results we have use the 10-folds cross-

validation method.

4.2 Fault prediction at method level:

4.2.1 Preprocessing phase:

The preprocessing phase for software fault prediction at the method level model

comprises various steps including selection, pre-processing/cleaning, and

normalization.

28

4.2.1.1. Selection:

The labeled dataset is extracted from projects available at defects4j [3]. defects4j is an

open-source repository which has complete detail of active bugs of multiple java

projects. It provides complete information of faults which includes the package name,

class name, method name, and exact location of fault [71]. Table 9 shows the

description of selected datasets. we have complete details of faults now for code smells

we use the tool iPlasma [72]. iPlasma is an environment that helps in the extraction of

code smells from source code with addition to this, the object-oriented system used it

for quality analysis. After getting code smells of all projects shown in table 9, the

reports of code smells are generated in comma-separated version (CSV) extension. we

add labels e.g., 0 or 1. 0 if no faults and 1 if the fault is present in that class.

Table 9: Selected Dataset

Sr

no.

Identifier Project name Instances Faults

1 Chart Jfreechart 61 12

2 Mockito Mockito 90 26

3 Lang Commons-lang 130 43

4 Closure closure-compiler 184 92

5 Cli Commons-cli 85 18

6 Math commons-math 124 68

7 Jsoup Jsoup 81 37

8 Compress Compress 53 20

4.2.1.2. Preprocessing/cleaning:

We check for any null value in our dataset and null value percentage for each column

of dataset.

4.2.2 Model Development phase:

The process phase for software fault prediction at the method level model comprises

various steps including train and test split, model, and evaluation.

4.2.2.1 Train and test split:

We split our dataset into the ratio of 70:30, 70% training data, and 30% testing data.

we use train split to train our classifier and test split to test our classifier.

4.2.2.2 ML Model:

The labeled dataset is used to design and train classifier.

29

4.2.2.2.1 Algorithm:

We present our algorithm for training classifier in algorithm 2. We first select labeled

datasets containing code smells (M= M1…. Mm). we merge datasets into one and

removed unused code smells. after merge we split combined data into 70% train and

30% test data, and train model using classifier. Finally, we use accuracy, precision,

recall and F1 score to evaluate our classifier.

Algorithm 2: Algorithm for Training Classifier

Input: A set of labeled datasets (D1, D2, D3…., Dn), containing code smells (M= M1….

Mm).

Output: software fault prediction model with overall classifier (Cf) evaluation.

Start:

1. Select labeled datasets (D1, D2, D3….,Dn) // all containing code smells (M=

M1….Mm).

2. Combine datasets into one.

 D= ∑ (𝐷𝑘)
𝑛
𝑘=1

3. D ← apply data cleaning (D)

4. Spilt the combined Dataset (D) into train and test spilt (70:30).

5. Apply Bagging classifier (Cf) with random forest as base classifier on the

cleaned dataset.

6. Calculate precision, recall, and f1 score.

END

4.2.2.2.2 Software specification:

For the development of the fault prediction model at the method level we have used the

Jupyter notebook. Python language provides a great platform for building machine

learning algorithm which is very concise and easy to understand. It provides several

libraries for data analysis, visualization, text classification, and natural language

processing. Python library NumPy is used for data storage at runtime array. We have

used Panda library to read data from csv file (code smells dataset). Pandas is a general

information control library based on the top of NumPy. Scikit-learn is based on top of

two Python libraries NumPy and SciPy and has become the most mainstream Python

ML library for creating ML calculations. Scikit-learn has a wide scope of regulated and

solo learning calculations that deal with a reliable interface in Python. The library can

likewise use for information mining and information investigation. The principal

machine learning works that the Scikit-learn library can deal with are classification,

relapse, grouping, dimensionality decrease, model choice, and preprocessing.

 4.2.2.2.3 Training classifier:

30

At the method level, dataset of code smells is not available publicly so we extract the

method level dataset. this dataset is in a small amount so, to increase the amount of

dataset we use a technique named Bagging. Bagging not only increases the amount of

data but also improves accuracy, loss, bias, and variance and improves the performance

of the classifier.

4.2.2.2.3.1 Bagging:

1. Value of loss, bias, and variance without bagging:

Figure 8: Values without Bagging code

2. Value of loss, bias, and variance with bagging.

 Figure 9: Values with Bagging code

4.2.2.2.3.2 Bagging classifier and Random forest:

We are using random forest as the base classifier for bagging. We create 10 bags of

dataset, each with 500 data points.

4.2.2.3 Evaluation:

31

For evaluation of our model, we use performance evaluation metrics which include

Accuracy, Precision, Recall, and F1-score for the assessment of the models. With

performance metrics, for neutral results, we use 10-fold cross validation method.

Figure 10: Bagging classifier and random classifier code

32

Chapter 5: Result and Discussion:

5.1 Fault prediction at class level:

To demonstrate the validity of our proposed model, we took a project Joda-time from

defect4j. Joda-timeoprovidesoreplacementoforojava dateoandotime class. It allows

multiple calendars systems. Joda-Timeosolvesooneocriticaloproblem stale time zone

data. [74]. There is a total of 145 different classes. We extract code smells from the

project using a tool named IPlasma. We extract code smells of 30 classes. From 145

classes we picked only business logic classes. other classes that are platform depended

are not considered. As per our proposed model we are interested to predict the faulty

class through a trained Random forest classifier.

5.1.1 Training of Model

We have 2 datasets that we used to train our model primary dataset which is labeled

and a secondary dataset which is unlabeled. we use a semi-supervised machine learning

approach pseudo-labeling to label unlabeled dataset. Our training dataset has 13

columns. first 12 Columns names are “BrainMethod-IPLASMA”,

“ExtensiveCoupling-IPLASMA”, “IntensiveCoupling-IPLASMA”, “SchizoClass-

IPLASMA”, “BrainClass-IPLASMA”, “TraditionBreaker-IPLASMA”, “GodClass-

AGGREGATE”, “FeatureEnvy-AGGREGATE”, “DataClass-AGGREGATE”,

“LongParamList-AGGREGATE”, “ShotgunSurgery-AGGREGATE”,

“RefusedParentBequest-AGGREGATE” which are defined as X_train while 13th

column is our labeled column named “fault” which is defined as Y_train. Initially, we

train our model on both X_train and Y_train. As we have to do pseudo labeling on an

unlabeled dataset so that we can increase our training dataset we have X_test on which

we predict labels.

After pseudo-labeling, we concatenate data and labels and create one complete labeled

dataset. we split our data into 70 and 30. we are using 70% of the dataset for model

training while the rest of 30% is used for testing to ensure the test results of the trained

model.

5.1.2 Model evaluation:

We are using random forest classifier. To select the most optimal value for the number

of trees we calculate accuracy with the different number of trees and select the optimal

number of trees. Initially, We have achieved 99.78% of test accuracy with 10 trees,

99.74% of test accuracy with 20 trees, 99.60% of test accuracy with 30 trees, 99.53

with 40 trees, and 99.23 with 100 trees. We observe that accuracy is decreasing with

increasing the number of trees so the optimal number of trees with the highest accuracy

is 10 as shown in figure 11.

So, we have achieved 99.78% of test accuracy with our dataset.

33

for neutral results, we have use 10-fold cross-validation method. We present the

accuracy, precision, recall, and f1-scores’ result of each fold in table 10.

Table 10: 10-folds cross validation (Class)

Folds Accuracy Precision Recall F1-score

1 0.993 0.968 0.954 0.961

2 0.995 0.976 0.969 0.973

3 0.996 0.977 0.977 0.977

4 0.994 0.991 0.946 0.968

5 0.996 0.992 0.962 0.980

6 0.996 0.969 0.984 0.977

7 0.995 0.962 0.984 0.973

8 0.997 0.970 1 0.984

9 0.996 0.976 0.976 0.976

10 0.998 0.984 0.992 0.988

We can view the class error prediction in figure 12. We assess the classifier utilizing

performance evaluation metrics which include precision, recall, and F1 score as shown

in figure 13 and table 8. In classification, precision is the negligible part of significant

occasions among the recovered cases, while recall is the small portion of applicable

cases that were recovered. Both accuracy and recall are hence founded on significance.

F1-score is characterized as a proportion of a model's precision on a dataset. It is

utilized to assess parallel classification frameworks, which order models into 'positive'

or 'negative'.

Figure 11: Accuracy graph (Class)

34

Table 12: performance evaluation table (class)

5.1.3 Model validation:

Our proposed model helps in software fault prediction. We performed a case study on

a project named Joda-time from defects4j. We picked business logic classes. platform

depended classes are not considered. We have source code and complete information

about faulty classes of the project. The model helps the tester to identify where in the

application we have high chances of occurrence of faults. It helps the organization to

plan their testing activities from the early stages of the software development life cycle

because faults become costly when the applications go live.

 Figure 12: Class prediction error graph (class)

Accuracy Precision Recall F1 score

99.78% 98% 97% 98%

35

Figure 13: Classification report (class)

As we have developed a model via machine learning in Random forest based on which

we predict software faults. For validation of our model, we used a project named CSV

from defects4j. we have complete information of source code and faulty classes of the

project. We picked 30 different classes of the project and extract smells of these classes

using smells extraction tool iPlasma. Among these 30 classes, 15 classes are faulty and

15 classes are non-faulty. we generate csv file of smells. After that, we input this csv

file into our model and our model predicts faulty classes. our model predicts 13 faulty

classes and 17 non-faulty classes as shown in Table 12 and figure 14.

Table 12: Predicted and actual results (Class)

Sr no. Classes Actual Predicted

1 C1 F NF

2 C2 NF NF

3 C3 F F

4 C4 F F

5 C5 F F

6 C6 NF NF

7 C7 NF NF

8 C8 F F

36

To check that how efficient our prediction is we use a strategy named Percentage of

right prediction to check the percentage of right prediction, as shown in Equation1 and

we use the percentage of wrong prediction to check the percentage of our wrong

prediction, as shown in Equation 2. This methodology helped in reducing testing effort

and time.

 % of Right Prediction = classes predicted right/ total number of classes* 100 (1)

 = 28/30

 = 93.33%

9 C9 F F

10 C10 NF NF

11 C11 NF NF

12 C12 F F

13 C13 F F

14 C14 F F

15 C15 NF NF

16 C16 F F

17 C17 NF NF

18 C18 NF NF

19 C19 NF NF

20 C20 NF NF

21 C21 F NF

22 C22 F F

23 C23 NF NF

24 C24 NF NF

25 C25 F F

26 C26 F F

27 C27 NF NF

28 C28 NF NF

29 C29 NF NF

30 C30 F F

37

 % of Wrong prediction = classes predicted wrong/ total number of classes* 100 (2)

 = 2/30

 = 6.66%

Figure 14: Actual and predicted Results (Class)

5.2 fault prediction at method level:

To demonstrate the validity of our proposed model, we took a project Joda-time from

defect4j. Joda-timeoprovidesoreplacementoforOjava dateoandotime class. It allows

multiple calendars systems. Joda-Timeosolvesooneocriticaloproblem stale time zone

data. [74]. There is a total of 145 different classes. We extract code smells from the

project using a tool named IPlasma. We extract code smells of 30 methods of these 30

classes. from 145 classes we picked only business logic classes. other classes that are

platform depended are not considered. As per our proposed model we are interested to

predict the faulty method through a trained Bagging classifier.

5.2.1 Training of Model

We have a dataset of method level which we used to train our model. Our training

dataset has 7 columns. The first 6 Columns names are “Brain Method”, “Extensive

Coupling”, “Feature Envy”, “Intensive Coupling”, “LongParaList”, “Shotgun

Surgery” while the 7th column is our labeled column.

we split our data into 70 and 30. we are using 70% of the dataset for model training

while the rest of 30% is used for testing to ensure the test results of trained model.

We are using Bagging Classifier with Random forest as base classifier. Bagging uses

a basic methodology that appears in measurable examinations over and over to improve

the gauge of one by joining the assessments of many. Bagging construct and grouping

38

classifiers utilizing bootstrap testing of the preparation information and afterward

consolidates their prediction to create a final meta-prediction.

5.2.2 Model evaluation:

We are using random forest classifier. To select the most optimal value for the number

of trees we calculate accuracy with the different number of trees and select the optimal

number of trees. Initially, We have achieved 85.18% of test accuracy with 10 trees,

86.41% of test accuracy with 20 trees, 85.16% of test accuracy with 30 trees, 85.13%

of test accuracy with 40 trees. We observe that accuracy is decreasing with increasing

the number of trees so the optimal number of trees with the highest accuracy is 20 as

shown in figure 15.

So, we have achieved 86.41% of test accuracy with our dataset.

for neutral results, we have use 10-fold cross validation method. We present accuracy,

precision, recall, and f1-scores’ result of each fold in table 13.

Table 13: 10-fold cross validation (Method)

Folds Accuracy Precision Recall F1-score

1 0.94 0.836 0.816 0.813

2 0.842 0.829 0.800 0.830

3 0.848 0.830 0.810 0.930

4 0.874 0.834 0.834 0.909

5 0.851 0.843 0.843 0.904

6 0.96 0.837 0.837 0.837

7 0.872 0.831 0.829 0.829

8 0.816 0.810 0.701 0.718

9 0.813 0.838 0.73 0.73

10 0.821 0.812 0.80 0.70

We can view the class error prediction in figure 16. We assess the classifier utilizing

performance evaluation metrics which are precision, recall, and F1 score as shown in

figure 17 and table 14. In classification, precision is the negligible part of significant

occasions among the recovered cases, while recall is the small portion of applicable

cases that were recovered. Both accuracy and recall are hence founded on significance.

F1-score is characterized as a proportion of a model's precision on a dataset. It is

utilized to assess parallel classification frameworks, which order models into 'positive'

or 'negative'.

Table 14: performance evaluation table (method)

Accuracy Precision Recall F1 score

86.41% 83% 80% 82%

39

Figure 15: Accuracy graph (Method)

Figure 16: Class prediction error graph (method)

5.2.3 Model validation:

Our proposed model helps in software fault prediction. We performed case study on a

Joda-time project from defects4j. We picked business logic classes. platform depended

classes are not considered. We have source code and complete information about the

faulty methods of the project. The model helps the tester to identify where in the

application we have high chances of occurrence of faults. It helps the organization to

plan their testing activities from the early stages of the software development life cycle

because faults become costly when the applications go live.

40

Figure 17: Classification report (method)

As we have developed a model via machine learning in Random forest based on which

we predict software faults. For validation of our model, we used a project named CSV

from defects4j. we have complete information of source code and faulty methods of

the project. We picked 30 different methods of the project and extract smells of these

methods using smells extraction tool iPlasma. Among these 30 methods, 15 methods

are faulty, and 15 methods are non-faulty. After that, we input csv file into our model

and our model predict faulty methods. our model predicts 10 faulty methods and 20

non-faulty methods as shown in Table 15 and figure 18.

Table 15: Predicted and actual results (Method)

Sr no. Method Actual Predicted

1 M1 NF NF

2 M2 F F

3 M3 F NF

4 M4 NF NF

5 M5 F F

6 M6 F NF

7 M7 NF NF

8 M8 NF NF

9 M9 NF NF

41

To check that how efficiently our model predicts, we use a strategy named Percentage

of right prediction to check the percentage of right prediction, as shown in Equation 3

and we use percentage of wrong prediction to check the percentage of our wrong

prediction, as shown in Equation 4.

% of Right Prediction = methods predicted right/ total number of methods* 100 (3)

 = 25/30

 = 83.33%

10 M10 NF NF

11 M11 F NF

12 M12 F F

13 M13 F F

14 M14 NF NF

15 M15 NF NF

16 M16 F NF

17 M17 NF NF

18 M18 F F

19 M19 F F

20 M20 F NF

21 M21 NF NF

22 M22 NF F

23 M23 NF NF

24 M24 NF NF

25 M25 F F

26 M26 NF NF

27 M27 NF NF

28 M28 F F

29 M29 F NF

30 M30 F F

42

 % of Wrong prediction = methods predicted wrong/ total number of methods* 100(4)

 = 5/30

 = 16.66%

Figure 18: Actual and Predicted Results (Method)

Software development life cycle has many phases among them quality is one of the

most important stages. Early-stage fault prediction plays an important role in

improving the quality of software. It saves time and cost. Software development is

becoming an emerging field with the enhancement of applications used in day-to-day

life and it is increasing interaction with technology at a rapid pace. This vast usage of

applications enhances the importance of Quality Assurance. Bugs found after

production release can be very costly. Limiting the number of bugs in software is an

exertion key to software engineering, faulty code neglects to satisfy the reason it was

composed for, lastly fixing it costs time and money. resources in a software

development life cycle are quite often restricted and thusly ought to be allocated to

where they required most to avoid bugs, they ought to center around the most fault -

prone areas of the project. Having the option to predict where such areas may be

would permit a greater turn of events and testing endeavors to be allocated to the

correct places.

Utilizing bug prediction models at the degree of individual methods can save effort in

many aspects. It saves effort in terms of time and terms of cost. Moreover, this approach

of predicting faults at the method level reduces manual inspection efforts for

developers.

43

5.3 Comparison:

We do comparison of our methodology with some other proposed methodologies. The

basic criterion of comparison is at which level faults are predicted. After level, the next

criteria is number of code smells used for fault prediction at class level and accuracy,

Precision, recall, and f1 score of our methodology and other methodology.

We find several fault prediction approaches providing fault prediction at the class level

and the method level. A study proved by giving empirical evidence that code smells

are helpful in fault prediction. The metrics they used in their study are source code and

code smells with different machine learning techniques like Naïve Bayes, random

forest, and Logistic Regression techniques. [53]

The author in another study evaluates class level change-prone prediction power using

code smells. they used many machine learning approaches. The result of this

experiment indicates positive relation between code smells and class change proneness

with a probability superior to 70%. [55].

Another study looks into that that how code smells and fault prediction are related. To

study this relation, they used many techniques like ADTree, Naïve Bayes, Logistic

regression, and Multilayer perceptron. Results of this study showed that the combined

model improves F-measure up to 20%. [56].

Another author in his study confirms that code smells are directly related to software

faults and the performance of fault prediction models. They use Naive Bayes and

Logistic Regression techniques. [57]

In another study, the author assesses the benefaction of a proportion of the intensity of

code smells. for this, they add code smells to the existing prediction model which used

process and product metrics. they compare both existing and new models. As of result

of this experiment by adding code smells a predictor, the accuracy of the prediction

model increases [54]

It is worth mentioning that most of the approaches do fault prediction at the class level

leaving method level predictions. Instead, we predict faults at both class and method

levels. We validate our methodology using a few case studies. We show a comparison

of different fault prediction techniques proposed by different authors with our approach

as shown in Table 16.

44

Table 16: Comparison

 Papers Fault prediction

 Class level

Method

level

Prediction

Attributes

Accuracy

Precision

Recall

F1-

score

[59] ✓ 5 99.73% 83% 95% 88% X

[60] ✓ 6 - 76% 84% 80%

X

[61] ✓ 2 - 80.61% 90.98% -

X

[62] ✓ 6 - - - 75%

X

[75] ✓ 5 - 90% 72.7% 50%

X

[16] ✓ 8 - - 62% -

X

[52] ✓ 1 - - - -

X

[76] ✓ 8 54.09% - - -

X

[77] ✓ 1 86.68% - - 61% X

Our

methodology
 ✓ 12 99.78% 98% 97% 98% ✓

45

Chapter 6: Conclusion:

This chapter discusses the conclusion of our work on software fault prediction using

cod smells, results, and summarization of our research work. In the addition, this

chapter also provides an overview of performed research and future work.

Different researchers as discussed in literature do research work on fault prediction

using code smells at the class level. Different authors use different types of code smells

and use different machine learning or regression techniques for fault prediction. All

this work is done at the class level.

 There are more than 30 code smells in the literature, but the authors used 5-8 different

code smells. Impressive work has been done to predict faults at the class level but very

few studies are there to predict faults at the method level. Researchers that are

predicting faults at the method level used process metrics or software metrics for

example CK metrics. no work is done in the field of fault prediction at the method level

using code smells.

We proposed an effective and efficient model. We use pseudo labeling technique with

random forest at class level fault prediction and we use bagging classifier with random

forest as the base classifier for fault prediction at method level. The model developed

using these techniques can predict software faults at class and method level using code

smells. The model can enhance and used for object-oriented or process metrics

provided with the structured dataset. The dataset used in the model building consists of

different types of code smells that are extracted from source code. For class-level

prediction we are using 12 different code smells and for method level we use 6 different

method level code smells. The labeled dataset is collected from projects available at

defects4j. the dataset is pre-processed and structured according to the requirements of

the model being implemented. Our contribution in this research work is the model

developed to predict software faults using code smells at class level and method level

via machine learning technique.

The accuracy and performance of our model depend upon training dataset. Our system

generated 99% and 86% test accuracy under semi/supervised machine learning

algorithm for class level prediction and method level prediction respectively.

In addition to accuracy, we use performance evaluation metrics to evaluate our model.

Performance evaluation metrics have precision, recall, and F1-score, for unbiased

evaluation we use 10 cross-validations.

For validation of our model, we use defects4j. we extract code smells from projects

available at dafects4j and input these code smells to our model, as output our model

predict faulty instances. We use the percentage of the right prediction and the

percentage of the wrong prediction to check the efficiency of our predictions. We

achieved a satisfactory percentage of right prediction both at the class level and at

method level.

46

From our experiment and results, we observe that we can predict faults using code

smells and code smells are a good index for software fault prediction at class level and

method level.

For future work we are planning to use code smells with deep learning, and we are

planning to use some other software metrics or process metrics with machine learning

and deep learning to predict faults at the method level.

47

References:

1. Grottke, M. and K.S. Trivedi, A classification of software faults. Journal of Reliability
Engineering Association of Japan, 2005. 27(7): p. 425-438.

2. software bug accessed. 2018; Available from: https://en.wikipedia.org/wiki/Software_bug.
3. defects4j. Available from: https://en.wikipedia.org/wiki/Code_smell.
4. Fowler, M., et al., Refactoring: improving the design of existing code, ser, in Addison Wesley

object technology series. 1999, Addison-Wesley.
5. Moha, N., et al., Decor: A method for the specification and detection of code and design

smells. IEEE Transactions on Software Engineering, 2009. 36(1): p. 20-36.
6. Halstead, M.H., Elements of software science. Vol. 7. 1977: Elsevier New York.
7. McCabe, T.J., A complexity measure. IEEE Transactions on software Engineering, 1976(4): p.

308-320.
8. Chidamber, S.R. and C.F. Kemerer, A metrics suite for object oriented design. IEEE

Transactions on software engineering, 1994. 20(6): p. 476-493.
9. Bansiya, J. and C.G. Davis, A hierarchical model for object-oriented design quality

assessment. IEEE Transactions on software engineering, 2002. 28(1): p. 4-17.
10. Tang, M.-H., M.-H. Kao, and M.-H. Chen. An empirical study on object-oriented metrics. in

Proceedings sixth international software metrics symposium (Cat. No. PR00403). 1999. IEEE.
11. Martin, R., OO design quality metrics. An analysis of dependencies, 1994. 12(1): p. 151-170.
12. Ma, W., et al., Empirical analysis of network measures for effort-aware fault-proneness

prediction. Information and Software Technology, 2016. 69: p. 50-70.
13. Menzies, T., J. Greenwald, and A. Frank, Data mining static code attributes to learn defect

predictors. IEEE transactions on software engineering, 2006. 33(1): p. 2-13.
14. Ma, Y., L. Guo, and B. Cukic, A statistical framework for the prediction of fault-proneness, in

Advances in Machine Learning Applications in Software Engineering. 2007, IGI Global. p.
237-263.

15. Koru, A.G. and H. Liu. An investigation of the effect of module size on defect prediction using
static measures. in Proceedings of the 2005 workshop on Predictor models in software
engineering. 2005.

16. Ma, W., et al. Do we have a chance to fix bugs when refactoring code smells? in 2016
International Conference on Software Analysis, Testing and Evolution (SATE). 2016. IEEE.

17. Olague, H.M., et al., Empirical validation of three software metrics suites to predict fault-
proneness of object-oriented classes developed using highly iterative or agile software
development processes. IEEE Transactions on software Engineering, 2007. 33(6): p. 402-419.

18. Cruz, A.E.C. and K. Ochimizu. Towards logistic regression models for predicting fault-prone
code across software projects. in 2009 3rd International Symposium on Empirical Software
Engineering and Measurement. 2009. IEEE.

19. Burrows, R., et al. The impact of coupling on the fault-proneness of aspect-oriented
programs: An empirical study. in 2010 IEEE 21st International Symposium on Software
Reliability Engineering. 2010. IEEE.

20. Kapila, H. and S. Singh, Analysis of CK metrics to predict software fault-proneness using
bayesian inference. International Journal of Computer Applications, 2013. 74(2).

21. Dejaeger, K., T. Verbraken, and B. Baesens, Toward comprehensible software fault
prediction models using bayesian network classifiers. IEEE Transactions on Software
Engineering, 2012. 39(2): p. 237-257.

22. Singh, Y., A. Kaur, and R. Malhotra. Software fault proneness prediction using support vector
machines. in Proceedings of the world congress on engineering. 2009.

https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Code_smell

48

23. Goyal, R., P. Chandra, and Y. Singh, Suitability of KNN regression in the development of
interaction based software fault prediction models. Ieri Procedia, 2014. 6(1): p. 15-21.

24. Fokaefs, M., et al. An empirical study on web service evolution. in 2011 IEEE International
Conference on Web Services. 2011. IEEE.

25. Malhotra, R. and A. Jain, Fault prediction using statistical and machine learning methods for
improving software quality. Journal of Information Processing Systems, 2012. 8(2): p. 241-
262.

26. Pai, G.J. and J.B. Dugan, Empirical analysis of software fault content and fault proneness
using Bayesian methods. IEEE Transactions on software Engineering, 2007. 33(10): p. 675-
686.

27. Radjenović, D., et al., Software fault prediction metrics: A systematic literature review.
Information and software technology, 2013. 55(8): p. 1397-1418.

28. Gondra, I., Applying machine learning to software fault-proneness prediction. Journal of
Systems and Software, 2008. 81(2): p. 186-195.

29. Lu, H. and B. Cukic. An adaptive approach with active learning in software fault prediction.
in Proceedings of the 8th International Conference on Predictive Models in Software
Engineering. 2012.

30. Abaei, G., A. Selamat, and H. Fujita, An empirical study based on semi-supervised hybrid self-
organizing map for software fault prediction. Knowledge-Based Systems, 2015. 74: p. 28-
39.

31. Everything about code smells. Available from:
https://www.codegrip.tech/productivity/everything-you-need-to-know-about-code-
smells/.

32. Walter, B., F.A. Fontana, and V. Ferme, Code smells and their collocations: A large-scale
experiment on open-source systems. Journal of Systems and Software, 2018. 144: p. 1-21.

33. Piotrowski, P. and L. Madeyski, Software defect prediction using bad code smells: A
systematic literature review. Data-Centric Business and Applications, 2020: p. 77-99.

34. Rathore, S.S. and A. Gupta. Investigating object-oriented design metrics to predict fault-
proneness of software modules. in 2012 CSI Sixth International Conference on Software
Engineering (CONSEG). 2012. IEEE.

35. Chen, J., et al. Empirical studies on feature selection for software fault prediction. in
Proceedings of the 5th Asia-Pacific Symposium on Internetware. 2013.

36. Rathore, S.S. and S. Kumar, Towards an ensemble based system for predicting the number
of software faults. Expert Systems with Applications, 2017. 82: p. 357-382.

37. Singh, P., et al., Fuzzy rule-based approach for software fault prediction. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 2016. 47(5): p. 826-837.

38. Arshad, A., et al., Semi-supervised deep fuzzy c-mean clustering for software fault
prediction. IEEE Access, 2018. 6: p. 25675-25685.

39. Aziz, S.R., T. Khan, and A. Nadeem, Experimental Validation of Inheritance Metrics’ Impact
on Software Fault Prediction. IEEE Access, 2019. 7: p. 85262-85275.

40. Kumar, L. and A. Sureka. Analyzing fault prediction usefulness from cost perspective using
source code metrics. in 2017 Tenth International Conference on Contemporary Computing
(IC3). 2017. IEEE.

41. Singh, P. Comprehensive model for software fault prediction. in 2017 International
Conference on Inventive Computing and Informatics (ICICI). 2017. IEEE.

42. Khomh, F., M. Di Penta, and Y.-G. Gueheneuc. An exploratory study of the impact of code
smells on software change-proneness. in 2009 16th Working Conference on Reverse
Engineering. 2009. IEEE.

https://www.codegrip.tech/productivity/everything-you-need-to-know-about-code-smells/
https://www.codegrip.tech/productivity/everything-you-need-to-know-about-code-smells/

49

43. Lozano, A., M. Wermelinger, and B. Nuseibeh. Evaluating the harmfulness of cloning: A
change based experiment. in Fourth International Workshop on Mining Software
Repositories (MSR'07: ICSE Workshops 2007). 2007. IEEE.

44. Li, W. and R. Shatnawi, An empirical study of the bad smells and class error probability in
the post-release object-oriented system evolution. Journal of systems and software, 2007.
80(7): p. 1120-1128.

45. Sjøberg, D.I., et al., Quantifying the effect of code smells on maintenance effort. IEEE
Transactions on Software Engineering, 2012. 39(8): p. 1144-1156.

46. Guo, Y., et al. Domain-specific tailoring of code smells: an empirical study. in Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering-Volume 2. 2010.

47. Eken, B., et al., An empirical study on the effect of community smells on bug prediction.
Software Quality Journal, 2021. 29(1): p. 159-194.

48. Rio, A., PHP code smells in web apps: survival and anomalies. arXiv preprint
arXiv:2101.00090, 2020.

49. Kessentini, M., Understanding the correlation between code smells and software bugs.
2019.

50. Sotto-Mayor, B., et al., Exploring Designite for Smell-Based Defect Prediction.
51. Van Emden, E. and L. Moonen. Java quality assurance by detecting code smells. in Ninth

Working Conference on Reverse Engineering, 2002. Proceedings. 2002. IEEE.
52. Zazworka, N., et al. Investigating the impact of design debt on software quality. in

Proceedings of the 2nd Workshop on Managing Technical Debt. 2011.
53. Hall, T., et al., Some code smells have a significant but small effect on faults. ACM

Transactions on Software Engineering and Methodology (TOSEM), 2014. 23(4): p. 1-39.
54. Vidal, S.A., C. Marcos, and J.A. Díaz-Pace, An approach to prioritize code smells for

refactoring. Automated Software Engineering, 2016. 23(3): p. 501-532.
55. Liu, H., et al., Schedule of bad smell detection and resolution: A new way to save effort. IEEE

transactions on Software Engineering, 2011. 38(1): p. 220-235.
56. Lozano, A., M. Wermelinger, and B. Nuseibeh. Assessing the impact of bad smells using

historical information. in Ninth international workshop on Principles of software evolution:
in conjunction with the 6th ESEC/FSE joint meeting. 2007.

57. Dhillon, P.K. and G. Sidhu, Can software faults be analyzed using bad code smells?: An
empirical study. Int J Sci Res Publ, 2012. 2(10): p. 1-7.

58. Olbrich, S.M., D.S. Cruzes, and D.I. Sjøberg. Are all code smells harmful? A study of God
Classes and Brain Classes in the evolution of three open source systems. in 2010 IEEE
International Conference on Software Maintenance. 2010. IEEE.

59. Ubayawardana, G.M. and D.D. Karunaratna. Bug prediction model using code smells. in 2018
18th International Conference on Advances in ICT for Emerging Regions (ICTer). 2018. IEEE.

60. Palomba, F., et al., Toward a smell-aware bug prediction model. IEEE Transactions on
Software Engineering, 2017. 45(2): p. 194-218.

61. Pritam, N., et al., Assessment of code smell for predicting class change proneness using
machine learning. IEEE Access, 2019. 7: p. 37414-37425.

62. Catolino, G., et al., Improving change prediction models with code smell-related
information. Empirical Software Engineering, 2020. 25(1): p. 49-95.

63. Soltanifar, B., et al. Software analytics in practice: a defect prediction model using code
smells. in Proceedings of the 20th International Database Engineering & Applications
Symposium. 2016.

50

64. Palomba, F., et al. Smells like teen spirit: Improving bug prediction performance using the
intensity of code smells. in 2016 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 2016. IEEE.

65. Giger, E., et al. Method-level bug prediction. in Proceedings of the 2012 ACM-IEEE
International Symposium on Empirical Software Engineering and Measurement. 2012. IEEE.

66. Pascarella, L., F. Palomba, and A. Bacchelli. Re-evaluating method-level bug prediction. in
2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering
(SANER). 2018. IEEE.

67. pseudo labeling. Available from: https://towardsdatascience.com/pseudo-labeling-to-deal-
with-small-datasets-what-why-how-fd6f903213af.

68. Khalilia, M., S. Chakraborty, and M. Popescu, Predicting disease risks from highly
imbalanced data using random forest. BMC medical informatics and decision making, 2011.
11(1): p. 1-13.

69. Banker, R.D., et al., Software errors and software maintenance management. Information
Technology and Management, 2002. 3(1): p. 25-41.

70. Caram, F.L., et al., Machine learning techniques for code smells detection: a systematic
mapping study. International Journal of Software Engineering and Knowledge Engineering,
2019. 29(02): p. 285-316.

71. Defects4J Dissection. Available from: http://program-repair.org/defects4j-dissection/#!/.
72. IPLASMA. Available from: http://loose.cs.upt.ro/index.php?n=Main.IPlasma.
73. Code Smells and their Collocations : A Large-scale Experiment on Open-source Systems.

Available from: http://doi.org/10.5281/zenodo.842778.
74. joda-time. june 26]; Available from: https://github.com/dlew/joda-time-android.
75. Bigonha, M.A., et al., The usefulness of software metric thresholds for detection of bad

smells and fault prediction. Information and Software Technology, 2019. 115: p. 79-92.
76. Qusef, A., M.O. Elish, and D. Binkley, An exploratory study of the relationship between

software test smells and fault-proneness. IEEE Access, 2019. 7: p. 139526-139536.
77. Gradišnik, M., et al. Adapting God Class thresholds for software defect prediction: A case

study. in 2019 42nd International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO). 2019. IEEE.

https://towardsdatascience.com/pseudo-labeling-to-deal-with-small-datasets-what-why-how-fd6f903213af
https://towardsdatascience.com/pseudo-labeling-to-deal-with-small-datasets-what-why-how-fd6f903213af
http://program-repair.org/defects4j-dissection/#!/
http://loose.cs.upt.ro/index.php?n=Main.IPlasma
http://doi.org/10.5281/zenodo.842778
https://github.com/dlew/joda-time-android

