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Abstract 

The following steps in the current thesis establish the idea of the relation among 

fluid flow over linear, nonlinear and exponential stretching sheets. Following are the 

steps taken to construct the thesis framework. An extensive body of literature on the 

relation among fluid flow over linear, nonlinear, and exponential stretching sheets is 

studied in the first chapter. For linear, non-linear and exponential stretching/shrinking 

sheets, precise features of fluid flow, boundary layer theory, momentum equation, and 

heat transfer are explored. In addition to this, the second chapter explores basic fluid 

terminologies, characteristics and fundamental rules. The third chapter looks at a paper 

that investigates a linear/nonlinear stretching sheet of governing the fluid flow. One 

special situation that can be considered is a linear stretching sheet. The governing 

equation of momentum, continuity and energy are constructed by using tensor analysis. 

By making use of similarity variables, governing partial differential equations (PDEs) 

were transformed into dimensionless non-linear ordinary differential equations (ODEs) 

and solved numerically. In the next chapter, a numerical investigation of a fluid flow 

over an exponentially stretching sheet in the presences of thermal radiation is carried 

out. By using helpful similarity variables, governing PDEs were translated into 

dimensionless non-linear ODEs and then numerically solved. A comparative analysis of 

fluid flow for linear, nonlinear and exponentially stretching/shrinking sheet has been 

carried out in chapter five. Chapter six gives comprehensive detail of the major findings 

of this dissertation. 
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NOMENCLATURE 

𝑢̅, 𝑣̅ Component of velocity 

𝑥 Coordinate along the plane 

𝑦 Coordinate along the normal 

𝑇 Fluid Temperature 

𝑇𝑤 Surface Temperature 

𝑈∞ Velocity at plane 

𝑇∞ Ambient temperature 

𝜇 Dynamic viscosity 

𝐶𝒑 Heat capacity 

𝜌 Density of the fluid 

𝜈 Kinematic viscosity 

𝐾 Thermal conductivity of viscous 

fluid 

C,𝐿 Constant numbers 

𝑞𝑟 Radiative Heat flux(K/m) 

𝐸 Eckert number 

𝑈𝟎 Source velocity 

𝑇0 The plates’ temperature 

𝑅𝑒 Reynold number 

𝑇4 Linear temperature function 

𝜎∗ Constant of Stefan Boltzmann 

𝑘∗ Consumption co-efficient 

𝐾 Radiation number(
4𝜎∗𝑇∞

3

𝑘∗𝑘
) 

𝑁𝑢𝑥 Local Nusselt number 

𝑇̅𝑤 Skin friction against the wall 

𝜆 Stretching parameter 

𝐶𝑓 Skin friction  

𝑞𝑤 Heat flux 

𝜆 Stretching/shrinking parameter 

𝑃𝑟 Prandtl number 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

A thin layer of flowing viscous fluid near to the surface is known as the 

boundary layer. It has a wide range of uses, including movable lids, heat enrichment, 

sport aerodynamics, and aircraft. Prandtl [1] initially suggested the concept of boundary 

layers. He divided the flow field into two areas and discussed it in his research. The first 

area is a thin layer (boundary layer) near to the body where viscosity predominates. The 

second area is outside of this layer, and it is the location where a fluid particle’s velocity 

reaches 0.99% of free stream velocity. With respect to distance from the surface 

velocity will fluctuate for a thin layer. A thin layer above the surface is known as the 

boundary layer and has a velocity gradient., Sakiadis [2] investigated boundary layer 

flow on a solid surface. He examined the boundary layer solution using both close and 

broad approaches. During 1970s, crane [3] investigated the boundary layer flow on a 

stretching/shrinking sheet. When the velocity varies, he established an exact solution 

for, 2-dimensional incompressible boundary layer flow. 

The extrusion methods used in the industry of plastic and metal both utilize the 

flow generated by a stretching boundary [4]. A ground-breaking investigation was 

conducted by Sakiadis to examine the motion of boundary layer on a continually 

stretching  moving  surface at a steady speed. According to Lee [5] the flow through a 

needle with different diameters is where the study on boundary layer flows across a thin 

object with variable thickness was originally discovered in the past. The boundary layer 

flows through a thin needle were then extensively studied [6-8] while taking heat 

transfer effects into account. 

 These studies have an impact on the issue of polymer sheets that are 

continuously extruded from pigment. A common belief is that the sheet is 

nonprotractile, however as noted by Crane [9], circumstances may develop within the 

polymer sector once it is required to cope with a stretching plastic sheet. The movement 

of the boundary layer past a wall that is stretched at a velocity proportional to the 

distance with the wall was studied by Dangberg and Fenster [10] for a non-identical 
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solution. Gupta and Gupta [11] studied the behavior of boundary layer over a 

stretching/shrinking sheet subject to suction for the velocity and temperature transport 

related to the given solution. The characteristics of heat transport over a continuously 

expanding surface with varying surface temperature were investigated by Chen and 

Char [12]. 

Rajagopal et al. [13] studied the viscoelastic fluid's flow behavior over a 

stretching sheet provided an approximation of the flow field's solution. The difficulty of 

Rajagopal et al. [13] was recently solved precisely by Troy et al. [14].     

Afzal and Varshney [15], Kunken [16], and Banks [17] generated the sheet from 

a linearly stretching state to one that stretches with a power-law velocity. Mair Khan et 

.al [18] report the physical properties of a linearly stretched sheet and an MHD tangent 

hyperbolic fluid containing nanoparticles. In their investigation of the 

magnetohydrodynamic Eyring-Powell fluid flow over a stretched surface, Akbar et al. 

[19] used the shooting method to compute the numerical solution. They discovered that 

the velocity profile’s Hartmann number is negative. Recently, many researchers 

discussed the impact of applied magnetic field on non-Newtonian fluid flows over 

stretched surfaces [20-22]  

 Vajravelu et al. [23] examines the stream of the viscous flow with nonlinear 

extended sheet, where it was determined the characteristics of transfer of heat. Later, 

they conclude this phenomenon in terms of numerical technique [24] which also 

includes straightly extending sheet issue. Cartel [25] explorer transfer of heat in thick 

liquid (viscous flow) where two cases have been discussed include sheet with consistent 

temperature and sheet with endorsed temperature. After this conclusion Cortoll [26] also 

examines flux in transfer of temperature in viscous flow in the presence of radiations. 

Ishak et al. [27] explorer the collision of extending sheet on MHD. Hammad et al. [28] 

explore the two-dimensional flow and heat transfer of an incompressible viscous 

nanofluid via a non-linear stretching sheet. The overall framework is about the viscous 

flow in presence of MHD boundary layer.  

 Fluid in which nano size particle with 1/100nm length are suspended is called 

nanofluid. Nadeem et al. [29] explore the effect of nanoparticles on the viscous flow 

over the extending sheets. Recently Reddy et al. [30] explorer the slushy dissemination 

effect on free convection MHD fluid overextending surface including chemical 
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responses. To approve the comes about a cooperative consider between the display 

consider and already distributed comes about for a specific case is conducted and great 

understanding is found between them.  

Javad et al. [31] presumes the turning stream of an incompressible laminar flow 

over the stretching plane including exponential sheet. Liu et al. [32] conclude the 

transfer of heat in 3-D laminar flow which examines the surface extended exponentially 

along horizontal direction. This simulation of reflection accept that the surface 

temperature spreads more exponentially and the change in similarity is used to reduce 

the monitoring conditions to a set of ordinary differential equations. 

Hayat et el. [33] studied the three-dimensional flow effects on thermal diffusion 

and energy flux including heat source and reactions. Later on, Bhattacharyya et all. 

[34,35] explore the different manners of chemical reactions on MHD flow over the 

vertical stretching sheet. On the other hand, Skiadas [36] explore for the first time the 

different exploits of viscous fluid an account of moving plane. According to this 

definition, thermal radiation is the process through which a heated surface radiates 

energy in the form of electromagnetic radiation in all directions. Energy is transported 

across material by the process of radiation, either as waves or particles. Three types of 

radiation are distinguished: sound, energy, and light. Energy transfer in the synthesis of 

polymers and fossil fuels, as well as in astrophysical fluxes, is calculated using thermal 

radiations. Among other applications, thermal radiation is crucial for space exploration, 

high-temperature activities, and controlling the heating process in the polymer industry. 

Elbashbeshy and Damian [37] examined boundary layer flow across a wedge 

with viscosity coefficient while considering the radiation effect and heat transfer. He 

used a fourth order Runge-Katta technique to resolve a problem involving the impact of 

radiation on Blasius flow. Later, by using the homotropy analysis method to solve the 

problem analytically, Sajid and Hayat [38] addressed the impact of thermal radiation on 

viscous flow produced by an exponential stretched sheet (HAM). 

Our main objective was to create numerical solution using graphical 

comparisons of linear, nonlinear, and exponential stretching sheet. We were intended to 

show the velocity and temperature among the said stretching sheet and combined them 

as one. Chapter 1 of this research introduces the topic and discusses literature review. 

The next chapter enlightens about the basic definitions and concepts around which the 
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study revolves. Chapter 3 encloses a detail study of boundary layer flow of a viscous 

fluid along linear and nonlinear stretching sheet. In chapter 4 a numerical investigation 

of flow of an exponential stretching sheet  with thermal radiation is carried out. The 

flow problem is mathematically modeled in the form of nonlinear partial differential 

equations (PDEs) and converted into ordinary differential equations (ODEs) along with 

the boundary condition. Then the set of ODEs were solved numerically by using bvp4c 

MATLAB built-in command. 
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CHAPTER 2 

BASIC DEFINITIONS 

This chapter quickly discusses a number of fundamental terms, definitions and 

laws relating to the fluid movement and heat transfer. 

2.1 Fluid 

A substance that cannot withstand shear stress is said to be fluid. A fluid will 

constantly deform when shear stress is applied. The fluid's velocity or flow is 

interpreted as the deformation. Fluids, which include both liquid and gas, have different 

properties from solids. There are essentially two categories of fluids. Fluids that are 

Newtonian and non-Newtonian (both are actual fluid). 

2.2 Fluid Mechanics 

  The properties of fluids in motion or at rest were of interest to this section of 

mechanics. It is divided into three sections. Kinematics, fluid dynamics, and static fluid 

2.2.1 Kinematic fluid 

  The study of fluid particle motion in the absence of external forces is known as 

fluid kinematics. This also addresses the velocities and accelerations of moving fluid 

particles. 

2.2.2 Dynamic fluid 

Analysis of the movement of the particles contained in a fluid is known as fluid 

dynamics. It can be applied to examine the airflow over an aero plane wing or over the 

surface of a car. To boost the speed at which ships navigate the water. It can also be 

incorporated in their design. 

2.2.3 Static fluid 

A fluid layer cannot move in relation to an adjacent layer, and there are no shear 

forces in the fluid, according to the branch of fluid mechanics known as fluid static. 
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2.3 Classification of fluid: 

2.3.1 Viscous fluid 

Viscous fluids are defined as having a higher thickness or viscosity; they are 

typically very gloppy fluids. Shampoo and motor oil, as examples. 

2.3.2 non-viscous fluid 

 A non-viscous fluid is one that has no internal friction or barrier to flow or 

viscosity. 

Example: Superfluid liquid helium. 

 

Figure 2.1: superfluid 

             (https://hicodenver.com/2017/12/strange-but-true-superfluid-helium-

can-climb-walls/) 

 

2.3.2.1 Superfluid 

 A fluid which is ability to flow indefinitely without losing any energy is called 

superfluid. 

2.3.3 Real fluid 

 Real fluids have some viscosity and can be compressed.(𝜇 ≠ 0).Petrol and 

castor oil are examples of real fluid. 
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2.3.4 Ideal fluid 

It is an incompressible, viscous fluid that cannot be compressed. Practically 

speaking, this kind of fluid cannot exist. (𝜇 = 0). 

2.3.5 Compressible fluid 

When a fluid's density directly correlates with its temperature and pressure, the 

term compressible fluid is used. Gases are one of the most typical examples. 

 

 

Figure 2.2: Compressible fluid 

      (https://m.facebook.com/prepareyourself.gk/photos/what-is-incompressible-fluida-

fluid-in-which-the-density-remains-constant-for-is/106071131116820/) 

2.3.6 Incompressible fluid 

An incompressible fluid is one whose density is constant independent of the 

temperature or pressure. Liquids are typically thought of as being incompressible.      

 

Figure 2.3: Incompressible fluid 

   (https://m.facebook.com/prepareyourself.gk/photos/what-is-incompressible-fluida-

fluid-in-which-the-density-remains-constant-for-is/106071131116820/) 

 

2.3.7 Newtonian fluid 

Newtonian fluids are actual fluids that adhere to Newton's viscosity law. for 

instance, hydrogen and water. 
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2.4 Boundary layer 

 

Figure 2.4: Boundary layer 

(https://youtu.be/9njAGk_DcFg) 

 

Ludwig Prandtl initially suggested the concept of boundary layers in 

1904.According to Prandtl, a body's flow may be separated into two areas: 

• The first zone is a thin layer (boundary layer) near to the body where viscosity 

predominates. 

• The second area is outside of this layer, and it is the location where a fluid 

particle’s velocity reaches 99% of free stream velocity. With respect to distance from 

the surface velocity will fluctuate for a thin layer. 

A thin layer above the surface is known as the boundary layer and has a velocity 

gradient. 

 

2.5 Heat and mass transfer 

A kinetic process, heat transfer involves the movement of particles to transmit 

energy from one particle to another. On the other hand, mass transfer is the movement 

of mass from one to another place, as in absorption, evaporation and other processes. 
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2.6 Convection 

Heat is transferred through a fluid when it moves across a space, such as heated 

air or water. Convection develops as a result of most fluids' tendency to expand when 

they warm up. 

2.7 Two-Dimensional flow 

Dimensions are essentially space coordinates, and although fluid motions are 

typically thought of as being three-dimensional, they are often calculated as being two-

dimensional in order to make calculations easier. To flow in a plane coordinate is to 

flow in two dimensions. 

2.8 Nanofluids 

A fluid in which nanoparticles with a length of 1-100 nm are suspended is 

referred to as nanofluids. Nanoparticles have a larger potential to improve heat 

transmission than nanofluids, which can elevate the heat conduction of the liquid. 

2.9 Steady flow 

At any point in time, the fluid's particle velocity is constant. 

Stable flow refers to water moving smoothly through a pipeline with a continuous 

discharge  
𝜕𝑣

𝜕𝑡
= 0. 

2.10 unsteady flow 

At any point in time, the fluid's particle velocity is not constant. 
𝜕𝑣

𝜕𝑡
≠ 0. 

2.11 Thermal radiation 

The process by which energy diffuses across a heat surface in all directions as 

electromagnetic waves. Energy is transported across material by the process of 

radiation, either as waves or particles. 

 

2.12 Properties of fluid 

 

2.12.1 Density 

The term "density" refers to the number of "things" in a certain amount of space. 

It is a ratio between mass and volume. It is stated as 
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                                         𝜌 =
𝑚

𝑉
. 

2.12.2 Dynamic viscosity 

Dynamic viscosity is defined as the fractional relationship of shear stress to 

deformation rate,  

This is indicated by 𝜇. In mathematics 

                                           𝜇 =
𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠

𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒
. 

Dimension = [𝐿2𝑇−1]. 

2.12.3 Kinematic viscosity 

The fractional relationship of dynamic viscosity to density. It is represented by 

the letter 𝜈. Kinematic viscosity is expressed mathematically as 

                                     𝜈 =
𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦

𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 =  

𝜇

𝜌
.      

2.13 Some useful non-dimensional numbers 

 

2.13.1 Prandtl number 

It is a non-dimensional quantity that represents a change in kinematic viscosity v 

in relation to thermal diffusivity 𝜆. Mathematically 

                                      𝑃𝑟 =
𝜈

𝜆
. 

2.13.2 Reynolds number 

The ratio of inertial force to the viscous force is called Reynold number. 

Mathematically it is represented as 

                               𝑅𝑒 =
𝜌𝑣𝐿

𝜇
 . 

2.13.3 Eckert number  

Advective mass transfer to heat dissipation potential ratio is known as the Eckert 

number. It can be stated as follows 

                                   𝐸𝑐 =
𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛
. 
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2.13.4 Skin friction 

The wall shear stress is used to define the dimensionless skin-friction 

coefficient: 

Mathematically it is indicated by 

𝐶𝑓 =
𝑇̅𝑤

𝑞
. 

 𝑇̅𝑤 =  wall shear stress in the area. 

  𝑞 = dynamic free-stream pressure. 

2.13.5 Nusselt number 

Local Nusselt number is a dimensionless quantity that measures the proportion 

of conductive to convective heat transfer at the border. 

In math, it is represented as  

                                      𝑁𝑢𝑥 = 
𝑥ℎ𝑥

𝑘
. 
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CHAPTER 3 

HEAT TRANSMISSION IN A FLUID WITH THERMAL 

CONDUCTIVITY OVER A STRETCHING SHEET WHICH IS 

NONLINEAR AND LINEAR. 

 

  The given chapter will discuss the transfer of heat in a 2-dimensional 

Newtonian fluid along the linear and a nonlinear stretching sheet. In order to get to the 

nonlinear ordinary differential equations (ODEs), stream operation was explained in a 

versatile way in this case (comparatively to the linear stretching case). These differential 

equations are numerically solved, given the boundary conditions. The governing partial 

differential equations (PDEs) will be transformed into dimensionless ordinary 

differential equations (ODEs). To solve the ordinary differential equation, numerical 

method is used. This chapter is the review of an article of Vajravelu, K. [39] for the 

boundary layer flow along a nonlinear stretching sheet and an article of Chaim, T. [40] 

for boundary layer flow along linearly stretching sheet. 

 

𝟑. 𝟏 Mathematical Formulation: 

Consider a 2-dimensional flow, incompressible steady flow of a viscous fluid 

along nonlinear stretching sheet having velocity 𝑢 = 𝑐𝑥𝑛. Here linear 𝑛 = 1 and non-

linear 𝑛 > 1.The equations of continuity, velocity and temperature are given as below. 

∇. 𝑉 = 0,              (3.1) 

𝜌 (𝑉. ∇)𝑉 = 𝑑𝑖𝑣𝜏,          (3.2) 

(𝜌𝐶𝑝)(𝑉. ∇)𝑇 =  𝜏. (∇. 𝑉) − 𝑑𝑖𝑣𝑞,        (3.3) 

Where 𝜏 can be expressed as 

𝜏 = −𝑝𝐼 + 𝜇𝐿1,         (3.4) 

Here 𝐿1 is Rivlin-Ericksen tensor, which can be written as 
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𝐿1 = ( ∇V) + (∇𝑉)𝑇,                      (3.5) 

The respective Velocity and temperature field will be 

𝑉 = [𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦), 0], 𝑇 = 𝑇(𝑥, 𝑦),      (3.6) 

Using Equation (3.6 )in Equation (3.5) and we get 

∇𝑉 = [

𝑢𝑥 𝑢𝑦 0

𝑣𝑥 𝑣𝑦 0

0 0 0

] , (∇𝑉)𝑇 = [
𝑢𝑥 𝑣𝑥 0
𝑢𝑦 𝑣𝑦 0

0 0 0

],     (3.7) 

Now by utilizing Equation (3.7) in (3.5), we obtain 

𝐿1 = [

2𝑢𝑥 𝑢𝑦 + 𝑣𝑥 0

𝑣𝑥 + 𝑢𝑦 2𝑣𝑦 0

0 0 0

],       (3.8) 

Putting the value of Equation (3.8) in Equation (3.4) 

𝜏 = [

−𝑝 + 2𝜇𝑢𝑥 𝜇(𝑢𝑦 + 𝑣𝑥) 0

𝜇(𝑣𝑥 + 𝑢𝑦) −𝑝 + 2𝜇𝑣𝑦 0

0 0 −𝑝

],      (3.9) 

To express equation (3.9) in component form that is 

𝜏𝑥𝑥 = −𝑝 + 2𝜇𝑢𝑥,  𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇(𝑣𝑥 + 𝑢𝑦),      (3.10) 

𝜏𝑥𝑧 = 𝜏𝑧𝑥 = 𝜏𝑦𝑧 = 𝜏𝑧𝑦 = 0,       (3.11) 

𝜏𝑦𝑦 = −𝑝 + 2𝜇𝑣𝑦 , 𝜏𝑧𝑧 = −𝑝,                  (3.12) 

Putting equations (3.10) , (3.11) and (3.12 )in equation (3.2) 

𝜌(𝑢𝑢𝑥 + 𝑣𝑢𝑦) = −
𝜕𝑝

𝜕𝑥
+ 𝜇∇2𝑢,                 (3.13) 

𝜌(𝑢𝑣𝑥 + 𝑣𝑣𝑦) = −
𝜕𝑝

𝜕𝑦
+ 𝜇∇2𝑣,                 (3.14) 

Now, using equation 

𝑞 = −𝑘[𝑇𝑥, 𝑇𝑦,0],         (3.15) 

𝜌𝐶𝑝(𝑢𝑇𝑥 + 𝑇𝑦) = 𝑘∇2𝑇,                   (3.16) 

𝜌𝐶𝑝 [𝑢
𝜕𝑇

𝜕𝑥
+

𝜕𝑇

𝜕𝑦
] = 𝑘 [

𝜕2𝑇

𝜕𝑥2].        (3.17) 
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The boundary condition for equations are 

𝑢 = 𝑢𝑤(𝑥) = 𝑐𝑥𝑛 , 𝑣 = 0, 𝑇 = 𝑇𝑤       at    𝑦 = 0,                           (3.18) 

𝑢 → 0 ,          𝑇 → 𝑇∞    as    𝑦 → ∞.                 (3.19) 

in which 𝑇𝑤 and 𝑢𝑤 respectively represent the temperature and velocity of stretching 

boundary. Here we studied two cases for the stretching velocity i.e., Nonlinear 

stretching and linearly stretching. 

Case:1    𝑛 > 1 

              For nonlinear velocity   

Case:2   𝑛 = 1 

           For linear velocity 

To convert above non-linear partial differential equations (PDEs) to linear ordinary 

differential equations (ODEs) will consider the following transformation(similarity). 

𝜂 = 𝑦√𝑐(𝑛 + 1)/2𝜈𝑥(𝑛−1)/2,                   (3.20) 

 𝜓 = √𝑐𝜈 𝑥𝑛 𝑓(𝜂)  ,    𝜃 =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
,                  (3.21) 

Converting  𝜓 into 𝑢 and 𝑣 

𝑢 =
𝜕𝜓

𝜕𝑦
= 𝑐𝑥𝑛𝑓′(𝜂),                               (3.22) 

𝑣 = −
𝜕𝜓

𝜕𝑥
= −√

𝐶𝜈(𝑛+1)

2
𝑥

𝑛−1

2 [𝑓 + (
𝑛−1

𝑛+1
) 𝜂𝑓′],                (3.23) 

Now using above similarity transformations in Equations (3.14) and (3.15) respectively, 

𝑓′′′ + 𝑓𝑓′′ − (
2𝑛

𝑛+1
) (𝑓′2) = 0,                 (3.24) 

𝜃′′ + 𝑃𝑟𝑓𝜃′ = 0.                              (3.25) 

Where 𝑃𝑟 =
𝜇𝑐𝑝

𝑘
 . 

Depressed boundary conditions are 

𝑓(0) = 0, 𝑓′(0) = 1, 𝜃(0) = 1,            𝑎𝑡   𝜂 = 0,                                      (3.26) 
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𝑓′ → 0,                𝜃 → 0                                 𝑎𝑠 𝜂 → ∞.                           (3.27) 

Skin friction and Nusselt number are denoted by the following expressions. 

𝐶𝑓 =
2𝑇̅𝑤

𝜌𝑢2
𝑤

,                     (3.28) 

Where, 

𝑇̅𝑤 = 𝜇
𝜕𝑢

𝜕𝑦
   𝑎𝑡 𝑦 = 0.                                          (3.29) 

The Nusselt number is 

𝑁𝑢𝑥  =
𝑥𝑞𝑤

𝐾(𝑇𝑤−𝑇∞)
 ,                    (3.30) 

Heat flux is represented by 𝑞𝑤 

𝑞𝑤 = −𝐾 (
𝜕𝑇

𝜕𝑦
)         𝑎𝑡 𝑦 = 0.                                             (3.31) 

Now utilizing comparable (similarity) variables Equations (3.20), (3.21) and (3.22) in 

Equations (3.28) and (3.30) then we get dimensionless skin fiction and Nusselt number 

respectively. 

Case; I 

 For nonlinear stretching sheet by substituting 𝑛 > 1, then we get 

𝑓′′(0) = 𝐶𝑓√
𝑅𝑒𝑥

2(𝑛+1)
 ,                    (3.32)   

−𝜃′(0) =  𝑁𝑢𝑥√
2

𝑅𝑒𝑥(𝑛+1)
 .                               (3.33)  

Case: II 

For linearly stretching sheet by substituting  𝑛 = 1 in Equations (3.32) and 

(3.33) then we get  

𝑓′′(0) =
𝐶𝑓

2
√𝑅𝑒𝑥 ,                                (3.34) 

−𝜃′(0) =  
 𝑁𝑢_x 

√𝑅𝑒𝑥  
 .                                                         (3.35) 

   Here    𝑅𝑒𝑥 =
𝑈𝑤𝑥

𝜐
   is  Reynold number.  
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𝑓′ and 𝜃′ represent the differentiate with respect to (w.r.t) 𝜂. 

 

3.2 Methodology: 

The ordinary differential equations (ODEs) Equations (3.24) and (3.25) with the 

accompanying boundary conditions (3.26) and (3.27) can be solved using the shooting 

procedure and Runge-Kutta method. In order to solve the system (3.24), (3.25) it is 

required to be translated into a first order initial value problem (IVP). So that we take 

𝑓 = 𝑏(1),                𝜃 = 𝑏(4),                              (3.2.1) 

𝑓′ = 𝑏(2),                𝜃′ = 𝑏(5),            (3.2.2) 

𝑓′′ = 𝑏(3),                𝜃′′ = 𝑏𝑏2,                            (3.2.3)      

𝑓′′′ = 𝑏𝑏1,                                         (3.2.4) 

Equation (3.24) ⇒ 𝑏𝑏1 =  −𝑏(1)𝑏(3) +
2𝑛

𝑛+1
𝑏(2)2;                         (3.2.5) 

Equation(3.25)⇒ 𝑏𝑏2 =  𝑃𝑟(−𝑏(1)𝑏(5);                                                                (3.2.6) 

 

⇒

[
 
 
 
 
𝑓′

𝑓′′

𝑓′′′

𝜃′

𝜃′′ ]
 
 
 
 

=

[
 
 
 
 
𝑏(2)

𝑏(3)
𝑏𝑏1
𝑏(5)
𝑏𝑏2 ]

 
 
 
 

=

[
 
 
 
 
 

𝑏(2)
𝑏(3)

−𝑏(1)𝑏(3) +
2𝑛

𝑛+1
𝑏(2)2

𝑏(5)
𝑃𝑟(−𝑏(1)𝑏(5) ]

 
 
 
 
 

.                           (3.2.7) 

Here are the initial conditions: 

𝑏(1)(0) = 0 , 𝑏(2)(0) = 1 , 𝑏(4)(0) = 1,                             (3.2.8) 

𝑏(2)(∞) = 0, 𝑏(4)(∞) = 0.                     (3.2.9) 

3.3 Result and discussion:       

The nonlinear ODEs are solved in MATLAB using shooting method. The 

transformed system of the said ODEs (3.24) and (3.25) with specific boundary 

conditions (3.26) and (3.27) are solved numerically. Moreover, these numerical 

solutions are concluded over some values of governing parameters. The given figures 

3.1, 3.2 and 3.3 illustrates the significant traits of the flow and head of transfer 

characteristics. These graphs display the temperature profiles and velocity profiles. We 
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examine the dominant parameters including temperature, velocity and the Prandtl 

number 𝑃𝑟. 

Figures 3.1 and 3.2 illustrate the velocity profile 𝑓 ′(𝜂) and temperature profile 

𝜃(𝜂) for three nonlinear stretching parameters 𝑛 (1, 5 and 10) when 𝑃𝑟 = 0.71. Figure 

3.1 demonstrated that the velocity 𝑓′(𝜂) reduces as n increases. Additionally, this drop 

in 𝑓′(𝜂) is insignificant for large value of n. This result from the fact that when n 

approaches to infinity, the coefficient 
2𝑛

𝑛+1
 in the differential equation (3.24) approaches 

2. The value of n has a significant impact on the velocity component 𝑢 an 𝑣. 

The non-dimensional temperature depicted in Figure 3.2 for some value of 𝑛 for 

Prandtl number 𝑃𝑟 = 0.71. Figure 3.2 shows clearly that the temperature 𝜃(𝜂) rises as 

the nonlinear stretching parameter n is increased. 

Our publications have time and again confirmed the precision and validity of the 

equations with boundary conditions for linearly stretching sheet. 

Figure 3.3 makes it evident that the Prandtl number is in inverse relationship 

with the thickness of thermal boundary layer. Resultantly, curve of the graph becomes 

steep. 

 

 

 

 

 

 



18 

Figure 3.1: Fluctuation of velocity 𝑓′ in relation to 𝑛 

Figure 3.2: Fluctuation of the temperature 𝜃(𝜂) in relation to 𝑛 
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Figure 3.3: Fluctuation of the temperature 𝜃(𝜂) when 𝑛 = 1  
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CHAPTER 4 

FLOW OF AN EXPONENTIAL STRETCHING SHEET WITH 

THERMAL RADIATION USING NUMERICAL SOLUTION. 

 

This chapter cover heat transmission in a two-dimensional, incompressible, 

viscous liquid when thermal radiation is present along a sheet that is stretching 

exponentially. The governing partial differential equations (PDEs) will be translated 

into dimensionless ordinary differential equations (ODEs). Numerical method is utilized 

to resolve the underlying issues of ordinary differential equation (ODE). The given 

chapter reviews [41]. 

 

4.1 Mathematical formulation: 

 

 

Figure 4.1: Boundary layer flow 

Consider a 2-dimensional flow, incompressible steady viscous fluid flow along a 

nonlinearly stretching sheet having velocity 𝑢 = 𝑈0𝑒
𝑥

𝐿 .The governing equations of 

continuity, velocity and temperature are Equations (4.1 – 4.3). 
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∇. 𝑉 = 0,                      (4.1) 

𝜌 (𝑉. ∇)𝑉 = 𝑑𝑖𝑣𝜏,                       (4.2) 

(𝜌𝐶𝑝)(𝑉. ∇)𝑇 =  𝜏. (∇. 𝑉) − 𝑑𝑖𝑣𝑞,                     (4.3) 

Here 𝜏 is represented by 

𝜏 = −𝑝𝐼 + 𝜇𝐿1,                      (4.4) 

Here 𝐿1 is Rivlin-Ericksen tensor is expressed  as: 

𝐿1 = ( ∇V) + (∇𝑉)𝑇,                                (4.5)  

The respective Velocity and temperature field will be: 

𝑉 = [𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦), 0], 𝑇 = 𝑇(𝑥, 𝑦),                  (4.6) 

Using Equation (4.6) in Equation (4.5) and we get 

∇𝑉 = [

𝑢𝑥 𝑢𝑦 0

𝑣𝑥 𝑣𝑦 0

0 0 0

] , (∇𝑉)𝑇 = [
𝑢𝑥 𝑣𝑥 0
𝑢𝑦 𝑣𝑦 0

0 0 0

],                 (4.7) 

Now by utilizing Equation (4.7) in (4.5), we obtain 

𝐿1 = [

2𝑢𝑥 𝑢𝑦 + 𝑣𝑥 0

𝑣𝑥 + 𝑢𝑦 2𝑣𝑦 0

0 0 0

],                  (4.8) 

Substituting Equation (4.8) in Equation (4.4), it results 

𝜏 = [

−𝑝 + 2𝜇𝑢𝑥 𝜇(𝑢𝑦 + 𝑣𝑥) 0

𝜇(𝑣𝑥 + 𝑢𝑦) −𝑝 + 2𝜇𝑣𝑦 0

0 0 −𝑝

],                          (4.9)

  

To express Equation (4.9) in component form that is 

𝜏𝑥𝑥 = −𝑝 + 2𝜇𝑢𝑥,  𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇(𝑣𝑥 + 𝑢𝑦),                 (4.10) 

𝜏𝑥𝑧 = 𝜏𝑧𝑥 = 𝜏𝑦𝑧 = 𝜏𝑧𝑦 = 0,                                       (4.11) 

𝜏𝑦𝑦 = −𝑝 + 2𝜇𝑣𝑦 , 𝜏𝑧𝑧 = −𝑝,                   (4.12) 

Putting Equations (4.10, 4.11) and (4.12) in Equation (4.2) 
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𝜌(𝑢𝑢𝑥 + 𝑣𝑢𝑦) = −
𝜕𝑝

𝜕𝑥
+ 𝜇∇2𝑢,                  (4.13) 

𝜌(𝑢𝑣𝑥 + 𝑣𝑣𝑦) = −
𝜕𝑝

𝜕𝑦
+ 𝜇∇2𝑣,                 ( 4.14) 

Now, using Equation 

𝑞 = −𝑘[𝑇𝑥, 𝑇𝑦,0],                    (4.15) 

𝜌𝐶𝑝(𝑢𝑇𝑥 + 𝑇𝑦) = 𝑘∇2𝑇 + 𝜇(∇𝑢)2 − ∇𝑞𝑟 ,                 (4.16) 

𝜌𝐶𝑝 [𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
] = 𝑘 [

𝜕2𝑇

𝜕𝑦2] + 𝜇 [
𝜕𝑢

𝜕𝑦
]
2

− [
𝜕𝑞𝑟

𝜕𝑦
].                (4.17) 

The boundary conditions for equations are: 

𝑢 = 𝑢𝑤 = 𝑈0𝑒
𝑥

𝐿 , 𝑣 = 0, 𝑇 = 𝑇𝑤 = 𝑇∞ + 𝑇0𝑒
𝑥

2𝐿 at    𝑦 = 0,                        (4.18) 

𝑢 → 0,             𝑇 → 𝑇∞,                      as    𝑦 → ∞.                         (4.19) 

in which 𝑇𝑤 and 𝑢𝑤 respectively represent the temperature and velocity of stretching 

boundary.𝑈𝑂 represent source velocity and L is constant. 

Here, 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
 ,                              (4.20) 

In which  𝑘∗and 𝜎∗ refer to mean consumption coefficient and the constant of Stefan-

Boltzmann respectively. 𝑇4 is a linear function. 

Here, 

𝑇4 = 4𝑇∞
3𝑇 − 3𝑇∞

4 .                   (4.21) 

To convert above non-linear partial differential equations (PDEs) to linear ordinary 

differential equations (ODEs) will consider following transformation(similarity): 

𝜂 = √
𝑈0 

2𝜐𝐿
𝑒

𝑥

2𝐿𝑦,      𝑇 = 𝑇0𝑒
𝑥

2𝐿𝜃(𝜂),                          (4.22) 

Converting  𝜓 into 𝑢 and 𝑣 

𝑢 = 𝑈0𝑒
𝑥

𝐿𝑓′(𝜂),                   (4.23) 
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 𝑣 = −√
𝜈𝑈0 

2𝐿
𝑒

𝑥

2𝐿{𝑓(𝜂) + 𝜂𝑓′(𝜂)},                 (4.24) 

Now using above similarity transformations, the respective equations become: 

𝑓′′′ − 2𝑓′2 + 𝑓𝑓′′ = 0,                  (4.25) 

(1 +
4

3
𝐾)𝜃′′ + 𝑃𝑟[𝑓𝜃′ − 𝑓′𝜃 + 𝐸𝑓′′2] = 0.                          (4.26) 

With respective boundary conditions: 

𝑓(0) = 0, 𝑓′(0) = 1, 𝜃(0) = 1,     𝑎𝑡 𝜂 = 0,                          (4.27) 

𝑓′ → 0, 𝜃 → 0                            𝑎𝑠 𝜂 → ∞.                                       (4.28) 

Where Prandtl number 𝑃𝑟, Eckert number 𝐸 and Radiation number 𝐾 expressed as, 

𝑃𝑟 =
𝜇𝑐𝑝

𝑘
, 𝐸 =

𝑈𝑂
2

𝑇0𝑐𝑝
 , 𝐾 =

4𝜎∗𝑇∞
3

𝑘∗𝑘
.                 (4.29) 

Skin friction 𝐶𝑓 can be written as: 

𝐶𝑓 =
2𝑇̅𝑤

𝜌𝑢2
𝑤

 ,                    (4.30) 

Where, 

𝑇̅𝑤 = 𝜇
𝜕𝑢

𝜕𝑦
   𝑎𝑡 𝑦 = 0.                                         (4.31) 

The Nusselt number is  

𝑁𝑢𝑥  =
𝑥𝑞𝑤

𝐾(𝑇𝑤−𝑇∞)
 ,                   (4.32) 

Heat flux is represented by 𝑞𝑤 

𝑞𝑤 = −𝐾 (
𝜕𝑇

𝜕𝑦
)         𝑎𝑡 𝑦 = 0.                              (4.33) 

Now utilizing comparable (similarity) variables Equations (4.22, 4.23) and (4.24) in 

Equations (4.30) and (4.32) then we get dimensionless skin fiction and Nusselt number 

respectively. 

𝑓′′(0) =
1

√2
√𝑅𝑒𝑥𝐶𝑓,                               (4.34) 

−𝜃′(0) =
𝑁𝑢𝑥

√𝑅𝑒𝑥
.                               (4.35) 
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Here  𝑅𝑒𝑥 =
𝑈𝑤𝑥

𝜐
 is Reynold number. 

4.2 Methodology: 

  The ordinary differential equations (ODEs) (4.25) and (4.26) with the 

accompanying boundary conditions (4.27) and (4.28) can be solved using the shooting 

technique and Runge-Kutta method. In order to addressed the problem of the given  

system (4.25) and ( 4.26) it is required to be  transformed into a first order initial value 

problem (IVP). So that we take 

𝑓 = 𝑠(1),                          𝜃 = 𝑠(4),               (4.2.1) 

𝑓′ = 𝑠(2),    𝜃′ = 𝑠(5),               (4.2.2) 

𝑓′′ = 𝑠(3),    𝜃′′ = 𝑠𝑠2,                                    (4.2.3) 

𝑓′′′ = 𝑠𝑠1,                    (4.2.4) 

Equation (4.25) ⇒ 𝑠𝑠1 =  −𝑠(1)𝑠(3) + 2𝑠(2)2;                         ( 4.2.5) 

Equation (4.26) ⇒ 𝑠𝑠2 =  −
1

1+
4𝑘

3

𝑃𝑟(𝑠(1)𝑠(5) − 𝑠(2)𝑠(4) + 𝐸𝑠(3)2);            (4.2.6) 

⇒

[
 
 
 
 
𝑓′

𝑓′′

𝑓′′′

𝜃′

𝜃′′ ]
 
 
 
 

=

[
 
 
 
 
𝑠(2)

𝑠(3)
𝑠𝑠1
𝑠(5)
𝑠𝑠2 ]

 
 
 
 

=

[
 
 
 
 
 

𝑠(2)
𝑠(3)

−𝑠(1)𝑠(3) + 2𝑠(2)2

𝑠(5)

−
1

1+
4𝑘

3

𝑃𝑟(𝑠(1)𝑠(5) − 𝑠(2)𝑠(4) + 𝐸𝑠(3)2)
]
 
 
 
 
 

.                        (4.2.7) 

Here are the initial conditions: 

𝑠(1)(0) = 0 , 𝑠(2)(0) = 1 , 𝑠(4)(0) = 1,                                                            (4.2.8) 

𝑠(2)(∞) = 0, 𝑠(4)(∞) = 0.                               (4.2.9) 
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4.3 Result and discussion: 

 Analytical solutions are obtained over the behavior of highly nonlinear 

boundary layer through exponentially stretching sheet. The main factor under the 

observation is the viscoelastic fluid flow over the said (exponentially) stretching sheet. 

During solution derivation, partial differential equations (PDEs) were reshaped into 

ordinary differential equations (ODEs). The procedure required suitable similarity 

transformation We analyze the prevailing factors Prandtl number 𝑃𝑟,  Eckert number 𝐸,  

Reynold number 𝑅𝑒,  thermal radiation 𝐾,  temperature profile 𝜃(𝜂) and velocity profile 

𝑓′(𝜂). 

 Figure 4.2 show how the Eckert number 𝐸 = 0.2, radiation parameter 𝐾 =

 1.0 and Prandtl number 𝑃𝑟 = 1.0 effects the temperature profile 𝜃(𝜂)  and the profile 

of velocity  𝑓′(𝜂). Due to the decoupled Equations (4.25) and (4.26) the velocity profile 

is distinct for all values of 𝐸,  𝐾 and 𝑃𝑟. It is demonstrated that the relationship between 

the velocity 𝑓′(𝜂).  and temperature profile 𝜃(𝜂) is linear. Figures 4.3, 4.4 and 4.5 

shows how the temperature profile 𝜃(𝜂) is affected by the 𝑃𝑟,  𝐸 ,  𝐾  are Prandtl 

number, Eckert number and radiation parameter respectively.  

 Figure 4.3 illustrated how a rise in the Prandtl number 𝑃𝑟 results in a fall in the 

temperature profile 𝜃(𝜂) and thickness of thermal boundary layer with radiation 

parameter 𝐾 = 1.0 and Eckert number 𝐸 = 0.2. Physically as Prandtl number 𝑃𝑟 rises, 

the thermal diffusivity falls and these events result in a decline in energy capacity, 

which resultantly lowers the thermal boundary layer. On the other hand, Figure 4.4 

expresses the behavior of temperature profile 𝜃(𝜂) and the thickness of thermal 

boundary layer both slightly rise when Eckert number E increases and Prandtl number 

𝑃𝑟 = 1.0 and radiation parameter  𝐾 = 1.0 are stable. Figure 4.5 illustrate the behavior 

of temperature over variation of 𝐾 with. Prandtl number 𝑃𝑟 = 1.0 and Eckert number 

𝐸 = 0.2. It is evident that as 𝐾 increases temperature profile 𝜃(𝜂) also rises. 
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Figure 4.2: Velocity profile𝑓′(𝜂) and temperature  𝜃(𝜂) 

 

 

Figure 4.3: Impact of Prandtl number 𝑃𝑟 on the temperature profile 𝜃(𝜂) 
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Figure 4.4: Impact of Eckert number 𝐸 on the temperature profile 𝜃(𝜂) 

 

 

Figure 4.5: Radiation number's impact on the temperature profile 𝜃(𝜂) 
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CHAPTER 5 

RELATION AMONG FLUID FLOW OVER A LINEAR, 

NONLINEAR AND EXPONENTIALLY 

STRETCHING/SHRINKING SHEETS.  

 

 This chapter an enhanced version of my work a graphical comparison of linear, 

nonlinear and exponential stretching/shrinking sheet is made and combined as one to 

show the velocity and temperature fluid flow. The results are obtained by numerical 

solution. Subsequently, mathematical formulation was modeled using boundary 

conditions. All partial differential equations (PDEs) of energy and momentum are 

converted into nonlinear ordinary differential equations (ODEs) for a formal 

formulation. This is done with the help of similarity variables. At the end, nonlinear 

ordinary differential equations (ODEs) are solved by using MATLAB software. 

 

5.1 Mathematical Formulation: 

Consider 2-D steady fluid flow bounded by a stretched sheet. Where 𝑢 = 𝑐𝑥𝑛 (c 

is positive constant) is the velocity of stretching/shrinking sheet. For 𝑛 = 1 it is linear 

and for 𝑛 > 1 it is nonlinear. Where the exponential stretching sheet with  𝑢 = 𝑐𝑒
𝑥

𝐿. The 

basic boundary layer governing equations as follows: 

𝜕𝑢

𝜕𝑥̅
+

𝜕𝑢

𝜕𝑦̅
= 0,                                  (5.1) 

𝜌 (𝑢̅
𝜕𝑢

𝜕𝑥̅
+ 𝑣̅

𝜕𝑢

𝜕𝑦
) = 𝜇 (

𝜕2𝑢

𝜕𝑥̅2 +
𝜕2𝑢

𝜕𝑦̅2),         (5.2) 

(𝜌𝐶𝑝) (𝑢̅
𝜕𝑇

𝜕𝑥̅
+ 𝑣̅

𝜕𝑇

𝜕𝑦̅
) = 𝜅 (

𝜕2𝑇

𝜕𝑥̅2
+

𝜕2𝑇

𝜕𝑦̅2
).        (5.3) 

The boundary conditions for stretching/shrinking sheet: 
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For nonlinearly stretching /shrinking sheet 

𝑢 = 𝑢𝑤(𝑥) = 𝑎𝑥𝑛, 𝑛 > 1 , 𝑣 = 0, 𝑇 = 𝑇𝑤        at    𝑦 = 0 ,                (5.4) 

𝑢 → 0,   𝑇 → 𝑇∞,                    as    𝑦 → ∞.                  (5.5) 

For linearly stretching /shrinking sheet 

𝑢 = 𝑢𝑤(𝑥) = 𝑎𝑥,   , 𝑣 = 0, 𝑇 = 𝑇𝑤        at    𝑦 = 0 ,                                               (5.6) 

𝑢 → 0,   𝑇 → 𝑇∞,    as    𝑦 → ∞.     (5.7) 

For exponentially stretching /shrinking sheet 

𝑢 = 𝑢𝑤 = 𝑎𝑒
𝑥

𝐿 , 𝑢 = 𝑣 = 0, 𝑇 = 𝑇𝑤 = 𝑇∞ + 𝑇0𝑒
𝑥

2𝐿 at    𝑦 = 0,               (5.8) 

𝑢 → 0  ,   𝑇 → 𝑇∞,    as    𝑦 → ∞ .                                         (5.9) 

Determined by Equations (5.4 - 5.9) along with the relevant boundary condition  

For nonlinearly/linearly stretching /shrinking sheet 

𝑓(0) = 0, 𝑓′(0) = 𝜆, 𝜃(0) = 1,            𝑎𝑡   𝜂 = 0,                                                  (5.10) 

𝑓′ → 0,                𝜃 → 0 ,                                𝑎𝑠 𝜂 → ∞ .                                               (5.11) 

For exponentially stretching /shrinking sheet 

𝑓(0) = 0, 𝑓′(0) = 𝜆, 𝜃(0) = 1,     𝑎𝑡 𝜂 = 0,                                                          (5.12) 

𝑓′ → 0, 𝜃 → 0  ,                          𝑎𝑠 𝜂 → ∞ .                                                                (5.13) 

In this case, primes signify differentiation in relation to 𝜂. 
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5.2 Result and discussion: 

 

The main objective of this research is making comparison of mass and heat 

transfer characteristics of viscous flow due to sheet stretching/shrinking at linear, 

nonlinear and exponential rates. The process involves the conversion of partial 

differential equations (PDEs) into ordinary differential equations (ODEs) to give 

graphical solution. This chapter introduces new parameters such as skin friction 𝐶𝑓 , 

Reynold number 𝑅𝑒𝑥,  Nusselt number 𝑁𝑢𝑥,  stretching/shrinking parameter 𝜆 ,  

thermal radiation 𝐾, Prandtl number 𝑃𝑟, temperature profile 𝜃(𝜂), velocity profile 𝑓′(𝜂) 

and Eckert number 𝐸𝑐. It represents the numerical solutions and graphical comparisons 

of all three dimensions. 

Figure 5.1 is plotted to predict the behavior of velocity 𝑓′(𝜂) for linear, 

nonlinear and exponentially stretching sheet. Our aim is to compare the velocity profile 

generated due to different stretching velocities. The graph shows that the exponentially 

stretching sheet produces lower value of flow than that of linear, nonlinear stretching 

velocities. Also, the linear velocity for 𝑛 = 1 has greater value comparative to nonlinear 

stretching sheets i.e., for 𝑛 = 5.The most significant feature of this graph is the 

unchanging behavior of velocity for different values of Prandtl number 𝑃𝑟. It shows that 

the velocity remains unaffected even for varying and increasing Prandtl number. The 

figure 5.2 represents a graph that is created to analyze the behavior of temperature 𝜃(𝜂) 

over linear, nonlinear and exponential stretching sheet. The graph shows a descending 

order of exponential, nonlinear and linear stretching sheet. Exponential sheet sits on the 

top with respect to the values of linear for 𝑛 = 1 and nonlinear for 𝑛 = 5 follows it. 

Figures 5.3 and 5.4 shows the impact of physical parameter on dimensionless 

skin friction coefficient  𝐶𝑓 and Nusselt number 𝑁𝑢𝑥. In Figure 5.3 indicates of that for 

the larger values of Prandtl number 𝑃𝑟 skin friction is constant. For particular Prandtl 

number 𝑃𝑟 the exponential stretching sheet shows highest values. The graph shows in 

ascending order i.e., linear, nonlinear, and exponential stretching sheet with respect to 

particular value of Prandtl number 𝑃𝑟 in skin friction. Consequently, it can be said that 

the increase in Prandtl number 𝑃𝑟 does not cause any variation in skin friction. In the 

absence of thermal radiation in Figure 5.4 owing to the rise in Prandtl number 𝑃𝑟 
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Nusselt number 𝑁𝑢𝑥 decreases gradually. For Prandtl number the linearly stretching 

sheet has higher values than nonlinear and exponential sheet.  

Figure 5.5 compares the dual velocity of stretching and shrinking behavior of 

linear, nonlinear and exponential sheet over of the particular stretching/shrinking 

parameter 𝜆.The velocity profile for linear, nonlinear and exponential stretching and 

shrinking sheet converges. With reference to the figure for 𝜆 = 7 create the upper 

branch and for 𝜆 = −7 creates the lower branch. The Figure 5.6 depicts the plotting of 

velocity profile 𝑓′(𝜂) for some value of stretching parameter 𝜆 > 0.It can be seen that 

the solution of momentum boundary layer is getting thinner for linear, nonlinear and 

exponential stretching sheet. Figure 5.7 predicts the behavior of velocity profile for 

different value of shrinking parameter 𝜆 < 0 as in Figure 5.6 but in reverse flow. 

Initially, the velocity decreases until it become negative. Then for bigger values of 𝜂 it 

becomes greater than zero (positive). In Figures 5.6 and 5.7 a reverse flow is witnessed 

when stretching and shrinking velocities are plotted in opposite direction. 

 

 

Figure 5.1: Influence of  𝑃𝑟 on velocity 𝑓′(𝜂) 
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Figure 5.2: Influence of  𝑃𝑟 on temperature 𝜃(𝜂) 

 

 

 

 

Figure 5.3: Influence of skin friction 𝑐𝑓 for Prandtl number 𝑃𝑟 
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Figure 5.4: Influence of Nusselt number  𝑁𝑢𝑥 for Prandtl number 𝑃𝑟 

 

 

 

Figure 5.5: velocity profile  𝑓′(𝜂) for stretching/shrinking parameter 𝜆 
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Figure 5.6: Velocity profile changing with stretching parameter 𝜆 

 

 

 

Figure 5.7: Velocity profile changing with shrinking parameter 𝜆 
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CHAPTER 6 

CONCLUSION 

This section contains findings about relationship of fluid among linear, nonlinear and 

exponentially stretching sheets. This chapter sum up all results from preceding three 

papers. 

• The partial differential equations (PDEs) of energy and momentum are converted 

into nonlinear dimensionless ordinary differential equations (ODEs) with respect to 

boundary conditions. 

• The governing PDEs translated into ODEs using similarity variables for a numerical 

solution. 

• A graphical comparison of linear, nonlinear and exponential stretching sheet is made 

and combined as one to show the velocity and temperature fluid flow. 

• This research work involves non dimensional parameters such as thermal radiation 𝐾,  

skin friction 𝐶𝑓,  Nusselt number 𝑁𝑢𝑥,  Eckert number 𝐸 and Prandtl number  𝑃𝑟. 

• The main tool utilized to figure out the numerical solution of linear, nonlinear and 

exponentially stretching /shrinking sheet is MATLAB using bvp4c shooting method. 

• The thermal boundary layer thickness is directly proportional (increases) to the 

Prandtl number of linear, nonlinear stretching sheet. 

• The thermal boundary layer thickness shows opposite behavior as the Eckert number 

𝐸 and radiation number 𝐾 of exponentially stretching sheet. 

• In exponential stretching sheet the temperature profile increases with the decline in 

Prandtl number. 

• On the contrary Eckert and radiation number (𝐸 and 𝐾) have the same effect 

(increase) with the increase in temperature profile. 

• The velocity profile does not get affected by variation of Prandtl number 𝑃𝑟. For 

Prandtl number the linear, nonlinear and exponential sheets face a decline. 

•  The thermal boundary layer thickness decreases with increase in Prandtl number 𝑃𝑟. 

For particular Prandtl number the linear, nonlinear and exponential sheets normally 

increase. 
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• In lower branch, the stretching/shrinking parameter 𝜆 boost the velocity profile 

whereas behavior is reverse in upper branch. 

• The evaluation of Nusselt number 𝑁𝑢𝑥,  decreases with the increase of Prandtl 

number 𝑃𝑟. 
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