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Abstract 

The present thesis determines the concept of the exact solution of Jeffrey fluid 

flow due to Stretching/shrinking surface. The thesis framework has been developed in the 

following way. In the first chapter, exhaustive literature is discussed for the exact solution 

of jeffrey fluid flow due to stretching/shrinking surface. The prices details about 

nanofluids, mass transfer, boundary layer theory, heat transfer, irreversible group and 

Jaffrey fluid are discussed. Basic fluid terminologies and fundamental laws are explored 

in the second chapter. In third chapter, an article, Entropy generation analysis for 

viscoelastic Magneto-Hydrodynamic flow over a stretching sheet embedded in a porous 

medium, is reviewed. By using appropriate tensor, develop the temperature, continuity 

and concentration and momentum equations. Converted governing PDEs into 

dimensionless non-linear ODEs by adoption of favorable similarity variables and then 

solved analytically. In fourth chapter, again reviewed another article of jaffrey fluid flow 

is numerical solution of non- Newtonian nanofluid flow over a stretching sheet which are 

solved numerically.it is Numerical method converted into analytical method by using new 

techniques. In Additional, generate new entropy generation. An analysis of conclusions 

are included in fifth chapter. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

In recent years, nanoparticles with mass and heat transfer received a significant 

attention from many scientists because of their regular solicitations in differential work 

methodology. Water, glycol, oil, and ethylene (𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒) are bad at transferring heat and 

considered bad heat conductor fluid in Newtonian/Non-Newtonian fluids. Thermal 

expansion inside stretched flow has a great application in many fields of science including 

chemical engineering, including metallurgical processes, glass fiber, polymer extrusion, 

and paper manufacture. The Jaffrey fluid model may explain the non-Newtonian fluids' 

stress relaxation feature, which the regular viscous fluid model cannot. However, Navier-

e-Stokes statistics cannot accurately describe the non-Newtonian fluid flow. Also, these 

kinds of fluids may not be observed by one intermediate relationship between shear stress 

and stress rate. Therefore, no model can predict loneliness in the behavior of such kind of 

fluids. For the following reason, numerous models of such liquids are recommended in 

research. Between different non-Newtonian models of liquid, the model which is straight 

for the utilization of brief other options is Jeffrey model. 

Exact mathematical solutions play very vital part in understanding features, 

methods and objects in numerous fields in science. Particularly, exact mathematical 

solution may work as a basis for concluding and evaluating mathematical software for 

solving D.E Mathematica, Maple, MATLAB, CONVODE, Python etc. Methodology 

used to obtain exact mathematical solution to boundary layer flow of stretching sheet is 

missing. Later, it was expanded by Grubka and Bobba (B.C.Sakiadis, 1961), which 

includes energy equation. 

Nanoparticles in suspension (under 100nm) in base fluid creates fluid called 

Nanofluid. The Nano coating serves as a heat exchanger between solid nanoparticles and 

the base fluid, according to Choi's team [2]. Non-Newtonian models few objects related 
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to nanofluid are described by Domiarry et al. [3]. The movement of tiny particles towards 

reducing thermal gradient is called thermophoresis [4]. Non-Newtonian fluid are used in 

oil industries as stimulate reservoirs. Pearson and Tardy [5] show different degree of 

viscosity, Ellahi and Afzal [6] shows different degree of thixotropy and Ellahi [7] shows 

different degree of elasticity depending on their shears. 

The boundary layer is very thin layer of a viscous liquid moving closest to the 

apparent. Sakiadis [8] discovers the awareness of boundary layer flow along a surface 

which is moving.  

Good amount of studies are conducted on exponentially stretching sheet for 

nanofluid. Makinde and Aziz [9] investigated a technical issue with the advent of a 

convection surface configuration. The flow of nanofluid with boundary layer across an 

increasingly stretched surface has been discovered by Lee and Nadeem [10]. 

Gupta and Dandapat [11] and Rollins and Vajravelu [12] have many studies on 

cases of heat transfer, Andersson [13] has investigated viscoelastic fluid flow on 

stretching surface under the effect of magnetic field which is uniformly distributed over 

the surface. Consequently, many authors have made number of research on effects of 

transfering heat on viscoelastic fluid under a diverse physical conditions including [14–

16]. A uniform solution for the heat transfer over the stretching surface and the flow of 

the viscoelastic boundary layer is established by Sanjayanand and Khan [17]. In recent 

times, research has been made about heat transfer and flow of viscoelastic fluids over 

stretching surface taking constant temperature and also constant temperature of sheet by 

Cortell [18]. A study conducted by Abel et al [19] on the viscoelastic flow of boundary 

layer and the transfer of heat to the stretching region where there is viscous dispersion 

and non-unifrom heat source taking into account the set temperature and the fixed 

temperature variations. 

Narrative exploration shows that interest in researching non-Newtonian fluid flow 

conduct in various utilizations developed in last ten years [21-24]. The peristaltic flow of 

Jeffrey fluid at unequal network with lengthy frequency and presumption of a smaller 

Reynolds number is examined by Kothandapani and Srinivas [25]. Jeffrey fluid is a 

comparatively easy to understand and simple model that took attention among specialists. 

Some of the most recent papers on the Jeffrey fluid are from Hayat et al. [26], Mustafa 

and Hayat [27], Das [28], and Qasim [29] Main purpose of these studies is stretching 
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sheet of Jeffrey fluid model of nanofluid. The Jeffery fluids models impressed several 

scholars because it is a superior physiological fluid model. The effect of speed 

variabilities and transfer of heat in magneto-hydrodynamic flow of non-Newtonian 

nanofluid on a flexible sheet with heat source analyzed by Bhargava and Goyal [31]. They 

found accurate solutions as power series technique utilizing Kummer's intersecting hyper-

mathematical capacities and analyzed the impacts of arising boundaries on speed, 

temperature, and fixation profiles. Pop and Turkyilmazoglu [30] evaluated the flow and 

intensity move of a Jeffrey fluid with a parallel outside flow close the stagnation point on 

a stretching or shrinking sheet. Show them that creation of any scientific arrangements 

relies seriously upon the boundary that actions the pace of outside flow to the 

stretching/shrinking surface. Numerous scientists have concentrated on the generation of 

entropy in fluid flow and heat transfer over space.  The utilization of the second law of 

thermodynamics to viscoelastic magneto hydrodynamic (MHD) flow over a stretching 

surface presented by Aiboud and Saouli [32]. By logicss, they found profiles of speed and 

temperature utilizing Kummer works and gathered the irreversible number. Makinde [33] 

broke down the innate irreversibility in the flow of the hydromagnetic limit of a variable 

consistency fluid over an endlessly level plate affected by warm radiation and Newtonian 

intensity. Involving a neighborhood system for consistency and shooting quadrature, he 

got by number the speed, the temperature and the creation amount of entropy. Dehsara et 

al [34]. The age of entropy broke down mathematical flow of (MHD) blended convection 

over a stretching slanted straightforward plate implanted in a permeable medium because 

of sun based radiation. Freshly, Nemat Dalir et al [35] investigated entropy for heat 

transfer of a Jeffrey nanofluid and magneto-hydrodynamic flow over a stretching surface. 

[36] Also worked on exact solution of jaffrey fluifd flow.

My review work is reviewed the exact solution of research paper. Initially, I 

reviewed S. Baag et al [37] non-newtonian viscoelastic fluid (Walter B’) research paper 

of exact solution and I also reviewed another paper of Jaffrey fluid flow model which are 

solved numerically then I convert numerical solution into analytical solution and 

additional I also generate entropy generation. 

The reason for the ongoing review is to scientifically explore the exact solution of 

Jaffrey fluid flow because of stretching/shrinking surface. To the best of the creators' 

information, no paper in the writing has up until this point off studied on exact solution 

of Jeffrey nanofluid, entropy generation over a stretching sheet. Appropriate 
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transformation changes have been taken advantage of for the benefit of the decrease of 

administering fractional differential conditions into customary differential conditions. 

The attained explanation is examined with the help of charts of dimensionless velocity, 

nanoparticles portion volume, temperature, and number of irreversible generations. 
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CHAPTER 2 

DEFINITIONS AND FUNDAMENTAL CONCEPTS OF FLUID 

 In this part, we will discuss certain several elementary concepts, 

explanation and few laws associated with fluid movement, heat, and mass transfer. 

 

2.1 Fluid 

If an unrelated or shear pressure is applied to a substance, and it ceaselessly 

deform(flow). All stress are fluids. Part of mechanics that arrangements with 

liquid behavior at rest and motion. very still and movement 

2.2 Fluid mechanics 

The part of science that arrangements with the movement of fluids, gases and 

plasma and their communication with strong bodies. It is subdivided into three 

parts. fluid dynamics, static fluid, and kinematics. 

2.2.1 Fluid dynamics 

Liquid elements are the investigation of the impact of powers on smooth 

movement and at some point, liquid at rest. 

2.2.2 Statics fluid  

It manages the investigation of effects of force when liquid is very still. 

2.2.3 Fluid kinematics 

The part of liquid mechanics that arrangements with the investigation of liquid 

when it is moving without integrating the impact of forces. 
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2.3 Physical properties of fluid 

2.3.1 Kinematic viscosity 

Kinematics viscosity is a measure of rate at which momentum is transferred 

through a fluid. It is denoted by 𝝂𝝂. Mathematically, 

𝜈𝜈 = 𝜇𝜇
𝜌𝜌

= dynamic viscosity
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

. 

2.3.2 Dynamic(absolute) viscosity 

Dynamic viscosity is identified fractional connection of shear stress to 

deformation rate. 

            That is denoted by 𝜇𝜇. Mathematically, 

𝜇𝜇 = 𝜏𝜏 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
−1

.

2.3.3 Density 

The thickness of a liquid’s particle characterized as the proportion of its mass to 

its volume, and it is represented as ρ. Mathematically, 

𝜌𝜌 =  𝑚𝑚
𝑣𝑣

. 

2.4 Classification of fluid 

2.4.1 Ideal fluid 

Ideal fluid (inviscid fluid) is defined as the fluid whose viscosity is zero. 

2.4.2 Real fluid 

Real fluid (viscous fluid) is defined as the fluid whose viscosity is not zero. 

Viscous fluid is of two types i.e. 

(a) Newtonian Fluid

Fluids for which deformation rate does not obeys the following defined 

relation are classified as Newtonian fluids. 

𝜏𝜏 ∝ 𝜇𝜇 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 

(b) Non-Newtonian Fluid

Fluids for which deformation rate obeys the following defined relation are 

classified as non Newtonian fluids. 
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𝜏𝜏 ∝ 𝜇𝜇 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑛𝑛−1

,      𝑛𝑛 ≠ 2. 

2.4.3 Compressible fluid 

Density of each fluid particles are not constant and varies with space and time. All 

gases are to be compressible 

2.4.4 Incompressible fluid 

Density of each fluid particles is relatively constant and varies with space and 

time. All gases are compressible. All liquids are to be incompressible. 

2.5 Two-Dimensional flow 

The size is basically the space coordinates and especially the movement of the 

liquid is considered so that it has three sides but for ease of calculation, it is 

considered two sides so that it can be easily dealt with. 2-D flow means flow to 

the plane coordinates. 

2.6 Boundary layer 

A slim layer adjacent to the strong surface where effects of viscosity are prominent 

is called boundary layer. 

2.7 Nanofluids 

The liquid in which nano-sized particles with diameter of 1-100nm is called 

nanofluid. Nanofluids have a strong ability to improve the thermal conductivity 

of basic fluid, Nanoparticles have greater potential to improve heat transfer. 

2.8 Heat and mass transfer 

Heat transfer remains a kinetic procedure in which energy is transferred from one 

particle to another with the flow of particles. Mass transfer, instead, is the 

movement of mass from one place to another such as absorption, evaporation, and 

so on. 

2.9 Jaffrey fluid 

The Jeffrey fluid model can be defined as the stress relaxation stuff of non-

Newtonian fluids, which the normal viscous fluid model cannot define. Examples:  

Paints, rubber, mud etc. 
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2.10 Entropy generation 

In the thermodynamic system, the generation of entropy is how much entropy, 

which is normally produced during irreversible cycles utilizing warm course 

through heat obstruction, fluid movement through a stream struggle, diffusion, 

Joule warming, contact during strong surfaces, fluid thickness inside framework 

and so on. 

2.11 Hypergeometric confluent function 

A blended hypergeometric capability is an answer for an intersecting 

hypergeometric equation, which is a savage type of a hypergeometric differential 

condition in which two-three ordinary singularities consolidate to deliver an 

unpredictable peculiarity. 

2.11.1 Kummer’s function 

In 1837 a researcher named Kummer introduced Kummer's (intersecting 

hypergeometric) work 𝑀𝑀(𝐹𝐹,𝐸𝐸, 𝑠𝑠) , is an answer for Kummer's differential 

condition. Which is otherwise called intersecting hypergeometric capacity of 

principal kind. 

Kummer's condition can be composed as: 

𝑠𝑠 𝑑𝑑
2𝑤𝑤
𝑑𝑑𝑠𝑠2

+ (𝐸𝐸 − 𝑠𝑠) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
− 𝐹𝐹𝐹𝐹 = 0,

           with a customary particular point at 𝑠𝑠 =  0, and an unpredictable particular 

point at 𝑠𝑠 = ∞.  It consumes two (regularly) directly free arrangements 

𝑀𝑀(𝐹𝐹,𝐸𝐸, 𝑠𝑠) and 𝑈𝑈(𝐹𝐹,𝐸𝐸, 𝑠𝑠). 𝑀𝑀 Kummer's capacity of the principal kind is given by: 

𝑀𝑀(𝐹𝐹,𝐸𝐸, 𝑠𝑠) = ∑ 𝐹𝐹𝑛𝑛𝑠𝑠𝑛𝑛

𝐸𝐸𝑛𝑛𝑛𝑛!
∞
𝑛𝑛=0 = |𝑊𝑊|(𝐹𝐹;𝐸𝐸; 𝑠𝑠), 

              Where: 

𝐹𝐹0  =  1, 

𝐹𝐹𝑛𝑛 = 𝐹𝐹 (𝐹𝐹 + 1) (𝐹𝐹 + 2) … (𝐹𝐹 + 𝑛𝑛 − 1), 

is the increasing factorial. 
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2.12 Some useful non-dimensionless number 

2.12.1 Reynolds number 

Reynold number is basically non-dimensionless ratio of the inertia and viscous 

force of the fluid. Mathematically: 

𝑅𝑅𝑅𝑅 = 𝛼𝛼𝑥𝑥2

𝜈𝜈
. 

2.12.2 Prandtl number 

It is change in kinematics viscosity 𝜈𝜈  w.r.t thermal diffusivity𝛼𝛼 . It is non-

dimensional number. Mathematically, 

𝑃𝑃𝑃𝑃 = 𝜈𝜈
𝛼𝛼
. 

2.12.3 Lewis number 

It is dimensionless number which is the change in thermal diffusivity 𝛼𝛼 w.r.t the 

coefficient of Brownian diffusion 𝐷𝐷𝐵𝐵 . 

𝐿𝐿𝐿𝐿 = 𝜈𝜈
𝐷𝐷𝐵𝐵

. 

2.12.4 Nusselt number 

A non-dimensionless number which is the relation between the convective and the 

conductive heat transfer on the boundary is termed as local Nusselt number. This 

can be measured by flexibility, and it provides the ratio of heat transfer from the 

surface to liquid. 

2.12.5 Sherwood number 

Dimensionless relation in the convective mass transfer and the mass transport 

diffusion’s rate is Sherwood number. 

2.12.6 Skin friction coefficient 

Skin-friction coefficient 𝐶𝐶𝐶𝐶 is flawless quality distinct from the shear stress on the 
wall. 

𝐶𝐶𝐶𝐶 = 𝜏𝜏𝑤𝑤
𝜌𝜌

. 

Where ρ is the density and longitudinal speed at the edge of the limit layer. 
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CHAPTER 3 

ENTROPY GENERATION ANALYSIS FOR VISCOELASTIC 

MAGNETO-HYDRODYNAMIC MHD FLOW OVER A 

STRETCHING SHEET EMBEDDED IN POROUS MEDIUM 

Motivation behind composing this section is to explore the stream of viscoelastic 

MHD to investigate boundary layer, entropy production, heat and mass transfer over an 

expandable sheet embedded in a porous medium. The momentum, energy, concentration 

equations are defined in mathematical formulation and subsequently released. Boundary 

conditions are also stated. Later, we converted the governed nonlinear PDEs into 

dimensionless nonlinear ODEs in order to find a solution to a closed form of momentum, 

energy and concentration equations. The existence of certain other parameters on energy, 

momentum and equations of concentration can also be perceived. The solution of 

dimensionless ODEs including B. Cs will therefore be analytically solved by using 

Kummer’s function. 

3.1 Mathematical Formulation of the problem 

Consider 2-D steady laminar fluid flow which is incompressible 

over a viscoelastic electrically conductivity affected through a stretching external fixed 

in a permeable medium where there is a uniform transverse field magnetic to Cartesian 

coordinates (𝒙𝒙,𝒚𝒚). Where 𝒙𝒙-axis is reserved beside the pate in the direction of fluid flow 

and 𝒚𝒚-axis stands normal towards plate, is measured (see Fig. 𝟏𝟏). The governing equation 

of boundary layer of steady 2-D viscoelastic fluid flow over a Walters B’ model by small 

reduction period. Governing equations associated with this problem are:  
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Fig. 1 Geometry of Problem 

𝛻𝛻 ∙ 𝑉𝑉 = 0,  (3.1) 

𝜌𝜌 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� = div (𝜏̃𝜏) − 𝜎𝜎𝐵𝐵𝑜𝑜2𝑉𝑉 −

𝜈𝜈
𝑘𝑘𝑝𝑝′
𝑉𝑉,   (3.2) 

𝜌𝜌𝐶𝐶𝑝𝑝 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑉𝑉. (𝛻𝛻𝛻𝛻)� = 𝐾𝐾𝐾𝐾. (𝛻𝛻𝛻𝛻) − 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑞𝑞) ,  (3.3) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑉𝑉. (𝛻𝛻𝛻𝛻) = − 1
𝜌𝜌
𝛻𝛻. (𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌),  (3.4) 

Where, 𝜏̃𝜏 is equal to: 

𝜏̃𝜏 = −𝑝̅𝑝𝐼𝐼 + 𝑆𝑆,  (3.5) 

S is equals to: 

𝑆𝑆 = 𝜇𝜇(𝑏𝑏1) − 𝑘𝑘𝑜𝑜
𝜌𝜌

(𝑏𝑏2), (3.6) 

𝑏𝑏1 = (𝛻𝛻𝛻𝛻) + (𝛻𝛻𝛻𝛻)𝑇𝑇,  (3.7) 

𝑏𝑏2 = 𝑑𝑑𝑏𝑏1
𝑑𝑑𝑑𝑑

= �𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑤𝑤 𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑏𝑏1, (3.8) 

Where 𝜇𝜇 is the viscosity and 𝑆𝑆 is Rivlin-Ericksen tensor. 

Velocity field of the form are respectively given as 
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𝑉𝑉 = [𝑢𝑢(𝑥𝑥,𝑦𝑦),𝑣𝑣(𝑥𝑥,𝑦𝑦), 0].         (3.9) 

Now, using velocity field from equation (3.9) in equation  (3.1) and  (3.2) , continuity 

equation holds and by neglecting body force nonlinear PDEs of momentum in component 

form yields 

𝜌𝜌 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑥𝑥

= 𝜕𝜕𝜏𝜏�𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜏𝜏�𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜏𝜏�𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

,                  (3.10) 

𝜌𝜌 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑦𝑦

= 𝜕𝜕𝜏𝜏�𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜏𝜏�𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜏𝜏�𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕

,                  (3.11) 

𝜌𝜌 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑧𝑧

= 𝜕𝜕𝜏𝜏�𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜏𝜏�𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜏𝜏�𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕

.                   (3.12) 

Using equation (3.9) in equation(3.7), we get 

𝑏𝑏1 = �
2 𝑢𝑢𝑥𝑥 𝑢𝑢𝑦𝑦 + 𝑣𝑣𝑥𝑥 0

𝑢𝑢𝑦𝑦 + 𝑣𝑣𝑥𝑥 2𝑣𝑣𝑦𝑦 0
0 0 0

�,                  (3.13) 

Where 𝑢𝑢𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝑣𝑣𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,   𝑤𝑤𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  and 𝑢𝑢𝑦𝑦 = 𝜕𝜕𝑢𝑢𝑦𝑦
𝜕𝜕𝜕𝜕

,   𝑣𝑣𝑦𝑦 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,  𝑤𝑤𝑦𝑦 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. 

By using equations (3.13) in (3.8), we get 

𝑏𝑏2 = �
2𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 + 2𝑣𝑣𝑢𝑢𝑥𝑥𝑥𝑥 𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑣𝑣𝑥𝑥𝑥𝑥 + 𝑣𝑣𝑢𝑢𝑦𝑦𝑦𝑦 + 𝑣𝑣𝑣𝑣𝑥𝑥𝑥𝑥 0

𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑣𝑣𝑥𝑥𝑥𝑥 + 𝑣𝑣𝑢𝑢𝑦𝑦𝑦𝑦 + 𝑣𝑣𝑣𝑣𝑥𝑥𝑥𝑥 2𝑢𝑢𝑣𝑣𝑥𝑥𝑦𝑦 + 2𝑣𝑣𝑣𝑣𝑦𝑦𝑦𝑦 0
0 0 0

� ,              (3.14) 

Substituting equation (3.13) and equation (3.14) into equation(3.6), we get  

𝑆𝑆  

=

⎣
⎢
⎢
⎢
⎡ 2𝜇𝜇𝑢𝑢𝑥𝑥 −

𝑘𝑘𝑜𝑜
𝜌𝜌 �2𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 + 2𝑣𝑣𝑢𝑢𝑥𝑥𝑥𝑥� 𝜇𝜇�𝑢𝑢𝑦𝑦 + 𝑣𝑣𝑥𝑥� −

𝑘𝑘𝑜𝑜
𝜌𝜌 �𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑣𝑣𝑥𝑥𝑥𝑥 + 𝑣𝑣𝑢𝑢𝑦𝑦𝑦𝑦 + 𝑣𝑣𝑣𝑣𝑥𝑥𝑥𝑥� 0

𝜇𝜇�𝑢𝑢𝑦𝑦 + 𝑣𝑣𝑥𝑥� −
𝑘𝑘𝑜𝑜
𝜌𝜌 �𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑣𝑣𝑥𝑥𝑥𝑥 + 𝑣𝑣𝑢𝑢𝑦𝑦𝑦𝑦 + 𝑣𝑣𝑣𝑣𝑥𝑥𝑥𝑥� 2𝜇𝜇𝑣𝑣𝑦𝑦 −

𝑘𝑘𝑜𝑜
𝜌𝜌 �2𝑢𝑢𝑣𝑣𝑥𝑥𝑥𝑥 + 2𝑣𝑣𝑣𝑣𝑦𝑦𝑦𝑦� 0

0 0 0⎦
⎥
⎥
⎥
⎤

, 

           (3.15) 

Again, substituting equation (3.15) into equation(3.5), then we have a matrix whose 

component form can be expressed as: 

𝜏̃𝜏𝑥𝑥𝑥𝑥 = −𝑝𝑝 + 2𝜇𝜇𝑢𝑢𝑥𝑥 −
𝑘𝑘𝑜𝑜
𝜌𝜌
�2𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 + 2𝑣𝑣𝑢𝑢𝑥𝑥𝑥𝑥�,                (3.16) 

𝜏̃𝜏𝑥𝑥𝑥𝑥 = 𝜏̃𝜏𝑦𝑦𝑦𝑦 = −𝑝𝑝 + 𝜇𝜇�𝑢𝑢𝑦𝑦 + 𝑣𝑣𝑥𝑥� −
𝑘𝑘𝑜𝑜
𝜌𝜌
�𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑣𝑣𝑥𝑥𝑥𝑥 + 𝑣𝑣𝑢𝑢𝑦𝑦𝑦𝑦 + 𝑣𝑣𝑣𝑣𝑥𝑥𝑥𝑥�,              (3.17) 
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𝜏̃𝜏𝑦𝑦𝑦𝑦 = −𝑝𝑝 + 2𝜇𝜇𝑣𝑣𝑦𝑦 −
𝑘𝑘𝑜𝑜
𝜌𝜌
�2𝑣𝑣𝑣𝑣𝑦𝑦𝑦𝑦 + 2𝑢𝑢𝑣𝑣𝑥𝑥𝑥𝑥�,            (3.18) 

𝜏̃𝜏𝑧𝑧𝑧𝑧 = −𝑝𝑝,               (3.19) 

𝜏̃𝜏𝑥𝑥𝑥𝑥 = 𝜏̃𝜏𝑧𝑧𝑧𝑧 = 𝜏̃𝜏𝑦𝑦𝑦𝑦 = 𝜏̃𝜏𝑧𝑧𝑧𝑧 = 0.             (3.20) 

Substituting equations(3.16) , (3.17)  and (3.20) into equation(3.10), we get 

𝑢𝑢𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑢𝑢𝑦𝑦 = − 1
𝜌𝜌
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�+ 𝜈𝜈�𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑦𝑦𝑦𝑦�  − 𝑘𝑘𝑜𝑜

𝜌𝜌
�𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 + 2𝑢𝑢𝑥𝑥𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑣𝑣𝑢𝑢𝑥𝑥𝑥𝑥𝑢𝑢𝑦𝑦� 

−𝑘𝑘𝑜𝑜
𝜌𝜌
�2𝑣𝑣𝑥𝑥𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑦𝑦𝑣𝑣𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑦𝑦𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑢𝑢𝑥𝑥𝑢𝑢𝑦𝑦𝑦𝑦 + 𝑣𝑣𝑦𝑦𝑣𝑣𝑥𝑥𝑥𝑥 + 𝑣𝑣𝑦𝑦𝑢𝑢𝑦𝑦𝑦𝑦 + 𝑣𝑣𝑣𝑣𝑦𝑦𝑦𝑦𝑦𝑦�.            (3.21) 

And Substituting equations(3.17) , (3.18)  and (3.20) into equation(3.11), we get 

𝑢𝑢𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑢𝑢𝑦𝑦 = − 1
𝜌𝜌
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�+ 𝜈𝜈�𝑣𝑣𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑦𝑦𝑦𝑦 + 2𝑣𝑣𝑦𝑦𝑦𝑦�  − 𝑘𝑘𝑜𝑜

𝜌𝜌
�𝑢𝑢𝑥𝑥𝑣𝑣𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑣𝑣𝑥𝑥𝑥𝑥𝑥𝑥�

− 𝑘𝑘𝑜𝑜
𝜌𝜌
�𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑣𝑣𝑥𝑥𝑢𝑢𝑦𝑦𝑦𝑦 + 𝑣𝑣𝑥𝑥𝑣𝑣𝑥𝑥𝑥𝑥 + 𝑣𝑣𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑣𝑣𝑣𝑣𝑥𝑥𝑥𝑥𝑥𝑥 + 2𝑢𝑢𝑦𝑦𝑣𝑣𝑥𝑥𝑥𝑥 + 2𝑢𝑢𝑣𝑣𝑥𝑥𝑥𝑥𝑥𝑥 + 2𝑣𝑣𝑦𝑦 𝑣𝑣𝑦𝑦𝑦𝑦     +

2𝑣𝑣𝑣𝑣𝑦𝑦𝑦𝑦𝑦𝑦�.             (3.22) 

Substituting equations(3.19) , (3.20)  and (3.20) into equation(3.12), we get 

0 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

.            (3.23) 

Following are boundary layer estimates 

𝑥𝑥� = 𝑥𝑥
𝐿𝐿

,𝑦𝑦� = 𝑦𝑦
𝛿𝛿

,𝑢𝑢� = 𝑢𝑢
𝑈𝑈

, 𝑣𝑣� = 𝑣𝑣
𝑈𝑈
𝐿𝐿
𝛿𝛿

, 𝑝𝑝� = 𝑝𝑝
𝜌𝜌𝑈𝑈2

, 𝑡̃𝑡 = 𝑡𝑡 𝑈𝑈
𝐿𝐿

 ,            (3.24) 

Finally Substituting equation(3.24) into equation(3.21) and also by dropping the primes, 

we get 

𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜈𝜈 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

 − 𝑘𝑘𝑜𝑜
𝜌𝜌
� 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑢𝑢 𝜕𝜕2𝑢𝑢

𝜕𝜕𝑦𝑦2
� + 𝑣𝑣 𝜕𝜕3𝑢𝑢

𝜕𝜕𝑦𝑦3
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕

� − 𝜎𝜎𝐵𝐵𝑜𝑜2𝑉𝑉 −
𝜈𝜈
𝑘𝑘𝑝𝑝′
𝑉𝑉,            (3.25) 

By using boundary layer approximation equation(3.22)is neglected. In equation(3.3) q 

represents the heat flux of the nanofluid which is the summation of diffusion and 

conduction heat flux. 

 𝑞𝑞𝑐𝑐∗ = −𝑘𝑘∇𝑇𝑇 + 𝑱𝑱 × 𝑩𝑩,             (3.26) 

Where 
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∇T = [𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇, 0].                   (3.27) 

Now, using equation(3.3) and simplifying 

𝜌𝜌𝐶𝐶𝑝𝑝 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑉𝑉. (𝛻𝛻𝛻𝛻)� = 𝐾𝐾𝐾𝐾. (𝛻𝛻𝛻𝛻) − 𝑑𝑑𝑑𝑑𝑑𝑑 (𝑞𝑞) , 

Then, 

𝜌𝜌𝐶𝐶𝑝𝑝 �𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 𝐾𝐾 𝜕𝜕2𝑇𝑇

𝜕𝜕𝑦𝑦2
+ 𝑞𝑞(𝑇𝑇 − 𝑇𝑇∞).                 (3.28) 

Now using equation(3.4) and simplifying 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑉𝑉. (𝛻𝛻𝛻𝛻) = − 1
𝜌𝜌
𝛻𝛻. (𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌) , 

Then, 

𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 𝜕𝜕2𝐶𝐶
𝜕𝜕𝑦𝑦2

.                    (3.29) 

The boundary conditions of equation(3.25), (3.28)and(3.29) are: 

𝑢𝑢 = 𝜆𝜆𝜆𝜆 = 𝑢𝑢𝑝𝑝,𝑇𝑇 = 𝑇𝑇𝑝𝑝(𝑥𝑥) = 𝐴𝐴 �𝑥𝑥
𝑙𝑙
�
𝑟𝑟

+ 𝑇𝑇∞,𝑣𝑣 = 0 ,                    

𝐶𝐶 = 𝐶𝐶𝑝𝑝(𝑥𝑥) = 𝐵𝐵 �𝑥𝑥
𝑙𝑙
�
𝑠𝑠

+ 𝐶𝐶∞,                                            𝑎𝑎𝑎𝑎 𝑦𝑦 = 0

𝑢𝑢 → 0,𝑇𝑇 → 𝑇𝑇∞,𝐶𝐶 → 𝐶𝐶∞ , 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
→ 0,                               𝑎𝑎𝑎𝑎 𝑦𝑦 → ∞.

,

⎭
⎪
⎬

⎪
⎫

                (3.30) 

Converting the governed PDEs (3.25), (3.28)and(3.29) into dimensionless non-linear 

ODEs, following similarity variables are used to transform the system of equation: 

𝜂𝜂 = 𝑦𝑦�𝜆𝜆
𝜈𝜈

, 𝜑𝜑(𝜂𝜂) = 𝐶𝐶−𝐶𝐶∞
𝐶𝐶𝑝𝑝−𝐶𝐶∞

,   𝜃𝜃(𝜂𝜂) = 𝑇𝑇−𝑇𝑇∞
𝑇𝑇𝑝𝑝−𝑇𝑇∞

,    Ψ(𝑥𝑥,𝑦𝑦) = √𝜆𝜆𝜆𝜆𝑥𝑥𝑥𝑥(𝜂𝜂).             (3.31) 

Dimensionless stream function 

𝑢𝑢 = 𝜕𝜕
𝜕𝜕𝜕𝜕
𝜓𝜓(𝑥𝑥,𝑦𝑦), 𝑣𝑣 = − 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜓𝜓(𝑥𝑥, 𝑦𝑦).                 (3.32) 

Converting 𝜓𝜓 into 𝑢𝑢 and 𝑣𝑣, we get 

𝑢𝑢 = 𝑥𝑥𝑥𝑥𝑥𝑥′(𝜂𝜂), 𝑣𝑣 = −√𝜆𝜆𝜆𝜆𝑓𝑓(𝜂𝜂).                   (3.33) 

Using equation (3.31) in equations (3.25), (3.28) and (3.29) and continuity equation 

satisfies 
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𝑓𝑓′′′ − 𝑓𝑓′2 + 𝑓𝑓𝑓𝑓′′ − 𝑅𝑅𝑅𝑅�2𝑓𝑓′𝑓𝑓′′′ − 𝑓𝑓′′2 − 𝑓𝑓𝑓𝑓′′′′� − �𝑀𝑀𝑀𝑀 + 1
𝐾𝐾𝑝𝑝
� 𝑓𝑓′ = 0,            (3.34) 

𝜃𝜃′′ + 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓′ + 𝑃𝑃𝑃𝑃(𝛽𝛽 − 𝑟𝑟𝑟𝑟′)𝜃𝜃 = 0,                  (3.35) 

𝜑𝜑′′ + 𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓′ − 𝑆𝑆𝑆𝑆𝑓𝑓′𝜑𝜑 = 0.                   (3.36) 

With Reduce associated boundary conditions are: 

𝑓𝑓(0) = 0,   𝑓𝑓′(0) = 1,   𝑓𝑓′′(∞) = 𝑓𝑓′(∞) = 0,
𝜃𝜃(0) = 1,   𝜃𝜃(∞) = 0,
𝜑𝜑(0) = 1,   𝜑𝜑(∞) = 0.

�                (3.37) 

Where 𝑅𝑅𝑅𝑅  is viscoelastic parameter, 𝑀𝑀𝑀𝑀 is magnetic parameter, 𝐾𝐾𝑝𝑝  is impermeability 

parameter, 𝑃𝑃𝑃𝑃  is Prandtl number. 

𝑅𝑅𝑅𝑅 = 𝑘𝑘0𝜆𝜆
𝜇𝜇

 ,     𝑀𝑀𝑀𝑀 = 𝜎𝜎𝐵𝐵02

𝜌𝜌𝜌𝜌
 ,     𝐾𝐾𝑝𝑝 = 𝐾𝐾𝑝𝑝′

𝜌𝜌𝜌𝜌
,     𝑃𝑃𝑃𝑃 = 𝜇𝜇𝐶𝐶𝑝𝑝

𝐾𝐾
 ,     𝛽𝛽 = 𝑞𝑞

𝜌𝜌𝐶𝐶𝑝𝑝
 ,     𝑆𝑆𝑆𝑆 = 𝜈𝜈

𝐷𝐷
 . 

Local Skin friction coefficient is written as: 

          𝐶𝐶𝑓𝑓 = 𝜏𝜏𝑤𝑤

𝜇𝜇𝜇𝜇𝜇𝜇�𝜆𝜆𝜈𝜈

= 𝛼𝛼 .                  (3.38) 

Where 𝜏𝜏𝑤𝑤 is the wall shearing sheet.  

Dimensionless physical quantities 

𝑅𝑅𝑒𝑒𝑥𝑥
1
2�  𝐶𝐶𝑓𝑓 = (1 − 𝑅𝑅𝑅𝑅)𝑓𝑓′′(0),    𝑅𝑅𝑒𝑒𝑥𝑥

−1
2�  𝑁𝑁𝑢𝑢𝑥𝑥 = −𝜃𝜃′(0),    𝑅𝑅𝑒𝑒𝑥𝑥

−1
2�  𝑆𝑆ℎ𝑥𝑥 = −𝜑𝜑′(0).  

Where 𝐶𝐶𝑓𝑓, 𝑁𝑁𝑢𝑢𝑥𝑥  and 𝑆𝑆ℎ𝑥𝑥  is dimensionless skin friction, Nusselt number and Sherwood 

number. 

Entropy generation analysis  

𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑘𝑘
𝑇𝑇∞2
��𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2
� + 𝐷𝐷

𝐶𝐶∞
��𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2
� + 𝐷𝐷

𝑇𝑇∞
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝜇𝜇

𝑇𝑇∞
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+

𝜎𝜎𝐵𝐵𝑜𝑜2

𝑇𝑇∞
𝑢𝑢2 + 𝜇𝜇

𝑇𝑇∞𝐾𝐾𝑝𝑝∗
𝑢𝑢2.                     (3.39) 

Where  𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺 is the nearby volumetric pace of irreversible generation within the sight of 

attractive field. 

(𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺)0 = 𝑘𝑘(∆𝑇𝑇)2

𝑑𝑑2𝑇𝑇∞2
.                   (3.40) 
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Where (𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺)0 is the typical irreversible generation rate. 

Accordingly, the dimensionless entropy age number is characterized as the proportion of 

nearby volumetric entropy age rate to the trademark entropy rate: 

𝑁𝑁𝑁𝑁 = 𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺
(𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺)0

.            (3.41) 

Using equations (3.39) and (3.40) in equation (3.41). Then, we get the dimensionless 

entropy generation numbers is 

𝑁𝑁𝑁𝑁 = 𝑟𝑟2

𝑋𝑋2
𝜃𝜃2(𝜂𝜂) + 𝑅𝑅𝑅𝑅𝜃𝜃′2(𝜂𝜂)  + 𝑅𝑅𝑅𝑅 

𝐵𝐵𝐵𝐵
Ω
𝑓𝑓′′2(𝜂𝜂) +

𝐵𝐵𝐵𝐵�𝐻𝐻𝑎𝑎2+ 1
𝐷𝐷𝑎𝑎� �

Ω
𝑓𝑓′2(𝜂𝜂) +

𝑠𝑠2

𝑋𝑋2
𝜆𝜆1𝜑𝜑2(𝜂𝜂)+ 𝑅𝑅𝑅𝑅 𝜆𝜆2𝜑𝜑′2(𝜂𝜂) +  𝜆𝜆3 � 𝑟𝑟𝑟𝑟

𝑋𝑋2
𝜃𝜃(𝜂𝜂)𝜑𝜑(𝜂𝜂) + 𝑅𝑅𝑅𝑅𝜃𝜃′(𝜂𝜂)𝜑𝜑′(𝜂𝜂)�,            (3.42) 

Where 𝑅𝑅𝑅𝑅 is defined as, 

𝑅𝑅𝑅𝑅 = 𝑢𝑢𝑑𝑑𝑑𝑑
𝜈𝜈

. 

𝐵𝐵𝐵𝐵  is defined as, 

𝐵𝐵𝐵𝐵 = 𝜇𝜇𝑢𝑢𝑝𝑝2

𝑘𝑘Δ𝑇𝑇
. 

Dimensionless temperature contrast (Ω) is defined as, 

Ω = ∆𝑇𝑇
𝑇𝑇∞

. 

Hartman number (𝐻𝐻𝑎𝑎) is defined as: 

𝐻𝐻𝑎𝑎 = 𝐵𝐵𝑜𝑜𝑑𝑑�
𝜎𝜎
𝜇𝜇

 , 1
𝐷𝐷𝑎𝑎

= 𝑑𝑑2

𝐾𝐾𝑝𝑝∗
,   𝑋𝑋 = 𝑥𝑥

𝑑𝑑
 , 𝜆𝜆1 = 𝐷𝐷𝑇𝑇∞

𝑘𝑘𝐶𝐶∞
�∆𝑇𝑇
∆𝐶𝐶
�
2

 ,   𝜆𝜆2 = 𝐷𝐷𝑇𝑇∞2

𝑘𝑘𝐶𝐶∞
�∆𝑇𝑇
∆𝐶𝐶
�
2

,   𝜆𝜆3 =

𝐷𝐷𝑇𝑇∞
𝑘𝑘
�∆𝑇𝑇
∆𝐶𝐶
�  ,   𝑢𝑢𝑑𝑑 = 𝜆𝜆𝜆𝜆,   𝑢𝑢𝑝𝑝 = 𝜆𝜆𝜆𝜆.  

3.2 Methodology 

To establish the solution of the transformed dimensionless nonlinear ODEs, assume the 

solution of equation (3.33) satisfying boundary conditions as 

𝑓𝑓(𝜂𝜂) = 1
𝛼𝛼
− 𝑒𝑒−𝛼𝛼𝛼𝛼

𝛼𝛼
.             (3.43) 

Using equation (3.42) in equation (3.33), it yields 
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𝑓𝑓(𝜂𝜂) = 1
𝛼𝛼
− 𝑒𝑒−𝛼𝛼𝛼𝛼

𝛼𝛼
.                    (3.44) 

Solving the above equation for the value of 𝛼𝛼, we get 

𝛼𝛼 = �1+𝑀𝑀𝑀𝑀+1 𝐾𝐾𝑝𝑝⁄
1−𝑅𝑅𝑐𝑐

.                    (3.45) 

Equation (3.45) shows solution of the given problem. From equation (3.33) and (3.43), 

we obtain 

𝑢𝑢 = 𝑥𝑥𝑥𝑥𝑒𝑒−𝛼𝛼𝛼𝛼 , 𝑣𝑣 = −√𝜆𝜆𝜆𝜆 �1𝛼𝛼 −
𝑒𝑒−𝛼𝛼𝛼𝛼

𝛼𝛼
�.                 (3.46) 

In order to get the arrangement of the energy condition in the structure of non-dimensional 

nonlinear ODE, we consider a new variable 𝜉𝜉 as follows: 

𝜉𝜉 = 𝑃𝑃𝑃𝑃
𝛼𝛼2
𝑒𝑒−𝛼𝛼𝛼𝛼.                     (3.47) 

To apply this variable in equation (3.35), we convert the differentiation w.r.t 𝜂𝜂 by using 

chain rule for first and second order ODEs, that is 

𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑
∗ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

   𝑎𝑎𝑎𝑎𝑎𝑎  𝑑𝑑
2

𝑑𝑑𝜉𝜉2
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

+ 𝑑𝑑
𝑑𝑑𝑑𝑑
∗ 𝑑𝑑2𝜉𝜉
𝑑𝑑𝜂𝜂2

.                 (3.48) 

After applying the above chain rule on equation (3.35), we obtain 

𝜉𝜉 𝑑𝑑
2𝜃𝜃

𝑑𝑑𝜉𝜉2
+ �1 − 𝑃𝑃𝑃𝑃

𝛼𝛼2
+ 𝜉𝜉� 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
− �𝑟𝑟 − 𝑃𝑃𝑃𝑃𝑃𝑃

𝛼𝛼2𝜉𝜉
�𝜃𝜃(𝜉𝜉),                (3.49) 

and the reduced boundary conditions are  

𝜃𝜃 �𝜉𝜉 = 𝑃𝑃𝑃𝑃
𝛼𝛼2
� =  1  , 𝜃𝜃 (𝜉𝜉 = 0) = 0 .                 (3.50) 

Eq. (3.49) is similar to Kummer’s D.E that’s give Kummer confluent hypergeometric 

function |𝑀𝑀|, |𝑀𝑀|(WhittakerM). 

𝜃𝜃(𝜉𝜉) =  −
�|𝑊𝑊|�𝐴𝐴,𝐵𝐵, 1

10000000�𝜉𝜉
𝐶𝐶𝑒𝑒−

1
2𝜉𝜉|𝑀𝑀|(𝐴𝐴,𝐵𝐵 ,𝜉𝜉)�

⎝

⎜
⎜
⎜
⎜
⎛

�𝑃𝑃𝑃𝑃
𝛼𝛼2
�
1
2 −𝛼𝛼

2+𝑃𝑃𝑃𝑃
𝛼𝛼2 𝑒𝑒

−12
𝑃𝑃𝑃𝑃
𝛼𝛼2

⎝

⎜
⎜
⎜
⎛�

|𝑀𝑀|�𝐴𝐴,𝐵𝐵, 1
10000000�

|𝑊𝑊|�𝐴𝐴,𝐵𝐵,𝑃𝑃𝑃𝑃
𝛼𝛼2
�

�−

�
|𝑊𝑊|�𝐴𝐴,𝐵𝐵, 1

10000000�

|𝑀𝑀|�𝐴𝐴,𝐵𝐵,𝑃𝑃𝑃𝑃
𝛼𝛼2
�

�
⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎞

+  
�|𝑀𝑀|�𝐴𝐴,𝐵𝐵, 1

10000000�𝜉𝜉
𝐶𝐶𝑒𝑒−

1
2𝜉𝜉|𝑊𝑊|(𝐴𝐴,𝐵𝐵 ,𝜉𝜉)�

⎝

⎜
⎜
⎜
⎜
⎛

�𝑃𝑃𝑃𝑃
𝛼𝛼2
�
𝐶𝐶
𝑒𝑒
−12

𝑃𝑃𝑃𝑃
𝛼𝛼2

⎝

⎜
⎜
⎜
⎛�

|𝑀𝑀|�𝐴𝐴,𝐵𝐵, 1
10000000�

|𝑊𝑊|�𝐴𝐴,𝐵𝐵 ,𝑃𝑃𝑃𝑃
𝛼𝛼2
�

�−

�
|𝑊𝑊|�𝐴𝐴,𝐵𝐵 , 1

10000000�

|𝑀𝑀|�𝐴𝐴,𝐵𝐵 ,𝑃𝑃𝑃𝑃
𝛼𝛼2
�

�
⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎞

,  

             (3.51) 
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Where 𝐴𝐴 = 1
2
−2𝑟𝑟𝛼𝛼2−𝛼𝛼2+𝑃𝑃𝑃𝑃

𝛼𝛼2
,𝐵𝐵 =  1

2
√𝑃𝑃𝑃𝑃�−4𝛼𝛼2𝛽𝛽+𝑃𝑃𝑃𝑃

𝛼𝛼2
,𝐶𝐶 =  1

2
−𝛼𝛼2+𝑃𝑃𝑃𝑃

𝛼𝛼2
. 

The solution of Eq. (3.44) in terms of 𝜂𝜂 it gives 

𝜃𝜃(𝜂𝜂) =  −
�|𝑊𝑊|�𝐴𝐴,𝐵𝐵, 1

10000000��
𝑃𝑃𝑃𝑃
𝛼𝛼2
𝑒𝑒−𝛼𝛼𝛼𝛼�

𝐶𝐶
𝑒𝑒
−12�

𝑃𝑃𝑃𝑃
𝛼𝛼2

𝑒𝑒−𝛼𝛼𝛼𝛼�|𝑀𝑀|�𝐴𝐴,𝐵𝐵 ,�𝑃𝑃𝑃𝑃
𝛼𝛼2
𝑒𝑒−𝛼𝛼𝛼𝛼���

⎝

⎜
⎜
⎜
⎜
⎛

�𝑃𝑃𝑃𝑃
𝛼𝛼2
�
1
2
−𝛼𝛼2+𝑃𝑃𝑃𝑃

𝛼𝛼2 𝑒𝑒
−12

𝑃𝑃𝑃𝑃
𝛼𝛼2

⎝

⎜
⎜
⎜
⎛�

|𝑀𝑀|�𝐴𝐴,𝐵𝐵, 1
10000000�

|𝑊𝑊|�𝐴𝐴,𝐵𝐵,𝑃𝑃𝑃𝑃
𝛼𝛼2
�

�−

�
|𝑊𝑊|�𝐴𝐴,𝐵𝐵, 1

10000000�

|𝑀𝑀|�𝐴𝐴,𝐵𝐵,𝑃𝑃𝑃𝑃
𝛼𝛼2
�

�
⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎞

+

�|𝑀𝑀|�𝐴𝐴,𝐵𝐵, 1
10000000��

𝑃𝑃𝑃𝑃
𝛼𝛼2
𝑒𝑒−𝛼𝛼𝛼𝛼�

𝐶𝐶
𝑒𝑒−

1
2𝜉𝜉|𝑊𝑊|�𝐴𝐴,𝐵𝐵 ,�𝑃𝑃𝑃𝑃

𝛼𝛼2
𝑒𝑒−𝛼𝛼𝛼𝛼���

⎝

⎜
⎜
⎜
⎜
⎛

�𝑃𝑃𝑃𝑃
𝛼𝛼2
�
𝐶𝐶
𝑒𝑒
−12

𝑃𝑃𝑃𝑃
𝛼𝛼2

⎝

⎜
⎜
⎜
⎛�

|𝑀𝑀|�𝐴𝐴,𝐵𝐵, 1
10000000�

|𝑊𝑊|�𝐴𝐴,𝐵𝐵 ,𝑃𝑃𝑃𝑃
𝛼𝛼2
�

�−

�
|𝑊𝑊|�𝐴𝐴,𝐵𝐵 , 1

10000000�

|𝑀𝑀|�𝐴𝐴,𝐵𝐵 ,𝑃𝑃𝑃𝑃
𝛼𝛼2
�

�
⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎞

. (3.52)

Again, for concentration equation, in order to get the solution of the concentration 

equation in the form of non-dimensional nonlinear ODE, we consider a new variable 𝑡𝑡 as 

follows: 

𝑡𝑡 = 𝑆𝑆𝑆𝑆
𝛼𝛼2
𝑒𝑒−𝛼𝛼𝛼𝛼.             (3.53) 

To apply this variable in equation (3.36), we convert the differentiation w.r.t 𝜂𝜂 by using 

chain rule for first and second order ODEs, that is 

𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑
∗ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑2

𝑑𝑑𝑡𝑡2
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

+ 𝑑𝑑
𝑑𝑑𝑑𝑑
∗ 𝑑𝑑2𝑡𝑡
𝑑𝑑𝜂𝜂2

.            (3.54) 

After applying the above chain rule on equation (3.36), we obtain 

𝑡𝑡 𝑑𝑑
2𝜑𝜑
𝑑𝑑𝑡𝑡2

+ �1 − 𝑆𝑆𝑆𝑆
𝛼𝛼2

+ 𝑡𝑡� 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
− 𝑠𝑠𝜑𝜑(𝑡𝑡),            (3.55) 

and the reduced boundary conditions are 

𝜑𝜑 �𝑡𝑡 = 𝑆𝑆𝑆𝑆
𝛼𝛼2
� =  1  , 𝜑𝜑 (𝑡𝑡 = 0) = 0 .             (3.56) 

Eq. (3.55) is similar to Kummer’s D.E that’s give Kummer confluent hypergeometric 

function |𝑀𝑀|, |𝑀𝑀|(KummerM) and |𝑈𝑈|(KummerU). 
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𝜃𝜃(𝜉𝜉) =  −
�|𝑈𝑈|�𝐸𝐸,𝐷𝐷, 1

10000000�𝑡𝑡
𝑆𝑆𝑆𝑆
𝛼𝛼2𝑒𝑒−𝑡𝑡|𝑀𝑀|(𝐸𝐸,𝐷𝐷,𝑡𝑡)�

⎝

⎜
⎜
⎜
⎜
⎛

�𝑆𝑆𝑆𝑆
𝛼𝛼2
�
𝑆𝑆𝑆𝑆
𝛼𝛼2𝑒𝑒

−𝑆𝑆𝑆𝑆
𝛼𝛼2

⎝

⎜
⎜
⎜
⎛�

|𝑀𝑀|�𝐸𝐸,𝐷𝐷 ,𝑆𝑆𝑆𝑆
𝛼𝛼2
�

|𝑈𝑈|�𝐸𝐸,𝐷𝐷, 1
10000000�

�−

�
|𝑈𝑈|�𝐸𝐸,𝐷𝐷,𝑆𝑆𝑆𝑆

𝛼𝛼2
�

|𝑀𝑀|�𝐸𝐸,𝐷𝐷 , 1
10000000�

�
⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎞

+  
�|𝑀𝑀|�𝐸𝐸,𝐷𝐷, 1

10000000�𝑡𝑡
𝑆𝑆𝑆𝑆
𝛼𝛼2𝑒𝑒−𝑡𝑡|𝑈𝑈|(𝐸𝐸,𝐷𝐷,𝑡𝑡)�

⎝

⎜
⎜
⎜
⎜
⎛

�𝑆𝑆𝑆𝑆
𝛼𝛼2
�
𝑆𝑆𝑆𝑆
𝛼𝛼2𝑒𝑒

−𝑆𝑆𝑆𝑆
𝛼𝛼2

⎝

⎜
⎜
⎜
⎛�

|𝑀𝑀|�𝐸𝐸,𝐷𝐷,𝑆𝑆𝑆𝑆
𝛼𝛼2
�

|𝑈𝑈|�𝐸𝐸,𝐷𝐷 , 1
10000000�

�−

�
|𝑈𝑈|�𝐸𝐸,𝐷𝐷,𝑆𝑆𝑆𝑆

𝛼𝛼2
�

|𝑀𝑀|�𝐸𝐸,𝐷𝐷 , 1
10000000�

�
⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎞

,  

     (3.57) 

Where 𝐷𝐷 = 𝛼𝛼2+𝑆𝑆𝑆𝑆
𝛼𝛼2

, 𝐸𝐸 = 𝑠𝑠 + 1. 

The solution of Eq. (3.57) in terms of 𝜂𝜂 it gives 

𝜃𝜃(𝜉𝜉) =  −
�|𝑈𝑈|�𝐸𝐸,𝐷𝐷, 1

10000000�
𝑆𝑆𝑆𝑆
𝛼𝛼2
𝑒𝑒−𝛼𝛼𝛼𝛼

𝑆𝑆𝑆𝑆
𝛼𝛼2𝑒𝑒

−𝑆𝑆𝑆𝑆
𝛼𝛼2

𝑒𝑒−𝛼𝛼𝛼𝛼|𝑀𝑀|(𝐸𝐸,𝐷𝐷,𝑡𝑡)�

⎝

⎜
⎜
⎜
⎜
⎛

�𝑆𝑆𝑆𝑆
𝛼𝛼2
�
𝑆𝑆𝑆𝑆
𝛼𝛼2𝑒𝑒

−𝑆𝑆𝑆𝑆
𝛼𝛼2

⎝

⎜
⎜
⎜
⎛�

|𝑀𝑀|�𝐸𝐸,𝐷𝐷 ,𝑆𝑆𝑆𝑆
𝛼𝛼2
�

|𝑈𝑈|�𝐸𝐸,𝐷𝐷, 1
10000000�

�−

�
|𝑈𝑈|�𝐸𝐸,𝐷𝐷,𝑆𝑆𝑆𝑆

𝛼𝛼2
�

|𝑀𝑀|�𝐸𝐸,𝐷𝐷 , 1
10000000�

�
⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎞

+

�|𝑀𝑀|�𝐸𝐸,𝐷𝐷, 1
10000000�

𝑆𝑆𝑆𝑆
𝛼𝛼2
𝑒𝑒−𝛼𝛼𝛼𝛼

𝑆𝑆𝑆𝑆
𝛼𝛼2𝑒𝑒

−𝑆𝑆𝑆𝑆
𝛼𝛼2

𝑒𝑒−𝛼𝛼𝛼𝛼|𝑈𝑈|(𝐸𝐸,𝐷𝐷,𝑡𝑡)�

⎝

⎜
⎜
⎜
⎜
⎛

�𝑆𝑆𝑆𝑆
𝛼𝛼2
�
𝑆𝑆𝑆𝑆
𝛼𝛼2𝑒𝑒

−𝑆𝑆𝑆𝑆
𝛼𝛼2

⎝

⎜
⎜
⎜
⎛�

|𝑀𝑀|�𝐸𝐸,𝐷𝐷,𝑆𝑆𝑆𝑆
𝛼𝛼2
�

|𝑈𝑈|�𝐸𝐸,𝐷𝐷 , 1
10000000�

�−

�
|𝑈𝑈|�𝐸𝐸,𝐷𝐷,𝑆𝑆𝑆𝑆

𝛼𝛼2
�

|𝑀𝑀|�𝐸𝐸,𝐷𝐷 , 1
10000000�

�
⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎞

.   (3.58) 

3.3 Results and discussion 

The subsequent conversation centers revolve about revealing the effect of 

parameter controls by the volumetric rate of entropy production. An amazing feature of 

speed profiles, in both the longitudinal and transverse segments, has two layout 

characters. 

Fig.2 and Fig.3: demonstrate longitudinal speed profiles for real fluid (𝑅𝑅𝑐𝑐 =

0) and viscoelastic (𝑅𝑅𝑅𝑅 ≠ 0) fluid when there is existence of porouse medium(𝐾𝐾𝑝𝑝 =

0.5) and in the nonappearance(𝐾𝐾𝑝𝑝 = 100). It should be noted that the expansion in

viscoelastic and magnetic parameters decreases in speed equally. Noted that the presence

of a permeable framework decreases the speed continuously. The 𝑀𝑀𝑀𝑀   increase exerts a
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stronger, Lorentz force an opposing power of electromagnetic beginning, causing velocity 

is decrease. Furthermore, now the event of a flexible fluid. We cannot ignore the stress. 

Nonetheless, it very well might be less, except aimed at the degree of stress of the viscous 

fluid, as it is answerable for recuperation in initial state and retrospective movement 

following the exclusion stress. 

Fig. 4, Fig. 5: demonstrate the retardation of cross over speed due to rise in 

magnetic and elastic and additional diminished by the permeable medium presence. 

Observed the result of the relative multitude of boundaries on both the parts remains 

unchanged. Arranged cautious statement more discovered that within the sight of 

permeable substance, pressure of these profiles are defined in two of the cases noteworthy 

in the magnetic field occurrence. 

In Fig. 6 - Fig. 8: shows whenever porous matrix is present it improves the 

temperature at every point which donate better field to dispersion of thermal boundary-

layer. While temperature decrease when 𝑃𝑃𝑃𝑃  increases. We can observed this temperature 

at all point is increase speed with magnetic parameter and elastic parameter. it appears 

relatively justified the recovery and opposite flow of elimination of strain as the resistance 

due to collaboration of magnetic field and strain energy, velocity of affecting obstruction 

discussed in Fig. 2 - Fig. 3: Therefore, temperature increasing at all points causes 

retardation of velocity increasing both are the resistive forces. Viscoelasticity increases 

in the temperature profile Walter’s fluid B and temperature increase with 𝑀𝑀𝑀𝑀. 

Fig. 9, Fig. 10: outline the impacts of intensity sink/source boundary. We can 

observe heat transfer climbs with the expansion in source strength and the converse 

impact exists with an expansion in 𝑟𝑟, now influence list describing the heat variety. Great 

concurrence by [34]. It is additionally seen that descend causes reduction in heat and 

permeable medium existence(𝐾𝐾𝑝𝑝 = 0.5) in expands the temperature within the sight of 

sink. 

Fig. 11: illustrates the focus conveyance for different upsides of boundaries. It is 

concluded from bends (i) and (ii) that if the specie is heavier then it will diminish focus 

without attractive field and permeable medium. Bends (i) and (iii) indicates in all focuses 

attractive boundary builds the fixation conveyance essentially. The existence of 

permeable medium builds fixation close by each point additionally displayed in Curves 

(iii) and (iv). Bends (iv, viii) and (iii, vii) guarantee on behalf of greater record. Fixation 

diminishes regardless of existence before nonappearance of permeable average. A similar 

perception stayed finished up before trendy regard of temperature moreover. In this way, 
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reasoned that thicker class and greater influence file of plate focus dissemination effect a 

reduction in fixation. While, affected by Lorentz power and porousness of the medium 

the focus level increments. Presently, unique qualities of medium i.e., volumetric entropy 

viewed attractive field and permeable can be examined.  

Fig. 12 - Fig. 14: show the impacts of 𝑃𝑃𝑃𝑃,𝑀𝑀𝑀𝑀 and 𝑅𝑅𝑅𝑅 on the irreversible. The 

higher 𝑃𝑃𝑃𝑃 generate irreversibles and existence of force dissipation decreases. It seems that 

creating higher entropy is existence of permeable medium demonstrations unfavorably 

for greater 𝑃𝑃𝑃𝑃 liquid stream. Flexible boundary job is amazing. This show that 𝑁𝑁𝑁𝑁 of two-

layer types inside vision of permeable medium and flexible boundary job stays similar by 

way of 𝑃𝑃𝑃𝑃 and 𝑀𝑀𝑀𝑀 . 

Fig. 15 - Fig. 17: exhibition the enhancements of 𝑟𝑟, 𝐻𝐻𝑎𝑎  and 𝑅𝑅𝑅𝑅𝑑𝑑 . On cautious 

perception it is uncovered that the characters of 𝐻𝐻𝑎𝑎   and  𝑟𝑟  are very much similar 

as 𝑀𝑀𝑀𝑀 just through lesser passion on the plate and 𝑅𝑅𝑅𝑅𝑑𝑑  job exists additionally toward 

produce the higher 𝑁𝑁𝑁𝑁 by unique differentiation causal considerably different boundaries 

examined, By consideration of force dispersal during time spent 𝑁𝑁𝑁𝑁 in current review 

favors higher 𝑁𝑁𝑁𝑁 level in every one of bends uncovering fluid with higher 𝑃𝑃𝑃𝑃. Alternative 

𝑁𝑁𝑁𝑁  is positive in every one of the sources guaranteeing the cycle is irremediable is 

noticeable element. Current review guarantees the irreversibility in the event of 

viscoelastic fluid with more elevated level 𝑁𝑁𝑁𝑁 on the bouncing region inside the vision of 

permeable average causal Force dissemination. 
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Fig. 2: Impact of 𝑅𝑅𝑅𝑅 and 𝐾𝐾𝐾𝐾 on longitudinal velocity for 𝑀𝑀𝑀𝑀 

Fig. 3: Impact of 𝑀𝑀𝑀𝑀 and 𝐾𝐾𝐾𝐾 on transverse velocity for 𝑅𝑅𝑅𝑅. 
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Fig. 4: Impact of 𝑅𝑅𝑅𝑅.And 𝐾𝐾𝐾𝐾 on transverse velocity for 𝑀𝑀𝑀𝑀. 

Fig. 5: Impact of 𝑀𝑀𝑀𝑀  and 𝐾𝐾𝐾𝐾 on longitudinal velocity for 𝑅𝑅𝑅𝑅 
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Fig. 6: Impact of 𝑃𝑃𝑃𝑃 and 𝐾𝐾𝐾𝐾 on 𝜃𝜃𝜃𝜃 for 𝑀𝑀𝑀𝑀, 𝑅𝑅𝑅𝑅, ,𝛽𝛽, 𝑟𝑟. 
 
 

 
 Fig. 7: Impact of 𝑀𝑀𝑀𝑀 and 𝐾𝐾𝐾𝐾 on 𝜃𝜃(𝜂𝜂) for 𝑃𝑃𝑃𝑃, 𝑀𝑀𝑀𝑀,𝛽𝛽, 𝑟𝑟. 
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Fig. 8: Effects of 𝑅𝑅𝑅𝑅 and 𝐾𝐾𝐾𝐾 on 𝜃𝜃(𝜂𝜂) for  𝑃𝑃𝑃𝑃, 𝑀𝑀𝑀𝑀,𝛽𝛽, 𝑟𝑟. 

Fig. 9: Impact of 𝛽𝛽 (source/sink) on 𝜃𝜃(𝜂𝜂) for 𝑃𝑃𝑃𝑃, 𝑀𝑀𝑀𝑀, 𝑅𝑅𝑅𝑅, 𝑟𝑟. 
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Fig. 10: Impact of 𝑟𝑟 on 𝜃𝜃(𝜂𝜂) for 𝑃𝑃𝑃𝑃, 𝑀𝑀𝑀𝑀,𝛽𝛽,𝑅𝑅𝑅𝑅. 

 
 

 
Fig. 11: Impact of 𝑆𝑆𝑆𝑆,𝑀𝑀𝑀𝑀,𝐾𝐾𝐾𝐾 and 𝑟𝑟 on 𝜑𝜑(𝜂𝜂) 
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Fig. 12: Impact of 𝑃𝑃𝑃𝑃, and 𝐾𝐾𝑝𝑝 on 𝑁𝑁𝑁𝑁 for 𝑠𝑠, λ1, λ2, λ3 

Fig. 13: Impact of 𝑀𝑀𝑀𝑀 and 𝐾𝐾𝑝𝑝 on 𝑁𝑁𝑁𝑁 
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Fig. 14: Impact of 𝑅𝑅𝑅𝑅 and 𝐾𝐾 on 𝑁𝑁𝑁𝑁. 

Fig. 15: Impact of 𝑟𝑟 and 𝐾𝐾𝑝𝑝 on 𝑁𝑁𝑁𝑁 

. 
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Fig. 16: Impact of 𝐻𝐻𝑎𝑎and 𝐾𝐾𝑝𝑝on 𝑁𝑁𝑁𝑁. 

Fig. 17: Impact of 𝑅𝑅𝑅𝑅 and 𝐾𝐾𝑝𝑝 on 𝑁𝑁𝑁𝑁. 
. 
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CHAPTER 4 

EXACT SOLUTION OF JEFFREY FLUID FLOW DUE TO 

STRETCHING/SHRINKING SURFACE 

This chapter is extension work of previous chapter. In previous chapter I reviewed 

the exact solution of viscoelastic liquid (Walters𝐵𝐵′). On the other side I reviewed a paper 

of Jaffrey fluid model “numerical solution of non-Newtonian nanofluid flow over a 

stretching sheet”. Based upon previous chapter 3 the mathematical model rearranged and 

converting Jaffrey fluid model numerical solution into exact solution by using Maple. 

Results are attained by analytical technique. Later, mathematical modeling was applied 

using boundary conditions. Using similarity variables, concentration, every PDEs of 

momentum and energy are transformed into nonlinear ODEs for a proper formulation. 

4.1 Mathematical modeling and exact solution 

Fig. 18: Geometry of Table 

sheet 
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Considering a steady fluid which is incompressible and flowing past a stretched 

sheet in two dimensions. Moreover, when the sheet is extending with the plane 𝑦𝑦 = 0, the 

impacts of nanoparticles are exhausted. It is assumed that the flow is constrained to 𝑦𝑦 >

0. The 𝑥𝑥-axis is taken along the stretching sheet, surface is stretched/shrinked with linear

velocity 𝑢𝑢𝑤𝑤(𝑥𝑥) = 𝑎𝑎𝑎𝑎 in this example, where 𝑎𝑎 > 0 is constant. The following are the

Jeffrey fluid boundary layer equations along nanoparticles:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0,  (4.1) 

𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜈𝜈
1+𝑘𝑘1

�𝜕𝜕
2𝑢𝑢

𝜕𝜕𝑦𝑦2
+ 𝑘𝑘𝑘𝑘 �𝑢𝑢 𝜕𝜕3𝑢𝑢

𝜕𝜕𝑥𝑥𝑥𝑥𝑥𝑥2
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕3𝑢𝑢
𝜕𝜕𝑦𝑦3

��,  (4.2) 

𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  𝛼𝛼 �  𝜕𝜕
2𝑇𝑇

𝜕𝜕𝑦𝑦2
�,  (4.3) 

𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  𝐷𝐷𝐵𝐵 � 𝜕𝜕
2𝐶𝐶

𝜕𝜕𝑦𝑦2
�.  (4.4) 

Where 𝑢𝑢  velocity is along 𝑥𝑥  direction and 𝑣𝑣  velocity along 𝑦𝑦  direction. Electrical 

conductivity denoted by 𝜎𝜎. Density of the fluid and base fluid is denoted by 𝜌𝜌 and 𝜌𝜌𝑓𝑓 

respectively. The. 𝑘𝑘𝑘𝑘 and 𝑘𝑘1 are ratio of retardation time and relaxation to retardation 

times. Thermal diffusivity is denoted by 𝛼𝛼 .𝜏𝜏 is the ration of (𝜌𝜌𝜌𝜌)𝑝𝑝and (𝜌𝜌𝜌𝜌)𝑓𝑓. 

The associated conditions on boundary are: 

at  𝑦𝑦 = 0,    𝑢𝑢 = 𝑢𝑢𝑤𝑤(𝑥𝑥) = 𝑎𝑎𝑎𝑎,   𝑣𝑣 = 0,   𝑇𝑇 = 𝑇𝑇𝑤𝑤,    𝐶𝐶 = 𝐶𝐶𝑤𝑤,   (4.5𝑎𝑎)  

 as 𝑦𝑦 → ∞, 𝑢𝑢 → 0,    𝑣𝑣 → 0,   𝑢𝑢𝑦𝑦 → 0,   𝑇𝑇 → 𝑇𝑇∞ ,   𝐶𝐶 → 𝐶𝐶∞.              (4.5𝑏𝑏) 

where 𝑢𝑢 = 𝑢𝑢𝑤𝑤(𝑥𝑥) = 𝑎𝑎𝑎𝑎,  𝑎𝑎 is the parameter of stretching/shrinking sheet. 

(i) 𝑎𝑎 < 0, for shrinking sheet.

(ii) 𝑎𝑎 > 0, for stretching sheet.

Where, the stretching velocity is denoted by 𝑢𝑢𝑤𝑤(𝑥𝑥). 𝑇𝑇𝑤𝑤 denotes wall temperature and 𝐶𝐶𝑤𝑤 

denotes concentration. 𝑇𝑇∞  is Ambient temperature and concentration are denoted by 𝐶𝐶∞. 

To convert governing PDEs into dimensionless ODEs, have used the similarity 

transformation, 

Using similarity variables: 
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𝜂𝜂 = 𝑦𝑦�𝑎𝑎
𝜈𝜈

, 𝜑𝜑(𝜂𝜂) = 𝐶𝐶−𝐶𝐶∞
𝐶𝐶𝑤𝑤−𝐶𝐶∞

,   𝜃𝜃(𝜂𝜂) = 𝑇𝑇−𝑇𝑇∞
𝑇𝑇𝑤𝑤−𝑇𝑇∞

,    Ψ(𝑥𝑥,𝑦𝑦) = √𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥(𝜂𝜂).   (4.6) 

The stream function 𝜓𝜓 is expressed as 

𝑢𝑢 = 𝜕𝜕
𝜕𝜕𝜕𝜕
𝜓𝜓(𝑥𝑥,𝑦𝑦), 𝑣𝑣 = − 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜓𝜓(𝑥𝑥, 𝑦𝑦).   (4.7) 

Solving above equation(4.7), we obtain 

𝑢𝑢 = 𝑥𝑥𝑥𝑥𝑥𝑥′(𝜂𝜂), 𝑣𝑣 = −√𝑎𝑎𝑎𝑎𝑓𝑓(𝜂𝜂).    (4.8) 

Making use of these transformations, identically continuity equation is satisfied and 

equation(4.2), (4.3)and (4.4) along with the conditions on boundary (4.5𝑎𝑎) and (4.5𝑏𝑏) 

takes the form 

𝑓𝑓′′′ + 𝑘𝑘2�𝑓𝑓′′2 − 𝑓𝑓𝑓𝑓′′′� + (𝑘𝑘1 + 1)�𝑓𝑓𝑓𝑓′′ − 𝑓𝑓′2� = 0,  (4.9) 

𝜃𝜃′′ + 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓′ = 0,              (4.10) 

𝜑𝜑′′ + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓′ = 0.              (4.11) 

Where 𝛽𝛽 is Deborah number, Lewis number and Prandtl number denoted by 𝐿𝐿𝐿𝐿 is 𝑃𝑃𝑃𝑃 

respectively, 

𝑃𝑃𝑃𝑃 = 𝜈𝜈
𝛼𝛼

 ,     𝑘𝑘2 = 𝑎𝑎 ∗ 𝑘𝑘𝑘𝑘 ,     𝐿𝐿𝐿𝐿 = 𝛼𝛼
𝐷𝐷𝐵𝐵

 . 

By using equation(4.8), conditions (4.5𝑎𝑎) and (4.5𝑏𝑏) takes the following form 

At𝜂𝜂 = 0, 𝑓𝑓(0) = 0,   𝑓𝑓′(0) = 1, 𝑓𝑓′(0) = −1, 𝜃𝜃(0) = 1, 𝜑𝜑(0) = 1,      (4.12𝑎𝑎)   

as   𝜂𝜂 → ∞,   𝑓𝑓′′(∞) → 0,  𝑓𝑓′(∞) → 0, 𝜃𝜃(∞) → 0, 𝜑𝜑(∞) → 0.           (4.12𝑏𝑏) 

(i) 𝑓𝑓′(0) = 1, for stretching sheet.

(ii) 𝑓𝑓′(0) = −1, for shrinking sheet.

Mathematically, 𝐶𝐶𝑓𝑓  is Skin friction coefficient, 𝑆𝑆ℎ𝑥𝑥 is Sherwood and 𝑁𝑁𝑁𝑁𝑥𝑥  is Nusselt 

number  defined as, 

𝐶𝐶𝑓𝑓 = 𝜏𝜏𝑤𝑤
𝜌𝜌𝑈𝑈𝑤𝑤2

,    ,    𝑆𝑆ℎ𝑥𝑥 = 𝑥𝑥𝑥𝑥𝑚𝑚
𝐷𝐷𝐵𝐵(𝐶𝐶𝑤𝑤−𝐶𝐶∞) ,  𝑁𝑁𝑁𝑁𝑥𝑥 = 𝑥𝑥𝑥𝑥𝑤𝑤

𝛼𝛼(𝑇𝑇𝑤𝑤−𝑇𝑇∞).            (4.13) 

Where, 𝜏𝜏𝑤𝑤 represent shear stress, 𝑞𝑞𝑤𝑤 represent heat flux, 𝑞𝑞𝑚𝑚 represent mass flux, i.e, 

𝑞𝑞𝑤𝑤 = −𝛼𝛼 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑦𝑦=0

,   𝜏𝜏𝑤𝑤 = 𝜇𝜇 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑦𝑦=0

, 𝑞𝑞𝑚𝑚 = 𝐷𝐷𝐵𝐵 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑦𝑦=0

.            (4.14) 
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Using non-dimensionless similarity variables and equations (4.14) in (4.13), we obtain 

𝐶𝐶𝑓𝑓�𝑅𝑅𝑅𝑅𝑥𝑥 = 1+𝑘𝑘2
1+𝑘𝑘1

𝑓𝑓′′(0) ,     𝑁𝑁𝑁𝑁𝑥𝑥�𝑅𝑅𝑅𝑅𝑥𝑥 = −𝜃𝜃′(0),    𝑆𝑆ℎ𝑥𝑥�𝑅𝑅𝑅𝑅𝑥𝑥 = −𝜑𝜑′(0).              (4.15) 

In above expressions 𝑅𝑅𝑅𝑅𝑥𝑥 = 𝑢𝑢𝑥𝑥(𝑥𝑥)
𝜈𝜈

, is local Reynolds number. 

Generation analysis Entropy  

Local entropy generation per unit volume for the Jeffrey fluid is denoted by 𝑆𝑆𝐺𝐺: 

𝑆𝑆𝐺𝐺 = 𝑘𝑘
𝑇𝑇∞2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ 𝐷𝐷𝐵𝐵
𝐶𝐶∞
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ 𝐷𝐷𝐵𝐵
𝑇𝑇∞
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝜇𝜇

𝑇𝑇∞(1+𝑘𝑘1)��
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ 𝑘𝑘𝑘𝑘 �𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+

𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

��.                     (4.16) 

In Eq. (4.16) the initial term on the right-hand side of is because of intensity move, 

because of mass exchange the second and third term are framed, the fourth term is the 

entropy age because of thick dissemination and Jeffrey liquid impact. A (𝑆𝑆𝐺𝐺)0  is 

trademark entropy age rate which is characterized as: 

(𝑆𝑆𝐺𝐺)0 = 𝑘𝑘(∆𝑇𝑇)2

𝑥𝑥2𝑇𝑇∞2
,                   (4.17) 

The proportion of neighborhood volumetric entropy generation to the trademark entropy 

rate is called dimensionless entropy age number 𝑁𝑁𝑁𝑁: 

𝑁𝑁𝑁𝑁 = 𝑆𝑆𝐺𝐺
(𝑆𝑆𝐺𝐺)0

.                      (4.18) 

Using equations (4.16) and (4.17) in equation (4.18). then, we get the dimensionless 

entropy generation numbers is 

𝑁𝑁𝑁𝑁 = 𝑅𝑅𝑅𝑅 𝜃𝜃′2(𝜂𝜂)  + 𝑅𝑅𝑅𝑅 𝜖𝜖Σ2𝜑𝜑′2(𝜂𝜂)
Ω2

+ 𝑅𝑅𝑅𝑅𝑅𝑅Σ𝜃𝜃′(𝜂𝜂)𝜑𝜑′(𝜂𝜂)
Ω

+ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
Ω(1+ 𝑘𝑘1) �𝑓𝑓

′′2 + 𝑘𝑘2(𝑓𝑓′2𝑓𝑓′′2 −

𝑓𝑓𝑓𝑓′′𝑓𝑓′′′)�.                     (4.19) 

Where 𝑅𝑅𝑅𝑅 is Reynolds number,  dimensionless temperature difference is denoted by Ω,  

Brinkman number is 𝐵𝐵𝐵𝐵  and dimensionless concentration difference Σ,  dimensionless 

constant parameter 𝜖𝜖, which are defined as: 

𝑅𝑅𝑅𝑅 = 𝑢𝑢𝑤𝑤𝑥𝑥
𝜈𝜈

 ,   𝐵𝐵𝐵𝐵 = 𝜇𝜇𝑢𝑢𝑤𝑤2

𝑘𝑘Δ𝑇𝑇
 ,   Ω = ∆𝑇𝑇

𝑇𝑇∞
  ,   𝜖𝜖 = 𝐷𝐷𝐵𝐵𝐶𝐶∞

𝑘𝑘
,   Σ = ∆𝐶𝐶

𝐶𝐶∞
,   𝑢𝑢𝑤𝑤 = 𝑎𝑎𝑎𝑎.  
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4.2 Methodology 

By assuming the solution, we get exact solution of Eq. (4.9) satisfying boundary 

conditions. 

For stretching/shrinking sheet  

𝑓𝑓(𝜂𝜂) = 1−𝑒𝑒−𝛾𝛾𝛾𝛾

𝛾𝛾
,                              (4.20) 

 𝑓𝑓(𝜂𝜂) = −1+𝑒𝑒−𝛾𝛾𝛾𝛾

𝛾𝛾
. 

Using equation (4.20) in equation (4.9), it yields 

𝑒𝑒−𝛾𝛾𝛾𝛾�𝛾𝛾2(1 + 𝑘𝑘2) − (1 + 𝑘𝑘1)� = 0.                  (4.21) 

Solving the above equation for the value of 𝛾𝛾, we get 

𝛾𝛾 = ±�1+𝑘𝑘1
1+𝑘𝑘2

.                    (4.22) 

Hence dual solution (4.22) of the proposed problem is accessible. 

𝑓𝑓 ′ (𝜂𝜂)  =  −𝛾𝛾𝑒𝑒−𝛾𝛾𝛾𝛾 , 𝑓𝑓 ′′ (𝜂𝜂)  =  𝑒𝑒−𝛾𝛾𝛾𝛾.  

so, velocity components become 

𝑢𝑢 = 𝑥𝑥𝑥𝑥𝑒𝑒−𝛾𝛾𝛾𝛾 , 𝑣𝑣 = −√𝑎𝑎𝑎𝑎 �1𝛾𝛾 −
𝑒𝑒−𝛾𝛾𝛾𝛾

𝛾𝛾
�.                  (4.23) 

To find the solution of Eq. (4.10), we establish a new variable 𝜉𝜉 , 

𝜉𝜉 = 𝑃𝑃𝑃𝑃
𝛾𝛾2
𝑒𝑒−𝛾𝛾𝛾𝛾 .                     (4.24) 

To apply this variable in equation (4.10), we convert the differentiation w.r.t 𝜂𝜂 by using 

chain rule for first and second order ODEs, that is 

𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑
∗ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

   𝑎𝑎𝑎𝑎𝑎𝑎  𝑑𝑑
2

𝑑𝑑𝜉𝜉2
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

+ 𝑑𝑑
𝑑𝑑𝑑𝑑
∗ 𝑑𝑑2𝜉𝜉
𝑑𝑑𝜂𝜂2

.                        (4.25) 

After applying the above chain rule on equation (4.10) , we obtain 

𝜉𝜉 𝑑𝑑
2𝜃𝜃

𝑑𝑑𝜉𝜉2
+ �1 − 𝑃𝑃𝑃𝑃

𝛾𝛾2
+ 𝜉𝜉� 𝑑𝑑𝜃𝜃

𝑑𝑑𝑑𝑑
= 0,                   (4.26) 

and the reduced boundary conditions are 
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𝜃𝜃 �𝜉𝜉 = 𝑃𝑃𝑃𝑃
𝛾𝛾2
� =  1  , 𝜃𝜃 (𝜉𝜉 = 0) = 0 .             (4.27) 

By solving Eq.  (4.26) we obtain 

𝜃𝜃(𝜉𝜉) =  ⎝
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎛

𝛾𝛾4𝜉𝜉𝐻𝐻�𝜉𝜉𝛾𝛾2+𝛾𝛾2+𝑃𝑃𝑃𝑃�𝑒𝑒−
1
2𝜉𝜉|𝑀𝑀|(𝐹𝐹,𝐺𝐺 ,𝜉𝜉)

𝑃𝑃𝑃𝑃�𝛾𝛾2+𝑃𝑃𝑃𝑃��2𝛾𝛾2+𝑃𝑃𝑃𝑃�
+

𝛾𝛾2𝜉𝜉
1
2
−3𝛾𝛾2+𝑃𝑃𝑃𝑃

𝛾𝛾2 �𝛾𝛾2+𝑃𝑃𝑃𝑃�𝑒𝑒−
1
2𝜉𝜉|𝑀𝑀|(𝐽𝐽,𝐺𝐺 ,𝜉𝜉)

𝑃𝑃𝑃𝑃�2𝛾𝛾2+𝑃𝑃𝑃𝑃� ⎠

⎟
⎟
⎞
𝑃𝑃𝑃𝑃�2𝛾𝛾4+3𝑃𝑃𝑃𝑃𝛾𝛾2+𝑃𝑃𝑃𝑃2�

⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎜
⎛

𝛾𝛾2�𝑃𝑃𝑃𝑃
𝛾𝛾2
�
𝐻𝐻

(𝛾𝛾2+𝑃𝑃𝑃𝑃)𝑒𝑒
−12

𝑃𝑃𝑃𝑃
𝛾𝛾2

⎝

⎜
⎜
⎜
⎜
⎛

|𝑀𝑀|�𝐹𝐹,𝐺𝐺,𝑃𝑃𝑃𝑃
𝛾𝛾2
�𝛾𝛾4+

|𝑀𝑀|�𝐽𝐽,𝐺𝐺 ,𝑃𝑃𝑃𝑃
𝛾𝛾2
�𝛾𝛾4+

2|𝑀𝑀|�𝐽𝐽,𝐺𝐺 ,𝑃𝑃𝑃𝑃
𝛾𝛾2
�𝑃𝑃𝑃𝑃𝛾𝛾2+

|𝑀𝑀|�𝐽𝐽,𝐺𝐺 ,𝑃𝑃𝑃𝑃
𝛾𝛾2
�𝑃𝑃𝑃𝑃2 ⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎞

,   (4.28) 

Where 𝐹𝐹 = 1
2
−𝛾𝛾2+𝑃𝑃𝑃𝑃

𝛾𝛾2
, 𝐻𝐻 = 1

2
−3𝛾𝛾2+𝑃𝑃𝑃𝑃

𝛾𝛾2
, 𝐺𝐺 = 1

2
2𝛾𝛾2+𝑃𝑃𝑃𝑃

𝛾𝛾2
, 𝐽𝐽 = 1

2
𝛾𝛾2+𝑃𝑃𝑃𝑃
𝛾𝛾2

. 

By applying boundary conditions and putting the value of 𝜉𝜉 in (4.28), the final solution 

is, 

𝜃𝜃(𝜂𝜂) =  ⎝
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛𝛾𝛾

4�𝑃𝑃𝑃𝑃
𝛾𝛾2

𝑒𝑒−𝛾𝛾𝛾𝛾�
𝐻𝐻
��𝑃𝑃𝑃𝑃
𝛾𝛾2

𝑒𝑒−𝛾𝛾𝛾𝛾�𝛾𝛾2+𝛾𝛾2+𝑃𝑃𝑃𝑃�𝑒𝑒
−12�

𝑃𝑃𝑃𝑃
𝛾𝛾2

𝑒𝑒−𝛾𝛾𝛾𝛾�
|𝑀𝑀|�𝐹𝐹,𝐺𝐺 ,�𝑃𝑃𝑃𝑃

𝛾𝛾2
𝑒𝑒−𝛾𝛾𝛾𝛾��

𝑃𝑃𝑃𝑃�𝛾𝛾2+𝑃𝑃𝑃𝑃��2𝛾𝛾2+𝑃𝑃𝑃𝑃�
+

𝛾𝛾2�𝑃𝑃𝑃𝑃
𝛾𝛾2

𝑒𝑒−𝛾𝛾𝛾𝛾�
1
2
−3𝛾𝛾2+𝑃𝑃𝑃𝑃

𝛾𝛾2 �𝛾𝛾2+𝑃𝑃𝑃𝑃�𝑒𝑒
−12�

𝑃𝑃𝑃𝑃
𝛾𝛾2

𝑒𝑒−𝛾𝛾𝜂𝜂�
|𝑀𝑀|�𝐽𝐽,𝐺𝐺 ,�𝑃𝑃𝑃𝑃

𝛾𝛾2
𝑒𝑒−𝛾𝛾𝛾𝛾��

𝑃𝑃𝑃𝑃�2𝛾𝛾2+𝑃𝑃𝑃𝑃� ⎠

⎟
⎟
⎟
⎟
⎞

𝑃𝑃𝑃𝑃�2𝛾𝛾4+3𝑃𝑃𝑃𝑃𝛾𝛾2+𝑃𝑃𝑃𝑃2�

⎠

⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎜
⎛

𝛾𝛾2�𝑃𝑃𝑃𝑃
𝛾𝛾2
�
𝐻𝐻

(𝛾𝛾2+𝑃𝑃𝑃𝑃)𝑒𝑒
−12

𝑃𝑃𝑃𝑃
𝛾𝛾2

⎝

⎜
⎜
⎜
⎜
⎛

|𝑀𝑀|�𝐹𝐹,𝐺𝐺,𝑃𝑃𝑃𝑃
𝛾𝛾2
�𝛾𝛾4+

|𝑀𝑀|�𝐽𝐽,𝐺𝐺 ,𝑃𝑃𝑃𝑃
𝛾𝛾2
�𝛾𝛾4+

2|𝑀𝑀|�𝐽𝐽,𝐺𝐺 ,𝑃𝑃𝑃𝑃
𝛾𝛾2
�𝑃𝑃𝑃𝑃𝛾𝛾2+

|𝑀𝑀|�𝐽𝐽,𝐺𝐺 ,𝑃𝑃𝑃𝑃
𝛾𝛾2
�𝑃𝑃𝑟𝑟2 ⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎞

 . 

           (4.29) 

Again, for concentration equation, in order to get the solution of the concentration 

equation in the form of non-dimensional nonlinear ODE, we consider a new variable 𝑡𝑡 as 

follows: 

𝑡𝑡 = 𝐿𝐿𝐿𝐿
𝛾𝛾2
𝑒𝑒−𝛾𝛾𝛾𝛾 .             (4.30) 

To apply this variable in equation (4.11), we convert the differentiation w.r.t 𝜂𝜂 by using 

chain rule for first and second order ODEs, that is 

𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑
∗ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑2

𝑑𝑑𝑡𝑡2
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

+ 𝑑𝑑
𝑑𝑑𝑑𝑑
∗ 𝑑𝑑2𝑡𝑡
𝑑𝑑𝜂𝜂2

.             (4.31) 
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After applying the above chain rule on equation (4.11), we obtain 

𝑡𝑡 𝑑𝑑
2𝜑𝜑
𝑑𝑑𝑡𝑡2

+ �1 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝛾𝛾2

+ 𝑡𝑡𝑡𝑡𝑡𝑡� 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0,                   (4.32) 

and the reduced boundary conditions are 

𝜑𝜑 �𝑡𝑡 = 𝐿𝐿𝐿𝐿
𝛾𝛾2
� =  1  , 𝜑𝜑 (𝑡𝑡 = 0) = 0 .                  (4.33) 

By solving Eq.  (4.32) . we obtain 

𝜑𝜑(𝑡𝑡) =

  ⎝
⎜
⎜
⎜
⎛

⎝

⎜⎜
⎜
⎛

𝐿𝐿𝐿𝐿 𝑂𝑂𝛾𝛾4𝑡𝑡 𝑇𝑇�𝑡𝑡𝑡𝑡𝑡𝑡𝛾𝛾2+𝛾𝛾2+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�(𝑡𝑡𝑡𝑡𝑡𝑡)−𝑁𝑁𝑒𝑒−
1
2𝐿𝐿𝐿𝐿 𝑡𝑡|𝑀𝑀|(𝐿𝐿,𝑀𝑀,𝐿𝐿𝐿𝐿 𝑡𝑡)

𝑃𝑃𝑃𝑃�𝛾𝛾2+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿��2𝛾𝛾2+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�
+

𝐿𝐿𝐿𝐿 𝑂𝑂𝛾𝛾2𝑡𝑡
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿−𝛾𝛾

2

𝛾𝛾2 �𝛾𝛾2+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿��𝑃𝑃𝑃𝑃 𝐿𝐿𝐿𝐿 𝑒𝑒−𝛾𝛾𝛾𝛾

𝛾𝛾2
�
−𝑁𝑁

𝑒𝑒
−12

𝑃𝑃𝑃𝑃  𝐿𝐿𝐿𝐿 𝑒𝑒−𝛾𝛾𝛾𝛾

𝛾𝛾2 |𝑀𝑀|(𝑁𝑁,𝑀𝑀 ,𝐿𝐿𝐿𝐿 𝑡𝑡)

𝑃𝑃𝑃𝑃�2𝛾𝛾2+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿� ⎠

⎟⎟
⎟
⎞
∗𝑃𝑃𝑃𝑃�2𝛾𝛾4+3𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿2+𝑃𝑃𝑃𝑃2𝐿𝐿𝐿𝐿2�

⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐿𝐿𝐿𝐿  𝑂𝑂𝛾𝛾4�𝑃𝑃𝑃𝑃
𝛾𝛾2
�

 𝑇𝑇
�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝛾𝛾2

�
−12𝑇𝑇𝑒𝑒

−12
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝛾𝛾2

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝐿𝐿𝐿𝐿2|𝑀𝑀|�𝐿𝐿,𝑀𝑀,𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟
𝛾𝛾2

�𝑃𝑃𝑃𝑃2+

2𝐿𝐿𝐿𝐿 |𝑀𝑀|�𝑁𝑁,𝑀𝑀,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝛾𝛾2

�𝑃𝑃𝑃𝑃𝛾𝛾2+

2𝐿𝐿𝐿𝐿 |𝑀𝑀|�𝐿𝐿,𝑀𝑀,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝛾𝛾2

�𝑃𝑃𝑃𝑃𝛾𝛾2+

 |𝑀𝑀|�𝑁𝑁,𝑀𝑀,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝛾𝛾2

�𝛾𝛾4 +

|𝑀𝑀|�𝐿𝐿,𝑀𝑀,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝛾𝛾2

�𝛾𝛾4 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

, 

                                (4.34) 

Where 𝐿𝐿 = 1
2

 −𝛾𝛾
2+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝛾𝛾2

, 𝑀𝑀 = 1
2
2𝛾𝛾2+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝛾𝛾2
, 𝑁𝑁 = 1

2
 𝛾𝛾

2+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝛾𝛾2

, O=𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿−2𝛾𝛾
2

𝛾𝛾2
, T=LePr−γ2

γ2
. 

By applying boundary conditions and putting the value of 𝜉𝜉 in (4.28), the final solution 

is, 

𝜑𝜑(𝜂𝜂) =

  ⎝
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎛𝐿𝐿𝐿𝐿

 𝑂𝑂𝛾𝛾4�𝑃𝑃𝑃𝑃 𝑒𝑒−𝛾𝛾𝛾𝛾
𝛾𝛾2

�
 𝑇𝑇
��𝑃𝑃𝑃𝑃 𝑒𝑒−𝛾𝛾𝛾𝛾

𝛾𝛾2
�𝐿𝐿𝐿𝐿𝛾𝛾2+𝛾𝛾2+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿���𝑃𝑃𝑃𝑃 𝑒𝑒−𝛾𝛾𝛾𝛾

𝛾𝛾2
�𝐿𝐿𝐿𝐿�

−𝑁𝑁
𝑒𝑒
−12𝐿𝐿𝐿𝐿 �𝑃𝑃𝑃𝑃 𝑒𝑒−𝛾𝛾𝛾𝛾

𝛾𝛾2
�

|𝑀𝑀|�𝐿𝐿,𝑀𝑀,𝐿𝐿𝐿𝐿 �𝑃𝑃𝑃𝑃 𝑒𝑒−𝛾𝛾𝛾𝛾
𝛾𝛾2

��

𝑃𝑃𝑃𝑃�𝛾𝛾2+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿��2𝛾𝛾2+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�
+

𝐿𝐿𝐿𝐿 𝑂𝑂𝛾𝛾2�𝑃𝑃𝑃𝑃 𝑒𝑒−𝛾𝛾𝛾𝛾
𝛾𝛾2

�
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿−𝛾𝛾

2
𝛾𝛾2 �𝛾𝛾2+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿��𝑃𝑃𝑃𝑃 𝐿𝐿𝐿𝐿 𝑒𝑒−𝛾𝛾𝛾𝛾

𝛾𝛾2
�
−𝑁𝑁

𝑒𝑒
−12

𝑃𝑃𝑃𝑃  𝐿𝐿𝐿𝐿 𝑒𝑒−𝛾𝛾𝛾𝛾
𝛾𝛾2 |𝑀𝑀|�𝑁𝑁,𝑀𝑀 ,𝐿𝐿𝑒𝑒 �𝑃𝑃𝑃𝑃 𝑒𝑒−𝛾𝛾𝛾𝛾

𝛾𝛾2
��

𝑃𝑃𝑃𝑃�2𝛾𝛾2+𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿� ⎠
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4.3 Results and Discussion 

In the ongoing stage, the flow of the Boundary layer and the heat transfer of 

Jeffrey's fluid over the stretching sheet by linearly are determined. PDEs are changed over 

into ODEs addressed by scientifically. In order to produce exact solutions aimed at the 

stated problem of boundary value an algorithm developed by the Maple software. For 

temperature profile, velocity profile and nanoparticles fraction, Sherwood number, local 

Nusselt, entropy generation, skin friction coefficient the parameters discussed are Prandtl 

parameter 𝑃𝑃 ,relaxation and redardation parameter𝑘𝑘1, Deborah number 𝑘𝑘2 ,  Lewis 

number 𝐿𝐿𝐿𝐿, Brinkman number 𝐵𝐵𝐵𝐵 , Reynold’s number 𝑅𝑅𝑅𝑅,  dimensionless concentration 

difference 𝛴𝛴, temperature difference 𝛺𝛺 and  constant parameter 𝜖𝜖.  

Fig. 19: designed at higher values of 𝑘𝑘2  as velocity escalates, although the 

boundary layer viscosity drops. Although, by increasing value of 𝑘𝑘2 both nanoparticles’ 

fractions profile decrease and temperature. Fig. 19: illustrate the effect of 𝑘𝑘2  on 

nanoparticles fraction, temperature profile and speed profile. From Fig. 20: the impact of 

𝑘𝑘1 on velocity, fraction and temperature of nanoparticles display opposite behavior while 

related through that in Fig. 19. It is assumed that increasing the elastic parameter will 

increase water resistance. Therefore, when there is no non-Newtonian effects the current 

model reduced to the Newtonian model of nanofluid, presenting a brilliant agreement 

[39]. 

In Fig. 21: we can see effects on 𝜃𝜃(𝜂𝜂) and 𝜑𝜑(𝜂𝜂) by Prandtl number 𝑃𝑃𝑃𝑃. As Prandtl 

number is a amount of thermal distribution rate and viscous distribution rate, greater the 

Prandtl number is lesser will be thermal variability. Thus, the exact process can be seen 

in Fig. 22, when Prandtl numbers is higher, then both nanoparticles fractions and 

temperature will be lesser, both of them shows opposite behavior when the value of Lewis 

Number 𝐿𝐿𝐿𝐿  has higher values. Fig. 23: we can see impact of 𝑘𝑘2 on 𝑓𝑓′(𝜂𝜂) for shrinking 

case. In this shrinking case we can see that 𝑃𝑃𝑃𝑃 = 0.5, 𝐿𝐿𝐿𝐿 = 2.0  and 𝑘𝑘1 = 0.5.  

In Fig. 24: we can see the dimensionless 𝑁𝑁𝑁𝑁 profiles of numerous numbers of 𝑃𝑃𝑃𝑃. 

It may be understood that the Prandtl number expands, the number of entropy generation 

seriously increments in the sheet locale. Yet, somewhat distant from the sheet, Prandtl 

number increment reasons Ns decline. Alternately, further away from the sheet district, 

both 𝜃𝜃(𝜂𝜂) and 𝜑𝜑(𝜂𝜂) are diminished to 𝑃𝑃𝑃𝑃, which in this manner decline 𝑁𝑁𝑁𝑁. It is likewise 
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noticed that in 𝑃𝑃𝑃𝑃 is invariant, as the changeability of comparability variable increments 

η. 

Fig. 25: shows the 𝑁𝑁𝑁𝑁 profiles intended for various upsides of Lewis number 𝐿𝐿𝐿𝐿. 

Apparently, an increase in 𝐿𝐿𝐿𝐿 could prompt an expansion in 𝑁𝑁𝑁𝑁 in the sheet area. In any 

case, extra on the sheet, the 𝐿𝐿𝐿𝐿 variety doesn't essentially influence𝑁𝑁𝑁𝑁. With the ascent of 

𝐿𝐿𝐿𝐿, the gooey dissemination rate builds which can further develop entropy generation. In 

any case, as is notable, gooey dissemination primarily influences the fluid close to the 

strong (sheet). Hence, entropy is created principally on a close-by the sheet. 

Fig. 26- Fig. 31: Demonstrate the effects on 𝑁𝑁𝑁𝑁 profiles by 𝐵𝐵𝐵𝐵 , 𝜖𝜖,𝑘𝑘1, 𝑘𝑘2,𝛴𝛴,𝑅𝑅. In 

Fig. 26, the 𝑁𝑁𝑁𝑁  profiles are presented in the values of 𝐵𝐵𝐵𝐵 . The dimensionless 𝐵𝐵𝐵𝐵 

concludes the relative importance of viscous effect. It is very flawless that whenever 

Briksman number rises 𝑁𝑁𝑁𝑁  also increase, however we can have better understanding of 

this conclusion in the sheet region (i.e., 𝜂𝜂 <  1). The real cause of  𝑁𝑁𝑁𝑁 increase with 𝐵𝐵𝐵𝐵 

increase is that aimed at higher 𝐵𝐵𝐵𝐵  values, 𝑁𝑁𝑁𝑁  due to fluid friction becomes raised. 

According to Fig. 25 Brinkman non-dimensionless unit is direct relation of 

proportionality with the square of the stretchable sheet. The speed of stretching the sheets 

depends on liquid nearby the surface of the sheet leading towards the acceleration of the 

liquid and the increase of 𝑁𝑁𝑁𝑁. 

Fig. 27: the effect of the Dimensionless 𝜀𝜀 fixed parameter in the output number of 

entropy is displayed. Parameter ε demonstrate the commitment of mass exchange to the 

production number of entropy. It can be noted that, as sheet approaches, 𝑁𝑁𝑁𝑁 increases 

with 𝜀𝜀 . It is also observed that, at 𝜀𝜀 = 0.003 , with 𝜂𝜂  increase 𝑁𝑁𝑁𝑁  initially rises and 

decreases gradually. However, at 𝜀𝜀 >  0.003  𝑁𝑁𝑁𝑁  gets a smooth reduction with an 𝜂𝜂 

increase. 

In Fig. 28: illustrate the behavior of ratio of relaxation to retardation times 𝑘𝑘1 on 

𝑁𝑁𝑁𝑁  profile. It can be understood that irreversible 𝑁𝑁𝑁𝑁  is a reducing function of 𝑘𝑘1 , 

specifically near to the sheet region. A decrease in 𝑁𝑁𝑁𝑁 by an increase of 𝑘𝑘1 near the sheet 

may be attributed to the reduction in velocity within the boundary layer by increase. As 

the temperature has a very low rise with an increase in 𝑘𝑘1, so the temperature effect is 

unable to challenge the effect of speed, and that is why 𝑁𝑁𝑁𝑁 decreases. The effect of 

Deborah 𝑘𝑘2 number on  𝑁𝑁𝑁𝑁 can be seen in Fig. 29. It is noted that with the greater values 

of Deborah's number, the entropy production number is greater in the sheet area. 
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Materially, when Deborah's number increase it results in more fluid movement within the 

boundary layer, which significantly enhances density of the speed limit and increases the 

fluid speed. This cannot overcome the effect of increasing speed on 𝑁𝑁𝑁𝑁, and thus 𝑁𝑁𝑁𝑁 

increase with 𝑘𝑘2 increase. 

Fig. 30: presents profiles of entropy generation 𝑁𝑁𝑁𝑁 with varying parameters for 

concentration difference parameter Σ . The parameter Σ  defines the relation of the 

dimensionless concentration difference. In Fig.4.11, Σ increase in the sheet area(𝜂𝜂 <

0.6)  when 𝑁𝑁𝑁𝑁 increases, which results in a mass transfer contribution to 𝑁𝑁𝑁𝑁. However, 

further on the sheet, the parameter Σ appears to have very little effect on 𝑁𝑁𝑁𝑁. 

Fig. 31: presents the impact of various Reynolds Number 𝑅𝑅𝑅𝑅  values on the 

number of entropy production. It is notable that 𝑁𝑁𝑁𝑁  are highly dependent on 𝑅𝑅𝑅𝑅, such as 

the increase in the number of Reynolds significantly increases 𝑁𝑁𝑁𝑁 . By the increase of 

Reynolds population, the liquid moves in very disruptive manner such that the movement 

of the busy fluid emerges. This movement raises the contribution of fluid friction and heat 

transfer to the entropy generation and, as a result, increases the number of entropy 𝑁𝑁𝑁𝑁. It 

is clear there is increase in 𝑅𝑅𝑅𝑅, the force of inertia increases while the viscous force 

decreases. Therefore, in the case of the flow in the expandable sheet, with an increase of 

𝑅𝑅𝑅𝑅, the liquid near the sheet is much faster and the fluid friction. 

In Fig. 32 - Fig. 38: effects on temperature profile reduce Nusstle number. 

Increasing values of both parameters 𝑘𝑘1,𝑘𝑘2 one by one and the Nusselt number 𝜃𝜃′(0) 

decreases, for variable values of Le and Pr. In such circumstances, in the parameters, we 

consider maximum values of 𝑃𝑃𝑃𝑃 . The same kind of performance can be seen in the 

reduced Nusselt number 𝜃𝜃′(0) with greater values of 𝑘𝑘1,𝑘𝑘2. 

From Fig. 39 - Fig. 49: special effects on reduce Sherwood number. Sherwood 

number 𝜑𝜑′(𝜂𝜂)  increases by the increasing the parameters graphs 𝑘𝑘1,𝑘𝑘2,𝑃𝑃𝑃𝑃, 𝐿𝐿𝐿𝐿 . 

Consequently, we can conclude from this context that the thermal substitution is less for 

the high Prandtl number.  

Fig. 50: shows the distinction of the dimensionless speed angle in the sheet area 

𝑓𝑓′′(0) with the Deborah number 𝑘𝑘2 for 𝑘𝑘1 impacts. The scramble dash line demonstrates 

the specific arrangement of the ongoing review. It is apparent that a fantastic arrangement 

between the mathematical arrangement of the ongoing review and the specific 
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arrangement is achieved. It can likewise be understood that 𝑓𝑓′′ (0) increments with the 

Deborah number 𝑘𝑘2  increment. The distinction of 𝑓𝑓′′ (0)  with the proportion of 

unwinding to hindrance times 𝑘𝑘1 is laid out in Fig. 51 focused on 𝑘𝑘2 impacts. Presently 

again an extremely respectable agreement is seen between the mathematical and definite 

arrangements. It is likewise uncovered that the liquid dimensionless speed with the sheet 

district 𝑓𝑓′′ (0)diminishes with an increment of 𝑘𝑘1. 

From Fig. 52 - Fig. 53, dual nature solution of skin friction 𝑓𝑓′′(0)  for both 

shrinking and stretching case. Effects of 𝑘𝑘1 in 𝑘𝑘2 and effects of 𝑘𝑘2 in 𝑘𝑘1. Its indicates 

that upper case is of stretching sheet decrease and lower case is of shrinking sheet increase 

in both parameters effects 𝑘𝑘1 and 𝑘𝑘2. 

 

 

Fig. 19: Impact of 𝑘𝑘2 on 𝑓𝑓′(𝜂𝜂),, 𝜃𝜃(𝜂𝜂) and 𝜑𝜑(𝜂𝜂). 
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Fig. 20: Impact of 𝑘𝑘1 on 𝑓𝑓′(𝜂𝜂), 𝜃𝜃(𝜂𝜂) and 𝜑𝜑(𝜂𝜂). 

Fig. 21: Impact of 𝑃𝑃𝑃𝑃 on 𝜃𝜃(𝜂𝜂) and 𝜑𝜑(𝜂𝜂). 
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Fig. 22: Impact of 𝐿𝐿𝐿𝐿 on 𝜃𝜃(𝜂𝜂) and 𝜑𝜑(𝜂𝜂) 

 

 

Fig. 23: Impact of 𝑘𝑘2 on 𝑓𝑓′(𝜂𝜂) for shrinking case. 
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Fig. 24: Impact of 𝑃𝑃𝑃𝑃 on 𝑵𝑵𝑵𝑵. 

Fig. 25: Impact of 𝐿𝐿𝐿𝐿 on 𝑁𝑁𝑁𝑁. 
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Fig. 26: Impact of 𝐵𝐵𝐵𝐵 on 𝑁𝑁𝑁𝑁. 

Fig. 27: Impact of 𝜖𝜖 on 𝑁𝑁𝑁𝑁. 
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Fig. 28: Impact of 𝑘𝑘1 on 𝑁𝑁𝑁𝑁. 

Fig. 29: Impact of 𝑘𝑘1 on 𝑁𝑁𝑁𝑁. 
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Fig. 30: Impact of Σ on 𝑁𝑁𝑁𝑁. 

 
 

 
Fig. 31: Impact of 𝑅𝑅𝑅𝑅 on 𝑁𝑁𝑁𝑁. 
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Fig. 32:  Variety of −𝜃𝜃′(0) w.r.t 𝑘𝑘2 and 1. For 𝑃𝑃𝑃𝑃 = 1.0. 

Fig. 33: Variety of −𝜃𝜃′(0) w.r.t 𝑘𝑘2 and 𝑘𝑘1. For 𝑃𝑃𝑃𝑃 = 4.0. 



 
 

48 
 

 
Fig. 34: Variety of −𝜃𝜃′(0) w.r.t 𝑘𝑘2 and 𝑃𝑃𝑃𝑃. For 𝑘𝑘1 = 0.5,1.0 

 
  

 
Fig. 35: Variety of −𝜃𝜃′(0)w.r.t 𝑘𝑘1 and 𝑘𝑘2 . For 𝑃𝑃𝑃𝑃 = 1.0. 
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Fig. 36: Variety of −𝜃𝜃′(0)w.r.t 𝑘𝑘1 and 𝑘𝑘2.. For 𝑃𝑃𝑃𝑃 = 4.0 

Fig. 37: Variety of −𝜃𝜃′(0) w.r.t 𝑘𝑘1 and 𝑃𝑃𝑃𝑃. For 𝑘𝑘2 = 0.5. 



 
 

50 
 

 

Fig. 38: Variety of −𝜃𝜃′(0) w.r.t 𝑘𝑘1 and 𝑃𝑃𝑃𝑃. For 𝑘𝑘2 = 1.0 

 

 

Fig. 39: Variety of −𝜑𝜑′(0)w.r.t 𝑘𝑘2 and 𝑘𝑘1.For 𝐿𝐿𝐿𝐿 = 4.0 ,𝑃𝑃𝑃𝑃 = 1.0. 
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Fig. 40: Variety of -𝜑𝜑′(0)w.r.t 𝑘𝑘2 and 𝑘𝑘1. For 𝐿𝐿𝐿𝐿 = 4.0 ,𝑃𝑃𝑃𝑃 = 4.0 

Fig. 41: Variety of −𝜑𝜑′(0) w.r.t and 𝑘𝑘1. For 𝐿𝐿𝐿𝐿 = 1.0 ,𝑃𝑃𝑃𝑃 = 4.0 
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Fig. 42: Variety of −𝜑𝜑′(0)w.r.T 𝑘𝑘2 and 𝑘𝑘1. For 𝐿𝐿𝐿𝐿 = 8.0 ,𝑃𝑃𝑃𝑃 = 4.0 

 
 

 

Fig. 43: Variety of −𝜑𝜑′(0)w.r.t 𝑘𝑘2 and  𝐿𝐿𝐿𝐿 For 𝑃𝑃𝑃𝑃 = 1.0 ,𝑘𝑘1 = 0.5,1.0. 

 

 
 



53 

Fig. 44: Variety of --𝜑𝜑′(0) w.r.t 𝑘𝑘2 and 𝑃𝑃𝑃𝑃. For 𝐿𝐿𝐿𝐿 = 1.0 ,𝑘𝑘1 = 0.5,1.0 

Fig. 45: Variety of  −𝜑𝜑′(0) w.r.t 𝑘𝑘2 and 𝑘𝑘1. For 𝐿𝐿𝐿𝐿 = 1.0 ,𝑃𝑃𝑃𝑃 = 4.0 
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Fig. 46:  Variety of -𝜑𝜑′(0) w.r.t 𝑘𝑘1 and 𝑘𝑘2. For 𝐿𝐿𝐿𝐿 = 4.0 ,𝑃𝑃𝑃𝑃 = 4.0 

Fig. 47:  Variety of −𝜑𝜑′(0) w.r.t 𝑘𝑘1 and 𝑘𝑘2. For 𝐿𝐿𝐿𝐿 = 8.0 ,𝑃𝑃𝑃𝑃 = 4.0. 
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Fig. 48: Variety of −𝜑𝜑′(0) w.r.t 𝑘𝑘1 and 𝑃𝑃𝑃𝑃. For 𝐿𝐿𝐿𝐿 = 4.0 ,𝑘𝑘2 = 0.5,1.0. 

 
 

 
Fig. 49: Variety of −𝜑𝜑′(0) w.r.t 𝑘𝑘1 and 𝐿𝐿𝐿𝐿. For 𝑃𝑃𝑃𝑃 = 1.0 ,𝑘𝑘2 = 0.5,1.0. 
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Fig. 50: Variety of 𝑓𝑓′′(0) w.r.t 𝑘𝑘1 and 𝑘𝑘2. 

Fig. 51: Variety of 𝑓𝑓′′(0) w.r.t 𝑘𝑘2 and 𝑘𝑘1 
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Fig. 52: Variety of dual solution skin friction 𝑓𝑓′′(0)  both for stretching/shrinking 

sheet w.r.t 𝑘𝑘1 and 𝑘𝑘2. 
 
 
 

 
 
Fig. 53: Variety of dual solution friction 𝑓𝑓′′(0)  both stretching/shrinking sheet w.r.t  

𝑘𝑘2 and𝑘𝑘1. 
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CHAPTER 5 

CONCLUSION 

This chapter summarizes the analytical and graphical findings from the review and 

extension work. In this chapter we have discussed all the results of both previous articles. 

In the current review, we introduced the nanoparticles effect of Jeffrey liquid over a sheet 

which was in stretched/shrinked state. The effects of various boundaries, for example, the 

proportion of relaxation to impediment times parameter 𝑘𝑘1, Deborah number 𝑘𝑘2, Prandtl 

number, Reynolds number and dimensionless Brinkman bunch on the dimensionless 

speed, heat move, nanoparticles, and irreversible profiles are analyzed. Careful answers 

for speed, temperature, entropy, and nanoparticle division are made and analyzed. The 

essential outcomes of the current examination can be recorded under.  

 The governing PDEs are converted into ODEs which are nonlinear dimensional

through a similarity transformation for an exact solution.

 To deal with the Nano fluid, the equations are resolved by using familiar software

Maple.

 The velocity of dimensionless fluid within the boundary layer increments with the

expansion in, although the velocity of dimensionless fluid decreases with the

increase of 𝑘𝑘1.

 With the increment of both 𝑘𝑘1  and 𝑘𝑘2 , energy dimensionless and liquid

concentration within the thermal boundary layer increases marginally.

 Both 𝑃𝑃𝑃𝑃  and 𝐿𝐿𝐿𝐿  offer similar performance for nanoparticle fraction and

temperature.

 The quantity of entropy age 𝑁𝑁𝑁𝑁 increments with the increment of Deborah

number𝑘𝑘2. Notwithstanding, the quantity of entropy age 𝑁𝑁𝑁𝑁 diminishes with the

increment of ratio of relaxation to retardation 𝑘𝑘1.

 This one concludes that the number of irreversible 𝑁𝑁𝑁𝑁 is strongly influenced by

Reynolds number(𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅) variant, Prandtl number 𝑃𝑃𝑃𝑃, dimensionless Brinkman

number 𝐵𝐵𝐵𝐵. 
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 Skin friction 𝐶𝐶𝐶𝐶 increases with increasingly both 𝑘𝑘2 and 𝑘𝑘1. 

 The Nusselt numbers amount is decreases with the maximum upsides of 

𝑃𝑃𝑃𝑃,𝑘𝑘1 and 𝑘𝑘2 individually. 

 The Sherwood numbers extent is increases with the maximum upsides of 

𝐿𝐿𝐿𝐿,𝑃𝑃𝑃𝑃,𝑘𝑘1 and 𝑘𝑘2 individually. 
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