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Abstract

This steady discusses the flow of Oldroyd-B nanofluid amidst two rotating
disks with the inclusion of gyrotatic microorganisms. The stability of the nanofluid
flow is strengthened by embedding the impact of the gyrotatic microorganisms. The
Buongiorno model is adopted for the nanofluid flow. The Hall current and Ion slip
impact are considered owing to the strong magnetic field taken perpendicular to
the both disks. The envisioned model is tackled numerically and graphs of arising
parameters are plotted against associated profiles. The physical quantities of interest
are also investigated.
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Chapter 1

INTRODUCTION

1.1 Basic preliminaries and laws

This chapter includes some basic definitions, concepts, and laws that will helpful in

understanding the works in the next two chapters.

1.2  Fluid

A material that can flow and deforms continuously when subjected to shear stress.

Fluids include mercury, cooking oil, blood, and oxygen.

1.3 Fluid mechanics

It is the branch of science that studies the fluid behaviour whether they are moving or
at rest. Fluid can be divided into two branches as follows:
1.3.1 Fluid statics

Fluid statics is a field of fluid mechanics that deals with fluids that aren’t moving

relative to one another.



1.3.2 Fluid dynamics

Fluid dynamics is a branch of fluid mechanics concerned with the properties of liquids

in motion.

1.4 Nanofluid

A nanofluid is a liquid that contains nanometer-sized particles known as nanoparticles.
Nanotubes, metals, and oxides are common nanoparticles found in nanofluids. Water (H20),

ethylene glycol (CoHgOz2), and oil are the most prevalent basic fluids.

1.5 Stress

Stress is defined as the force per unit area within the defoemable body. Symbolically,

We have

Restoring force

Stress = .
Area of the material

In the SI system, the dimension is [ ] and the unit of stress is kg/m.s?. It is divided into

M
LT?

two categories.

1.5.1 Shear stress

Shear stress occurs when an external force operates parallel to the surface unit area.

1.5.2 Normal stress

Normal stress is the type of stress that occurs when a force operates vertically against

a surface of unit area.

1.6 Strain

Strain is a dimensionless quantity that is used to quantify an object deformation when

a force is applied to it.



1.7 Flow

Flow is defined as a material that deforms easily and fluently in the presence of various

types of forces. Flow is further subdivided into two primary subcategories, which are as follows:
1.7.1 Laminar flow

Laminar flow occurs when fluid moves in regular channels with no interruption between
layers.

1.7.2 Turbulent flow

Turbulent flow occurs when the fluid particles in the flow field have an uneven velocity.

1.8 Viscosity

The viscosity of a fluid is a fundamental feature that characterizes the fluid resistance

to flow when many forces impact on it. There are two ways to describe the viscosity.

1.8.1 Dynamic viscosity (u)

It is the fluid characteristic that determines the fluid resistance to any deformation
caused by the applied forces. The dynamic viscosity is also known as absolute viscosity. Math-

ematically, this may be expressed as follows:

/L:T*S—Z. (1.1)

Its dimension is M L~'T~'and its SI unit is Kg/ms.

1.8.2 Kinematic viscosity (v)

It is the ratio of absolute viscosity and density with the fact that both have same
temperature.

Mathematically it is represented by



Its SI unit is m?/s and its dimension is [LTQ] .

1.9 Newton’s viscosity law

Newton’s law of viscosity defines the relationship between shear stress and shear rate

in a fluid subjected to mechanical stress. Mathematically it can be represented as follows:

du

& (1.3)

Tyz X

or

Tyz = b <ZZ) : (1.4)

where 7., denotes the shear force applied to the fluid’s element, 1 denotes the proportionality

constant and z—z denotes the velocity gradient.

1.10 Newtonian fluids

These are the fluids that obey Newton’s law of viscosity and have a constant viscosity.
Shear force (7y,) in these fluids is related linearly to the gradient of velocity (‘;—Z). Newtonian

fluids include alcohol, water, glycerine, and kerosene oil.

1.11 Non-Newtonian fluids

The Newton’s law of viscosity does not apply to these fluids. Shear stress (7y,) and
velocity gradient have a nonlinear and direct connection here. Non-Newtonian fluids include

toothpaste, butter, fabric paint etc. It is represented as:

d n
Tyz X (;;) , n#1, (1.5)
or
du du\"1
A =< I 1.6
v dy " (dy) (16)



where k£ the apparent viscosity, n the flow behaviour index and m the consistency index. For

n =1 Eq. (1.6) converts to Newton’s law of viscosity.

1.12 Density

Density is defined as the mass of a substance per unit volume. It is stated as follows:

(1.7)

<|3

p:

The SI unit of density is kg/m? with dimension M L~3,

1.13 Pressure

Pressure is defined as the force exerted per unit area on a surface. The pressure can
be expressed mathematically as:

F
P= (1.8)

The SI unit of pressure is N/m?.

1.14 Magnetohydrodynamics (MHD)

Magnetohydrodynamics (MHD) is the study of electrically conducting fluid dynamics.
The name magnetohydrodynamics is derived from the terms magneto which means magnetic
field, hydro means liquid, and dynamic means movement. Such fluids include plasmas, liquids,

metals, and salt water.

1.15 Heat flux

Heat flux is the flow of energy per unit area and time. The heat flow is a measurement
of the energy transfer produced by temperature, which leads to the temperature balance among

substance. Mathematically it can be expressed as:

q=—k(VT), (1.9)



in which q is heat flux, k represent material conductivity and VT represent temperature gra-

dient. Its SI unit is W/sq.m?.

1.16 Hall current

When an electrical current passes through a sample in the presence of a magnetic
field, a potential proportionate to the current and magnetic field arises across the material in
a direction perpendicular to both the current and the magnetic field. This is known as Hall
current. Edwin Hall, who discovered the phenomenon in 1897, is commemorated with this

effect’s name.

1.17 Gyrotactic microorganism

These are motile microorganisms found in lakes, rivers, and seas. Gyrotactic mi-
croorganisms are utilised in experiments because they aid in bio-convective movement. When a
significant number of microorganisms congregate on the upper layer of suspension, the layer be-
comes thick, and the microorganisms become unstable and begin to move downward, resulting

in bio-convective phenomenon.

1.18 Mechanism of heat transfer

Heat is a type of energy that moves from a warmer to a colder place. Heat transfer
occurs when two things of different temperatures come into contact with each other. Heat is

dispersed by three basic mechanisms: conduction, convection, and radiation.

1.18.1 Conduction

It is the phenomenon by which heat is transferred from a hot location to a cold part
of a liquid or solid by collisions of free electrons and molecules. This event does not involve the

transfer of molecules. Mathematically,

q = —kAVT, (1.10)



or

amkal ()

where q denotes the heat flow A is the surface area, k is the thermal conductivity, (‘C%) shows
the temperature gradient, and the negative sign refers that heat is transmitted from high to

low temperature.

1.18.2 Convection

Convection occurs when a heated fluid, like as air or water, is pushed to move away

from the source of heat, bringing energy with it.
q=-HA(VT). (1.12)

Here, H stands for convective heat transfer coefficient, VT for temperature difference between

surface and fluid, A stands for area.

1.18.3 Radiation

Radiation is the transfer of energy from one medium to another in the form of waves

or particles. The radiation stefan-boltzmann law governs radiation.
q=coA(AT)*, (1.13)

where q is depicted as transfer of heat, e is the system emissivity, o is the Stephen-Boltzmann
constant, area is denoted by A, and (AT)4 is the difference of temperature between two systems
to the fourth power.

1.19 Convective boundary conditions

Convective boundary conditions are also known as Robin boundary conditions at times.

This type of circumstance is frequently defined on a wall. These are stated mathematically as:

10



k < or )x — W [Ty (i, ) — To(wis 1)) (1.14)

8mi
This equation states that condition equals convection. Here h is the heat transfer coefficient, x;

is the location at the boundary, T is the fluid temperature, and T, is the wall temperature.

1.20 Fundamental laws

The fundamental laws that are used for the flow specification in the subsequential

analysis are given below.

1.20.1 Mass conservation law

The conservation of mass states that a body mass remains constant while it is moving.

It sometimes referred to as the continuity equation. Mathematically,

Dp _
S, HAVV =0, (1.15)
or
dp
N +(V.V)p+pV.V =0, (1.16)
or
dp
a1 +V.(pV) =0, (1.17)

where density is depicted by p, % is time derivatives, V represents the fluid velocity. It is

known as the equation of continuity. For the steady flow Eq. (1.17) becomes
V.(pV) =0, (1.18)
and if the fluid is incompressible then Eq. (1.18) implies that

V.V =0. (1.19)

11



1.20.2 The conservation of momentum law

The total linear momentum of a closed system is said to be constant. Generally it is

given by
DV
PDor = div 7+pb, (1.20)
where 7 = —pl 4+ S, denotes the Cauchy stress tensor, p (%) is represents internal force, and

pb ia a body force.

1.20.3 Law of energy conservation

Law of conservation of energy is also known as energy equation and is given by

DT
pC.

in which q for heat flux vector and r for thermal radiation. Energy equation without thermal

radiation takes the form

DT
pC

TR T L+kV>T, (1.22)

where q = —kVT, L = V'V, k denotes the thermal conductivity and 7" for temperature.

1.21 Concentration

For nanoparticle, the volume fraction equation is:

oC 1
— 4+V.VC=--Vj 1.2
. VT
Jp = _pp.DBVC — ppDTT7 (124)
2
T
aa(j +V.VC = DpV?C + DTVT : (1.25)

Here, C is nanoparticle concentration, 7" is fluid temperature, T, is the ambient temperature,

Dp stands for Brownian diffusion, Dy for thermophoretic coefficient.

12



1.22 Thermal diffusivity

Thermal diffusivity is a material specific property for describing the unsteady conductive
heat flow. This value describes how speedily a material respond to change in temperature. It
is the relationship between thermal conductivity and the product of specific heat capacity and

density. Mathematically it can be written as:

ko
pCyp’

o=

(1.26)

where k indicates the thermal conductivity, C), the specific heat capacity and p the density.

1.23 Thermal conductivity

The measurement of the ability of a material to conduct heat is defined as thermal
conductivity. Acoording to Fourier Law of heat conduction, it is defined as “The amount of
heat transfer rate (@) through a material of unit thickness (L) times unit cross section area
(A) and unit temperature difference (AT')”. Mathematically written as:

QL

k— Ai(AT)’ (1.27)

W
m.K

and dimension is (MT)

~

in SI system thermal conductivity has unit

>

1.24 Maxwell fluid Model

The momentum equation for Maxwell fluid is

p(V.V)V=-Vp+V.S+JxB, (1.28)

where

J=0(VxB), B=]0,0,B, (1.29)

The Maxwell liquid extra stress tensor S is written as:

13



D DS
1 B — —_— = A_ 1.
< + A1 Dt) S=S+X\ Di HAT, ( 30)

where A1 denotes relaxation time, D% for the distinction of covariant variables, A stands for
the first Rivlin-Erickson tensor and p stands for dynamic viscosity. The first tensor of Rivlin-
Erickson is

A =grad V + (grad V)', (1.31)

in which ¢ is the matrix transpose for 3-D flow, we get

Ou, Ouyg Ou, Ou, Jug Ou,
or or or or or o
= | 19uy _ ug 10ug , up 10u 10ur _ up 10up 4 ur 10u
Al T 80T r r 060 + 'r7 r 802 + T 89T r r 00 + 'r7 r 802
Ouyr Oug Ou, Ouyr Jug Ou,
0z z 0z 0z z 0z
ou Jug 10ur _ ug ou, Ouy
2 rr or + r 8HT T 8TZ + z
— | Oug 4 10ur _ ug 10ug | ur 10u; | Oug
A= or + r 00 r 2 (7’ o0 + r ) r 00 + 0z ) (132)
Ouy. Ou OJug | 10uy Ouy
0z T or 2z T r o0 2%;

for S tensor of rank two, we have

DS S

== === .V)S — SL — SL! 1.
D = op T (V'V)S—SL-sL, (1.33)

where L = gradV
applying the operator 1 + )\1% on law of momentum conservation. In the absence of body

force, we obtain the expression,

D\ oV D D

by using

%(V) -V (;) , (1.35)

applying the Egs. (1.35) in (1.28), we obtain

14



0V D D
p<1+)\1Dt> 875 < + A= >V +,LL(VA1) <1+>\1m>(JXB),

(1.36)
in the absence of pressure gradient, the above Eq. (1.36) becomes
ov D
1+ A =pu.(V.A 14— | (I xB 1.37
p(1+ 05 ) B =mvA)+ (14 g ) @ xB), (137)
For steady Maxwell liquid flow in cylindrical coordinates is expressed as
2 1 (10 1 %u,
ur@ur . ug Ouyr +uz8ur Y% 1 Op R (rar(rur) 1 257 (1.38)
or r 00 0z r p \Or _20u | Ou,
r2 00 022
2 2
~\ uRt + w25l + 2upu, Gt — Bne G
Quguy O uru uZ Hu,. ’
o dun ) Bou
d 1 2u9
Oug  ug Oug Oug  urug 1 (op ar (G ar(rug) + 5%
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1.25 Oldroyd-B fluid Model

We investigate an Oldroyd-B fluid flow caused by a rotating disk. The Oldroyd-B fluid
model stress tensor is expressed as:
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D D
(1 -+ )\I_Dt> S=u (1 + )\Q_Dt> Ay, (141)

where A1, Ag, u, S are the relaxation and retardation times, the dynamic viscosity and ex-
tra stress tensor respectively. The following are the mathematical relationships for mass and

momentum conservation in an incompressible MHD fluid flow:

V.V =0, (1.42)

pa=-Vp+V.S+J xB, (1.43)

for the velocity vector V the material time derivative is shown by a.

4V 9V

the density of the fluid is depicted by p and p denotes for the fluid pressure, employing divergence
on the Eq. (1.41) ,we get

D D

after applying the operator (1 + A1 %) on Eq. (1.43) and utlizing the result of Eq. (1.45), we

have

D D D D
p <1 +)\1Dt> a=— (1 +)\1Dt> Vp+ p (1 +)\2Dt) V.A;+ <1 + /\1Dt> (J x B), (1.46)

where A; = VV + (VV)' is the first Rivlin-Ericksen tensor and D% the upper convective

derivative. The axisymmetric three-dimensional steady flow is:

V=lu(rez), virez), w(re, z)]. (1.47)
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1.26 Dimensionless numbers

1.26.1 Reynolds number

It is the most essential dimensionless number used to distinguish between different
flow characteristics such as laminar and turbulent flow. It represents the ratio of inertial to
viscous forces. Laminar flow occurs at low Reynolds numbers, when viscous forces dominate.
Turbulent flow occurs at high Reynolds numbers, where inertial forces dominate. The Reynolds
number is used to distinguish between distinct flow regimes within a comparable fluid, such as

laminar or turbulent flow. It may be stated mathematically as:

Inertial force
e=—"——
Viscous force’

Re = —. (1.48)

1%

Here, v signifies fluid velocity, L means characteristic length, and v denotes kinematic viscosity.

1.26.2 Prandtl Number

The Prandt]l number is the relationship between momentum and thermal diffusivity.
It is dimensionless number. The Prandtl number is employed in heat transfer to govern the

thicknesses of momentum and thermal boundary layers. Mathematically it can be expressed by
Pr=—=—+, 1.49
- (1.49)

where p signifies dynamic viscosity, C, denotes specific heat, and k denotes thermal conductiv-

ity.

1.26.3 Coefficient of skin friction

Skin friction occurs when fluid runs across a surface and creates a certain degree of

drag. It occurs when a fluid collides with the surface of a solid, causing the fluid’s velocity to
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slow. The skin friction coefficient is defined as

Cp =1 (1.50)

in which 7,, for wall shear stress, p is for density and U, represents the free stream velocity.

1.26.4 Nusselt number

It is a dimensionless quantity that measures the ratio of convective to conductive heat

transfer. Mathematically
hAT hL

N = — = —
LT RAT/L T K

(1.51)

where h stands for convective heat transfer, L for characteristic length and k for thermal

conductivity of the fluid.

1.26.5 Biot number

It is defined as the internal conductive resistance divided by the external convection

resistance. Mathematically:

Internal conductive resistan ce

Bi = - ; )
FExternal convective resistan ce
h
Bi = %L, (1.52)

where L is the characteristic length, thermal conductivity of the body is denoted by k, and h

shows the convective heat transfer coefficient.

1.26.6 Thermophoresis parameter

Thermophoresis is a method that is used to prevent the mixing of dissimilar particles
owing to a pressure differential as they travel together or to separate the particles after they
have mixed. Thermophoresis is positive on a cold surface and negative on a hot surface. It may

be stated mathematically as:
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(pC)pDr(Ty — To)
(pCp) VT

where Ty and Ty, are the wall temperature and ambient temperature, Dr is thermophoretic

N =

(1.53)

diffusion coefficient and v the kinematic viscosity.

1.26.7 Brownian motion parameter

Brownian motion occurs due to size of the nanoparticles in a nanofluid. It is a

nanoscale mechanism that displays the thermal influences of nanofluid. Mathematically

N, = P8(Cr = C) (15)
o (Pc)p
T= (o) (1.55)

In the above equation 7 is the ratio of effective heat and heat capacity of the nanoparticles
and fluid respectively, v the Kinematic viscosity. Cy the walls concentration, C, the ambient

concentration and and Dpg the brownian diffusion coefficient.

1.26.8 Schmidt number

Schmidt number Sc is defined as the dimensionless quantity which measures the ratio
of momentum diffusivity (viscosity) to mass diffusivity. It is introduced by Heinrich Wihel

Schmidt in (1892-1972). Mathematically,

1%

Se=—
c Dy’

(1.56)

where v is kinematic viscosity and Dp is mass diffusivity.

1.26.9 Peclet number

The ratio of heat flow rates between conduction and convection for a uniform temperature
gradient is known as the Peclet number. The Peclet number is the dimensionless number

denoted by Pe. Jean Claude Eugéne Péclet, a French scientist, is honoured by its name.
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Pe = —, (1.57)

where L is the Characteristic length, v is fluid velocity, and « is the thermal diffusivity.

1.26.10 Lewis number

The ratio between thermal diffusivity to mass diffusivity is called Lewis number. It

is dimensionless number denoted by Le. Mathematically,

(0%
Le=— 1.58
e=2 (1.58)

where a denotes thermal diffusivity, and D shows mass diffusivity.

Lewis number can also be expressed as:

Le=2°. (1.59)

1.26.11 Sherwood number

The ratio of convective mass transfer to mass diffusivity is known as the Sherwood
number. Sherwood numbers shows the effectiveness of mass convection at the surface. Sherwood

number Sc is the dimensionless number. Mathematically it can be written as,

g Convective mass transfer
C =

Mass dif fusion rate

km

Se=Dp L

(1.60)

where k,, is the convective mass transfer coefficient, L is a characteristic length, D is the mass

diffusivity.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

A nanofluid is a fluid that includes nanoparticles (particles with a diameter of less
than 100mn) inserted in the base fluid. Carbon nanotubes, metals, and oxides are commonly
employed as nanoparticles. Common base fluids are water, ethylene glycol, and oil. Nanofluid
differs from other base fluids in that the nanomaterials are emersed in the base fluids. These
particles are introduced into base fluids to enhance thermal conductivity and heat transmis-
sion. These are used to attain the maximum enhancement in thermal properties at lower
concentrations. Nanoliquids have the potential to improve heat transfer rates in a diverse range
of applications, such as nuclear reactors, industrial cooling applications, transportation, micro-
electromechanical system, chemical catalytic reactors, and blood flow in the cardiovascular sys-
tem engaging the Navier-Stokes equation. The need for nanofluids as coolants in automobiles
takes into account their tiny size, which means they use less energy to regulate road resistance.
There have been a lot of studies on nanofluids improved heat transfer capabilities, particularly
thermal conductivity.

The concept of nanofluids has been studied using three different types of models, including
the single phase model, the Eulerian-Eulerian multi-phase mixture model, and the Eulerian-
Lagrangian discrete phase model. The most popular model is the single phase model, which is
predicated on the idea that nanofluids behave like regular fluids. The other two phase models

are considered in the interaction between fluid and solid particles. The Eulerian-Lagrangian
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discrete phase model contains two independent phases. The first is the solid phase, and the
second is the fluid phase. While the Eulerian-Eulerian multi-phase mixture model creates the
fluid-solid mixture.

Non-Newtonian liquid flows are important in a variety of industrial and technical operations,
such as paper manufacture, petroleum drilling, glass blowing, the expulsion of polymeric liquids
and melts, paints and so far. Non-Newtonian liquids are materials in which shear stress and
velocity gradient do not have a direct or linear relationship. As a result, academicians have
proposed a variety of non-Newtonian fluid mathematical models according to their application
requirements. In polymer processing, rate-type fluid models such as Maxwell, Oldroyd-B, or
Burgers fluids are commonly used to predict stress relaxation. Maxwell fluids and viscoelastic
fluids, have a wide range of industrial use, such as glass blowing, polymer sheet extrusion,
plastic film manufacture, hot rolling, crystal growth, and so on. Maxwell liquid is the least
complicated non-Newtonian liquid subclass among these models. The Oldroyd-B fluid is a non-
Newtonian visco-elastic fluid that represents the stress-relaxation relationship. This model is a
modification of the Maxwell fluid with the addition of time retardation. The Oldroyd-B fluid
is a fascinating and helpful nonlinear model that allows researchers to investigate significant
relaxation and retardation characteristics. Many researchers employed the Oldroyd-B fluid
model in many situations due to its significant qualities. Unlike many polymeric materials, the
Oldroyd-B model cannot represent shear thinning or thickening. The Oldroyd-B fluid analyzes
the flow relaxation and retardation time characteristics.

The study of electrically conducting fluid motion in the existence of a magnetic field is known
as Magnetohydrodynamics (MHD). Whereas magneto means magnetic field, hydro means flu-
ids, and dynamics mean forces. An electromotive force is produced by the relative motion of
a conducting fluid and a magnetic field, and that motion produces electrical currents. The
fundamental idea of MHD is that a magnetic field may produce current in conductive flu-
ids. There are countless uses for magnetohydrodynamics (MHD), including the analysis of the
Tonosphere, the creation of the Earth’s magnetic field, and the use of electromagnetic forces
to pump liquid metals. Many researchers have drawn their attention to this kind of flow be-
cause of its multiple uses in technological problems such as MHD generators, nuclear reactors,

geothermal energy extraction, and MHD generators. Hydromagnetic methods are also utilized
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to separate non-metallic inclusions from molten metals. The MHD depends upon the order of
density o (w x B), where o means electrical conductivity, w for the velocity field, and B is the
magnetic field. Because of this fact, the fluid produces flow along magnetic field lines because

the current creates an additional induced magnetic field.

2.2 Literature review

In a variety of systems, nanofluids have shown enormous heat transfer capabilities.
Nanofluids are used in medicine delivery, power generation, micromanufacturing processes,
metallurgical industries, and thermal treatment. Initially, thermal energy and heat transmission
were carried out using basic fluids with modest heat conductivity, such as water, oil, and heat
transfer. In 1995, with the advancement of nanostructures, Choi and Eastman [1] worked for the
first time on nanofluid, considering it for cooling and coolant purposes in technologies. They
observed that nanofluids had greater conduction and heat transfer rate efficiency gain than
simple or basic liquids used in previous experiments. Many researchers worked on nanofluids
using the concept of Choi’s idea, some of them are [2,3]. Ramzan et al. [4] deliberated a 3D
nanofluid thin film moving at a constant velocity via heat radiation and across a tilted rotating
disk. Dogonchi and Ganji [5] studied the Cattaneo-Christov heat flux and thermal radiation
for an unstable contracting MHD flow. They evaluated the heat transport of the nanofluid
between two plates. Udawattha et al. [6] scrutinized the effective viscosity of nanofluids based
on suspended nanoparticles. Hussanan et al. [7] investigated the use of Oxide nanoparticles
for energy augmentation in engine nanofluids and base fluid. Salari et al. [8] investigated
nanofluids to enhance the wall heat transfer rate and minimize the time for food processing in
the industry. Many researchers are looking at some recent experiments involving heat and mass
transfer using nanofluids [9 — 13].

Non-Newtonian fluids have a wide range of uses in different fields. Shampoos, blood at
low shear rates, soaps, apple sauce, and other non-Newtonian fluids can be found in everyday
life. The characteristics of all non-Newtonian fluids can’t be fully explained by any specific
single relation. As a result, academicians have proposed several mathematical models for non-

Newtonian fluids. Maxwell constitutive equations are the simplest rate-type fluids and have
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relaxation time characteristics. Maxwell [14] was the first to present the Maxwell model theory
to explain viscoelastic behavior. Bodnar et al. [15] used the Johnson-Segalman equation to
obtain the constitutive equation of Maxwell fluids, which is the rheological equation of state.
For investigating boundary layer issues in fluid dynamics researchers prefer to use the Maxwell
fluid model. Reynardy and Wang [16] have examined significant boundary layer properties
in Maxwell fluid flows. A study of MHD in Maxwell fluid flows near vertical surfaces with
thermophoresis and chemical reaction may be found in [17]. Maxwell fluid flow with changing
thermal conductivity is demonstrated by Mustafa et al. [18]. Hayat et al. [19] investigated
Maxwell nanofluid radiative flow over a heated stretched surface. A few researchers [20 — 24]
have investigated the Maxwell fluid models in different phenomena.

The Oldroyd-B liquid is also a form of non-Newtonian liquid. The relaxation and retardation
times of Oldroyd-B fluid are inspired. This model is an expansion of the Maxwell fluid model
with the inclusion of time retardation. Oldroyd-B [25] was used to test the fluid model. Irfan et
al. [26] investigated the magnetic field and chemical reaction properties of Oldroyd-B nanofluid
flow in a stretched cylinder. Khan et al. [27] explored the flow of Oldroyd-B nanofluid with
motile microorganisms. Abbas et al. [28] investigated thin film analysis for time-dependent
Oldroyd-B fluids using a rotating disk. Hafeez et al. [29] examined the radiation of Oldroyd-B
fluid flow across a revolving disk. In the existence of time-dependent MHD, Anwar et al. [30]
studied the flow of Oldroyd-B fluid with thermal radiation and heat source-sink. Ye [31] focused
on the global regularity of the Oldroyd-B model in high dimensions. Ersoy [32] examined the
magnetohydrodynamics flow of the Oldroyd-B fluid across two infinite rotating disks travel-
ing with a uniform angular velocity. The flow of an Oldroyd-B fluid confined across the two
infinite coaxial parallel spinning disks was numerically modeled by Bhatnagar and Perera [33].
Sajid et al. [34] proposed a model in which an Oldroyd-B model boundary layer flow in the area
of stagnation point over a stretched sheet. Some researchers worked on the Oldroyd-B model
in different areas [35 — 38].

The heat transport phenomenon of a revolving disk has become an intriguing study subject.
This is because it is used in specialized applications like turbine systems, jet engines, food
processing, circulations of the atmosphere, and so on. Pearson [39] investigate the viscous flow

between (two) spinning disks and determined that the majority of the fluid revolves faster than
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either of the two disks. The Newtonian flow between (two) spinning disks was investigated
by Arora and Stokes [40]. They discovered that increasing Reynold number causes stronger
heat transmission when disks rotate in different directions and reduced heat transfer when
disks rotate in the same way. Turkyilmazoglu [41] investigated fluid flow over an impermeable
spinning disk that was moving upward/downward. Turkyilmazoglu [42] also investigated a
steady flow by a spinning disk and discovered that the existence of radial electric parameters
(positive or negative) had a significant impact on flow and thermal boundary layer. Khan
et al. [43] investigated bioconvective flow using a variety of conditions, including a magnetic
field. They noticed an improvement in axial velocity as the Reynolds number increased. In
their recent research on the numerical investigation of fluid flow heat transfer characteristics.
Bilal et al. [44] employed different numerical approaches to resolve the transmuted equations.
Several researchers [45 — 50] investigated alternative nanofluid flows between (two) rotating
disks afterward.

MHD is the study of the behavior, impact, and characteristics of a magnetic field over
viscous fluids. Magneto fluids include salt water, plasmas, and electrolytes. It would be useful
to explore the effect of a magnetic field on fluid flow. Alfén [51] was the first to invent the
field of MHD. He was awarded the Nobel Prize in Physics in 1970 for his contributions to the
field of MHD. Rashidi et al. [52] investigated the significant uses of MHD in peristaltic flow,
pulsatile flow, simple flow, and drug administration. Hsu [53] studied the unsteady Couette
flow with heat transfer between two parallel plates in an inclined magnetic field. Along with
a uniform horizontal magnetic field, Turkyilmazoglu and M. [54] studied the flow and transfer
of heat on a rotating disk. Hayes [55] investigated the Stokes issue with a vertical plate in a
rotating frame in the presence of a magnetic field. Devi et al. [56] investigated heat radiation
impact on MHD flow on a nonporous spinning disk. Abbas et al. [57] developed a numerical
solution for nanoparticles in various base fluids with slip and MHD effect. Khatsayuk et al.
[58] investigated the numerical modeling of MHD vortex technology, and its verification is also
provided.

Gyrotactic microorganisms enhance the mass transfer, which occurs in micro volumes, mi-
croscale mixing, and stability of nanofluid. The concept of bioconvection was initially pro-

posed by Platt [59]. More information about gyrotactic bacteria was later supplied by Kessler
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[60]. Basha and Sivaraj [61] examined blood flow numerically using several non-Newtonian fluid
models in the circulatory system with gyrotactic microorganisms. Hussain et. al [62] observed
the squeezing MHD bio-thermal convection flow of a micropolar nanofluid between two parallel
disks with multiple slip effects. Li et al. [63] investigated the unstable mixed bioconvection
flow of a nanofluid between two spinning disks that were either contracting or expanding. She-
hzad et al. [64] studied the effect of double-diffusive Cattaneo-Christov theory on the Maxwell
nanofluid bioconvection on isolated spinning disks. Zuhra et al. [65] noticed the gyrotactic
nanoparticles and microorganisms together with second-grade nanofluid flow and heat transfer

in which fluid temperature rises against the thermophoresis parameter.
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Chapter 3

MHD SWIRLING FLOW AND
HEAT TRANSFER IN MAXWELL
FLUID DRIVEN BY TWO
COAXIALLY ROTATING DISKS
WITH VARIABLE THERMAL
CONDUCTIVITY

MHD flow of Maxwell fluid between two coaxially parallel spinning disks is considered
in this chapter. Disks are rotating with different angular velocities in the same direction.
The pressure and heat transfer study is performed while accounting for the effects of an axial
magnetic field and thermal conductivity that varies with temperature. Von Kdrmén similarity
approach employed to transform the momentum and energy equations into nonlinear ODEs.
The enrised flow model is numerically solved using MATLAB bvp4c scheme. The disks notably
alter the classical flow pattern occurring between the disks, which is one of the key physical
implications of this work. The observations revealed that as the Reynolds number upsurges,

the pressure field dwindled near the lower disk. The thermal conductivity characteristic plays
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an important role in increasing fluid temperature.

3.1 Mathematical formulation

The axisymmetric Maxwell fluid flow is considered when it is contained between
two coaxially spinning parallel disks that are stretched linearly. The lower disk rotates with
angular velocity €2; while the upper disk spins with angular velocity (2o at a fixed distance.
For the mathematical representation, the cylindrical coordinates (7, ¢, z) is used. Let s; and
so represent the lower and upper disk stretching ratios, accordingly. The fluid temperatures at
the bottom and upper disks are considered to be T7 and 75, accordingly. Corresponding to the
z-axis, a homogeneous magnetic field of magnitude By is applied. The basic equations for the
Maxwell fluid model for continuity, momentum, and energy equations are shown:

The continuity equation is

V.V =0. (3.1)

The momentum equation is

p(V.V)V=-Vp+V.S+JxB, (3.2)

where V shows the velocity vector, p denotes the fluid pressure, p is the fluid density, J is the
current density with the electrical conductivity o, B shows the magnetic field, and S is the

extra stress tensor for Maxwell fluid are all represented by

J=0(VxB), B=[0,0,B),

DS
S+ A— =uA 3.3
+ lDt KA, ( )
where
A, =L+ L%

The dynamic viscosity is p, the relaxation time is denoted by A1, the first Rivlin Erickson tensor
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is A1, and D% is the contravarint convected derivative.

DS S

— =—4(V. — LS - SL!
D 8t+( V)S — LS — SLY,

where

L=gradV,

applying divergence on both sides of Eq. (3.3)

D
1+M— | S= A
< + 1Dt> ,LLV 1,

operating 1 + )\1[% on both sides of Eq. (3.2), we get

D AV D
T+ M — | [ p=— —uV.A + (1+ M=) (I xB).
<+ 1Dt)<pdt+Vp> oY 1+(+A1Dt>( x B)

The energy equation is:

pCy (V.V)T = —V.q,

where T' denotes fluid temperature and ¢ denotes heat flow and is given as:

q= _k(T)VTa

The velocity field V for axisymmetric steady flow is

V=lu(rz),v(rz),w(rz)].
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Fig 3.1 Geometry of the Problem

In components form, Egs. (3.1), (3.2), and (3.7) can be expressed as:

d(ru) 0 (rw)
= 1
or " os 0 (8.10)
ou ou v? 10p Pw  20u  2u
= - - - _-ZF - - 3.11
Yar TV Ty p(‘)r+ < T ooz T ror 1"2) (3:11)
20%u 20%u
_)\1 ;L T +w 87 + 2uw8r62za i UBg (u—i—’w)\lg_u) ’
2w O u z
e eTEt T P
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e D T - Iz 3.12
u8r+w8z+ V<87“2 r2 " ror 822) (312)
w8 WS+ 2uw g + e g 0B} v
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ow ow 10p 5 0%w 0w 5 0?w 02 Ow
IO 2 = 2P (22 guw , vow 1
“or Jrw@z pdz ! (u or? + uw@r8z+w 022 5 or (3:.13)
ordz  or:2  rdz ror 922 )7
oT oT 1 [k(T)oT O oT 0 orT
P = P2 (k) + L (s 14
Yor Tz pCp{ R <k( )8r>+8z (k( )8z>}’ (3:14)

where [u,v,w] are the velocity components, kinematic viscosity is depicted by v, the specific

heat is C}, while the variable thermal conductivity is k(7).

T—-T,
= 1 .1
k(T) koo< +5T1_T2>, (3.15)

where ko is the fluid thermal conductivity and the variable thermal conductivity parameter is
E.

The boundary conditions of both lower and upper disks are:

u = sir, v=MWr, w=0, T =T, at 2 =0, (3.16)

u = Sor, v=r, w=0, T="1T3, at z =d.

The following transformations are used:

u = rf'(n), v=Urg(n), w=-2d0f(n), (3.17)
172 T —T, 2

Using the transformations shown above, Eq. (3.10) is satisfied and the Eqgs. (3.11) — (3.14) and

(3.16) are written as:

1 2 g
7" ~Re (f’2 — - 2ff”)+Re61 Urs . I jrRe (f' =28, ff")+A =0, (3.18)
—4fgg'
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9" +2Re(fg' — f'g) + ReBy (4ff'd — 4f*g" +4ff"g) — MRe (9 —2B,f¢') =0, (3.19)

P'+2f"+Re (4ff —8B.f*f") =0, (3.20)
(1+0)0" +2RePr f0' + 07 =0, (3.21)

with the dimensionless boundary constrains:

f() = o, f(0)=5;, g0)=1, 6(0)=1, P(0) =1, (3.22)

f =0, fQ)=5, g1)=9, 0(1)=0,

where A is the pressure gradient parameter which is constant. Parameters with no dimen-
sions Re shows the Reynolds number, 5, indicates the Deborah number of relexation time,
M represent the Magnetic parameter, Prandtl number is depicted by Pr, Siand Sy are the
stretching parameters of lower and upper disks, and §2 indicate the rotational parameter. The

mathematical formulas for these non-dimensional values are defined as follows:

O1d? B?
Re — ‘ud” By = M, M =220 p= Y (3.23)
v P a
S1 S92 QQ

3.2 Nusselt Number

The Nusselt number Nu,; and Nu,o values specify the heat transfer rates of rotating disks.

Mathematical relations of Nu,; and Nu,9 are defined as:

(3.24)
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where

or
=k (5 )

In dimensionless form, we can write
Nu,1 = —6(0), Nuyo = —0'(1). (3.25)

Table 3.1 Comparison of —6' (0) for varying values of 2 for varying values of Re and 2

when S§1 = 0.5,5 = 0.0 and M = 3, = 0.

/

Re | Q —6 (0)
- - Ref.[67] Present

0 |-0.5] 1.0508162 | 1.0000000

10 - 1.0500126 | 1.0500120

0 | 0.0 | 1.0508162 | 1.0000000

10 | - | 1.0558274 | 1.0558270

0 | 0.5 | 1.0508162 | 1.0000000

10 - 1.0525851 | 1.0525810
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Table 3.2 Nusselt number Nu,; at the lower disk when S; =0.5, 8; =0.1, Q =0.5.

So | M | Re| Pr| e Nupq

0.005 50|10/ 0.2 289937

0.5 - - - - | 2.51818

1.0 | - - - - | 2.13306

05|00 - - -] 1.38289

- 103 - - - | 1.21509

- 106 - - - | 1.10517

- 105(00| - - 1 0.55486

- - 120 - - 1 07TTeT

- - | 50| - - ] 0.92481

- - 50107 - |197251

- - - 10 | - | 1.94481

- - - 20 | - | 1.92571

- - - 10 | 0.0 | 1.92481

- - - - 1 0.2 | 1.64503

- - - - 1 0.4 1.32551
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Table 3.3 Validation of f"(0), —¢'(0) and A for different estimates of Q in non-stretching
cases 51 = S2 =0 when Re=1and M = 3, = 0.

- Q -1.0 -0.3 -0.8 0.50 0.0
f”(O) Ref.[66] | 0.0666600 | 0.1039500 | 0.0839400 | 0.2992378 | 0.0999700
- Ref.[67] | 0.0666631 | 0.1039508 | 0.0839420 | 0.0666341 | 0.0999722
- Present | 0.0666625 | 0.1039500 | 0.0839416 | 0.0666340 | 0.0999714
—q (0) | Ref.[66] | 2.0009500 | 1.3044200 | 1.8025900 | 0.5026100 | 1.0042800
- Ref.[67] | 2.0009521 | 1.3044235 | 1.8025884 | 0.5026135 | 1.0042775
- Present | 2.0009520 | 1.3044230 | 1.8025880 | 0.5026135 | 1.0042770
A Ref.[66] | 0.1999200 | 0.2063600 | 0.1718500 | 0.5745800 | 0.2992400
- Ref.[67] | 0.1999153 | 0.2063572 | 0.1718464 | 0.5745734 | 0.2992364
- Present | 0.1999165 | 0.2063572 | 0.1718472 | 0.5745737 | 0.2992378

3.3

Numerical Solution

For the numerical computations, the non-dimensional nonlinear momentum, pres-
sure, and temperature Eqs. (3.18) — (3.21) with condition (3.22) are used. Furthermore, the
bvp4c numerical approach is used to characterise the flow, pressure, and temperature profiles
via graphs. In order to estimate the solution of Egs. (3.18) — (3.121), we must make first
assumptions that fulfill the boundary condition (3.22). The ordinary differential equations is
transformed by introducing specific new variables to use this numerical built-in method. The

conversion steps are as follows:

f = =y =y [=yn, 9=v, d=v5, ¢ =y,
P = Ve, Pl:yy?n 923/77 6/:3/87 9H::Uy4~
~ Re[(43 —ya— 2u1y3) — B1 (4y1y2y3 — 4y1yays) + M (y2 — 26,51y3)] — A
Yy = (3.26)

(1 —4Reﬁly%) ’
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Re 2 (yay2 — 11y5) — B1 (4y1v2ys + 4y1ysya) + M (ya — 25131y5)]

— , 3.27
yy2 (1 — 4Re 51y%) ( )
yys = Re (—4y1y2 + 861y1ys) — 23, (3.28)
—2RePryys — syg
— 3.29
YYa A en) (3.29)
with boundary conditions

y1(0) = 0, y2(0) = S1, y4(0) = 1, y6(0) =1, y7(0)=1 (3.30)

(1) = 0, y2(1) = Sa, ya(1) = Q, y7(1) = 0.

3.4 Discussion

This section shows numerical results for radial f’(n), azimuthal g(n), and axial
f(n) velocities, pressure P(n), and temperature 6(n) profiles for different rotation parame-
ters Q, stretching parameters (S7,S2), Deborah number 3;, Reynolds number Re, Magnetic
field number M, Prandtl number Pr, and heat transfer parameter €. Further, all graphs are
drawn for rotation parameter 2 = —0.5 (solid lines) and € = 0.5 (dashed lines) respectively.

Tables 3.1 and 3.3 represent the comparison of f* (0), ¢ (0), 0 (0), and A. For the vali-
dation of results with pervious publications, Tables 3.1 and 3.3 are added.

Table 3.2 illustrated the rate of heat transfer Nwu,; at the lower disk for the parameters
So, M, Re, Pr, . As the values of Prandtl number Pr, and Reynold number Re rasies the
nusselt number enhance. While the stretching parameter S2, magnetic parameter M, and
thermal conductivity parameter € increases effects to decreases in heat transfer rate.

Figs 3.2(a) — 3.2(d) are drawn to depict the influence of upper disk stretching parameter So
on axial f(n), radial f'(n), and azimuthal g(n) velocities along with temperature profile 6(n)
while taking the lower disk stretching parameter S; constant (S; = 0). It is reveal from Figs
3.2(a) and 3.2(b) the axial and radial velocity profile reduces for higher values of S3. Howerever,
Figs 3.2(c) — 3.2(d) depicts that both the azimuthal velocity and temperature profile enhances
for increasing Ss.

Figs 3.3(a) — 3.3(d) are portrayed to visualize the velocities and temperature profile for
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stretching parameter Se by taking S; = 0.5. Figs 3.2(a) and 3.2(b) reveal that the axial and
radial velocity profiles decreasing for increasing values of Ss. The magnitude of axial velocity
upsurges, the upper disk pushes more fluid axially, but a greater quantity of radial fluid is thrown
out rapidly to spinning disk. Figs 3.3(c)—3.3(d) demonstrate the behaviour of azimuthal velocity
and temperature profile. When the stretching ratios of coaxially disks increses, the azimuthal
velocity and temperature profile shows increasing trend.

The impact of magnetic parameter M on the flow velocities and fluid temperature depicted
on the Figs 3.4(a) — 3.4(d). Both the disks stretched in the same direction (S1,S52 = 0.5). In
Figs 3.4(a) — 3.4(c) represents the decreasing trend on axial, radial and azimuthal velocities
with stronger magnetic field. When the magnetic field produces a resistive force that slows
fluid velocity, the fluid temperature rises, that are shown in Fig 3.4(d). Physically, increasing
magnetic parameter tends to ehance the Lorentz force and the strong Lorentz force generates
grater friction to the transport phenomenon.

Figs 3.5(a) — 3.5(c) illustrate the impact of Reynold number Re on fluid velocities and
temperature profile with the assumption that both the disks are stretched at the same time
(51,52 = 0.5). The examine the influence of the Reynolds number on the components of radial
and azimuthal velocity is seen in Figs 3.5(a) and 3.5 (b) . When the Reynold number rises, then
both the velocities shows an increasing trend. The fluid temperature in Fig 3.5(c) dwindled for
escalating estimates Reynolds number Re due to a reduction in viscosity.

The upshorts of Deborah number 3; on flow and temperature fields when the both disks
rotates in the same direction (€ = 0.5) with the stretching rate Sy = 0, are shown in Figs
3.6(a) — 3.6(d). The flow behaviour in the axial f(n), radial f’(n) and azimuthal g(n) is
represented in decreasing order in Figs 3.6(a) — 3.6(c). Fluids tends to behave as a viscoelastic
solid material with an increasing Deborah number. The fluid temperature () increases slightly
within the disks, as seen in Fig 3.6(d).

In Figs 3.7(a) and 3.7(b) demonstrate that the behaviour of temperature field for the thermal
conductivity parameter £ and the Prandtl number Pr. Higher values of € causes the fluid
temperature to rise, as illustrated in Fig 3.7(a). Mounting of the fluid thermal conductivity
for larger values of €. Hence, higher heat is generated and transfered from the disk surface to

the fluid, increasing the temperature profile. The dashed-dotted lines in Fig 3.7(b) depict the
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temperature profile for (S = 0.5, 52 = 0) . As the Prandtl number Pr increases the temperature
profile decreases. The solid lines for (S; = S2 = 0.5) show that the temperature field decreases.
The dashed lines for (S; = 0.0, S = 0.5) demonstrate that the temperature curves rises as Pr
rises.

Figs 3.8(a) — 3.8(b) depicts the pressure field P(n) for the various values of magnetic
parameter M and stretching rate parameter So. Fig. 3.8(a) the pressure field P (n) is observed
to diminshing order with mounting estimates of magnetic parameter M. In Fig. 3.8(b) the
pressure field rises with the stretching ratio Ss increases, after a certain height in the direction

of the upper disk the pressure field decline.
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Chapter 4

HALL CURRENT AND ION SLIP
IMPACT ON A OLDROYD-B
NANOFLUID FLOW DRIVEN BY
TWO CONCENTRIC ROTATING
DISKS WITH
CATTANEO-CHRISTOV HEAT
FLUX

This study examines the effects of an axisymmetric spinning disks on an Oldroyd-
B nanofluid flow. Relaxation and retardation times characteristics are the unique feature of
the present viscoelastic type fluid model. The Buongiorno model is used to investigate bio-
convection in two stretched spinning disks. Magnetohydrodynamics is applied parallel to the
normal surface. MHD effect is so strong that the Hall current and ion-slip effects cann’t be

ignored. The addition of gyrotactic microorganisms in the nanofluid increases the stability of
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the nanoparticles. To deal with nondimensional problem equations, similarity transformations
are applied. The governing equations are numerically computed by using bvp4c technique in
MATLAB software. Graphical representations are used to highlight the importance of flow pa-
rameters in the pattern of velocity, temperature, concentration, and gyrotactic microorganism.
At both surfaces of disks, the numerical simulations for Nusselt, Sherwood numbers, and motile

microorganism are also carried out.

4.1 Mathematical modelling

We consider an Oldroyd-B fluid flow that is stable, incompressible, and three-dimensional.
The fluid flow is considered between two disks, both disks are stretching and spinning. The
lower disk is at z = 0, whereas the upper disk is at z = d. ] and C are the concentrations and
Ty and T5 are the temperatures of lower and upper disks respectively. Both disks are rotating in
anticlockwise direction with angular velocities €1 (lower) and Q9 (upper). The stretching rates
for the lower and upper disks are denoted by s; and sa, respectively (see Fig 4.1). Magnetic field
is applied along the z —axis. The heat and mass transmission phenomenon are observed using
convective boundary conditions. The effects of gyrotactic microorganisms is also observed. The
flow of geometry is shown in Fig 4.1. The flow is governed by the laws of conservation of mass,

momentum, energy, concentration, and gyrotactic microorganism which are described as:
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Fig 4.1 Geometry of the flow

The Oldroyd-B fluid model stress tensor is expressed as:

D D
1+XM—|S= 14+X— ] A 4.1
(—i— 1Dt) M(-l- 2Dt) 15 (4.1)

where S denotes the extra stress tensor, p is the dynamic viscosity, A\; shows the relaxation
and Ao the retardation times. The mathematical relationships for conservation of mass and

momentum in an incompressible MHD fluid flow are:

V.V =0, (4.2)

pa=—-Vp+V.S+JxB, (4.3)
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where the material time derivative is denoted a for the vector V velocity.

av. oV
=—=—+4+(V.V)V 4.4
= (V)Y (44)

where the density of the fluid is denoted by p and p is the pressure, with the equation (4.1)

diverging on both sides.

D D

after applying the operator (1 + M %) on equation (4.3) and using the result of equation (4.5),

we have

D D D D
p <1 + AlDt) a=— <1 +A1Dt> Vp+p (1 +A2Dt> V.A + <1 +)\1Dt> (J xB), (4.6)

where A; = VV 4 (VV)" is the first Rivlin-Ericksen tensor and % the upper convective deriv-
ative. Using the cylindrical polar coordinates system (7, ¢, z) for mathematical modelling. The
velocity vector for axisymmetric steady flow is:

V=u(rz), v(r,z), w(rz)]. (4.7)

where u, v,and w are radial, azimuthal, and axial velocity components, respectively. The system

of differential equations are:

ou  Ow  u
or 0z r
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N v 13]91L 282u 0%u +20u Pw 2
U— — - — ———+v|2— - =
or Oz T por or2 " 922 " ror  0roz  r?
2
o ou
- 5o 1+ whi— | (au — Byv)
p (a2 +B7) 0z
h
\ 28u+ 28u+2uwaraz
! 2uv dv _ 2ow Qv 4 wv? 4 v?Ou
r Or r Oz r2 r or
i w du du du 0w
7_2172E_7(8) 2 8z2+ 8z3
u Ou du 0%u 1 Ju dw w 9%u
—2% % - Oy 2 (Gy)" - 10udu o P
+vAgy g 02 S , (49)
u u u u
" Or 0rdz +u8raz2 +w6r8z2 +2r or? 281" or?
By Ou 0w _ Ou *w
+u8r282+2 6r28z+2 ard ~ 9z or2 ~ Or ordz |
ov ov  wv Pv 1ov v 0% oB2 ov
U Fw—+— = v —— =45 | - |l Fwli— | (v + Bru
or dz r ar2 ror r?2 0922 p (a2 +B7) 0z ( Buu)
261} 20%v uv Ou
)\ +w 022 + 2uw Braz +2°7 r Or
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r Oz r2 r2 r O
[ v 0%u v 9%u 1
UGy +uglsty + 209 + 20y
v v Ou v w Qv w _0%v
+; 8 +2r25+war282 7"7272—’_?87‘82'
93v v w 2 Ou v uv u Qv
T | twEE - Gaes ~roror T~ oy | (4.10)
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ow ow 10p V<82w 0%u 1ow  1du 282w>

Yor YW T Tpo: TV\@ Taes Trar Tros 0
0%w 0%w Pw v ow
Y 2 2 ) vy
! <u oz TV TR T 8r>
ugreh +uly — BR i+ w5 - 255y
9?2 93 93 fokd fod
g trar T 2G5 twhge twamg + g (4.11)
02 & ow d%u _ dw d2u _ dw 9? T
o are: T2Was — 29: 9,7 — 9y 92 — or oroz
_20wdu _ 9w &u _ JwdPw _ 19wdw _ 19w du
| r Or or 0z Ordz Oz Or2 r 0z Or r 0z or |
or  or _ . <8T 1or 8T> Di (5 3 + 5:9)
0 oz or? 0 072 D OT\2 | (9T\2
: oror o +HE G0+ (357}
7 ow | . dw\ OT ’ (4.12)
+(ugr +w3E) 5
oc  oC 9*’C 10C  9*C Dr (10T 9*T 9*T
EAIPFAANY » PN (T e (et 4.13
or " B<8T2+r8r+8z2> Ty <T8T+8r2+822)’ (4.13)
ON ON bw, ON oC 0*C 0?N 10N 0°N
Gy Zty e (TN NC ) o p, (S 2 ), 4.14
“or +w8z+01—02<82 92+ 822) n<8r2 ror 022 (4.14)
With suitable boundary conditions
0 oT
u = sir, 8—7::0, vzﬂlr,wzo,kfaz—hl(Tl—T),
N = N C=Cy atz=0,
0 oT
U = ST, 8—2 =0, v=Qr,w=0, kf& = —ho(T — T3),
N = Ny C=0Csat z=d, (4.15)
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where (u, v, w) are the velocities taken along (r, ¢, z) direction respectively. p is the presure, o is
the electrical conductivity, 7" shows the temperature and C' is the concentration of the fluid, the
Brownian diffusion coefficient is denoted by Dpg, D7 denotes the thermophoretic diffusion coeffi-
cient, v shows the kinematic viscosity, a* represents the thermal diffusivity, o = 14 3,53;,, where
B; and f3;, denotes the ion-slip and Hall current parameter respectively. Dimensionless form of

above mathematical model is obtained by utilizing following transformations:

T — TQ
T1 Ty’

C —Cy N — Ny

¢ (n) = oGy h(n) = NN,

z

u = 0f (), v=rQgn), w=-2d%f (1), p=phv (P( )+ ;;2A> . (4.16)

using the above transformation, the Eq. (4.8) is satisfied and the dimensionless form of Egs.

(4.9) — (4.14)

J" = AReBLf (F1" — JI" +99) + 28y (2 = [17) = Re (7 =2/ 1"~ ¢?)

Re M a(f =28,ff")

_ ~A=0, (4.17)
a?+ B85\ B, (g—2f9'B1)

g~ 4ReBy (£29" = 19 = 1f"9) + B2 (21"g — 2f4") ~ Re (2f'g +2/9)

Re M a(g—261f9")

- _ =0, (4.18)
o+ B\ =By (f' = 28,1 1")
P+ 4f" —8ReBf2f" — By (Aff" —Aff") —4Re ff' =0, (4.19)
0" + 2RePr f0' + Pr Ny0'¢' + Pr N0 — 4RePr A (f20" + ff'0') =0, (4.20)
1 Nt i /
@'+ —0"+2LeRePr fo =0, (4.21)
Ny
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KW'+ 2ReScfh' — Pe (K¢ + (h+Q*)¢") = 0. (4.22)

With transformed boundary conditions

F0) = 0, f"(0)=0, g(0)=1, f(0)=251, ¢(0)=—B;(1-6),

#(0) = 1, h(0)=1, P(0)=0, at z =0,

ff)y =0, f(1)=5, g(1)=9, 6'(1)=—Bu, (4.23)
#(1) = 0, h(1)=0 at z=d.

where A is the unknown pressure gradient parameter. Re, 31, 85, M, Pr, Ny, Ny, Le, Sc, Pe represents
Reynold number, Deborah number of relexation and retardation time parameters, Magnetic pa-
rameter, the Prandtl number, Thermophoresis parameter, Brownian motion parameter, Lewis
parameter, Schmidt number, and Peclet number respectively. Si,Se are the stretching para-
meters. () is the rotation parameter. 3,1, ;9 are the thermal Biot numbers. Q* is the motile

microorganism difference parameter.

Qldz O‘ﬁo v TDT(Tl — Tg) TDB(Cl — 02)
Re = M = Pr=— N=———"—"" Ny=——+——=~
¢ v’ P Fo e kT, r b k ’
bw, s
Pe = D, SCZDf, A =My, B = 8, By = Aol 5126117
52 QO No o hld hzd
Sy = —, Q= O = Le = o= . 4.24
2 Qly Q2 Nl N2 € DB, 5@1 ) /312 f ( )

4.2 Important physical quantities

The significant of emerging quantities such as Nusselt numbers, Sherwood numbers, and
motile microorganism flux. Nwu,; and Nu,e specify the rate of heat transfer at the lower and
upper disks, respectively. Sh,; and Sh,9 shows the rate of mass transfer of both disks. Nn,; and
Nnyo specify the density of microorganism. Nuyi, Nupo, Shy1, Shre, Nn.1 and Nn,s are

mathematical relations in dimensional form are defined by:
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de |z:0

A T ) Nurs = 5o 7y
St = G Sha = 5By
where
w = = (5) -0,
= s (10) 2 DRC=Ci
o = () - DN
In dimensionless form, we can write
Nupp = —0'(0),  Nup=-0(1),
Shy1 = —¢'(0),  Shy2 =—¢'(1),
Nnyy = —h'(0),  Nng=-h'(1) (4.26)

4.3 Numerical approach

Eqgs.

(4.17)—(4.22) with BCs (4.23) form a nonlinear system of ordinary differential

equations (ODEs). We employ a numerical approach called bvpdc Matlab scheme to solve

these nonlinear differential equations. The numerical simulation are as follows:

v12, W' =13, B = yys.
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v, fr=we [M=ys, M=y, [ =y, 9=ys, ¢ =vs, 9" =y, ¢ = yyo,

ys, P'=yys, 0 =yo, 0/ =v10,0" = yya, ¢ =110, ¢ =y11, ¢" = yys,



ya — Re By (4y%ys — 4y19y2y3 + 4y19596) + 28293

1
yy = a (y2 — 2814193) ;o (427)
285y1 | —Re (y% — y% — 2y1y3) — aj\fjg% —A
—By, (ys — 281y1Y6)
yr — Re B (4yiy7 — 4y1y2ys — 4y193ys5) + 2629396
1
yy2 = o (ys — 261y1Y6) ; (4.28)
25251 | —Re (2u2u5 + 20196) — 515 1
—Bh (Y2 — 281y193)
yys = —4ys — 8Re 81973 + By (dy1ya — 4y1y3) + 4 Re y1yo, (4.29)
_1 9
yys = m (2 Re Pryi1y10 + Pr Npy10y12 + Pr Nryjp — 4 Re Pr )\ylygylg) ,  (4.30)
Ny
YYs = — ﬁbyy4 + 2PrRe L€y1y12 ) (431)
yye = — (2Re Scy1y14 — Pe (y12y13 + (y13 + %) yys)) - (4.32)

4.4 Discussion

This section discusses the results of graphical representations of radial, azimuthal
velocities, temperature, concentration, and microorganism profile for various parameters. We
will also investigate the effect of these characteristics on the rate of heat, mass transfer and
motile flux.

Fig 4.2 shows the effect of 8, on f'(n). It is discovered that the velocity of Oldroyd-B
nanofluid f’ (n) increases for mounting values of relaxation time parameter ;. Fig 4.3 depicts
the influence of Deborah parameter of retardation time (5 on radial velocity f’(n). When strain
under continuous stress declines, which causes the velocity to decrease on a rising trend of the
retardation time parameter 35 (0.2,0.4,0.6,0.8).

Fig 4.4 is drawn to observe the variation in azimuthal velocity g (n) caused by the effect
of relaxation time parameter ;. For increasing values of the relaxation time parameter (5,
(0.2,0.4,0.6,0.8), the azimuthal velocity rises while all other parameters remain constant. The
Deborah number of relaxation time (3, is the ratio of material relaxation time to the material

observation time. As a result, the azimuthal velocity g () increases on an increasing trend of
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relaxation time parameter ;. Fig 4.5 depicts the effect of Deborah parameter of retardation
time 35 on azimuthal velocity g (1) is presented. With the increment of 5 (0.2,0.4,0.6,0.8),
the azimuthal velocity g (1) is decreased.

The consequences of Brownian motion Nj on the fluid temperature 6 (1) are shown in Fig 4.6
. The temperature 6 () enhances mounting values of N (0.80,1.80,2.80,3.80). Higher rates of
Brownian motion parameter IV, raise the Brownian diffusion coefficient Dg. Brownian motion
is the primary goal of the current system. Brownian motion is caused by the random motion
of nanoparticles, which causes the temperature to rise. The system obtains the parameter Pr
by assigning the specified values to improve the temperature displayed in Fig 4.7. Physically,
increasing the Prandtl number increases thermal diffusivity. Figs 4.8 and 4.9 depict the effect
of thermal Biot numbers 3,; and (3,, on the temperature profile. The Biot number typically
indicates whether or not the temperature within a body will change greatly. By increasing the
values of §,; and f3;5, the temperature profile varies significantly.

Lewis number Le is one of the active properties of nanofluids. Le play a significant impact
in mass transfer characteristics. Fig 4.10 illustrates that ¢ (n) decreases as the Lewis number Le
increases, ensuring the power of nanoparticle diffusion. Lewis number Le is negatively related
to nanoparticle diffusion. In Fig 4.11 shows the thermophoresis parameter Ny that reduces
the nanoparticle concentration ¢ (n). By applying the temperature, thermophoresis pushes the
nanoparticles from a high energy state to a low energy state, which effects the concentration.

Heating impacts the system and increases the formation of bioconvection. To demonstrate
the influence of Peclet number Pe over the motile density, Fig 4.12 sketched are portrait. It
is observed that for the larger values of Pe, the motile density increases. Fluid motile density
increases at higher Pe due to an increment in the diffusivity of microorganisms. Fig 4.13 displays
the concentration of motile microorganisms A (n) on the Schmidt number Sc. Increasing Sc
values decrease the concentration profile h(n). Fig 4.14 shows that when the Lewis number Le
increases, the concentration of motile microorganisms h(n) increases. It is related to a rise in
the density and thickness of the boundary layer of motile microorganisms.

In Table 4.1 shows the values of Nusselt number —6'(0), the Sherwood number —¢’(0)
and motile microorganism —h’ (0) are calculated numerically against different parameters of

Ni, Ny, 31, and B, . Observations shows that —6'(0) decreases for increasing N; and 3;, while
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increasing trend obtained by increasing in N, and 35. The mass transfer rate —¢'(0) declines
against N, and f3,, respectively while an opposite trends are noticed against N; and ;. The

motile microorganism —h (0) decresases for Ny , Ny, 81, Bs.
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Le=0.10,1.10,2.10,3.10

Table 4.1. Numerical values of —6' (0), —¢’ (0), and —h’ (0) .
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Fig. 4.14 h(n) against Le.

0.8 0.9

Ny [Ny | By | By | =0(0) | =¢'(0) | —h'(0)
0.1 10.11]0.03]|0.03 ]| 0.482720 | 1.767962 | 0.294885
0.2 - - - 0.330080 | 1.378959 | 0.607361
0.3 - - - 0.279492 | 1.228859 | 0.928340
0.1 0.2 - - 0.230683 | 2.218264 | 0.142164
- 0.3 - - 0.267124 | 2.489121 | 0.091084
- 0.4 - - 0.284107 | 2.588055 | 0.066514
0.1 0.1 0.05 - 0.483377 | 2.578542 | 0.289614
- - 0.1 - 0.426808 | 2.554745 | 0.263534
- - 0.15 - 0.410630 | 2.530992 | 0.242355
0.1 10.11]0.03| 0.1 | 0.277447 | 2.517484 | 0.358648
- - - 0.2 | 0.481145 | 2.473393 | 0.330292
- - - 0.3 | 0.633151 | 2.421493 | 0.311082
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Chapter 5

CONCLUSION AND FUTURE
WORK

Two difficulties have been examined in this thesis, the first being the review paper and

the second being the extended work for it. Conclusion of both problems are as follows

5.1 Chapter 3

In the presence of an axial magnetic field the axisymmetric flow of a Maxwell fluid
between two coaxially stretchable spinning disks with different angular velocities are discussed
in this study. Heat transfer analysis is also examined by using the temperature-dependent
thermal conductivity property. The dimensionless form of equations is obtained through Von
Kérmén similarity transformation. The flow, pressure, and temperature fields mechanisms have

been depicted graphically and tabulatedly against the involved parameters.

e The presence of magnetic field is to reduce all three velocity components i.e axial, radial,

azimuthal, which results in an increase in the fluid temperature.

e The Deborah number influence on axial and azimuthal velocities is seen to be diminishing

in the absence of upper disk stretching.
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e It is observed that tha effect of Deborah number on axial and azimuthal velocities is

shown to be diminishing.

e When both disks are stretched at the same rate, the Prandtl number reduces the temper-

ature field.

e The magnetic field and thermal conductivity parameter raise the fluid temperature.

5.2 Chapter 4

In this chapter the Oldroyd-B nanofluid flow on a stretching and spinning disks using the
Chattaneo-Christov heat flux is numerically examined. Fluid flow is studied in the existance
of motile microorganism. Convective boundary conditions are employed on both the rotating
disks. Suitable transformations are used to convert the governing partial differential equations
(PDESs) for mass, momentum, heat, concentration and gyrotactic microorganisms equations into
ordinary differential equations (ODEs). A numerical approach known as the BVP4c scheme

used to solve these non-linear ODEs.

e Theradial f () and azimuthal g (1) velocity profiles is an increasing function of relaxation

time parameter /3.

e While the radial f (1) and azimuthal g () velocity profiles is decreasing function of

retardation time parameter f3,.

e The temperature rises as the Brownian motion parameter N, and the Prandtl number Pr

are increased.

e Fluid temperature increases for bottom disk Biot number 3,;, and reduces for upper disk

Biot number ;5.

e The Lewis number Le and Peclet number Pe enhance the concentration of microorgan-

isms, but the Schmidt number Sc reduces.

e Concentration can be raised by using a less dispersed particle since diffusion forces fluid

particles to travel from a highly concentrated location to a less concentrated one.
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5.3

Nusselt number reduces for the higher values of Ny and f;,and increases for Ny,and (.

Future work
The present problem can be extended to the following models as well:

The fluid flow may be extended to any other non-Newtonian fluid with appropriat bound-

ary conditions.
The model may be extended to homogenous-heterogenous reactions.
The geometry can be changed.

This problem can be solve for Prescribed surface temperature (PST) and Prescribed heat

flux (PHF).

The effect of the Darcy-Forcheimer and buoyancy effects may be added.
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