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Chapter 1

INTRODUCTION

1.1 Basic preliminaries and laws

This chapter includes some basic de�nitions, concepts, and laws that will helpful in

understanding the works in the next two chapters.

1.2 Fluid

A material that can �ow and deforms continuously when subjected to shear stress.

Fluids include mercury, cooking oil, blood, and oxygen.

1.3 Fluid mechanics

It is the branch of science that studies the �uid behaviour whether they are moving or

at rest. Fluid can be divided into two branches as follows:

1.3.1 Fluid statics

Fluid statics is a �eld of �uid mechanics that deals with �uids that aren�t moving

relative to one another.
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1.3.2 Fluid dynamics

Fluid dynamics is a branch of �uid mechanics concerned with the properties of liquids

in motion.

1.4 Nano�uid

A nano�uid is a liquid that contains nanometer-sized particles known as nanoparticles.

Nanotubes, metals, and oxides are common nanoparticles found in nano�uids. Water (H2O),

ethylene glycol (C2H6O2), and oil are the most prevalent basic �uids.

1.5 Stress

Stress is de�ned as the force per unit area within the defoemable body. Symbolically,

We have

Stress =
Restoring force

Area of the material
:

In the SI system, the dimension is
�
M
LT 2

�
and the unit of stress is kg=m:s2. It is divided into

two categories.

1.5.1 Shear stress

Shear stress occurs when an external force operates parallel to the surface unit area.

1.5.2 Normal stress

Normal stress is the type of stress that occurs when a force operates vertically against

a surface of unit area.

1.6 Strain

Strain is a dimensionless quantity that is used to quantify an object deformation when

a force is applied to it.
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1.7 Flow

Flow is de�ned as a material that deforms easily and �uently in the presence of various

types of forces. Flow is further subdivided into two primary subcategories, which are as follows:

1.7.1 Laminar �ow

Laminar �ow occurs when �uid moves in regular channels with no interruption between

layers.

1.7.2 Turbulent �ow

Turbulent �ow occurs when the �uid particles in the �ow �eld have an uneven velocity.

1.8 Viscosity

The viscosity of a �uid is a fundamental feature that characterizes the �uid resistance

to �ow when many forces impact on it. There are two ways to describe the viscosity.

1.8.1 Dynamic viscosity (�)

It is the �uid characteristic that determines the �uid resistance to any deformation

caused by the applied forces. The dynamic viscosity is also known as absolute viscosity. Math-

ematically, this may be expressed as follows:

� = � � dy
du
: (1.1)

Its dimension is ML�1T�1and its SI unit is Kg=ms.

1.8.2 Kinematic viscosity (�)

It is the ratio of absolute viscosity and density with the fact that both have same

temperature.

Mathematically it is represented by

� =
�

�
: (1.2)
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Its SI unit is m2=s and its dimension is
h
L2

T

i
:

1.9 Newton�s viscosity law

Newton�s law of viscosity de�nes the relationship between shear stress and shear rate

in a �uid subjected to mechanical stress. Mathematically it can be represented as follows:

�yx /
du

dy
; (1.3)

or

�yx = �

�
du

dy

�
; (1.4)

where �yx denotes the shear force applied to the �uid�s element, � denotes the proportionality

constant and du
dy denotes the velocity gradient.

1.10 Newtonian �uids

These are the �uids that obey Newton�s law of viscosity and have a constant viscosity.

Shear force (�yx) in these �uids is related linearly to the gradient of velocity (dudy ). Newtonian

�uids include alcohol, water, glycerine, and kerosene oil.

1.11 Non-Newtonian �uids

The Newton�s law of viscosity does not apply to these �uids. Shear stress (�yx) and

velocity gradient have a nonlinear and direct connection here. Non-Newtonian �uids include

toothpaste, butter, fabric paint etc. It is represented as:

� yx /
�
du

dy

�n
; n 6= 1; (1.5)

or

� yx = k
du

dy
; k = m

�
du

dy

�n�1
; (1.6)
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where k the apparent viscosity, n the �ow behaviour index and m the consistency index. For

n = 1 Eq. (1:6) converts to Newton�s law of viscosity.

1.12 Density

Density is de�ned as the mass of a substance per unit volume. It is stated as follows:

� =
m

V
: (1.7)

The SI unit of density is kg=m3 with dimension ML�3:

1.13 Pressure

Pressure is de�ned as the force exerted per unit area on a surface. The pressure can

be expressed mathematically as:

P =
F

A
: (1.8)

The SI unit of pressure is N=m2:

1.14 Magnetohydrodynamics (MHD)

Magnetohydrodynamics (MHD) is the study of electrically conducting �uid dynamics.

The name magnetohydrodynamics is derived from the terms magneto which means magnetic

�eld, hydro means liquid, and dynamic means movement. Such �uids include plasmas, liquids,

metals, and salt water.

1.15 Heat �ux

Heat �ux is the �ow of energy per unit area and time. The heat �ow is a measurement

of the energy transfer produced by temperature, which leads to the temperature balance among

substance. Mathematically it can be expressed as:

q = �k(OT ); (1.9)
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in which q is heat �ux, k represent material conductivity and OT represent temperature gra-

dient. Its SI unit is W=sq:m2:

1.16 Hall current

When an electrical current passes through a sample in the presence of a magnetic

�eld, a potential proportionate to the current and magnetic �eld arises across the material in

a direction perpendicular to both the current and the magnetic �eld. This is known as Hall

current. Edwin Hall, who discovered the phenomenon in 1897, is commemorated with this

e¤ect�s name.

1.17 Gyrotactic microorganism

These are motile microorganisms found in lakes, rivers, and seas. Gyrotactic mi-

croorganisms are utilised in experiments because they aid in bio-convective movement. When a

signi�cant number of microorganisms congregate on the upper layer of suspension, the layer be-

comes thick, and the microorganisms become unstable and begin to move downward, resulting

in bio-convective phenomenon.

1.18 Mechanism of heat transfer

Heat is a type of energy that moves from a warmer to a colder place. Heat transfer

occurs when two things of di¤erent temperatures come into contact with each other. Heat is

dispersed by three basic mechanisms: conduction, convection, and radiation.

1.18.1 Conduction

It is the phenomenon by which heat is transferred from a hot location to a cold part

of a liquid or solid by collisions of free electrons and molecules. This event does not involve the

transfer of molecules. Mathematically,

q = �kAOT; (1.10)
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or

q = �kAdT
dx
; (1.11)

where q denotes the heat �ow A is the surface area, k is the thermal conductivity, (dTdx ) shows

the temperature gradient, and the negative sign refers that heat is transmitted from high to

low temperature.

1.18.2 Convection

Convection occurs when a heated �uid, like as air or water, is pushed to move away

from the source of heat, bringing energy with it.

q = �HA (OT ) : (1.12)

Here, H stands for convective heat transfer coe¢ cient, OT for temperature di¤erence between

surface and �uid, A stands for area.

1.18.3 Radiation

Radiation is the transfer of energy from one medium to another in the form of waves

or particles. The radiation stefan-boltzmann law governs radiation.

q = e�A (�T )4 ; (1.13)

where q is depicted as transfer of heat, e is the system emissivity, � is the Stephen-Boltzmann

constant, area is denoted by A, and (�T )4 is the di¤erence of temperature between two systems

to the fourth power.

1.19 Convective boundary conditions

Convective boundary conditions are also known as Robin boundary conditions at times.

This type of circumstance is frequently de�ned on a wall. These are stated mathematically as:
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k

�
@T

@mi

�
xi

= h [Tf (xi; t)� Tw(xi; t)] : (1.14)

This equation states that condition equals convection. Here h is the heat transfer coe¢ cient, xi

is the location at the boundary, Tf is the �uid temperature, and Tw is the wall temperature.

1.20 Fundamental laws

The fundamental laws that are used for the �ow speci�cation in the subsequential

analysis are given below.

1.20.1 Mass conservation law

The conservation of mass states that a body mass remains constant while it is moving.

It sometimes referred to as the continuity equation. Mathematically,

D�

Dt
+ �r:V = 0; (1.15)

or
@�

@t
+ (V:r) �+ �r:V = 0; (1.16)

or
@�

@t
+r: (�V) = 0; (1.17)

where density is depicted by �, @�@t is time derivatives, V represents the �uid velocity. It is

known as the equation of continuity. For the steady �ow Eq. (1:17) becomes

r: (�V) = 0; (1.18)

and if the �uid is incompressible then Eq. (1:18) implies that

r:V = 0: (1.19)
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1.20.2 The conservation of momentum law

The total linear momentum of a closed system is said to be constant. Generally it is

given by

�
DV

Dt
= div �+�b; (1.20)

where � = �pI+ S; denotes the Cauchy stress tensor, �
�
DV
Dt

�
is represents internal force, and

�b ia a body force.

1.20.3 Law of energy conservation

Law of conservation of energy is also known as energy equation and is given by

�Cp
DT

Dt
= � :L�r:q+ �r; (1.21)

in which q for heat �ux vector and r for thermal radiation. Energy equation without thermal

radiation takes the form

�Cp
DT

Dt
= � :L+kr2T ; (1.22)

where q = �krT ; L =rV; k denotes the thermal conductivity and T for temperature:

1.21 Concentration

For nanoparticle, the volume fraction equation is:

@C

@t
+V:rC = � 1

�p
r:jp; (1.23)

jp = ��pDBrC � �pDT
rT
T1

; (1.24)

@C

@t
+V:rC = DBr2C +DT

r2T

T1
: (1.25)

Here, C is nanoparticle concentration, T is �uid temperature, T1 is the ambient temperature,

DB stands for Brownian di¤usion, DT for thermophoretic coe¢ cient.
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1.22 Thermal di¤usivity

Thermal di¤usivity is a material speci�c property for describing the unsteady conductive

heat �ow. This value describes how speedily a material respond to change in temperature. It

is the relationship between thermal conductivity and the product of speci�c heat capacity and

density. Mathematically it can be written as:

� =
k

�Cp
; (1.26)

where k indicates the thermal conductivity, Cp the speci�c heat capacity and � the density.

1.23 Thermal conductivity

The measurement of the ability of a material to conduct heat is de�ned as thermal

conductivity. Acoording to Fourier Law of heat conduction, it is de�ned as �The amount of

heat transfer rate (Q) through a material of unit thickness (L) times unit cross section area

(A) and unit temperature di¤erence (�T )�. Mathematically written as:

k =
QL

A(�T )
; (1.27)

in SI system thermal conductivity has unit W
m:K and dimension is

�
ML
T 3�

�
.

1.24 Maxwell �uid Model

The momentum equation for Maxwell �uid is

� (V:r)V = �rp+r:S+ J�B; (1.28)

where

J =� (V �B) ; B = [0; 0; B0] ; (1.29)

The Maxwell liquid extra stress tensor S is written as:
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�
1 + �1

D

Dt

�
S = S+ �1

DS

Dt
= �A1; (1.30)

where �1 denotes relaxation time, D
Dt for the distinction of covariant variables, A1 stands for

the �rst Rivlin-Erickson tensor and � stands for dynamic viscosity. The �rst tensor of Rivlin-

Erickson is

A1 = grad V + (grad V)
t ; (1.31)

in which t is the matrix transpose for 3-D �ow, we get

A1 =

26664
@ur
@r

@u�
@r

@uz
@r

1
r
@ur
@� �

u�
r

1
r
@u�
@� +

ur
r

1
r
@uz
@�

@ur
@z

@u�
@z

@uz
@z

37775+
26664

@ur
@r

@u�
@r

@uz
@r

1
r
@ur
@� �

u�
r

1
r
@u�
@� +

ur
r

1
r
@uz
@�

@ur
@z

@u�
@z

@uz
@z

37775
t

A1 =

26664
2@ur@r

@u�
@r +

1
r
@ur
@� �

u�
r

@uz
@r +

@ur
@z

@u�
@r +

1
r
@ur
@� �

u�
r 2

�
1
r
@u�
@� +

ur
r

�
1
r
@uz
@� +

@u�
@z

@ur
@z +

@uz
@r

@u�
@z +

1
r
@uz
@� 2@uz@z

37775 ; (1.32)

for S tensor of rank two, we have

DS

Dt
=
@S

@t
+ (r:V)S� SL� SLt; (1.33)

where L = gradV

applying the operator 1 + �1 DDt on law of momentum conservation: In the absence of body

force, we obtain the expression,

�

�
1 + �1

D

Dt

�
@V

@t
= �

�
1 + �1

D

Dt

�
rp +

�
1 + �1

D

Dt

�
(r:S); (1.34)

by using

D

Dt
(r) =r:

�
D

Dt

�
; (1.35)

applying the Eqs. (1:35) in (1:28), we obtain
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�

�
1 + �1

D

Dt

�
@V

@t
= �

�
1 + �1

D

Dt

�
rp + �:(r:A1) +

�
1 + �1

D

Dt

�
(J�B) ; (1.36)

in the absence of pressure gradient, the above Eq. (1:36) becomes

�

�
1 + �1

D

Dt

�
@V

@t
= �:(r:A1) +

�
1 + �1

D

Dt

�
(J�B) ; (1.37)

For steady Maxwell liquid �ow in cylindrical coordinates is expressed as:

ur
@ur
@r

+
u�
r

@ur
@�

+ uz
@ur
@z

� v
2
�

r
= �1

�

�
@p

@r

�
+ �

24 1
@r

�
1
r
@
@r (rur

�
+ 1

r2
@2ur
@�2

� 2
r2
@u�
@� +

@2ur
@z2

35 (1.38)

��1

24 u2r @2ur@r2
+ u2z

@2ur
@z2

+ 2uruz
@2ur
@r@z �

2uru�
r

@u�
@r

�2u�uz
r

@u�
@z +

uru2�
r2

+
u2�
r
@ur
@r

35 ;

ur
@u�
@r

+
u�
r

@u�
@�

+ uz
@u�
@z

� uru�
r

= �1
�

�
@p

@�

�
+ �

24 1
@r

�
1
r
@
@r (ru�

�
+ 1

r2
@2u�
@�2

� 2
r2
@ur
@� +

@2u�
@z2

35 (1.39)

��1

24 u2r @2u�@r2
+ u2z

@2u�
@z2

+ 2uruz
@2u�
@r@z +

2uru�
r

@ur
@r

+2u�uz
r

@ur
@z �

2u2ru�
r2

� u2�
r
@u�
@r +

u3�
r2

35 ;

ur
@uz
@r

+
u�
r

@uz
@�

+ uz
@u�
@z

= �1
�

�
@p

@z

�
+ �

�
1

@r

�
1

r

@uz
@r

�
+
1

r2
@2uz

@�2
+
@2uz
@z2

�
(1.40)

��1
�
u2r
@2uz
@r2

+ 2uruz
@2uz
@r@z

+ u2z
@2uz
@z2

+
u2�
r2
@uz
@r

�
:

1.25 Oldroyd-B �uid Model

We investigate an Oldroyd-B �uid �ow caused by a rotating disk. The Oldroyd-B �uid

model stress tensor is expressed as:
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�
1 + �1

D

Dt

�
S = �

�
1 + �2

D

Dt

�
A1; (1.41)

where �1; �2; �; S are the relaxation and retardation times, the dynamic viscosity and ex-

tra stress tensor respectively. The following are the mathematical relationships for mass and

momentum conservation in an incompressible MHD �uid �ow:

r:V = 0; (1.42)

�a = �rp+r:S+ J�B; (1.43)

for the velocity vector V the material time derivative is shown by a.

a =
dV

dt
=
@V

@t
+ (V:r)V; (1.44)

the density of the �uid is depicted by � and p denotes for the �uid pressure, employing divergence

on the Eq. (1:41) ;we get

�
1 + �1

D

Dt

�
r:S = �

�
1 + �2

D

Dt

�
r:A1; (1.45)

after applying the operator
�
1 + �1

D
Dt

�
on Eq. (1:43) and utlizing the result of Eq. (1:45), we

have

�

�
1 + �1

D

Dt

�
a = �

�
1 + �1

D

Dt

�
rp+ �

�
1 + �2

D

Dt

�
r:A1 +

�
1 + �1

D

Dt

�
(J�B) ; (1.46)

where A1 = rV + (rV)t is the �rst Rivlin-Ericksen tensor and D
Dt the upper convective

derivative. The axisymmetric three-dimensional steady �ow is:

V = [u (r; '; z) ; v (r; '; z) ; w (r; '; z)] : (1.47)
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1.26 Dimensionless numbers

1.26.1 Reynolds number

It is the most essential dimensionless number used to distinguish between di¤erent

�ow characteristics such as laminar and turbulent �ow. It represents the ratio of inertial to

viscous forces. Laminar �ow occurs at low Reynolds numbers, when viscous forces dominate.

Turbulent �ow occurs at high Reynolds numbers, where inertial forces dominate. The Reynolds

number is used to distinguish between distinct �ow regimes within a comparable �uid, such as

laminar or turbulent �ow. It may be stated mathematically as:

Re =
Inertial force

V iscous force
;

Re =
vL

�
: (1.48)

Here, v signi�es �uid velocity, L means characteristic length, and � denotes kinematic viscosity.

1.26.2 Prandtl Number

The Prandtl number is the relationship between momentum and thermal di¤usivity.

It is dimensionless number. The Prandtl number is employed in heat transfer to govern the

thicknesses of momentum and thermal boundary layers. Mathematically it can be expressed by

Pr =
�

�
=
�Cp
k
; (1.49)

where � signi�es dynamic viscosity, Cp denotes speci�c heat, and k denotes thermal conductiv-

ity.

1.26.3 Coe¢ cient of skin friction

Skin friction occurs when �uid runs across a surface and creates a certain degree of

drag. It occurs when a �uid collides with the surface of a solid, causing the �uid�s velocity to
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slow. The skin friction coe¢ cient is de�ned as

Cf =
�w
1
2�U

2
w

; (1.50)

in which �w for wall shear stress, � is for density and Uw represents the free stream velocity.

1.26.4 Nusselt number

It is a dimensionless quantity that measures the ratio of convective to conductive heat

transfer. Mathematically

NuL =
h�T

k�T=L
=
hL

k
; (1.51)

where h stands for convective heat transfer, L for characteristic length and k for thermal

conductivity of the �uid.

1.26.5 Biot number

It is de�ned as the internal conductive resistance divided by the external convection

resistance. Mathematically:

Bi =
Internal conductive resis tan ce

External convective resis tan ce
;

Bi =
h

k
L; (1.52)

where L is the characteristic length, thermal conductivity of the body is denoted by k; and h

shows the convective heat transfer coe¢ cient.

1.26.6 Thermophoresis parameter

Thermophoresis is a method that is used to prevent the mixing of dissimilar particles

owing to a pressure di¤erential as they travel together or to separate the particles after they

have mixed. Thermophoresis is positive on a cold surface and negative on a hot surface. It may

be stated mathematically as:
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Nt =
(�C)pDT (Tf � T1)

(�Cp)f �T1
; (1.53)

where Tf and T1 are the wall temperature and ambient temperature, DT is thermophoretic

di¤usion coe¢ cient and � the kinematic viscosity.

1.26.7 Brownian motion parameter

Brownian motion occurs due to size of the nanoparticles in a nano�uid. It is a

nanoscale mechanism that displays the thermal in�uences of nano�uid. Mathematically

Nb =
�DB(Cf � C1)

�
; (1.54)

� =
(�C)p
(�Cp)f

: (1.55)

In the above equation � is the ratio of e¤ective heat and heat capacity of the nanoparticles

and �uid respectively, � the Kinematic viscosity. Cf the walls concentration, C1 the ambient

concentration and and DB the brownian di¤usion coe¢ cient.

1.26.8 Schmidt number

Schmidt number Sc is de�ned as the dimensionless quantity which measures the ratio

of momentum di¤usivity (viscosity) to mass di¤usivity. It is introduced by Heinrich Wihel

Schmidt in (1892-1972). Mathematically,

Sc =
�

DB
; (1.56)

where � is kinematic viscosity and DB is mass di¤usivity.

1.26.9 Peclet number

The ratio of heat �ow rates between conduction and convection for a uniform temperature

gradient is known as the Peclet number. The Peclet number is the dimensionless number

denoted by Pe. Jean Claude Eugène Péclet, a French scientist, is honoured by its name.
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Pe =
Lu

�
; (1.57)

where L is the Characteristic length, u is �uid velocity, and � is the thermal di¤usivity.

1.26.10 Lewis number

The ratio between thermal di¤usivity to mass di¤usivity is called Lewis number. It

is dimensionless number denoted by Le: Mathematically,

Le =
�

D
; (1.58)

where � denotes thermal di¤usivity, and D shows mass di¤usivity.

Lewis number can also be expressed as:

Le =
Sc

Pr
: (1.59)

1.26.11 Sherwood number

The ratio of convective mass transfer to mass di¤usivity is known as the Sherwood

number. Sherwood numbers shows the e¤ectiveness of mass convection at the surface. Sherwood

number Sc is the dimensionless number. Mathematically it can be written as,

Sc =
Convective mass transfer

Mass diffusion rate
;

Sc =
km
D�L

; (1.60)

where km is the convective mass transfer coe¢ cient, L is a characteristic length, D is the mass

di¤usivity.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

A nano�uid is a �uid that includes nanoparticles (particles with a diameter of less

than 100mn) inserted in the base �uid. Carbon nanotubes, metals, and oxides are commonly

employed as nanoparticles. Common base �uids are water, ethylene glycol, and oil. Nano�uid

di¤ers from other base �uids in that the nanomaterials are emersed in the base �uids. These

particles are introduced into base �uids to enhance thermal conductivity and heat transmis-

sion. These are used to attain the maximum enhancement in thermal properties at lower

concentrations. Nanoliquids have the potential to improve heat transfer rates in a diverse range

of applications, such as nuclear reactors, industrial cooling applications, transportation, micro-

electromechanical system, chemical catalytic reactors, and blood �ow in the cardiovascular sys-

tem engaging the Navier-Stokes equation. The need for nano�uids as coolants in automobiles

takes into account their tiny size, which means they use less energy to regulate road resistance.

There have been a lot of studies on nano�uids improved heat transfer capabilities, particularly

thermal conductivity.

The concept of nano�uids has been studied using three di¤erent types of models, including

the single phase model, the Eulerian-Eulerian multi-phase mixture model, and the Eulerian-

Lagrangian discrete phase model. The most popular model is the single phase model, which is

predicated on the idea that nano�uids behave like regular �uids. The other two phase models

are considered in the interaction between �uid and solid particles. The Eulerian-Lagrangian
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discrete phase model contains two independent phases. The �rst is the solid phase, and the

second is the �uid phase. While the Eulerian-Eulerian multi-phase mixture model creates the

�uid-solid mixture.

Non-Newtonian liquid �ows are important in a variety of industrial and technical operations,

such as paper manufacture, petroleum drilling, glass blowing, the expulsion of polymeric liquids

and melts, paints and so far. Non-Newtonian liquids are materials in which shear stress and

velocity gradient do not have a direct or linear relationship. As a result, academicians have

proposed a variety of non-Newtonian �uid mathematical models according to their application

requirements. In polymer processing, rate-type �uid models such as Maxwell, Oldroyd-B, or

Burgers �uids are commonly used to predict stress relaxation. Maxwell �uids and viscoelastic

�uids, have a wide range of industrial use, such as glass blowing, polymer sheet extrusion,

plastic �lm manufacture, hot rolling, crystal growth, and so on. Maxwell liquid is the least

complicated non-Newtonian liquid subclass among these models. The Oldroyd-B �uid is a non-

Newtonian visco-elastic �uid that represents the stress-relaxation relationship. This model is a

modi�cation of the Maxwell �uid with the addition of time retardation. The Oldroyd-B �uid

is a fascinating and helpful nonlinear model that allows researchers to investigate signi�cant

relaxation and retardation characteristics. Many researchers employed the Oldroyd-B �uid

model in many situations due to its signi�cant qualities. Unlike many polymeric materials, the

Oldroyd-B model cannot represent shear thinning or thickening. The Oldroyd-B �uid analyzes

the �ow relaxation and retardation time characteristics.

The study of electrically conducting �uid motion in the existence of a magnetic �eld is known

as Magnetohydrodynamics (MHD). Whereas magneto means magnetic �eld, hydro means �u-

ids, and dynamics mean forces. An electromotive force is produced by the relative motion of

a conducting �uid and a magnetic �eld, and that motion produces electrical currents. The

fundamental idea of MHD is that a magnetic �eld may produce current in conductive �u-

ids. There are countless uses for magnetohydrodynamics (MHD), including the analysis of the

Ionosphere, the creation of the Earth�s magnetic �eld, and the use of electromagnetic forces

to pump liquid metals. Many researchers have drawn their attention to this kind of �ow be-

cause of its multiple uses in technological problems such as MHD generators, nuclear reactors,

geothermal energy extraction, and MHD generators. Hydromagnetic methods are also utilized
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to separate non-metallic inclusions from molten metals. The MHD depends upon the order of

density � (w �B) ; where � means electrical conductivity, w for the velocity �eld, and B is the

magnetic �eld. Because of this fact, the �uid produces �ow along magnetic �eld lines because

the current creates an additional induced magnetic �eld.

2.2 Literature review

In a variety of systems, nano�uids have shown enormous heat transfer capabilities.

Nano�uids are used in medicine delivery, power generation, micromanufacturing processes,

metallurgical industries, and thermal treatment. Initially, thermal energy and heat transmission

were carried out using basic �uids with modest heat conductivity, such as water, oil, and heat

transfer. In 1995, with the advancement of nanostructures, Choi and Eastman [1] worked for the

�rst time on nano�uid, considering it for cooling and coolant purposes in technologies. They

observed that nano�uids had greater conduction and heat transfer rate e¢ ciency gain than

simple or basic liquids used in previous experiments. Many researchers worked on nano�uids

using the concept of Choi�s idea, some of them are [2; 3]. Ramzan et al. [4] deliberated a 3D

nano�uid thin �lm moving at a constant velocity via heat radiation and across a tilted rotating

disk. Dogonchi and Ganji [5] studied the Cattaneo-Christov heat �ux and thermal radiation

for an unstable contracting MHD �ow. They evaluated the heat transport of the nano�uid

between two plates. Udawattha et al. [6] scrutinized the e¤ective viscosity of nano�uids based

on suspended nanoparticles. Hussanan et al. [7] investigated the use of Oxide nanoparticles

for energy augmentation in engine nano�uids and base �uid. Salari et al. [8] investigated

nano�uids to enhance the wall heat transfer rate and minimize the time for food processing in

the industry. Many researchers are looking at some recent experiments involving heat and mass

transfer using nano�uids [9� 13] :

Non-Newtonian �uids have a wide range of uses in di¤erent �elds. Shampoos, blood at

low shear rates, soaps, apple sauce, and other non-Newtonian �uids can be found in everyday

life. The characteristics of all non-Newtonian �uids can�t be fully explained by any speci�c

single relation. As a result, academicians have proposed several mathematical models for non-

Newtonian �uids. Maxwell constitutive equations are the simplest rate-type �uids and have
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relaxation time characteristics. Maxwell [14] was the �rst to present the Maxwell model theory

to explain viscoelastic behavior. Bodnar et al. [15] used the Johnson-Segalman equation to

obtain the constitutive equation of Maxwell �uids, which is the rheological equation of state.

For investigating boundary layer issues in �uid dynamics researchers prefer to use the Maxwell

�uid model. Reynardy and Wang [16] have examined signi�cant boundary layer properties

in Maxwell �uid �ows. A study of MHD in Maxwell �uid �ows near vertical surfaces with

thermophoresis and chemical reaction may be found in [17]. Maxwell �uid �ow with changing

thermal conductivity is demonstrated by Mustafa et al. [18]. Hayat et al. [19] investigated

Maxwell nano�uid radiative �ow over a heated stretched surface. A few researchers [20 � 24]

have investigated the Maxwell �uid models in di¤erent phenomena.

The Oldroyd-B liquid is also a form of non-Newtonian liquid. The relaxation and retardation

times of Oldroyd-B �uid are inspired. This model is an expansion of the Maxwell �uid model

with the inclusion of time retardation. Oldroyd-B [25] was used to test the �uid model. Irfan et

al. [26] investigated the magnetic �eld and chemical reaction properties of Oldroyd-B nano�uid

�ow in a stretched cylinder. Khan et al. [27] explored the �ow of Oldroyd-B nano�uid with

motile microorganisms. Abbas et al. [28] investigated thin �lm analysis for time-dependent

Oldroyd-B �uids using a rotating disk. Hafeez et al. [29] examined the radiation of Oldroyd-B

�uid �ow across a revolving disk. In the existence of time-dependent MHD, Anwar et al. [30]

studied the �ow of Oldroyd-B �uid with thermal radiation and heat source-sink. Ye [31] focused

on the global regularity of the Oldroyd-B model in high dimensions. Ersoy [32] examined the

magnetohydrodynamics �ow of the Oldroyd-B �uid across two in�nite rotating disks travel-

ing with a uniform angular velocity. The �ow of an Oldroyd-B �uid con�ned across the two

in�nite coaxial parallel spinning disks was numerically modeled by Bhatnagar and Perera [33].

Sajid et al. [34] proposed a model in which an Oldroyd-B model boundary layer �ow in the area

of stagnation point over a stretched sheet. Some researchers worked on the Oldroyd-B model

in di¤erent areas [35� 38] :

The heat transport phenomenon of a revolving disk has become an intriguing study subject.

This is because it is used in specialized applications like turbine systems, jet engines, food

processing, circulations of the atmosphere, and so on. Pearson [39] investigate the viscous �ow

between (two) spinning disks and determined that the majority of the �uid revolves faster than
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either of the two disks. The Newtonian �ow between (two) spinning disks was investigated

by Arora and Stokes [40]. They discovered that increasing Reynold number causes stronger

heat transmission when disks rotate in di¤erent directions and reduced heat transfer when

disks rotate in the same way. Turkyilmazoglu [41] investigated �uid �ow over an impermeable

spinning disk that was moving upward/downward. Turkyilmazoglu [42] also investigated a

steady �ow by a spinning disk and discovered that the existence of radial electric parameters

(positive or negative) had a signi�cant impact on �ow and thermal boundary layer. Khan

et al. [43] investigated bioconvective �ow using a variety of conditions, including a magnetic

�eld. They noticed an improvement in axial velocity as the Reynolds number increased. In

their recent research on the numerical investigation of �uid �ow heat transfer characteristics.

Bilal et al. [44] employed di¤erent numerical approaches to resolve the transmuted equations.

Several researchers [45 � 50] investigated alternative nano�uid �ows between (two) rotating

disks afterward.

MHD is the study of the behavior, impact, and characteristics of a magnetic �eld over

viscous �uids. Magneto �uids include salt water, plasmas, and electrolytes. It would be useful

to explore the e¤ect of a magnetic �eld on �uid �ow. Alfén [51] was the �rst to invent the

�eld of MHD. He was awarded the Nobel Prize in Physics in 1970 for his contributions to the

�eld of MHD. Rashidi et al. [52] investigated the signi�cant uses of MHD in peristaltic �ow,

pulsatile �ow, simple �ow, and drug administration. Hsu [53] studied the unsteady Couette

�ow with heat transfer between two parallel plates in an inclined magnetic �eld. Along with

a uniform horizontal magnetic �eld, Turkyilmazoglu and M. [54] studied the �ow and transfer

of heat on a rotating disk. Hayes [55] investigated the Stokes issue with a vertical plate in a

rotating frame in the presence of a magnetic �eld. Devi et al. [56] investigated heat radiation

impact on MHD �ow on a nonporous spinning disk. Abbas et al. [57] developed a numerical

solution for nanoparticles in various base �uids with slip and MHD e¤ect. Khatsayuk et al.

[58] investigated the numerical modeling of MHD vortex technology, and its veri�cation is also

provided.

Gyrotactic microorganisms enhance the mass transfer, which occurs in micro volumes, mi-

croscale mixing, and stability of nano�uid. The concept of bioconvection was initially pro-

posed by Platt [59]. More information about gyrotactic bacteria was later supplied by Kessler
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[60]. Basha and Sivaraj [61] examined blood �ow numerically using several non-Newtonian �uid

models in the circulatory system with gyrotactic microorganisms. Hussain et. al [62] observed

the squeezing MHD bio-thermal convection �ow of a micropolar nano�uid between two parallel

disks with multiple slip e¤ects. Li et al. [63] investigated the unstable mixed bioconvection

�ow of a nano�uid between two spinning disks that were either contracting or expanding. She-

hzad et al. [64] studied the e¤ect of double-di¤usive Cattaneo-Christov theory on the Maxwell

nano�uid bioconvection on isolated spinning disks. Zuhra et al. [65] noticed the gyrotactic

nanoparticles and microorganisms together with second-grade nano�uid �ow and heat transfer

in which �uid temperature rises against the thermophoresis parameter.
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Chapter 3

MHD SWIRLING FLOW AND

HEAT TRANSFER IN MAXWELL

FLUID DRIVEN BY TWO

COAXIALLY ROTATING DISKS

WITH VARIABLE THERMAL

CONDUCTIVITY

MHD �ow of Maxwell �uid between two coaxially parallel spinning disks is considered

in this chapter. Disks are rotating with di¤erent angular velocities in the same direction.

The pressure and heat transfer study is performed while accounting for the e¤ects of an axial

magnetic �eld and thermal conductivity that varies with temperature. Von Kármán similarity

approach employed to transform the momentum and energy equations into nonlinear ODEs.

The enrised �ow model is numerically solved using MATLAB bvp4c scheme. The disks notably

alter the classical �ow pattern occurring between the disks, which is one of the key physical

implications of this work. The observations revealed that as the Reynolds number upsurges,

the pressure �eld dwindled near the lower disk. The thermal conductivity characteristic plays
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an important role in increasing �uid temperature.

3.1 Mathematical formulation

The axisymmetric Maxwell �uid �ow is considered when it is contained between

two coaxially spinning parallel disks that are stretched linearly. The lower disk rotates with

angular velocity 
1 while the upper disk spins with angular velocity 
2 at a �xed distance.

For the mathematical representation, the cylindrical coordinates (r; '; z) is used. Let s1 and

s2 represent the lower and upper disk stretching ratios, accordingly. The �uid temperatures at

the bottom and upper disks are considered to be T1 and T2, accordingly. Corresponding to the

z-axis, a homogeneous magnetic �eld of magnitude B0 is applied. The basic equations for the

Maxwell �uid model for continuity, momentum, and energy equations are shown:

The continuity equation is

r:V = 0: (3.1)

The momentum equation is

� (V:r)V = �rp+r:S+ J�B; (3.2)

where V shows the velocity vector, p denotes the �uid pressure, � is the �uid density, J is the

current density with the electrical conductivity �, B shows the magnetic �eld, and S is the

extra stress tensor for Maxwell �uid are all represented by

J = �(V �B); B = [0; 0; B0];

S+ �1
DS

Dt
= �A1; (3.3)

where

A1 = L+ L
t:

The dynamic viscosity is �, the relaxation time is denoted by �1; the �rst Rivlin Erickson tensor
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is A1, and D
Dt is the contravarint convected derivative:

DS

Dt
=
@S

@t
+ (V:r)S� LS� SLt; (3.4)

where

L = grad V;

applying divergence on both sides of Eq. (3:3)

�
1 + �1

D

Dt

�
S = �r:A1; (3.5)

operating 1 + �1 DDt on both sides of Eq. (3:2) ; we get

�
1 + �1

D

Dt

��
�
dV

dt
+rp

�
= �r:A1 +

�
1 + �1

D

Dt

�
(J�B) : (3.6)

The energy equation is:

�Cp (V:r)T = �r:q; (3.7)

where T denotes �uid temperature and q denotes heat �ow and is given as:

q = �k(T )rT; (3.8)

The velocity �eld V for axisymmetric steady �ow is

V = [u (r; z) ; v (r; z) ; w (r; z)] : (3.9)
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Fig 3.1 Geometry of the Problem

In components form, Eqs. (3:1), (3:2), and (3:7) can be expressed as:
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��
; (3.14)

where [u; v; w] are the velocity components, kinematic viscosity is depicted by �, the speci�c

heat is Cp, while the variable thermal conductivity is k(T ).

k(T ) = k1

�
1 + "

T � T2
T1 � T2

�
; (3.15)

where k1 is the �uid thermal conductivity and the variable thermal conductivity parameter is

":

The boundary conditions of both lower and upper disks are:

u = s1r; v = 
1r; w = 0; T = T1; at z = 0; (3.16)

u = s2r; v = 
2r; w = 0; T = T2; at z = d:

The following transformations are used:

u = 
1rf
0 (�) ; v = 
1rg (�) ; w = �2d
1f (�) ; (3.17)

p = �
1�

�
P (�) +

1

2

r2

d2
�

�
; � (�) =

T � T2
T1 � T2

; � =
z

d
:

Using the transformations shown above, Eq. (3:10) is satis�ed and the Eqs. (3:11)� (3:14) and

(3:16) are written as:

f 000�Re
�
f 0
2 � g2 � 2ff 00

�
+Re�1

0@ 4ff 0f 00 � 4f2f 000

�4fgg0

1A�M Re
�
f 0 � 2�1ff 00

�
+� = 0; (3.18)
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g00 + 2Re
�
fg0 � f 0g

�
+Re�1

�
4ff 0g0 � 4f2g00 + 4ff 00g

�
�M Re

�
g � 2�1fg0

�
= 0; (3.19)

P 0 + 2f 00 +Re
�
4ff 0 � 8�1f2f 00

�
= 0; (3.20)

(1 + "�) �00 + 2RePr f�0 + "�02 = 0; (3.21)

with the dimensionless boundary constrains:

f (0) = 0; f 0(0) = S1; g(0) = 1; �(0) = 1; P (0) = 1; (3.22)

f(1) = 0; f 0(1) = S2; g(1) = 
; �(1) = 0;

where � is the pressure gradient parameter which is constant. Parameters with no dimen-

sions Re shows the Reynolds number, �1 indicates the Deborah number of relexation time,

M represent the Magnetic parameter, Prandtl number is depicted by Pr, S1and S2 are the

stretching parameters of lower and upper disks, and 
 indicate the rotational parameter. The

mathematical formulas for these non-dimensional values are de�ned as follows:

Re =

1d

2

�
; �1 = �1
1; M =

�B20
�
1

; Pr =
�

�
; (3.23)

S1 =
s1

1
; S2 =

s2

2
; 
 =


2

1
:

3.2 Nusselt Number

The Nusselt numberNur1 andNur2 values specify the heat transfer rates of rotating disks.

Mathematical relations of Nur1 and Nur2 are de�ned as:

Nur1 =
dqw jz=0
k(T1 � T2)

; Nur2 = �
dqw jz=d
k(T1 � T2)

; (3.24)
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where

qw = �k
�
@T

@z

�
:

In dimensionless form, we can write

Nur1 = ��0(0); Nur2 = ��0(1): (3.25)

Table 3.1 Comparison of ��0(0) for varying values of 
 for varying values of Re and 


when S1 = 0:5; S2 = 0:0 and M = �1 = 0:

Re 
 ��0 (0)

- - Ref.[67] Present

0 -0.5 1.0508162 1.0000000

10 - 1.0500126 1.0500120

0 0.0 1.0508162 1.0000000

10 - 1.0558274 1.0558270

0 0.5 1.0508162 1.0000000

10 - 1.0525851 1.0525810
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Table 3.2 Nusselt number Nur1 at the lower disk when S1 = 0:5; �1 = 0:1; 
 = 0:5:

S2 M Re Pr " Nur1

0.0 0.5 5.0 1.0 0.2 2.89937

0.5 - - - - 2.51818

1.0 - - - - 2.13306

0.5 0.0 - - - 1.38289

- 0.3 - - - 1.21509

- 0.6 - - - 1.10517

- 0.5 0.0 - - 0.55486

- - 2.0 - - 0.77777

- - 5.0 - - 0.92481

- - 5.0 0.7 - 1.97251

- - - 10 - 1.94481

- - - 20 - 1.92571

- - - 10 0.0 1.92481

- - - - 0.2 1.64503

- - - - 0.4 1.32551
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Table 3.3 Validation of f
00
(0);�g0(0) and � for di¤erent estimates of 
 in non-stretching

cases S1 = S2 = 0 when Re = 1 and M = �1 = 0:

- 
 -1.0 -0.3 -0.8 0.50 0.0

f
00
(0) Ref.[66] 0.0666600 0.1039500 0.0839400 0.2992378 0.0999700

- Ref.[67] 0.0666631 0.1039508 0.0839420 0.0666341 0.0999722

- Present 0.0666625 0.1039500 0.0839416 0.0666340 0.0999714

�g0(0) Ref.[66] 2.0009500 1.3044200 1.8025900 0.5026100 1.0042800

- Ref.[67] 2.0009521 1.3044235 1.8025884 0.5026135 1.0042775

- Present 2.0009520 1.3044230 1.8025880 0.5026135 1.0042770

� Ref.[66] 0.1999200 0.2063600 0.1718500 0.5745800 0.2992400

- Ref.[67] 0.1999153 0.2063572 0.1718464 0.5745734 0.2992364

- Present 0.1999165 0.2063572 0.1718472 0.5745737 0.2992378

3.3 Numerical Solution

For the numerical computations, the non-dimensional nonlinear momentum, pres-

sure, and temperature Eqs. (3:18) � (3:21) with condition (3:22) are used. Furthermore, the

bvp4c numerical approach is used to characterise the �ow, pressure, and temperature pro�les

via graphs. In order to estimate the solution of Eqs. (3:18) � (3:121), we must make �rst

assumptions that ful�ll the boundary condition (3:22). The ordinary di¤erential equations is

transformed by introducing speci�c new variables to use this numerical built-in method. The

conversion steps are as follows:

f = y1; f 0 = y2; f 00 = y3; f 000 = yy1; g = y4; g0 = y5; g00 = yy2;

P = y6; P
0 = yy3; � = y7; �0 = y8; �00 = yy4:

yy1 =
Re
��
y22 � y4 � 2y1y3

�
� �1 (4y1y2y3 � 4y1y4y5) +M(y2 � 2�1y1y3)

�
� ��

1� 4Re�1y21
� ; (3.26)
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yy2 =
Re [2 (y4y2 � y1y5)� �1 (4y1y2y5 + 4y1y3y4) +M (y4 � 2�1y1y5)]�

1� 4Re�1y21
� ; (3.27)

yy3 = Re
�
�4y1y2 + 8�1y21y3

�
� 2y3; (3.28)

yy4 =
�2RePr y1y8 � "y28

(1 + "y7)
; (3.29)

with boundary conditions

y1(0) = 0; y2(0) = S1; y4(0) = 1; y6(0) = 1; y7(0) = 1 (3.30)

y1(1) = 0; y2(1) = S2; y4(1) = 
; y7(1) = 0:

3.4 Discussion

This section shows numerical results for radial f 0 (�), azimuthal g(�), and axial

f(�) velocities, pressure P (�), and temperature �(�) pro�les for di¤erent rotation parame-

ters 
, stretching parameters (S1; S2), Deborah number �1, Reynolds number Re, Magnetic

�eld number M , Prandtl number Pr, and heat transfer parameter ". Further, all graphs are

drawn for rotation parameter 
 = �0:5 (solid lines) and 
 = 0:5 (dashed lines) respectively.

Tables 3.1 and 3.3 represent the comparison of f
00
(0) ; g

0
(0) ; �

0
(0) ; and �: For the vali-

dation of results with pervious publications, Tables 3.1 and 3.3 are added.

Table 3.2 illustrated the rate of heat transfer Nur1 at the lower disk for the parameters

S2; M; Re; Pr; ": As the values of Prandtl number Pr; and Reynold number Re rasies the

nusselt number enhance. While the stretching parameter S2; magnetic parameter M; and

thermal conductivity parameter " increases e¤ects to decreases in heat transfer rate.

Figs 3:2(a)� 3:2(d) are drawn to depict the in�uence of upper disk stretching parameter S2
on axial f(�); radial f 0 (�) ; and azimuthal g(�) velocities along with temperature pro�le �(�)

while taking the lower disk stretching parameter S1 constant (S1 = 0) : It is reveal from Figs

3:2(a) and 3:2(b) the axial and radial velocity pro�le reduces for higher values of S2: Howerever,

Figs 3:2(c)� 3:2(d) depicts that both the azimuthal velocity and temperature pro�le enhances

for increasing S2:

Figs 3:3(a) � 3:3(d) are portrayed to visualize the velocities and temperature pro�le for
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stretching parameter S2 by taking S1 = 0:5: Figs 3:2(a) and 3:2(b) reveal that the axial and

radial velocity pro�les decreasing for increasing values of S2: The magnitude of axial velocity

upsurges, the upper disk pushes more �uid axially, but a greater quantity of radial �uid is thrown

out rapidly to spinning disk. Figs 3:3(c)�3:3(d) demonstrate the behaviour of azimuthal velocity

and temperature pro�le. When the stretching ratios of coaxially disks increses, the azimuthal

velocity and temperature pro�le shows increasing trend.

The impact of magnetic parameter M on the �ow velocities and �uid temperature depicted

on the Figs 3:4(a) � 3:4(d): Both the disks stretched in the same direction (S1; S2 = 0:5) : In

Figs 3:4(a) � 3:4(c) represents the decreasing trend on axial, radial and azimuthal velocities

with stronger magnetic �eld. When the magnetic �eld produces a resistive force that slows

�uid velocity, the �uid temperature rises, that are shown in Fig 3:4(d): Physically, increasing

magnetic parameter tends to ehance the Lorentz force and the strong Lorentz force generates

grater friction to the transport phenomenon.

Figs 3:5(a) � 3:5(c) illustrate the impact of Reynold number Re on �uid velocities and

temperature pro�le with the assumption that both the disks are stretched at the same time

(S1; S2 = 0:5) : The examine the in�uence of the Reynolds number on the components of radial

and azimuthal velocity is seen in Figs 3:5(a) and 3:5 (b) :When the Reynold number rises, then

both the velocities shows an increasing trend. The �uid temperature in Fig 3:5(c) dwindled for

escalating estimates Reynolds number Re due to a reduction in viscosity.

The upshorts of Deborah number �1 on �ow and temperature �elds when the both disks

rotates in the same direction (
 = 0:5) with the stretching rate S2 = 0; are shown in Figs

3:6(a) � 3:6(d). The �ow behaviour in the axial f (�), radial f 0 (�) and azimuthal g(�) is

represented in decreasing order in Figs 3:6(a)� 3:6(c): Fluids tends to behave as a viscoelastic

solid material with an increasing Deborah number. The �uid temperature �(�) increases slightly

within the disks, as seen in Fig 3:6(d).

In Figs 3:7(a) and 3:7(b) demonstrate that the behaviour of temperature �eld for the thermal

conductivity parameter " and the Prandtl number Pr. Higher values of " causes the �uid

temperature to rise, as illustrated in Fig 3:7(a). Mounting of the �uid thermal conductivity

for larger values of ". Hence, higher heat is generated and transfered from the disk surface to

the �uid, increasing the temperature pro�le. The dashed-dotted lines in Fig 3:7(b) depict the
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temperature pro�le for (S1 = 0:5; S2 = 0) : As the Prandtl number Pr increases the temperature

pro�le decreases. The solid lines for (S1 = S2 = 0:5) show that the temperature �eld decreases.

The dashed lines for (S1 = 0:0; S2 = 0:5) demonstrate that the temperature curves rises as Pr

rises.

Figs 3:8(a) � 3:8(b) depicts the pressure �eld P (�) for the various values of magnetic

parameter M and stretching rate parameter S2. Fig. 3:8(a) the pressure �eld P (�) is observed

to diminshing order with mounting estimates of magnetic parameter M . In Fig. 3:8(b) the

pressure �eld rises with the stretching ratio S2 increases, after a certain height in the direction

of the upper disk the pressure �eld decline.

Fig. 3.2(a) f(�) against S2;
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Fig. 3.2(b) f
0
(�) against S2;

Fig. 3.2(c) g(�) against S2;

39



Fig 3.2(d) � (�) against S2;

Fig. 3.3(a) f(�) against S2;
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Fig. 3.3(b) f
0
(�) against S2;

Fig. 3.3(c) g(�) against S2;
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Fig. 3.3(d) � (�) against S2;

Fig. 3.4(a) f(�) against M ,
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Fig. 3.4(b) f
0
(�) against M;

Fig. 3.4(c) g(�) against M;
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Fig. 3.4(d) � (�) against M;

Fig. 3.5(a) f
0
(�) against Re;
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Fig. 3.5(b) g(�) against Re;

Fig. 3.5(c) � (�) against Re;
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Fig. 3.6(a) f (�) against �1;

Fig. 3.6(b) f
0
(�) against �1;
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Fig. 3.6(c) g(�) against �1;

Fig. 3.6(d) � (�) against �1;
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Fig. 3.7(a) � (�) against ";

Fig. 3.7(b) � (�) against Pr;
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Fig. 3.8(a) P (�) against M;

Fig. 3.8(b) P (�) against S2;
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Chapter 4

HALL CURRENT AND ION SLIP

IMPACT ON A OLDROYD-B

NANOFLUID FLOW DRIVEN BY

TWO CONCENTRIC ROTATING

DISKS WITH

CATTANEO-CHRISTOV HEAT

FLUX

This study examines the e¤ects of an axisymmetric spinning disks on an Oldroyd-

B nano�uid �ow. Relaxation and retardation times characteristics are the unique feature of

the present viscoelastic type �uid model. The Buongiorno model is used to investigate bio-

convection in two stretched spinning disks. Magnetohydrodynamics is applied parallel to the

normal surface. MHD e¤ect is so strong that the Hall current and ion-slip e¤ects cann�t be

ignored. The addition of gyrotactic microorganisms in the nano�uid increases the stability of
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the nanoparticles. To deal with nondimensional problem equations, similarity transformations

are applied. The governing equations are numerically computed by using bvp4c technique in

MATLAB software. Graphical representations are used to highlight the importance of �ow pa-

rameters in the pattern of velocity, temperature, concentration, and gyrotactic microorganism.

At both surfaces of disks, the numerical simulations for Nusselt, Sherwood numbers, and motile

microorganism are also carried out.

4.1 Mathematical modelling

We consider an Oldroyd-B �uid �ow that is stable, incompressible, and three-dimensional.

The �uid �ow is considered between two disks, both disks are stretching and spinning. The

lower disk is at z = 0, whereas the upper disk is at z = d. C1 and C2 are the concentrations and

T1 and T2 are the temperatures of lower and upper disks respectively. Both disks are rotating in

anticlockwise direction with angular velocities 
1 (lower) and 
2(upper). The stretching rates

for the lower and upper disks are denoted by s1 and s2, respectively (see Fig 4.1). Magnetic �eld

is applied along the z�axis. The heat and mass transmission phenomenon are observed using

convective boundary conditions. The e¤ects of gyrotactic microorganisms is also observed. The

�ow of geometry is shown in Fig 4.1. The �ow is governed by the laws of conservation of mass,

momentum, energy, concentration, and gyrotactic microorganism which are described as:
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Fig 4.1 Geometry of the �ow

The Oldroyd-B �uid model stress tensor is expressed as:

�
1 + �1

D

Dt

�
S = �

�
1 + �2

D

Dt

�
A1; (4.1)

where S denotes the extra stress tensor, � is the dynamic viscosity, �1 shows the relaxation

and �2 the retardation times. The mathematical relationships for conservation of mass and

momentum in an incompressible MHD �uid �ow are:

r:V = 0; (4.2)

�a = �rp+r:S+ J�B; (4.3)
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where the material time derivative is denoted a for the vector V velocity.

a =
dV

dt
=
@V

@t
+ (V:r)V; (4.4)

where the density of the �uid is denoted by � and p is the pressure, with the equation (4:1)

diverging on both sides.

�
1 + �1

D

Dt

�
r:S = �

�
1 + �2

D

Dt

�
r:A1; (4.5)

after applying the operator
�
1 + �1

D
Dt

�
on equation (4:3) and using the result of equation (4:5),

we have

�

�
1 + �1

D

Dt

�
a = �

�
1 + �1

D

Dt

�
rp+ �

�
1 + �2

D

Dt

�
r:A1 +

�
1 + �1

D

Dt

�
(J�B) ; (4.6)

where A1 = rV+(rV)t is the �rst Rivlin-Ericksen tensor and D
Dt the upper convective deriv-

ative. Using the cylindrical polar coordinates system (r; '; z) for mathematical modelling: The

velocity vector for axisymmetric steady �ow is:

V = [u (r; z) ; v (r; z) ; w (r; z)] : (4.7)

where u; v;and w are radial, azimuthal, and axial velocity components, respectively. The system

of di¤erential equations are:

@u

@r
+
@w

@z
+
u

r
= 0; (4.8)
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u
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uv
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�DB
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u
@N

@r
+ w

@N

@z
+

bwc
C1 � C2

�
@N

@z

@C

@z
+N

@2C

@z2

�
= Dn

�
@2N

@r2
+
1

r

@N

@r
+
@2N

@z2

�
: (4.14)

With suitable boundary conditions

u = s1r;
@u

@z
= 0; v = 
1r; w = 0; kf

@T

@z
= �h1 (T1 � T ) ;

N = N1;C = C1; at z = 0;

u = s2r;
@u

@z
= 0; v = 
2r; w = 0; kf

@T

@z
= �h2(T � T2);

N = N2;C = C2; at z = d; (4.15)
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where (u; v; w) are the velocities taken along (r; '; z) direction respectively. p is the presure, � is

the electrical conductivity, T shows the temperature and C is the concentration of the �uid, the

Brownian di¤usion coe¢ cient is denoted by DB, DT denotes the thermophoretic di¤usion coe¢ -

cient, � shows the kinematic viscosity, �� represents the thermal di¤usivity, � = 1+�i�h; where

�i and �h denotes the ion-slip and Hall current parameter respectively. Dimensionless form of

above mathematical model is obtained by utilizing following transformations:

� =
z

d
; � (�) =

T � T2
T1 � T2

; � (�) =
C � C2
C1 � C2

; h (�) =
N �N2
N1 �N2

;

u = r
1f
0 (�) ; � = r
1g (�) ; w = �2d
1f (�) ; p = �
1�

�
P (�) +

1

2

r2

d2
�

�
: (4.16)

using the above transformation, the Eq. (4:8) is satis�ed and the dimensionless form of Eqs.

(4:9)� (4:14)

f 000 � 4Re�1f
�
ff 000 � f 0f 00 + gg0
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+ 2�2
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002 � ff iv
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� Re
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f 0
2 � 2ff 00 � g2

�
� ReM

�2 + �2h

0@ � (f 0 � 2�1ff 00)

��h (g � 2fg0�1)

1A� � = 0; (4.17)

g00 � 4Re�1
�
f2g

00 � ff 0g0 � ff 00g
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� Re
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1A = 0; (4.18)

P 0 + 4f 00 � 8Re�1f2f 00 � �2
�
4ff 000 � 4ff 00

�
� 4Re ff 0 = 0; (4.19)

�00 + 2RePr f�0 + PrNb�
0�0 + PrNt�

02 � 4RePr�
�
f2�00 + ff 0�0

�
= 0; (4.20)

�00 +
Nt
Nb
�00 + 2LeRePr f�0 = 0; (4.21)

56



h00 + 2ReScfh0 � Pe
�
h0�0 + (h+
�)�00

�
= 0: (4.22)

With transformed boundary conditions

f(0) = 0; f 00(0) = 0; g (0) = 1; f 0(0) = S1; �
0 (0) = ��i1 (1� �) ;

�(0) = 1; h(0) = 1; P (0) = 0; at z = 0;

f
00
(1) = 0; f 0(1) = S2; g(1) = 
; �0(1) = ��i2�; (4.23)

�(1) = 0; h(1) = 0 at z = d:

where � is the unknown pressure gradient parameter. Re; �1; �2;M;Pr; Nt; Nb; Le; Sc; Pe represents

Reynold number, Deborah number of relexation and retardation time parameters, Magnetic pa-

rameter, the Prandtl number, Thermophoresis parameter, Brownian motion parameter, Lewis

parameter, Schmidt number, and Peclet number respectively. S1; S2 are the stretching para-

meters. 
 is the rotation parameter. �i1; �i2 are the thermal Biot numbers. 

� is the motile

microorganism di¤erence parameter.
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��20
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; Le =
��

DB
; �i1 =

h1d

kf
; �i2 =

h2d

kf
: (4.24)

4.2 Important physical quantities

The signi�cant of emerging quantities such as Nusselt numbers, Sherwood numbers, and

motile microorganism �ux. Nur1 and Nur2 specify the rate of heat transfer at the lower and

upper disks, respectively. Shr1 and Shr2 shows the rate of mass transfer of both disks. Nnr1 and

Nnr2 specify the density of microorganism. Nur1, Nur2; Shr1; Shr2; Nnr1 and Nnr2 are

mathematical relations in dimensional form are de�ned by:
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Nur1 =
dqw jz=0
k(T1 � T2)

; Nur2 =
dqw jz=d
k(T1 � T2)

;

Shr1 =
dqmjz=0
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; Shr2 =
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;
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dqn jz=d
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: (4.25)

where
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(0) :

In dimensionless form, we can write

Nur1 = ��0(0); Nur2 = ��0(1);

Shr1 = ��0(0); Shr2 = ��0(1);

Nnr1 = �h0 (0) ; Nnr2 = �h
0
(1) : (4.26)

4.3 Numerical approach

Eqs. (4.17)�(4.22) with BCs (4.23) form a nonlinear system of ordinary di¤erential

equations (ODEs). We employ a numerical approach called bvp4c Matlab scheme to solve

these nonlinear di¤erential equations. The numerical simulation are as follows:

f = y1; f
0 = y2; f

00 = y3; f
000 = y4; f

0000 = yy1; g = y5; g
0 = y6; g

00 = y7; g
000 = yy2;

P = y8; P
0 = yy3; � = y9; �

0 = y10; �
00 = yy4; � = y10; �

0 = y11; �
00 = yy5;

h = y12; h
0 = y13; h

00 = yy6:
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yy1 =
1

2�2y1

26664
y4 � Re�1

�
4y21y3 � 4y1y2y3 + 4y1y5y6

�
+ 2�2y

2
3

�Re
�
y22 � y25 � 2y1y3

�
� M Re

�2+�2h

0@ � (y2 � 2�1y1y3)

��h (y5 � 2�1y1y6)

1A� �
37775 ; (4.27)

yy2 =
1

2�2y1

26664
y7 � Re�1

�
4y21y7 � 4y1y2y6 � 4y1y3y5

�
+ 2�2y3y6

�Re (2y2y5 + 2y1y6)� M Re
�2+�2h

0@ � (y5 � 2�1y1y6)

��h (y2 � 2�1y1y3)

1A
37775 ; (4.28)

yy3 = �4y3 � 8Re�1y21y3 + �2 (4y1y4 � 4y1y3) + 4Re y1y2; (4.29)

yy4 =
�1

1� 4�RePr y21

�
2RePr y1y10 + PrNby10y12 + PrNty

2
10 � 4RePr�y1y2y10

�
; (4.30)

yy5 = �
�
Nt
Nb
yy4 + 2PrReLey1y12

�
; (4.31)

yy6 = � (2ReScy1y14 � Pe (y12y13 + (y13 +
�) yy5)) : (4.32)

4.4 Discussion

This section discusses the results of graphical representations of radial, azimuthal

velocities, temperature, concentration, and microorganism pro�le for various parameters. We

will also investigate the e¤ect of these characteristics on the rate of heat, mass transfer and

motile �ux.

Fig 4.2 shows the e¤ect of �1 on f
0 (�) : It is discovered that the velocity of Oldroyd-B

nano�uid f 0 (�) increases for mounting values of relaxation time parameter �1. Fig 4.3 depicts

the in�uence of Deborah parameter of retardation time �2 on radial velocity f
0(�). When strain

under continuous stress declines, which causes the velocity to decrease on a rising trend of the

retardation time parameter �2 (0:2; 0:4; 0:6; 0:8).

Fig 4.4 is drawn to observe the variation in azimuthal velocity g (�) caused by the e¤ect

of relaxation time parameter �1. For increasing values of the relaxation time parameter �1

(0:2; 0:4; 0:6; 0:8), the azimuthal velocity rises while all other parameters remain constant. The

Deborah number of relaxation time �1 is the ratio of material relaxation time to the material

observation time. As a result, the azimuthal velocity g (�) increases on an increasing trend of
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relaxation time parameter �1. Fig 4.5 depicts the e¤ect of Deborah parameter of retardation

time �2 on azimuthal velocity g (�) is presented. With the increment of �2 (0:2; 0:4; 0:6; 0:8),

the azimuthal velocity g (�) is decreased.

The consequences of Brownian motion Nb on the �uid temperature � (�) are shown in Fig 4.6

. The temperature � (�) enhances mounting values of Nb (0:80; 1:80; 2:80; 3:80). Higher rates of

Brownian motion parameter Nb raise the Brownian di¤usion coe¢ cient DB. Brownian motion

is the primary goal of the current system. Brownian motion is caused by the random motion

of nanoparticles, which causes the temperature to rise. The system obtains the parameter Pr

by assigning the speci�ed values to improve the temperature displayed in Fig 4.7. Physically,

increasing the Prandtl number increases thermal di¤usivity. Figs 4.8 and 4.9 depict the e¤ect

of thermal Biot numbers �i1 and �i2 on the temperature pro�le. The Biot number typically

indicates whether or not the temperature within a body will change greatly. By increasing the

values of �i1 and �i2, the temperature pro�le varies signi�cantly.

Lewis number Le is one of the active properties of nano�uids. Le play a signi�cant impact

in mass transfer characteristics. Fig 4.10 illustrates that � (�) decreases as the Lewis number Le

increases, ensuring the power of nanoparticle di¤usion. Lewis number Le is negatively related

to nanoparticle di¤usion. In Fig 4.11 shows the thermophoresis parameter Nt that reduces

the nanoparticle concentration � (�). By applying the temperature, thermophoresis pushes the

nanoparticles from a high energy state to a low energy state, which e¤ects the concentration.

Heating impacts the system and increases the formation of bioconvection. To demonstrate

the in�uence of Peclet number Pe over the motile density, Fig 4.12 sketched are portrait. It

is observed that for the larger values of Pe; the motile density increases. Fluid motile density

increases at higher Pe due to an increment in the di¤usivity of microorganisms. Fig 4.13 displays

the concentration of motile microorganisms h (�) on the Schmidt number Sc. Increasing Sc

values decrease the concentration pro�le h(�). Fig 4.14 shows that when the Lewis number Le

increases, the concentration of motile microorganisms h(�) increases. It is related to a rise in

the density and thickness of the boundary layer of motile microorganisms.

In Table 4.1 shows the values of Nusselt number ��0(0), the Sherwood number ��0(0)

and motile microorganism �h0 (0) are calculated numerically against di¤erent parameters of

Nt; Nb; �1; and �2 : Observations shows that ��0(0) decreases for increasing Nt and �1; while
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increasing trend obtained by increasing in Nb and �2. The mass transfer rate ��0(0) declines

against Nb and �2; respectively while an opposite trends are noticed against Nt and �1: The

motile microorganism �h0 (0) decresases for Nt ; Nb; �1; �2:

Fig. 4.2 f
0
(�) against �1;

Fig. 4.3 f
0
(�) against �2;
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Fig. 4.3 g (�) aganist �1;

Fig. 4.4 g (�) against �2;
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Fig. 4.6 � (�) against Nb;

Fig. 4.7 � (�) against Pr;
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Fig. 4.8 � (�) against �i1;

Fig. 4.9 � (�) against �i2;
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Fig. 4.10 � (�) against Le;

Fig. 4.11 � (�) against Nt;
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Fig. 4.12 h (�) against Pe;

Fig. 4.13 h (�) against Sc;
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Fig. 4.14 h (�) against Le:

Table 4.1. Numerical values of ��0 (0), ��0 (0) ; and �h0 (0) :

Nt Nb �1 �2 ��0(0) ��0(0) �h0 (0)

0.1 0.1 0.03 0.03 0.482720 1.767962 0.294885

0.2 - - - 0.330080 1.378959 0.607361

0.3 - - - 0.279492 1.228859 0.928340

0.1 0.2 - - 0.230683 2.218264 0.142164

- 0.3 - - 0.267124 2.489121 0.091084

- 0.4 - - 0.284107 2.588055 0.066514

0.1 0.1 0.05 - 0.483377 2.578542 0.289614

- - 0.1 - 0.426808 2.554745 0.263534

- - 0.15 - 0.410630 2.530992 0.242355

0.1 0.1 0.03 0.1 0.277447 2.517484 0.358648

- - - 0.2 0.481145 2.473393 0.330292

- - - 0.3 0.633151 2.421493 0.311082
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Chapter 5

CONCLUSION AND FUTURE

WORK

Two di¢ culties have been examined in this thesis, the �rst being the review paper and

the second being the extended work for it. Conclusion of both problems are as follows

5.1 Chapter 3

In the presence of an axial magnetic �eld the axisymmetric �ow of a Maxwell �uid

between two coaxially stretchable spinning disks with di¤erent angular velocities are discussed

in this study. Heat transfer analysis is also examined by using the temperature-dependent

thermal conductivity property. The dimensionless form of equations is obtained through Von

Kármán similarity transformation. The �ow, pressure, and temperature �elds mechanisms have

been depicted graphically and tabulatedly against the involved parameters.

� The presence of magnetic �eld is to reduce all three velocity components i.e axial, radial,

azimuthal, which results in an increase in the �uid temperature.

� The Deborah number in�uence on axial and azimuthal velocities is seen to be diminishing

in the absence of upper disk stretching.
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� It is observed that tha e¤ect of Deborah number on axial and azimuthal velocities is

shown to be diminishing.

� When both disks are stretched at the same rate, the Prandtl number reduces the temper-

ature �eld.

� The magnetic �eld and thermal conductivity parameter raise the �uid temperature.

5.2 Chapter 4

In this chapter the Oldroyd-B nano�uid �ow on a stretching and spinning disks using the

Chattaneo-Christov heat �ux is numerically examined. Fluid �ow is studied in the existance

of motile microorganism. Convective boundary conditions are employed on both the rotating

disks. Suitable transformations are used to convert the governing partial di¤erential equations

(PDEs) for mass, momentum, heat, concentration and gyrotactic microorganisms equations into

ordinary di¤erential equations (ODEs). A numerical approach known as the BVP4c scheme

used to solve these non-linear ODEs.

� The radial f 0 (�) and azimuthal g (�) velocity pro�les is an increasing function of relaxation

time parameter �1:

� While the radial f 0 (�) and azimuthal g (�) velocity pro�les is decreasing function of

retardation time parameter �2:

� The temperature rises as the Brownian motion parameterNb and the Prandtl number Pr

are increased.

� Fluid temperature increases for bottom disk Biot number �i1; and reduces for upper disk

Biot number �i2:

� The Lewis number Le and Peclet number Pe enhance the concentration of microorgan-

isms, but the Schmidt number Sc reduces.

� Concentration can be raised by using a less dispersed particle since di¤usion forces �uid

particles to travel from a highly concentrated location to a less concentrated one.
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� Nusselt number reduces for the higher values of Nt and �1;and increases for Nb;and �2:

5.3 Future work

The present problem can be extended to the following models as well:

� The �uid �ow may be extended to any other non-Newtonian �uid with appropriat bound-

ary conditions.

� The model may be extended to homogenous-heterogenous reactions.

� The geometry can be changed.

� This problem can be solve for Prescribed surface temperature (PST) and Prescribed heat

�ux (PHF).

� The e¤ect of the Darcy-Forcheimer and buoyancy e¤ects may be added.
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