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Abstract 

 

This study presents a theoretical thermal analysis for the peristaltic transportation 

of electrically conducting Johnson-Segalman liquid through a two-dimensional 

asymmetric tapered following the propagation of sinusoidal wave trains with dissimilar 

phases. The impact of viscous dissipation is also deliberated in the modeling. 

Mathematical modeling is carried out by making use of lubrication approximation theory. 

The fundamental equations of the Johnson Segalman fluid are solved by regular 

perturbation technique and the expressions for velocity, energy and stream functions are 

attained. The impact of various embedded parameters on the flow fields is illustrated 

graphically and discussed in detail. The significant outcomes of the current analysis are 

that the liquid velocity declined with the higher values of magnetic parameter and 

enhances with Johnson-Segalman liquid parameter. Pressure rise improves in the 

augmented pumping portion with the magnetic parameter. 
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CHAPTER 1 
 

INTRODUCTION 

1.1 Overview 

This chapter is intended to provide basic fluid mechanics ideas as well as definitions 

of numerous dimensionless numbers and equations in order to explain the flow analysis 

presented in this study. 

1.2 Fluid 

When a shearing stress is applied to a fluid, the individual particles, no matter how 

small, deform constantly. 

1.3 Fluid Rheology 

The term "rheology" refers to the study of fluid movements and deformation in 

response to stress. Shear stress has a very small impact on fluids that flow incompressible. 

Real fluid is defined as a fluid with at least some viscosity. The truth is that every fluid 

found or existing in the environment is classified as a real fluid. For instance, water. Real 

fluid can be further divided into the following categories: 

1.3.1 Newtonian fluids (NF) 

The relation between strain and stress rate is linear in an NF. NF are those that follow 

Newton's law of viscosity. According to this rule, shear stress is directly but inversely 

related to deformation rate. 

Mathematically, 

,u
y







 

 ,u
y

 





        (1.1)
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where   is the dynamic viscosity of the liquid, which is constant for NF at a given 

temperature and pressure. Examples of NF are air and water.  

1.3.2 Non-Newtonian fluid (NNF) 

Any liquid in which relation between shear stress and the rate of deformation is direct 

but not linearly proportional to the rate of deformation is referred to as NNF. 

Mathematically, 

,
n

uk
y


 

   
        (1.2) 

where n  signifies the flow actions index and k  indicates the consistency index. 

1.4 Peristaltic flow 

Peristalsis is a series of wave-like muscular cramps that migrate to the food 

separate processing station in the digestive tracks. The Peristalsis process begins in the 

esophagus when a bolus meal is consumed. 

.  

Figure 1. 1: Peristalsis mechanism 

1.4.1 Flowing Regions 

Peristaltic movement is discretized interested in four kinds of movement areas or 

quadrants known as unfavorable pressure if pressure increase  0P   and favorable 
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pressure gradient if pressure rise  0P  . These zones are defined by the pressure 

variation with the time mean flow rate. 

i. Peristaltic pumping 
The stream rate is positive in this case ( 0)Q  , However, the increase in 

pressure is unfavorable   ( 0)p  . 

ii. Retrograde pumping 
The stream rate is inefficient. ( 0)Q  , and the pressure rise is adverse ( 0)p  . 

iii. Co-pumping 
Co-pumping depicts a movement in which the time mean flow is negative with 

 0P   

iv. Enhanced pumping 
The stream rate is positive ( 0)Q   in this scenario, yet the pressure rise is neither 

unfavorable nor beneficial. In other terms 0p  . 

1.4.2 Trapping phenomenon 

A fundamental physical fact of peristalsis is trapping. It is based on the 

streamline’s contours. A bolus of fluid may occasionally be contained in closed 

streamlines, creating a circulating area, instead of flowing in the direction of the peristaltic 

wall. The trapped bolus illustrates the peristalsis flow trapping phenomenon by moving 

with the wave in the flow. 

1.5 Dimensionless numbers 

This segment is intended to provide an explanation and definition of some of the 

basic parameters involved in fluid flow
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i. Reynolds number 
It is a non-dimensional quantity that can be used in fluid dynamics to predict fluid 

flow regimes in a range of flow patterns. In fluid mechanics, it can be used for a variety 

of purposes. It is denoted by the letter Re, and written as 

Re cd


 ,        (1.3) 

where , ,c d and  are density, width, and dynamic viscosity respectively. 

ii. Wave number 
The wavelength to channel width ratio is known as the wave number. The Greek 

letter  is used to represent it. 

d


 ,        (1.4) 

where d and  are width of channel and wavelength 

iii. Weissenberg Number 
In viscoelastic flow analysis, W e  is a dimensionless number. 

mcWe
d

 ,        (1.5) 

where m is relaxation time parameter.  

iv. Brinkmann Number 
It is a dimensionless number used in polymer manufacturing to represent heat 

transmission from a wall to a moving viscous fluid. It expresses the proportion of heat 

generated by viscous fluids to heat generated by external sources. The greater the value, 

the less heat is transmitted by viscous dissipation, causing temperature to rise. This is 

calculated as follows: 

PrBr Ec ,        (1.6) 

v. Eckert Number 
In continuum mechanics, Eckert number is a dimensionless number which shows 

the relation amid temperature and kinetic energy to demonstrate viscous dissipation 
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2

,
p

cEc
C T




        (1.7) 

where pC  and T are specific heat and change in temperature. 

vi. Hartmann Number 

 An electrically conducting fluid experiences the Lorentz force under the effects of 

applied magnetic field. The study of these fluids is known as magnetohydrodynamics 

(MHD). The Lorentz force, which is a repulsive force, slows the velocity field. It is 

represented as a body force in the momentum equation. The Hartmann number is a non-

dimensional quantity obtained by dividing the Lorentz force by the viscous force. The 

Hartmann number can so be written as 

0 ,M B d


         (1.8) 

where  is electrical conductivity parameter 

vii. Prandtl Number 
It is the momentum-to-thermal-diffusivity ratio, it is dimensionless number 

which can be written as mathematically  

Pr pC


 ,        (1.9) 

where  is thermal conductivity constant. 

viii. Radiation Parameter 
The relation among thermal radiation and conduction heat transfer is defined by 

the radiation parameter. 
3 *

0
*

16 ,
3
TRd
k



         (1.10) 

where *
0,T and *k  represent the Stefan - Boltzmann constant, energy at upper 

wall, and mean absorption coefficient respectively. 
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1.6 Governing equations 

The study of fluid behavior based on some important fluid mechanics laws. These 

laws are as follows [18]: 

i. Continuity Equation 
The mass conservation law is quantitatively stated in the continuity equation. It is 

as follows for compressible flows. 

 . 0,V
t
 
 


       (1.11) 

where t  denotes time. The density of incompressible flows remains constant, hence the 

continuity equation becomes  

. 0V  ,        (1.12) 

ii. Momentum Equation 
For magnetohydrodynamic flow, the appropriate equation of motion that 

illustrates the law of conservation of momentum is as follows: 

1 1d div
dt  

  f,
V

       (1.13) 

The Cauchy stress tensor is denoted by 
  2 ,  


 S pI D  in the above expression. 

Where d d t ,
  , , ,


p I S D ,and V  are material derivative,  pressure, identity, extra stress 

tensors, Symmetric part of velocity gradient, and velocity vector respectively. The term 

f  represents the body force. It reflects the Lorentz force that develops because of a change 

in magnetic field in the current thesis. 

So, 

f J B,          (1.14) 

In which oB B  represent applied magnetic field. 

iii. Energy Equation 
The first law of thermodynamics is where the energy equation is obtained, and it 

applies the energy conservation law. 
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
21 1 ,

p p p

dT T
dt C C C


  

       rL q     (1.15) 

where 


,T L  and rq  are temperature velocity gradient and thermal radiation respectively. 

1.7 Tensor equation of Johnson-Segalman (JS) fluid 

The following expression describes the Cauchy stress tensor   for the JS fluid 

model. 

  2 ,  


 S pI D        (1.16) 

In which extra stress tensor 

S satisfies. 

          
2 ,

Tdm e e
dt







      

SS S W D W D S D    (1.17) 

      1 1, ,
2 2

T T
grad             

D L L W L L L V,  (1.18) 

Notice that the current model diminishes to the fluid model given by Maxwell for 1e  

and we attain the basic NS model for 0  . 

The velocity for 2-D unsteady flow is specified as: 

       , , , , , ,0 ,t tU X X V X Y    V      (1.19) 

The aforementioned equation allows one to write down 

















 













00

0 0

0 0 00 0 0

T Tgrad , grad ,

U VU U
Y X XX

V V U V
Y Y YX

     
  

     
     

      
     

  
  
     

L LV V  (1.20) 
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  





































2 0

1 1 2 0
2 2

0 0 0

1 1 0
2 2

1 1 0
2 2

0 0 0

T

U U V
YX X

V U VL L
Y YX

U

,

U V
YX X

V U V
Y YX

   
 

  
             
 
 
  

    
  

   
 
          
 
 
  

D

    (1.21) 

  

























0 0

1 1 0 0
2 2

0 0 0

1 10 0
2 2

1 1 0 0
2 2

0 0 0

T

,

U V
Y X

V U
YX

U V
Y X

V U
YX

  
 

  
           
 
 
  

   
  

   
 
        
 
 
  

W L L

  (1.22) 

Using Eqs. (1.20) - (1.22) in Eq. (1.17) 
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  

































  































1 1 0
2 2

1 1 0
2 2

0 0 0

1 1 0
2 2

1 1
2 2

T

U U U V V
Y YX X X

V V U U V
Y Y YX X

U V V U U
Y YX X X

U U V V
Y Y X X

e e e

e e e e ,

e e e

e e e

        
             

 
                      

 
 
  

      
     

      
    

     
    

W D

W D

 0

0 0 0

,V
Y

e

 
 
 
 

       
 
 
  

          (1.23) 






















2 0

2 2 0

0 0 0

U U V
YX X

V U V ,
YX X

  

   

    
  

   
 
          
 
 
  

D      (1.24) 
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e
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X X

        
       

      
 

                     
 
 
   

      
            

     
   

    

SS S


 0
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Y

e V

  
  
  
  
  
  
  
  
  
  
  
   
   
   
   

           
   
   
      



















2 0
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U U V
Y Y X

V U V ,
Y YX

  

  

    
  

    
 
          
 
 
  

     (1.25) 
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
















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2 2 0

0 0 0

U U V
YX X

V U V ,
Y YX

  

   

    
  

   
 
          
 
 
  

D      (1.26) 

Using Eqs (1.25) -(1.26) in (1.16), we get Cauchy stress tensor for JS fluid. 

 


 

 
    


 








 

 
 



2

2

X X X YX X X Y Y X

Y YY Y

U U VP , ,
YX X

VP .
Y

 



   
       

  

  


S S

S

  



 (1.27) 
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1.8 Solution method 

Many phenomena in engineering and technology are nonlinear in nature and can 

be effectively represented using ordinary or partial differential equations. Finding the 

answer to these DEs is a difficult task due to the presence of strong nonlinearity. However, 

a variety of analytical and numerical techniques can be used to solve these equations. The 

following sections explain the fundamental concepts of a few different methods for 

solving (ODE) and (PDE). 

i. Perturbation Technique 

The perturbation technique is the most adaptable nonlinear dynamical model 

procedure, and it is constantly evolving and being used on increasingly complex 

problems. The perturbation method is based on the presence of perturbation quantities, 

which are small/large variables or parameters that can be found naturally in equations or 

artificially introduced for convenience. To put it another way, perturbation quantities are 

used to convert a nonlinear problem into many linear sub-problems. The addition of the 

solutions to the first few sub-problems, usually no more than two terms, is the solution to 

the problem. 

Example 

Consider a nonlinear DE 

2dg g g
dt

          (1.28) 

with (IC’s) 

(0) 1 .g          (1.29) 

By performing straight forward expansion around  as in Eq. (1.28), we assume the 

solution. 

      0 1t, t, t, ........,g g g            (1.30) 

placing the Eq. (1.30) in Eq. (1.29) and (1.28) we get 

    20 1
0 1 0 1........ ........ ........dg dg g g g g

dt dt
            (1.31) 

And  
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   0 10 0 ........ 1.g g         (1.32) 

One can obtain the following systems by joining like powers of  in Eqs. (1.31) and 

(1.32). 

0th- order system: 

 0
0 00, 0 1,dg g g

dt
         (1.33) 

1st -order system: 

 21
1 0 1, 0 0,dg g g g

dt
   1(0) 0g      (1.34) 

Eqs. (1.33) and (1.34) have the following solutions: 

0 ,tg e         (1.35) 

2
1 ,t tg e e          (1.36) 

Using Eqs. (1.35) –(1.36) in (1.30), we obtain 

   2t, .......t t tg e e e        
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CHAPTER 2 
 

LITERATURE REVIEW 
 

2.1 Overview 

In this chapter, we have represented the study related to peristaltic transport of JS 

fluid in a tapered asymmetric channel, theory of lubrication approximation and MHD 

with viscous dissipation and thermal radiation. 

2.2 Literature Review 

Peristalsis is a pattern of fluid thrusting in ducts in which a progressive wave of 

area contraction or expansion propagates throughout the length of a fluid-filled distensible 

tube. Pumping fluid against an increase in pressure produces broad propulsive and mixing 

motions. Peristalsis is a biologically necessary component of smooth muscle contraction. 

It is a useful and automated system that controls numerous processes, including the 

movement of ovaries in the fallopian tube and the flow of bile from the gallbladder into 

the duodenum and bile from the kidney to the bladder. The peristalsis procedure can be 

applied to a variety of biological systems, such as the gastrointestinal tract's chyme 

movement, small blood vessels' blood flow, and the male reproductive system's duct 

afferents. Peristaltic pumping is also employed in industry for a few useful purposes, 

including the movement of hygienic fluids, the blood pump in heart-lung machines, and 

the movement of internal and hazardous fluids to prevent inclusion in the environment. 

Peristaltic phenomena are characterized as having important industrial uses in the strategy 

of roller pumps, which are used to pump fluids without being damaged by the connection 

with the pumping equipment. A positive displacement pump that is used to pump a variety 

of fluids is referred to as a peristaltic pump (often called a roller pump). There have been 

a lot of investigations into the peristaltic activity of liquids in a variety of physical 

contexts and flow geometries. Latham [1] examined the sinusoidal wall movement of 

viscous liquid. Shapiro et al. [2] employed lubrication theory to present a precise 
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summary of viscid fluid in peristaltic transport along a duct and tube. Abdelsalam et al. 

[3] examined the effects of various peristaltic factors while analyzing plasma flow with 

sinusoidal wall activity via a very small flexible artery using the lubrication hypothesis. 

Jeffrey liquid flowing with Newtonian fluid following peristaltic motion under the 

premise of minimal inertial forces and a small wave number was investigated by Kavitha 

et al. [4] The thermal radiative properties of a viscous liquid travelling over a porous 

surface are examined by Hussain et al. [5]. Theoretical simulations of magnetized Prandtl 

fluid flowing through a porous annulus are deliberated by Bhatti et al. [6]. Vaidya et al. 

[7] used the Rabinowitsch model with fluctuating liquid parameters to examine the 

sinusoidal wall explanation under the lubrication theory. The consequences of 

hydromagnetic peristaltic flow of Williamson liquid in a curved channel were 

investigated by Rashid et al. [8]. Rabinowitsch model with two compliant walls that obey 

peristalsis and the influence of variable liquid characteristics examined by Rajashekhar et 

al. [9]. The heat source and sink properties of the peristaltic transport of Prandtl-Eyring 

nanomaterial over the channel boundaries were studied by Akram et al. [10]. They 

showed that raising the parameters for wall mass and tension enhances liquid velocity, 

while increasing the value for wall damping has the opposite effect. The theory of 

lubrication approximation was implemented by Abbas et al. [11] to explain the effect of 

the activation energy research on the peristalsis of Casson fluid in a non-uniform tube 

under the effects of thermal radiation. [12–15] contains more works that are pertinent to 

this topic. 

Theoretical modelling of NNF is crucial for predicting and comprehending the 

behavior of a wide range of emergent natural processes. Many natural fluids, including 

plasma, fuel, lubricants, oils, clay, and polymer solutions, have substantial rheologic 

assets which do not follow the Newton's law of viscosity's usual direct relationship 

between strain and stress. The performance of NNF in modern industries and technology 

may generate a lot of interest in the issue (see refs. [16–17]). On the other hand, the 

constitutive terms which are involved in modelling such fluids are often complex, making 

obtaining exact solutions challenging. This study took the Jonhson-Segalman fluid into 

account. Johnson-Segalman liquid is one of the NNF imperative subclass that can 

describe the "spurt" fact [18]. The term "spurt" has been used to designate a huge rise in 
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volume with a minor upsurge in intensity in a driving rate of pressure. In a driving 

pressure gradient, the term "spurt" has been used to represent a high rise in volume with 

a little increase in intensity. Investigation of the peristaltic transport of Johnson-Segalman 

liquid in a curved geometry using lubrication theory to simplify the normalized equations 

is discussed by Hina et al. [19]. Kothandapani et al. [20] performed a theoretical 

examination of the peristaltic activity of Johnson-Segalman material within a microfluidic 

tapered pipe and determined that when the non-uniform factor is increased, pressure rise 

is more influenced in the free pumping area. A few more explorations into different 

geometries can be found in the references [21–22]. 

  Numerous researchers are interested in the study of magnetohydrodynamic 

(MHD) peristaltic motion due to its expanding applications in areas such as plasma 

pumping, producing, medication targeting, (MRI), magnetotherapy, hyperthermia, and 

others. The hydromagnetic Williamson fluid's oscillatory propagation was bent by Rashid 

et al. [23]. Akram et al. [24] used the lubrication theory to evaluate the diffusion of Prandtl 

nanomaterials in the presence of Lorentz force along a non-uniform conduit with 

sinusoidal walls. Abbas et al. [25] reported and obtained analytical conclusions 

concerning the impact of Lorentz force in a channel on the peristalsis phenomenon of 

Jeffrey liquid. They noticed that increasing the Brinkman number caused a rise in the 

thermal profile. The importance of entropy analysis for the movement of hydromagnetic, 

viscid liquid peristalsis in a changing tube using lubrication theory approximation was 

recently investigated by Abbas et al. [26]. Some recent demonstrative inquiries in this 

approach might be found at [27–29]. Additionally, thermal radiation effects are 

significant on heat transfer in industry, particularly in the design of gas turbines, nuclear 

power plants, missiles, spacecraft, satellites, and other manufacturing and industrial 

machinery. It has been proven that thermal radiation works well in a variety of extreme-

temperature processes. Nisar et al. [30] examined the radiative properties of the peristaltic 

interest of Eyring-Powell nanomaterial in flexible channel walls. The main conclusion of 

this study is that raising the thermal Biot number lowers the radiative profile while raising 

it for parameters affecting Brownian flow and thermophoresis. The thermal study of the 

peristaltic activity of Rabinowitch fluid in a channel was examined by Imran et al. [31]. 

Alsaedi et al. [32] also investigated how hall current affected the sinusoidal wall transport 
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of oily nanomaterials along a conduit. [33–36] contains more analyses of heat conduction 

by thermal radiation. Non-pregnant myometrial contractions can occur in both 

symmetrical and asymmetrical directions, which results in a peristaltic-type liquid 

transfer uterus problem known as intrauterine liquid transport. In addition, it is 

investigated that the intrauterine carriage of fluid in a uterus at the sagittal cross over 

reveals a narrow channel surrounded by two relatively comparable walls as well as wave 

trains with different time differences and scales [37–39]. Aside from the research 

indicated above, we are particularly interested in investigating the effect of heat transport 

phenomena on the peristaltic movement of an electrically conducting Johnson-Segalman 

liquid in a tapered channel with velocity slip circumstances. It is worth mentioning that 

such a study does not appear to be available in the current literature. The formulas 

governing the flow of the Johnson-Segalman liquid are simplified by lubrication theory. 

The perturbation technique is used to derive the following equations, and the physical 

properties of key variable quantities are investigated and explained using graphs. 
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CHAPTER 3 
 

A TAPERED ASYMMETRIC CHANNEL WITH 

NONLINEAR PERISTALTIC MOTION OF JOHNSON-

SEGALMAN FLUID 

3.1 Overview 

This comparative study discusses the nonlinear peristaltic transport of Johnson-

Segalman fluid in a thin asymmetric channel. The thin asymmetric channel was formed 

as a peristaltic wave train passed by beyond non-uniform walls with unique amplitudes 

and phases. Assumptions of low Reynolds number and long wavelength were used to 

simplify the Johnson-Segalman fluid's 2-D equations. In order to solve the streamline, 

pressure gradient, and axial velocity equations, the regular perturbation method is used. 

3.2 Mathematical formulation 

Consider (2-D) channel that is infinitely asymmetric and contains an 

incompressible Johnson-Segalman fluid. The coordinate approach employed is 

rectangular, with X horizontal to the channel walls and Y perpendicular to them. There is 

also a proposal for an immense wave train travelling at c  alongside the channel walls. 

The peristaltic wave train on the walls exhibits irregular amplitudes and phases. The 

channel walls have a specific shape. 

 
 

2 2
2, sin ,ctH t a dXX Xk
 


  
     

 
    (3.1) 

 
 

1 1
2, sin ,ctH t a dXX k X 
 


  
       

 
    (3.2) 
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where  0,   the difference of phases and the waves amplitudes are 1a  and 2a . 

Waves in phase are designated by   ,while waves out of phase are designated by 

0  Furthermore 1d , 2d , 1a , 2a  and   satisfy the condition. 

 22 2
1 2 1 22 2 .a a a a cos d          (3.3) 

 

Figure 3.1: Problems geometry 

An incompressible fluid flow equations are as follows:[18] 

0, ,div div
t




 

VV           (3.4) 

For a (JS) fluid, the Cauchy stress tensor is defined in Chapter one using Eqs. (1.16) - 

(1.18). For 1e , model (3.4) is reduced to the Maxwell fluid model, which is then 

recovered as the traditional NS fluid model by taking 0  . In the context of the 

situation, the 2-D flow velocity is depicted. 

       , , , , , ,0 ,U X Y t V X Y t    V         (3.5) 

From Eqs. (3.4) and (1.16) - (1.18), we have 
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



 0,U V
YX

 
 


         (3.6)




 


 




 




   
2 2

2 2 ,X X X YS S PU V U U
dt dY YX X X YX

 

                       
  (3.7)





 

 




 





 
2 2

2 2 ,Y Y X YS S PU V V V
dt dY Y YX X YX

 

                       
  (3.8) 





 


 





  



2 2X X X X X X

U US emS mS U V
dt dYX X X

             

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   



  
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V UmS e e
YX

  
    

 
      (3.9)
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
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
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                              
   
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   



  

1 1 ,

2
YY

m V US e e
YX

  
    

 
      (3.10) 
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

2 2YY Y Y Y Y

V VS emS mS U V
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             
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
   


  



 ,1 1X Y
U Vm e eS
Y X

  
    

  
      (3.11) 

Defining dimensionless quantities 

   
1 2

1 2, , , , , , ,H Hct dx y t u v h h
d c c d d

X Y U V

       
  


  

2

, ,ij ijp Pd ds
c c

S X 
 

1 2, , ,a acd mcRe W e a b
d d d




     
  

2

, .Pd kp k
c d

X


 



  

  (3.12) 

Using (3.12) into the Eqs. (3.6) - (3.11) with the help of ,y xu v    we have 

       2 ,y xy x yy xx xy xxy yyy
pRe s s
x x y

         


    
          

 (3.13) 
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     
2

3 2 2 ,xxx
y xx x xy yx yy

xyy

pRe s s
y x y

  
       


     

                
 (3.14) 

   2 2xy xx xy y xx x xxs emWe We s s
x y

     


    
          

   2 1 1xx yyxyWe e es         ,       (3.15) 

 2 ( ) ( )yy xx xy y xy x xys We s s
x y

     


  
      

2(1 ) (1 )
2 xx yy xx

We s e e       
2 (1 ) (1 ) ,

2 yy xx yy
We s e e          (3.16) 

2 ( ) ( )xy xy y yy x yys We s s
x y

    


    
          

22 (1 ) (1 ) ,yy xy xy yy xxeWe s Wes e e                (3.17) 

Using the approximation theory of lubrication ( Re 0  and 1  ), Equations (3.13)- 

(3.17) develops as follows: 

,xy yyy
ps

y x
 


   
     

       (3.18) 

0p
y





,          (3.19) 

 1 ,xx yy xys We e s          (3.20) 

   1 1 ,
2 2yy xy yy xx yy yy

We Wes e s e s  


         (3.21) 

 1 ,yy yy xys We e s           (3.22) 

Eq (3.19) also suggests that with this approximation. ( )p p y . Removal of   after 

Eqs. (3.18) and (3.19) generates  

2

2 0xy yyyys
y




 


,         (3.23) 
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Using Eqs. (3.20) and (3.22) into Eqs. (3.21), we have  

  22 21 1

yy

xy

yy

s
We e

 




 
 
 

 
,        (3.24) 

Using Eq. (3.24) in Eqs. (3.18) and (3.23), We can write 

   

 

32 2
2

22 2 2

1 1
0

1 (1 )

yy yy

yy

We e

y We e

  




  
        

   
 
 

,     (3.25) 

  22 2

( )
0

1 1

yy

yyy

yy

p
x y We e

 
  
 

 
    

        





 

,     (3.26) 

The following are the problem's relevant boundary conditions: 

2

1

, 0,
2

, 0,

,

2
.

F at y h
y

F at y h
y








  




   


                (3.27) 

3.3 Solution of the problem 

When using binomial for small 2We , Eqs. (3.25) and (3.26), may be simplified  
2

2 3 4 5
1 22 ( ) ( ) 0yy yy yyWe We

y
    

     
,     (3.28) 

2 3 4 5
1 2( ) ( ) ,yyy yy yy

p We We
x y y

                
    (3.29) 

where, 
2

2
1 2 1

( 1) , ( 1)
( )
e e

  
 


  


, 

 

 



22 
 

0th - order system 

4
0

4 0,
y





          (3.30) 

3
0 0

3

p
x y

 


 
,          (3.31) 

0
0 2

0
0 1

,

.

, 0,
2

, 0,
2

F at y h
y

F at y h
y







  




   


     (3.32) 

1st - order system 

324 2
01

14 2 2y y y



   
         

,        (3.33) 

322
01 1

12 2

p
x y y y




   
          

,       (3.34) 

1
1 2

1
1 1

,

.

, 0,
2

, 0,
2

F at y h
y

F at y h
y







  




   


     (3.35) 

2nd - order system 

2 52 24 22 2
0 02 1

1 24 2 2 2 2 23 ,
y y y y y y

   
         
                      

    (3.36)

2 52 23 2
0 02 2 1

1 22 2 2 23 ,p
x y y y y y y

  
 

          
                       

    (3.37)

2
2 2

2
2 1

,

.

, 0,
2

, 0,
2

F at y h
y

F at y h
y







  




   


     (3.38) 

Solving the above systems yields axial velocity, stream function, and pressure gradient. 
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The usual increase in  p  concluded one wavelength period is given by 

1 1

0 0

.pp dxdt
x


 
           (3.39) 

3.4 Graphical results and discussion 

We consider that the instantaneous volume rate ( , )F x t  of flow is periodic in 

( )x t  to examine the quantitative results obtained. 

F( , ) a sin 2 (x t) b sin[2 (x t) ].x t Q              (3.40) 

Q is the flow's average time value throughout a single wave period. 

The integration of p
x




 is used in the expression for p . Eq. (3.39) is not integrable 

analytically due to the complexity of p
x




. As a result, the evaluation of the integrals 

necessitates the use of a numerical integration scheme. The result is executed with the 

help of MATHEMATICA, and all graphs were made for several values of the variables 

of importance. Because the (PDE) system resulting from the mathematical modelling of 

the problem at hand is strongly nonlinear and coupled, it cannot be used directly for the 

analytical solution. As a result, the formulas for axial velocity, pressure rise, and 

streamlines are handled and checked for differences in flow parameters. Figures (3.2 - 

3.7) exhibits a graph of the p  vs. the change in time-average flux Q . Figures. (3.2 - 3.7) 

demonstrate pumping zones such as peristaltic injecting (Q 0, p 0)   enhanced driving 

(Q 0, p 0)   , and backward injecting (Q 0, p 0)   ). Figure 3.2 depicts the p  as 

a function of ( )a . As shown in Fig. 3.3, the peristaltic pumping section and free thrusting 

( p 0)  diminish as the non-consistent factor  k  increases, and the situation is 

remarkably like that of enhanced pumping. For various values of  W e , Figure 3.4 

depicts the variance of p  vs  Q . The pumping rate drops as  W e  increases, and the 

free pumping bends seem to be intersecting. The graph in Figure 3.5 shows that the Q  

rises as p  diminishes, and the pumping area shrinks as the amplitude of phase difference 
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( )  rises. For several values of the slip factor ( )e , the plots of p  against Q  are shown 

in Fig. 3.6. It illustrates that the dispersal of p  in a rising trend due to the slip factor ( )e  

is nonlinear. The fluctuations of the dynamic viscosity factor on p  against Q  are shown 

in Figure 3.7. The p  is reduced by enhancing the dynamic viscosity factor ( )  in the 

enhanced pumping zone ( 0p  and 0)Q  , as shown in this graph. The nonlinear nature 

of the curves depicting the p  against Q  is reflected in the nonlinear nature of the curves 

for large values of ( ) . Fig. 3.8 shows the impact of the bottom wall's amplitude ( )a  on 

the axial velocity. The axial velocity rises by rising ( )a . Figure 3.9 depicts the influence 

of the slip factor  e on u . The axial velocity u seems to decline in the trapped 

asymmetric channel's nearer lower and upper halves; however, the differing comportment 

seems to be reflected in the trapped channel's core region. The velocity dispersal of the 

liquid is studied for several variations of the dynamic viscosity factor ( ) non-uniform 

factor  k , and  W e  in Figures (3.10 - 3.12). The graphs show that increasing the values 

of ( ) ,  k , and  W e  lowers the axial velocity in the tapered asymmetric channel's 

central area. The impact of Q  on the u  allocation is seen in Figure 3.13. It demonstrates 

that when Q  rises, u  rises with it. 

Another interesting aspect of the occurrence is the trapping (PT). When closed 

streamlines in a reference wave structure form an internally moving bolus of fluid, the 

peristaltic wave pushes it forward. Bolus can also be discovered in the fixed frame, owing 

to the impact of a time-average of the stream over a single wave period which is nonzero. 

Figure 3.14 depicts the streamlines for various s values. It's also worth noting that when 

a  increases, the amount of the bolus grows. The sound impacts of  W e on trapping are 

depicted in Fig.3.15 for the tapered asymmetric channel. The bolus is irregular around the 

centerline, as seen in Figure 3.15(a), and its size reduces as  W e rises. Figure 3.16 shows 

the effect of Q on the streamlines. The trapped bolus grows, and further trapped bolus 

seems as Q rises. 
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Figure 3.2: Upshot of a on pressure 

 

 

Figure 3.3: Upshot of k on pressure 
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Figure 3.4: Upshot of W e on pressure. 

  

 

Figure 3.5: Upshot of  on pressure. 
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Figure 3.6: Upshot of e on pressure. 

  

Figure 3.7: Upshot of   on pressure. 
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Figure 3.8: Upshot of a on axial velocity. 

  

Figure 3.9: Upshot of e on axial velocity 
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Figure 3.10: Upshot of  on axial velocity. 

  

Figure 3.11: Upshot of k on axial velocity 
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Figure 3.12: Upshot of W e  on axial velocity. 

  

Figure 3.13: Upshot of Q on axial velocity 
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Figure 3.14: Streamlines for different values of (a) 0a  ,(b) 0.3a  while other factors 

are 0.2, , 0.7, 0.8, 0.5, 1.8, 0.1, 0.1, 0.2
3

b e Q We k t            

 

 

Figure 3.15: Streamlines for different values of (a) 1.5Q  ,(b) 1.6Q  while other 

factors are 0.3, 0.2, , 0.8, 0.5, 0.1, 0.3
3

a b We e k t            
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Figure 3.16: Streamlines for different values of (a) 0We  ,(b) 0.6We   while other 

factors are 0.1, 0.2, , 0.4, 0.1, 0.8, 1.2, 0.05, 0.3
3

a b e Q k t           . 
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CHAPTER 4 
 

HEAT TRANSFER ANALYSIS OF JOHNSON-

SEGALMAN FLUID IN TAPERED ASYMMETRIC 

CHANNEL 

4.1 Overview 

This chapter examines the heat transfer study of a Johnson-Segalman liquid in a 

tapered asymmetric channel, MHD with viscous dissipation and radiation effects. To 

create the Johnson-Segalman fluid model's governing equations, dimensionless variables 

were used. Using the perturbation approach, we can resolve these equations. At the 

conclusion, the results will be shown in graphs. 

4.2 Problem Statement 

Consider an incompressible peristaltic motion of electrically conducting Johnson-

Segalman liquid through a two-dimensional tapering channel with velocity slip at upper 

and lowers walls. Flow inside the thin channel is produced by the trains of sinusoidal 

waves moving alongside the walls of the channel with constant speed c. We employ a 

rectangular coordinate system in such a manner that X axis is taken in the flow direction 

and Y  axis is taken perpendicular to the direction of flow (see Fig. 4.1). A uniform 

applied magnetic field is employed in the oblique direction with strength 0B . For the 

peristaltic pattern, the wave trains with distinct amplitude and phases at both boundaries 

of the channel is given as 

 
 

1 1
2, sin ,ctH t a dXX k X 
 


  
       

 
    (4.1) 

 
 

2 2
2, sin ,ctH t a dXX Xk
 


  
     

 
     (4.2)
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where  0,   represents the phase difference and amplitudes of the waves are 1 2,a a

. Keep in mind, waves are in phase when   , while waves out of phase are 

designated by 0  . Furthermore 1d , 2d , 1a , 2a  and   satisfy the condition  

 22 2
1 1 1 12 cos 2 .a a a a d         

 
Figure 4.1: Problems geometry 

The important equations to govern the flow in vector form are given as [18]: 

0 .V ,          (4.3) 

1 1d div
dt  

  f,V
 ,         (4.4) 

21 1 .r
p p p

dT T
dt C C C 

      L q


     (4.5) 

where d d t  designates the material derivative,  signifies the Cauchy stress tensor and 

V indicates the velocity vector. 

The (JS) material has the subsequent mathematical illustration for its extra stress 

tensor [18]: which is defined in chapter one Eqs. (1.16) -(1.18). 

Notice that the current model diminishes to fluid model given by Maxwell for 1e  and 

0  , we attain the basic NS model. 
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The velocity for 2-D unsteady flow is defined as: 

       , , , , , ,0U X Y t V X Y t    V .       (4.6) 

The vector equations in components form are given by: 




 0,X YU V            (4.7) 

 



  
  


   




 

   2

0 ,Xt X Y X X X Y X X YY
X Y

U UU VU S S P U U B U           (4.8) 

 

 

  
  


   




 

   ,Yt X Y YY X Y X X YY

X Y
V UV VV S S P V V           (4.9) 





 


 




    

  
 

  
 


  




 

2 2

1 1 ,

X
t X Y

X X X X X X X X X X X

X X X X

U S

e

S U S U S

m

V S

U

em

Ve S

m


      
     

    (4.10)
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
 


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   
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  





   


  


1 1 1 1 ,

2 2

t
Y X XY X Y XY X Y XY

X X Y X YY X Y

X Y
U V S S S U S V S

S

m

m m eU V S UeVe e




     
 

             

  (4.11) 
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
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 
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 
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    

  
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





 

2 2

(1 ) (1 ) ,X

t
Y YY YY Y YY YY YY

Y X

X Y

Y

V S S V S U S V S

U

em

V

m

m e Se




      
     

   (4.12) 





       




    

 



 


 ( ) .Y X XY YY Y X X XY YYX rXp YXt U V U V S S V SC T T T T T U q            (4.13) 

Defining the following dimensionless quantities 



* 3
0 0

0 *
1 0

16, Pr, , .
3 Yr

T T TM B d Br Ec q T
k T T


  


    


   (4.14) 

Invoking Eq. (3.12) and dimensionless quantities in Eq. (4.14) into Eqs. (4.7) -

(4.13) and introducing stream functions ,y xu v   , we have 

       2 2 ,y xy x yy y x xx xy xxy yyyx y
Re M p s s          


 

       
 

 (4.15) 
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s sRe p            


 
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 (4.16) 
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    2

2 2 ( ) ( )

1 1 ,

xy xy yy xy y yy x x yy y

xy yy xx

s eWe s We s s

Wes e e


     



  

          
 





   

   (4.19) 

     
2
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s s
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        

  

 
     
   

.  (4.20) 

Utilizing approximation theory of lubrication i.e ( Re 0  and 1  ), Eqs. 

(4.15) -(4.20) turns into: 

2( )x xy y yyy yp s M   



 


 

 
,      (4.21) 

0yp  ,          (4.22) 

 1 ,xx yy xyWe es s          (4.23) 

   1 1 ,
2 2yy xy yy xx yy yy

We W es ses e  


          (4.24) 

 1 ,yy yy xys e sWe            (4.25) 

 1
r xy yy

yy

B s
Rd


 
          (4.26) 

Removal of pressure from Eqs. (4.21) and (4.22), we have 

  2 0xy yyyy yy y ys M   .        (4.27) 
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Invoking Eqs. (4.23), (4.25) into Eq. (4.24), we have 

   22 21 1
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s
We e

 




 
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 
.        (4.28) 

Eq. (4.28) allows Eqs. (4.21), (4.26), and (4.27) to be written in the following form
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
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
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The transformed boundary conditions are 

1

2

, 0, 0 at ,
2

, 0, 1 at .
2

y yy

y yy

F y h

F y h

   

   

    

     
    (4.32) 

4.3. Solution of the problem 

After using binomial for small 2We , Eqs. (4.29), (4.30) and (4.31), may be 

simplified. 

 2 3 2( ) 0,yy yy yyyy
We M               (4.33) 

2 3 2( ) 0x yyy yy yy
p We M         ,      (4.34) 
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where 
 
 

2 1
,

e 


 





 

Since Eqs. (4.33) -(4.35) are highly nonlinear which are difficult to solve them 

analytically. So, using the regular perturbation method, approximate results are achieved. 

For perturbation solution, we express , xp  and  as 

2
0 1

2
0 1

2
0 1

,
,

.
x x x

We
p p We p

We

  

  

 

 

 

         (4.36) 

Invoking Eq. (4.36) in Eqs. (4.33) -(4.35) and competing the same exponents of 
2We , we have the subsequent systems.  

0th -order system 
2

0 0 ,yyyy yyM           (4.37)

2
0 0 0 ,x yyy yp M            (4.38)

 
2

0 0 ,
1yy yy

Br
Rd

 





         (4.39)

0 1 1 0 1

0 1 1 0 2
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2
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F y h

F y h

   

   

    

     
   (4.40) 

1st -order system 
2 3 2

1 0 1( ) ,yyyy yy yyM               (4.41) 

2 3 2
1 1 0 1( ) ,x yyy yy yy

p M               (4.42) 
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After resolving the aforementioned systems, we arrive at the formulas for the 

stream function, axial velocity, pressure, and temperature.
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At a fixed location X , the time averaged flow is defined as 

0

T

Q Qdt  .          (4.49) 

We discover 

   1 2
2 2Q q a csin X ct a csin X ct 
 

              
,     

where  
2

1

,
H

H

q u x y dy   represents the dimensional volume flow rate in the wave frame. 

By the meanings of dimensionless mean flows   in the wave frame and F  in the 

laboratory frame are described as 

,Q qF
cd cd

  .          

We find that 

     , sin 2 sin 2 ,F x t a x t b x t                

In which 
2

1

h

h

F udy  . 

The usual increase in  p  over one wavelength period is given by 

1 1

00 0 y

dpp dxdt
dx 

    
   .        (4.50) 

The constant appearing in above equations are given in appendix. 
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4.4 Discussion of the findings 

This section uses graphical findings to show how different variables affect 

velocity, pressure rise, temperature, and streamlines. The representation for p contains 

the integration of d p d x  which is difficult to integrate analytically. Therefore, the 

integral occurring in Eq. (4.50) has been estimated numerically utilizing 

MATHEMATICA through composite Simpson’s rule. During this investigation, In order 

to facilitate computations, the following standard parametric values are used: 0.01,   

1,M  0.2t  , 0.3,a   1.75,   0.3,  2,rB   0.2,Rd   0.2 , 0.2e   0 .2 ,k   

0.4x  , 4    and 0.2b  . 

Figure 4.2 (a-d) is intended to examine and discuss the effects of substantial 

parameters on the momentum profile. u . Figure 4.2a is displayed to observe the 

Hartmann parameter impressions  M  on momentum transfer.  It is shown that as the 

value of  M increases, the velocity of the liquid decreases. Physically, increasing the 

strength of a magnetic field enhances the Lorentz force, causing fluid materials to 

encounter more resistance, reducing liquid velocity. This perception has a significant 

impact in the medication field, where the local energy augments in the existence of a 

structured external magnetic field, which aids in the elimination of tumor cells. Figure 

4.2b depicts the effect of the slip parameter    on liquid velocity. This graph shows 

that increasing behavior in slip parameter cause a decrease the liquid velocity in the center 

of channel. Figure 4.2c portrays the behvavior in momentum profile for various values of 

 W e . The liquid velocity decreases as  W e  increases. Figure 4.2d examines the 

deviations in the momentum profile for different values of  e . Figure 4.2d shows that 

higher values of  e  increase liquid velocity. 

The influences of governing variable quantities on temperature are available in 

Figure 4.3(a-c). In Figure 4.3a we depict the effects of  Br  on temperature profile. It is 

notable that temperature improves with enhancing amounts of  Br . Physically, the  Br  

boosts the conflict to the flow for the reason that of its shear strength, which in turn leads 
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to an improvement in intensity due to the viscid dissipation influence. So, rises the fluid 

temperature. Figure 4.3b explains the impact of  Rd  on temperature distribution. The 

graph signifies that liquid temperature reduces for boosting quantities of the parameter 

 Rd . Figure 4.3c demonstrates the variation of the  W e  on the fluid temperature. We 

can examine from this graph; fluid temperature enhances for greater values of the  We . 

Figure 4.4(a-d) exhibits a graph of the p  vs. the change in time-average flux Q . Figure 

4.4(a-d) demonstrate pumping zones such as peristaltic injecting (Q 0, p 0)  

enhanced driving (Q 0, p 0)   , and backward injecting (Q 0, p 0)   ). Figure 4.4a 

is portrayed to perceive the influences of  M  on pressure gradient profile p . It is 

discovered since this diagram that the injecting rate shows a decrement with increasing 

 M  in the enhanced driving region, whereas the inverse trend is scrutinized in the 

backward driving zone. The graph illustrated in Figure 4.4b displays the deviation of rise 

in pressure with different values of slip parameter. From this graph, we perceive that the 

injecting rate is increased with slip parameter in the augmented driving segment and 

reduces in the backward driving zone. The influence of  e  on p  is displayed in Figure 

4.4c. This graph demonstrates greater values of  e  increasing the p  in the backward 

driving zone. Figure 4.4d is graphed to depict the deviation in pressure rise for various 

values of  We . We can note that pressure in the retrograde pumping portion is reduced 

with the changing behavior of We . 

The process of trapping, in which a bolus is moved along a peristaltic movement 

at the speed of the wave and is pushed forward, is one of the most exciting aspects of fluid 

transportation. Figure 4.5 produces the variation of  M  on  . It can be seen from this 

Figure that an improvement in  M  results in a decrease in the trapping bolus. The 

Lorentz forces, which serve as a retarding force, are partially responsible for this decline 

in the size of the bolus. The effect of the flow average flow Q on the streamlines is 

presented in Figure 4.6 and examine that the trapped bolus is increased in magnitude as 

Q improves and more trapped bolus appears with rising values Q . Figure 4.7 illustrates 
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the difference in  We  on  . The plots depict that when  We  increases then the 

confining bolus also increases. 

 

 

Figure 4.2(a): Effects of M  on axial velocity. 

 

Figure 4.2(b): Effects of   on axial velocity. 



44 
 

 

Figure 4.2(c): Effects of We  on axial velocity. 

  

Figure 4.2(d): Effects of e  on axial velocity 
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Figure 4.3(a): Effects of Br  on temperature. 

  

Figure 4.3(b): Effects of Rd  on temperature. 
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Figure 4.3(c): Effects of We  on temperature. 

  

Figure 4.4(a): Effects of M  on pressure. 
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Figure 4.4(b): Effects of   on pressure. 

  

Figure 4.4(c): Effects of e  on pressure. 
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Figure 4.4(d): Effects of We  on pressure. 

 

  

Figure 4.5: Streamlines for various values of (a) 1M   (b) 2M  . 
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Figure 4.6: Streamlines for various values of (a) 1.2Q  , (b) 1.4Q  . 

 

 

Figure 4.7: Streamlines for various values of (a) 0We  , (b) 0.2We  . 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion  

In this thesis, we studied, the peristaltic transport of Johnson-Segalman fluid in a 

tapered asymmetric channel, with viscous dissipation and effects of thermal radiation. We 

built a mathematical model. The tapered asymmetric channel is created by varying the 

amplitudes and phase of peristaltic wave trains over nonuniform walls. Approximations 

with a long wavelength and low Reynolds number have been used. The expressions for 

stream function, axial velocity, temperature profile and pressure gradient were computed 

using a regular perturbation approach. It is addressed how the fluid's rheological 

characteristics interact with peristaltic transport. The variations of dissimilar flow 

parameters under the change of the present flow factors are well portrayed via graphic 

representations. The main observations are: 

 The pressure falls with changing behavior of W e in retrograde pumping portion 

however pressure rise improves in this region with improving magnetic number. 

 An augmentation in the quantities of radiation parameter causes a decline in the 

liquid temperature. 

 The number of trapped bolus diminishes with greater values of magnetic number. 

 It has been discovered that as a  and e  increase, the average rise in pressure p  

increases, whereas ,k   and   decrease. 

 It was also discovered that with rise in  , ,k  and Q , the momentum transport in 

axial direction is decreased. 
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5.2 Future work 

For further work following may be considered 

 The Johsnon-Segalman model can be studied with different geometries with 

different boundary conditions. 

 Entropy generation also can be discussed  

 Chemical reaction 
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APPENDIX 
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