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Abstract 

 

This thesis discusses the flow of Jeffrey nanofluid flow over a stretched surface 

influenced by magnetic dipole. The flow is subjected to the gyrotactic microorganism that 

is used to enhance the stability of the fluid. The customary Fourier law owing to its short 

comings is replaced by the Cattaneo-Christov heat flux. The convective conditions are 

taken at the boundary of the surface. The envisioned model is solved numerically using 

bvp4c, a MATLAB built in function. The graphical illustrations are presented to show the 

relation between the arising parameters with the associated profiles. The salient outcome 

reveals that temperature and concentration profiles show rising behavior for 

thermophoresis parameter.  

  



vii 
 

TABLE OF CONTENTS 

 

 

 

AUTHOR’S DECLARATION ................................................................................. ii 

PLARIGISIM UNDERTAKING ............................................................................ iii 

DEDICATION .......................................................................................................... iv 

ACKNOWLDGEMENTS ......................................................................................... v 

ABSTRACT .............................................................................................................. vi 

LIST OF TABLES..................................................................................................... x 

LIST OF FIGURES .................................................................................................. xi 

LIST OF SYMBOLS ............................................................................................. xiii 

CHAPTER 1 BASIC PRELIMINARIES ................................................................. 4 

1.1 Fluid ................................................................................................................. 4 

1.2 Nanofluid ......................................................................................................... 4 

1.3 Fluid mechanics ............................................................................................... 4 

1.3.1 Fluid statics ........................................................................................... 5 

1.3.2 Fluid dynamics ...................................................................................... 5 

1.3.3 Viscosity ............................................................................................... 5 

1.3.4 Dynamic viscosity    ......................................................................... 5 

1.3.4 Kinematic viscosity    ........................................................................ 5 

1.4 Thermal conductivity........................................................................................ 5 

1.5 Thermal diffusivity ........................................................................................... 6 

1.6 Newton’s law of viscosity................................................................................. 6 

1.6.1 Newtonian fluids ................................................................................... 6 

  



viii 
 

1.6.2 Non-Newtonian fluids ........................................................................... 7 

1.6.3 Melting heat .......................................................................................... 7 

1.6.4 Activation energy .................................................................................. 7 

1.6.5 Entropy generation ................................................................................ 7 

1.6.6 Curie temperature .................................................................................. 8 

1.6.7 Viscous dissipation factor ...................................................................... 8 

1.7 Fourier law ....................................................................................................... 8 

1.8 Cattaneo-Christov heat flux .............................................................................. 8 

1.9 Dimensionless Number..................................................................................... 8 

1.9.1 Prandtl number ...................................................................................... 8 

1.9.2 Nusselt number ...................................................................................... 9 

1.9.3 Biot number........................................................................................... 9 

1.9.4 Eckert number ....................................................................................... 9 

1.9.5 Lewis number ...................................................................................... 10 

1.9.6 Deborah number .................................................................................. 10 

1.9.7 Peclet number ...................................................................................... 10 

1.9.8 Sherwood number ................................................................................ 10 

1.9.9 Thermophoresis parameter................................................................... 11 

1.9.10 Brownian motion parameter ............................................................... 11 

1.9.11 Schmidt number ................................................................................. 11 

1.10 Fundamental law .......................................................................................... 12 

1.10.1 Continuity equation ........................................................................... 12 

1.10.2 Momentum equation .......................................................................... 13 



ix 
 

1.10.3 Energy equation ................................................................................. 13 

1.10.4 Concentration number ....................................................................... 13 

1.11 Jeffrey fluid .................................................................................................. 13 

CHAPTER 2 INTRODUCTION AND LITERATURE REVIEW ........................ 15 

CHAPTER 3 IRREVERSIBILITY MINIMIZATION ANALYSIS OF 

FERROMAGNETIC OLDROYD-B NANOFLUID FLOW UNDER THE 

INFLUENCE OF A MAGNETIC DIPOLE ...................................................... 20 

3.1 Mathematical formulation............................................................................... 20 

3.1.1 Magnetic dipole appearance................................................................. 22 

3.2 Entropy generation ......................................................................................... 24 

3.3 Numerical solution ......................................................................................... 25 

3.4 Results and discussion .................................................................................... 26 

CHAPTER 4 FERROMAGNETIC JEFFREY NANOFLUID FLOW 

INFLUENCED BY MAGNETIC DIPOLE WITH CATTANEO-CHRISTOV 

DOUBLE DIFFUSION AND GYROTACT MICROORGANISM ................. 38 

4.1 Problems Development................................................................................... 39 

4.2 Governing equation ........................................................................................ 40 

4.2.1 Magnetic dipole ................................................................................... 40 

4.3. Numerical solutions ....................................................................................... 43 

4.4 Results and discussion .................................................................................... 44 

CHAPTER 5 CONCLUSION AND FUTURE WORK ......................................... 56 

5.1 Chapter 3 ........................................................................................................ 56 

5.2 Chapter 4 ........................................................................................................ 57 

5.3 Future work .................................................................................................... 57 

BIBLIOGRAPHY ................................................................................................... 59 

  



x 
 

 

 

LIST OF TABLES 

 

 

3.1 The Sherwood number grid free analysis ............................................................... 27 

3.2 Nusselt number for different parameters ................................................................ 27 

3.3 The Sherwood number’s for different values ......................................................... 28 

3.4 Comparison of heat transfer rates for impact of Prandtl. number ............................ 28 

  



xi 
 

LIST OF FIGURES 
 

 

Figure 3.1: Geometry of the problem ........................................................................... 21 

Figure 3.2: Association of   and  'f   ...................................................................... 30 

Figure 3.3: Association of   and  1   ...................................................................... 30 

Figure 3.4: Association of   and  2   ..................................................................... 31 

Figure 3.5: Association of 1  and  'f   ..................................................................... 31 

Figure 3.6: Association of   and  1   ...................................................................... 32 

Figure 3.7: Association of   and  2   ..................................................................... 32 

Figure 3.8: Association of * and  1   ...................................................................... 33 

Figure 3.9: Association of *  and  2   .................................................................... 33 

Figure 3.10: Association of cD  and  1   ................................................................... 34 

Figure 3.11: Association of bN  and  g   .................................................................. 34 

Figure 3.12: Association of tN  and  g   ................................................................... 35 

Figure 3.13: Association of cR  and  g   ................................................................... 35 

Figure 3.14: Association of aM  and  1   ................................................................. 36 

Figure 3.15: Association of 1  and  GN   ................................................................. 36 

Figure 3.16: Association of L  and  GN   .................................................................. 37 

Figure 3.17: Association of rB  and  GN   ................................................................. 37 

Figure 4.1: Geometry of the problem ........................................................................... 39 

Figure 4.2: Graph representing effect of f   for several values of   ............................ 45 

Figure 4.3: Graph representing effect of f   for several values of   ............................ 46 

Figure 4.4: Graph representing effect of f   for several values of 2  ........................... 46 

Figure 4.5: Graph representing effect of 1  for several values of  ............................. 47 



xii 
 

Figure 4.6: Graph representing effect of 2  for several values of   ............................ 47 

Figure 4.7: Graph representing effect of 1  for several values of *  ............................ 48 

Figure 4.8: Graph representing effect of 2  for several values of *  ............................ 48 

Figure 4.9: Graph representing effect of 1  for several values of   ............................. 49 

Figure 4.10: Graph representing effect of 2  for several values of   ........................... 49 

Figure 4.11: Graph representing effect of 1  for several values of tN  .......................... 50 

Figure 4.12: Graph representing effect of 1  for several values of Pr  .......................... 50 

Figure 4.13: Graph representing effect of   for several values of Le  .......................... 51 

Figure 4.14: Graph representing effect of   for several values of tN  .......................... 51 

Figure 4.15: Graph representing effect of   for several values of c  ........................... 52 

Figure 4.16: Graph representing effect of   for several values of 1i  .......................... 52 

Figure 4.17: Graph representing effect of   for several values of Lb  ......................... 53 

Figure 4.18: Graph representing effect of   for several values of Pe  ......................... 53 

Figure 4.19: Graph representing effect of   for several values of   ........................... 54 

 

 

 

 

 

 

 

 

 

 
  



xiii 
 

LIST OF SYMBOLS 

 

 

aM  Melting parameter 

Sc  Schmidt number 

tN  Thermophoresis parameter 

  Curie temperature 

bN  Brownian motion 

  Ferro hydrodynamic interaction parameter 

cD  Heat generation parameter 

Pr  Prandtl number 

cR  Reaction rate constant 

Ec  Eckert number 

aE  Activation energy parameter 

c  Stretching parameter 
,u v  Components of velocity along x and y-axis (m/s) 

T  Nanofluid temperature 

wT  Nanofluid temperature near the wall (k) 

cT  Nanofluid free stream temperature (k) 

k  Thermal conductivity 

T  Ambient Temperature 

wu  Stretching Coefficient 

M  Magnetic effect 

pC  Specific heat 

1 2,   Fluid temperature 

  Magnetic dipole scalar potential 
  Deborah number 

  



xiv 
 

  Viscous dissipation factor 

Pe  Peclet number 

Le  Lewis number 

  Microorganism concentration difference parameter 

Lb  Bio-convection Lewis number 

c  Concentration relaxation parameter 

1i  Biot number 

  Microorganism concentration difference parameter 

wc  Maximum swimming speed for bacteria 

nD  Diffusivity coefficient for microorganisms 

*  Dimensionless thermal relaxation time parameter 

1  Relaxation time parameter 

2  Retardation time parameter 

3  Thermal relaxation time parameter 

m  Dimensional concentration relaxation time  

T  Temperature gradient 

D  Mass diffusivity 

C C  Cattaneo-Christov 

K Gyromagnetic coefficient 

H Elements of the magnetic 

 



Chapter 1

BASIC PRELIMINARIES

This chapter introduces some fundamental de�nitions, concepts, and laws that will aid

comprehension of the works in the following two chapters.

1.1 Fluid

When shear stress is applied to a material, it can �ow and deform continuously. Fluids

include mercury, cooking oil, blood, and oxygen.

1.2 Nano�uid

The term "nano�uid" refers to a �uid that contains nanoparticles made of metals, oxides,

carbon nanotubes, or both. These �uid nanoparticles are primarily used to improve the �uid�s

thermal conductivity and heat transfer.

1.3 Fluid mechanics

Fluid mechanics is the branch of science that examines gases and liquids both in motion and

at rest. There are two categories of �uid.
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1.3.1 Fluid statics

A sub-�eld of �uid mechanics called �uid statics that examine �uids not moving

relative to one another.

1.3.2 Fluid dynamics

A branch of �uid mechanics that studies the behaviour of moving �uid.

1.3.3 Viscosity

The natural property of a �uid called viscosity measures the �uid�s resistance to

any gradual deformation when various forces are applied to it. It is separated into two types.

Numerically, it can be addressed as follows:

viscosity =
Shear stress

Gradient of velocity
: (1.1)

1.3.4 Dynamic viscosity (�)

It is a measurement of �uid �ow resistance. It has the dimensions ML�1T�1 and

the units are Kg=ms.

1.3.5 Kinematic viscosity (�)

The �uid density (�) and the dynamic viscosity (�) ratio is known as kinematic

viscosity. It is expressed in SI unit as m2=s and its dimension is (L2=T ):Mathematically

� =
�

�
: (1.2)

1.4 Thermal conductivity

The letter k stands for the unit of measurement for a material capacity to conduct

heat. High k values are good thermal conductors, while low k values are either good thermal

insulators or poor thermal conductors.
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1.5 Thermal di¤usivity

It is the ratio of heat stored per unit volume to the heat carried through a medium.

The thermal di¤usivity increases as heat move through a medium more quickly. A signi�cant

amount of heat is absorbed by the material if the thermal di¤usivity value is low, whereas a

high value implies that heat is mostly absorbed by the substance. Numerically,

� =
k

�Cp
; (1.3)

where Cp stands for speci�c heat capacity, k represents thermal conductivity and � represents

thickness.

1.6 Newton�s law of viscosity

If a �uid subjected to mechanical stress,The relationship between shear stress and

shear rate is established by Newton�s law of viscosity. It can be represented mathematically as

follows:

�yx /
du

dy
; (1.4)

or

�yx = �

�
du

dy

�
; (1.5)

in which �yx indicate the shear force applied on the �uid�s element and � indicate the absolute

viscosity and du
dy indicates the velocity gradient.

1.6.1 Newtonian �uids

Those �uids which obey the Newton law of viscosity and �uid with a constant

viscosity. In these �uids shear force (�yx) is linearly proportional to the gradient of velocity�
du
dy

�
. Alcohol, water, glycerine and kerosene are some examples of Newtonian �uids.
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1.6.2 Non-Newtonian �uids

These are the type of �uids which donot obey the Newton law of viscosity.

Here, nonlinear and Shear stress (� yx) and velocity gradient have a direct relationship. In

mathematics, it is represented as:

� yx /
�
du

dy

�n
; n 6= 1; (1.6)

or

� yx = �
du

dy
; � = k

�
du

dy

�n�1
; (1.7)

where k the consistency index, � represent apparent viscosity and n the �ow behaviour index.

For n = 1 Eq. (1:6) converts to Newton�s law of viscosity. Yougurt, fabric paints and ketchup

exhibits the non-Newtonian �uid behavior.

1.6.3 Melting heat

The phase change of a substance from a solid to a liquid is caused by a physical

process. This happens when a solid internal energy rises, usually due to the application of heat

or pressure, raising the temperature to the melting point of the substance. The ordering of

ions or molecules in a solid degrades to a less ordered state at the melting point, and the solid

"melts" into a liquid.

1.6.4 Activation energy

It is the energy needed to activate particles or atoms so that they can undergo

illustrative transformation or physical transport.

1.6.5 Entropy generation

The measure of a system�s instability is called entropy. It assists in identifying

strategies for reducing or controlling the irreversibility of the system. It is speci�cally used in

channels to study the nano and micro-scales of heat transfer. Entropy generation minimization

is a technique used in fuel cells, gas turbines, chillers, and curved pipelines.
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1.6.6 Curie temperature

Curie temperature is the point at which some materials cease to possess their intrinsic

permanent magnetism, which may usually be replaced by induced magnetism.

1.6.7 Viscous dissipation factor

The irreversible process by which a �uid work on adjacent layers due to shear stresses

is turned into heat is known as viscous dissipation.

1.7 Fourier law

According to the Fourier law, the rate of heat transmission through a material is

proportional to the area and the negative temperature gradient, through which the heat �ow.

q = �k(rT ): (1.8)

1.8 Cattaneo-Christov heat �ux

Two mathematicians, Cattaneo [13] and Christov [14], adapted Fourier law. It may

be expressed mathematically as:

q+ �2

�
@q

@t
+ V:rq� q:rV + (r:V )q

�
= �krT: (1.9)

1.9 Dimensionless Numbers

1.9.1 Prandtl number

It measures the di¤erence between thermal and momentum di¤usivity. Mathematically

Pr =
�

�
=
�Cp
k
; (1.10)

Cp represents speci�c heat, and k measures thermal conductivity mathematically. The Prandtl

number is employed in heat transfer to manage thickness of momentum and thermal boundary
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layer.

1.9.2 Nusselt number

The Nusselt number is the proportion of convective to conductive heat transfer at a

�uid boundary. Mathematically

NuL =
h�T

k�T=L
=
hl

k
; (1.11)

where h represents convective heat transfer, l represents characteristic length, and k denotes

thermal conductivity.

1.9.3 Biot number

The Biot number is de�ned as the ratio of interior di¤usion resistance to outside

convection resistance. Mathematically

 =
h

k

r
�

a
; (1.12)

where kinematic viscosity is �, the thermal conductivity is k and convective heat transfer

coe¢ cient is h.

1.9.4 Eckert number

Eckert number (Ec) stands for the expression of the relationship between the

kinetic energy of �ow and enthalpy. When the viscous dissipation term in the energy equation

is substantial, It is described mathematically as:

Ec =
u2

CprT
; (1.13)

wher u represents the continuum�s local �ow velocity, Cp is local speci�c heat,�T a wall�s

temperature being di¤erent from the surroundings.
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1.9.5 Lewis number

Warren Lewis put forward the idea of the Lewis number in 1939 which shows the

relationship between Pandit and the Schmidt number. When heat transfer and mass transfer

occur Lewis number becomes crucial.

1.9.6 Deborah number

It is the ratio to relax and characterize the time that it consumes for material to

set to applied stresses or deformations and the distinguished time scale of an experiment to

explore the reaction of the material.

De =
Relaxation time
Observation time

: (1.14)

1.9.7 Peclet number

The Peclet number is used in convective heat transfer estimates. It refers to the

ratio of thermal energy that is transferred to the liquid to thermal energy that is conducted

within the liquid.

Pe =
Advective transport rate
Di¤usion transport rate

: (1.15)

where the maximum swimming speed for bacteria is represented by Wc, b is the chemotaxis

constant and the di¤usivity coe¢ cient for microorganisms is represented as Dn.

1.9.8 Sherwood number

A dimensionless number utilised in mass transfer procedures is the Sherwood

number, also referred to as the Nussselt number. Its name honours Thomas Kilgore Sherwood

and denotes the proportion of convective mass movement to di¤usive mass movement.

Sh =
kL

D
: (1.16)

Here D represents mass di¤usivity(m2:s�1) , L depicts characteristics length (m); and

k represents the thermal conductivity.
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1.9.9 Thermophoresis parameter

It is the process that stops the mixture of various particles due to a pressure gradient

when the particles move collectively or set apart the mixture of the particles after mixing

Thermophoresis is positive on a cold surface and negative on a hot surface.

Nt =
(�C)pDT (Tw � Tc)

(�C)f �Tc
; (1.17)

Tw and Tc shows the wall temperature and temperature outside the plate, respectively, DT

show the thermophoretic di¤usion coe¢ cient, and � represent the kinematic viscosity.

1.9.10 Brownian motion parameter

It takes place due to the size of the nanoparticles in a nano�uid. Basically, it is a

nanoscale process showing nano�uid�s thermal in�uences.

Mathematically

Nb =
�DB(Cw � Cc)

�
; (1.18)

where

� =
(�C)p
(�C)f

: (1.19)

1.9.11 Schmidt number

The Schmidt number Sc is a dimensionaless quantity that measures the momentum

to mass di¤usivity ratio (viscosity). Heinrich Wihel Schmidt is the one who �rst presented it

(1892-1972).

Mathematically

Sc =
�

DB
; (1.20)

where � is kinematic viscosity and DB is mass di¤usivity.
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1.10 Fundamental laws

It is necessary to establish some mathematical relations in order to describe the physical

behaviour of a �uid �ow. We have three basic principles in �uid mechanics that account for

�uid motion. These laws are described in their mathematical form as relationships between

mass, momentum, and energy rate of change at a point, and are divided into subsections as

follows:

1.10.1 Continuity equation

The movement of the conserved quantity is explained by the continuity equation. The

conservation of mass, energy, momentum, electric charge, and other natural quantities makes

them suitable for use in a variety of physical process equations of continuity. The mass of a

closed system stays constant over time since it can only change in quantity by being added or

taken away. It represents the fact that mass has a constant value over time. In mathematical

form:

d�

dt
+ �r:V = 0: (1.21)

The �uid density is represented by �, V represented the velocity �eld and the material time

derivative is represented by d=dt: The time derivative of the material is de�ned as

d

dt
=
@

@t
+ V:r (1.22)

Considering Eq. (1:21); Eq. (1:22) has the following form

@�

@t
+r: (�V ) = 0 (1.23)

For an incompressible �uid,The form of Eq.(1:23) is

r:V = 0: (1.24)
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1.10.2 Momentum equation

The overall linear momentum of a system is constant, according to the conservation

of linear momentum concept.

�
dV

dt
= r:�� + �F ; (1.25)

where F denotes body force vector and �� denotes Cauchy stress tensor.

1.10.3 Energy equation

The �uid energy equation is de�ned as follows:

�Cp
dT

dt
= kr2T + T: (rV ) +Q ; (1.26)

where T denotes temperature, and Q represents the continuous heat source/sink term.

1.10.4 Concentration equation

The concentration equation is de�ned as follows:

�
dC

dt
+ V:rC = �D�r2C + �D

�kT
rT r2T; (1.27)

where C stands for concentration. The mass di¤usivity coe¢ cient is D, the thermal di¤usion

ratio is kT .

1.11 Je¤rey �uid

The rheological e¤ects of linear viscoelastic �uids are described by the Je¤rey �uid

model. The time derivative is replaced by the substantive derivative in this model, making

it the most basic. It falls under the classi�cation of �uids of the rate type, which explains

the properties of both retardation and relaxation time. The Tensor of the Je¤rey Fluid in

mathematical form:
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S =
�

1 + �1

�
A1 + �2

dA1
dt

�
; (1.28)

where A1 is mathematically denoted by A1 = rV + (rV )t in Eq. (1:28) in the component

form.

Sxx =
�

1 + �1

�
2�2

�
u
@

@x
+ v

@

@y
+ w

@

@z

�
@u

@x
+ 2

@u

@x

�
; (1.29)

Syy =
�

1 + �1

�
2�2

�
u
@

@x
+ v

@

@y
+ w

@

@z

�
@v

@y
+ 2

@v

@y

�
; (1.30)

Szz =
�

1 + �2

�
2�2

�
u
@

@x
+ v

@

@y
+ w

@

@z

�
@w

@z
+ 2

@w

@z

�
; (1.31)

Sxy = Syx =
�

1 + �2

�
�2

�
u
@

@x
+ v

@

@y
+ w

@

@z

��
@u

@y
+
@v

@x

�
+

�
@u

@y
+
@v

@x

��
; (1.32)

Syz = Szy =
�

1 + �2

�
�2

�
u
@

@x
+ v

@

@y
+ w

@

@z

��
@v

@z
+
@w

@y

�
+

�
@v

@z
+
@w

@y

��
; (1.33)

Sxz = Szx =
�

1 + �2

�
�2

�
u
@

@x
+ v

@

@y
+ w

@

@z

��
@u

@z
+
@w

@x

�
+

�
@u

@z
+
@w

@x

��
; (1.34)
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Chapter 2

INTRODUCTION AND

LITERATURE REVIEW

A �uid containing nanoparticles is known as a nano�uid. The numerous com-

mon nanoparticles used in nano�uids include metals, oxides, and carbon nanotubes. The most

common �uids used as base are oil, ethylene glycol, and water. Since base �uids are created

by dispersing nanoparticles within them, this �uid di¤ers from other conventional base �uids.

Thermal conductivity and heat transmission are improved by inclusion of these particles in

base �uids. Nanoliquid is a strong contender for the role of working �uid. These particles

have a thermal conductivity higher than the base �uid and a size of 1�100 nm and are utilised

to improve thermal characteristics at low concentrations. Nanoliquids have the potential to

signi�cantly improve heat transfer rates in a variety of zones that use the Navier-Stokes equa-

tion, such as nuclear reactors, heat exchangers, industrial cooling applications, transportation,

granular insulation, �ber and micro-electromechanical systems granular insulation, chemical

catalytic reactors, and the cardiovascular system blood vessels. The improved thermal fea-

tures of nano�uid bene�t micromanufacturing, pharmaceutical processes, power generation,

microelectronics, air conditioning, metallurgical, cancer surgery, air conditioning, chemical in-

dustries, and so on. Nano particles are needed as coolants in vehicles because of their small size,

which requires less energy to manage road resistance. Due to later developments in automotive

aerodynamics, there is a great deal of interest in braking systems with more precise heat dis-

15



sipation and materials like brake nano�uid. Many researchers have recently expressed interest

in building more e¤ective solar collectors.Ramzan et al. [ 1] explored the MHD second-grade

nonliquid �ow generated by thermal di¤usion �ux and Cattaneo-Christov concentration over a

bi-directional stretched sheet. According to Das et al. [2], nano�uids are mixtures of a base

�uid with metallic nanoparticles. Safwa et al. [3] studied magneto nano�uid �ow with the dual

strati�cation phenomenon through an absorbent stretching/shrinking surface. Irfan et al. [4-6]

described numerous investigations into MHD nano�uids using various models.

Non-Newtonian liquid �ows are used in a wide range of industrial and technical

processes, including paper production, petroleum drilling, glass blowing, polymeric liquid and

melt expulsion, paints, and so on. Non-Newtonian liquids are materials with no direct or linear

relationship between shear stress and velocity gradient. There is always a relation between stress

and strain rate in non-newtonian liquids. In comparison to Newtonian liquids, the constitutive

equations in non-Newtonian liquids are substantially more challenging, nonlinear, and of higher

order. These liquids can easily be divided into three groups.

At any location, the rate of shear is only speci�ed by the magnitude of shear stress

at that instant, so these liquids are stated as time-independent, inelastic, merely viscous, or

generalized Newtonian liquids.

Time-dependent liquids are more complex liquids in which the duration of shearing, as

well as their kinematic history, in�uences the connection between shear stress and shear rate.

Visco-elastic liquids have the properties of both a perfect �uid and an elastic solid, as

well as partial elastic recovery after deformation.

These types of liquids are found in many items we use on a daily basis. Shampoo, tooth-

paste, silly putty, and whipped cream are some of the items on the list. Mathematicians and

technologists are well aware that the physics of non-Newtonian liquids presents a unique di¢ -

culty. Nonlinearity can manifest itself in a variety of ways in di¤erent domains, such as biological

engineering and drilling operations. For such liquids, the Navier-Stokes equation is insu¢ cient,

and the characteristics of all �uids are not represented by a single fundamental equation in the

literature. Consequently, several non-Newtonian �uid models were put forth. Raju et al. [7]

inspected 3D Je¤rey �uid �ow with the e¤ect of thermal non-linear emission over an extended

surface. Hayat et al. [8] described the MHD �ow of Je¤rey �uid by a nonlinear radially stretch-
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ing surface. Hayat et al. [9] discussed two, the dimensional �ow of Je¤rey �uid with the impact

of chemical reaction over the extended surface. Imran et al. [10] described the MHD Je¤rey

�uid �ow with uniform heat �ux and chemical reaction over an in�nite vertical plate. Waqas

et al. [11] created a buoyant thermally radiating strati�ed Je¤rey nano�uid, whereas Zeeshan

et al. [12] observed heat transfer �ow of Je¤rey �uid �owing through an uprightly extended

surface using a magnetic dipole.

Fourier�s original work was recognized as the most acceptable method, which can

be used as a guideline for decades because of its widespread applicability. There was a defect

in this model that immediately resulted in a parabolic energy equation, meaning that the

original disruption was distinguished instantly in the medium. Cattaneo proposed relaxation

time to solve the di¢ culty known as Fourier�s law, the "paradox of heat conduction." As can

be seen, this correction results in the hyperbolic energy equation, which allows heat to be

conveyed by slow-moving thermal waves. Later, Christov improved Cattaneo�s model, naming

this model (Cattaneo-Christov) C-C heat �ux model. Cattaneo [13] solved this problem by

incorporating thermal impedance time, which eliminates "heat conduction inconsistency. The

Maxwell-Cattaneo model time subsidiary and the Oldroyd upper-convected derivative were

combined to change the technique by Christov [14]. Using the Cattaneo method, Khan et al.

[15] analyzed the movement and heat transmission in an upper-convicted Maxwell �uid over

an exponentially stretched surface. Ramzan et al. [16] explored the modi�ed Fourier law of

intensity growth in an MHD third-grade liquid stream with homogenous and heterogeneous

responses and boundary conditions through the convection of a directly expanded surface.

Rubab et al. [17] discussed the C-C heat �ow of a Maxwell �uid boundary layer over an extended

sheet. The uniqueness and structural integrity of solutions for controlling the temperature in

the C-C heat �ow model was established by Tibullo and Zimpoli [18].

A magnetic dipole consists of two magnetic poles separated by a small distance. The

combined activities of a magnetic dipole and �uid have been shown to be e¤ective at con�ning

temperature and momentum boundary layers. The heat dissipation phenomenon of �uids is

commonly used as heat transporters. The magnetic dipole gradually diminishes the turbulence

e¤ects in the �ow �eld. when the source main portion disappears and has no pro�le. The

closed-loop of electric current or a couple of poles are the two forms whose limits are explained
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by the magnetic dipole e¤ect. The magnetic source �nally becomes a magnetic dipole �eld when

the gap between it and the magnetic �eld widens. Zeeshan et al. [19] investigated the impact

of a magnetic dipole in a ferromagnetic liquid travelling through an extended sheet. Zeeshan

et al.[20] explored the heat transfer and �ow of Je¤rey �uid with the impact of a magnetic

dipole on a linearly stretching surface. Ali et al. [21] explained the magnetic properties of

nano-particles on the heat transfer phenomenon with the e¤ect of the magnetic dipole over an

extended sheet. Kumar et al. [22] examined the interaction of the Maxwell liquid �ow and

thermophoretic particle deposition via a stretched surface. Kumar et al. [23] discovered the

radiative nano�uid �ow with the e¤ect of a magnetic dipole through an extended sheet. Khan

et al. [24] conducted a study on thixotropic nano�uids with mass and heat transfer past a

curved extended surface on the e¤ect of a magnetic dipole.

Bioconvection is the most common process in suspensions caused by the upward

movement of microorganisms with a density slightly greater than water. Bioconvection occurs

when the suspension�s upper surface becomes too thick due to microbe multiplication, and

the microorganisms collapse. Gravitaxis, gyrotaxis, and oxytaxis are all types of microbes.

Support from gyrotactic microorganisms in �uids helps with �uid stability, mass conversion,

and micro-scale mixing, especially in small quantities. Bioconvection is used in both natural

systems and also in biotechnology. The microorganism particles have been widely cast o¤ in

the production of mechanical and commercial products such as ethanol, waste-derived biofuel,

and compost. Another use of them is in water treatment facilities. Those bacteria deliver

hydrogen gas and biodiesel, a possible viable energy source. Numerous remarkable similarities

and contrasts exist between motile bacteria and nanoparticles. Self-moving motile bacteria

thicken the base liquid by swimming in a speci�ed direction in the liquid in reaction to changes

in gravity, light, or material interest. The upper surface of the suspensions becomes �imsy

as a result of the grouping of microorganisms, and microorganisms lay down to cause bio-

convection. Nanoparticles do not proliferate on their own. These nanoparticles are transferred

by the movement of the base �uid and move consequently with processes including Brownian

movement and thermophoresis. The gyrotactic microorganism�s accumulation into nano�uid

increases its solidity as a suspension. Raju et al. [25] looked at the moving wedge being

covered by the radiative �ow of Casson �uid that contained gyrotactic microorganisms. The
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�ow of a nano�uid containing gyrotactic microorganisms down a vertical �at plate was studied

by Chamkha et al. [26] in the context of natural bioconvection boundary layer �ow. In the

presence of a magnetic �eld, Akbar et al. [27] quantitatively examined the shared e¤ects of

bioconvection, Brownian motion, gyrotactic nanoparticles, and thermophoresis of gyrotactic

microorganisms on a stretching sheet. Waqas et al. [28] investigated the bioconvection of

gyrotactic bacteria and nanoparticles in a modi�ed second-grade nano�uid. References [29�32]

contain additional observations about the reported bio-convection.
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Chapter 3

IRREVERSIBILITY

MINIMIZATION ANALYSIS OF

FERROMAGNETIC OLDROYD-B

NANOFLUID FLOW UNDER THE

INFLUENCE OF A MAGNETIC

DIPOLE

3.1 Mathematical formulation

We examine 2D Oldroyd B nano�uid �ow under the in�uence of a magnetic dipole

over a stretching sheet in the x-direction, the surface�s distance from the magnetic dipole is

"a". which is placed at the centre of y-axis in Fig 3:1. The magnetic dipole generates the

magnetic �eld in the x-direction to saturate the ferro�uid. However, since the temperature

Tw is measured at the surface but Tc is assumed at a distance from the sheet, elements won�t

become magnetic until they begin to cool down close to the thermal boundary layer that is

connected to the surface. Here, the Buongiorno nano�uid model is acquired to demonstrate
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the e¤ects of Brownian motion and thermophoresis. In this instance, the interaction between

activation energy and heat generation is explored, and the melting heat boundary condition is

taken into account at the surface.

Fig. 3:1 Geometry of the problem [34].

Governing equations
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with the boundary conditions

vjy=0 = 0; ujy=0 = uw = cx; T jy=0 = Tw; Cjy=0 = Cw
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3.1.1 Magnetic dipole appearance

The magnetic dipole scalar possibility � is introduced by
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In the above equation , the symbol � stands for the displacement of the magnetic dipole,
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The magnetic e¤ect on temperature is given by

M = K(Tc � T ): (3.12)

In this equation, "K" stands for the gyromagnetic coe¢ cient, and for ferromagnetic processes,

the applied magnetic �eld should be non-homogenous and Tc > T . When the ferro�uid gains

temperature of Tc, There is no need for further magnetization. However, as shown by Eq.

(3:12), the �uid is unable to reach the temperature Tc when it is far from the surface.

Similarity transformation are
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Boundary conditions of dimensionless equations:
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Sherwood(Shx) and Local Nusselt number(Nux)

Dimensional form of the Nux and Shx are characterized as:
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The Nusselt number and the Sherwood number dimensionless forms are:
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where Rex = cx2

�f
is local Reynolds number.

3.2 Entropy generation

The entropy generation local rate over the stretchings sheet is de�ned by
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by similarity transformation the entropy genetration takes the form:
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3.3 Numerical solution

Using the bvp4c MATLAB tool, Eqs (3:14) � (3:17) that correspond to the

boundary conditions (3:18) are numerically solved. In order to accomplish this, the higher-

order di¤erential equation system under discussion is converted into an order-one system. The

tolerance for the given issue is 10�5. The appropriate �nite estimate of � !1 as �1 = � = 7

is determined while taking into account the values of the emerging parameter.
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yy4 =
�Nt
Nb

yy2 � Scy1y10 +RcScy9 (� + �)m exp
�

�E
� + �1y5
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; (3.29)

The boundary conditions are

y0(2)� 1; Pr y0(1) +May0(6); y0(7); y0(5)� 1; y0(9)� 1;

y inf(2); y inf(3); y inf (5) ; y inf(7); y inf(9): (3.30)

3.4 Results and discussion

The main goal of this section is to discuss how emerging parameters a¤ect associated

distributions in mathematical-modelling. The allowable parameter ranges are as follows

(0:4 � � � 2:2) ; (0:1 � �1 � 1:3) ; (0:2 � � � 0:8) ; (0:1 � � � 0:3) ;

(0:1 � Dc � 0:4) ; (0:1 � Nb � 0:3) ; (0:0 � Nt � 0:3) ; (0:1 � Rc � 0:4) ;

(0:1 � Sc � 0:6) ; (3 � Pr � 13) ; (0:1 �Ma � 09) ; (1:0 � �1 � 4:0) ;

(0:1 � � � 1) ; (0:1 � � � 1) ; (0:1 � Ec � 3) ; (0:1 � E � 1)

These characteristics are selected on the base of assumptions which provide best graphical

result.
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Table 3:1: The Sherwood number grid free analysis

Serial No Shx Grid size

1 2.4042 10�10

2 2.4057 50�50

3 2.4058 70�70

4 2.4062 90�90

5 2.4063 100�100

6 2.4064 200�200

7 2.4064 300�300

Table 3:2: Nusselt number for di¤erent parameters

2 Rc Nb R
� 1
2

ex Nux

0.1 0.5 1.79373

0.3 1.64217

0.5 1.47769

0.2 0.1 1.17210

0.2 1.00430

0.3 0.88453

0.5 1.79037

1.75368

1.71956

0.2 1.34590

0.3 1.16070

0.4 1.09870
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Table 3:3: The Sherwood number for di¤erent parameters

Sc Nb RC ��0(0)

1.0 0.1 0.1 1.27040

1.5 1.58550

2.0 1.85500

0.2 1.87980

0.3 1.90410

0.4 1.92800

1.73950

1.62410

1.50860

0.2 1.88660

0.3 1.91720

0.4 1.94710

Table 3:4. Comparison of heat transfer rates for impact of prandtl number

Pr Abel et al. [33] Chen [34] Present

0.72 1.0885 1.0885 1.088497

1 1.3333 1.3333 1.333296

3 - 2.5097 2.509689

10 4.7968 4.7968 4.796794

Figure 3:2 display e¤ect of the ferrohydrodynamic interaction parameter � on velocity pro�le.

This clearly indicates that velocity is decreased with an increase in values of � Because of the (

ferrohydrodynamic interaction parameter) �, the �uid will become more viscous and have high

adhesive forces, and the velocity will appear to be slower. Figures 3:3 and 3:4 show the e¤ect

of ferrohydrodynamic interaction parameter � on thermal pro�les. There depict the increment

in temperature with rising ferrohydrodynamic interaction parameter values. In order to see the

impact of the material parameter �1 on the velocity distribution the outcome is illustrated in
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Figure 3:5: The velocity and the boundary layer thickness are both clearly reduced, according

to large estimates of �1. The link between viscous dissipation and temperature distribution is

depicted in Figures 3:6 and 3:7. When the e¤ect of viscous dissipation is applied, the thermal

of the �uid rises is a well-known fact. Figures 3:8 and 3:9 depict the e¤ect of the thermal

relaxation time parameter � on both thermal pro�les. It is noticed that the thermal pro�le

and boundary layer thickness are decreased with greater thermal relaxation time parameters.

The impact of heat generation parameter Dc on �uid temperature is drawn in Figure 3:10. It is

noticed that there is an increase in liquid temperature for Dc. Figure 3:11 and 3:12 are drawn to

show how thermophoretic parameters and Brownian motion e¤ect on the concentration pro�le.

Here, opposite trends of the two parameters are evident in relation to the �uid concentration.

The concentration pro�le is decreasing with increased Brownian motion Nb and concentration

pro�le of the �uid increasing with increased value ofNt: The impact of reaction rate constant Rc

on the concentration distribution is shown in Figure 3:13. Concentration pro�le and the

thickness of boundary layer boost up through increase in reaction rate constant. Figure 3:14

indicates the e¤ect of melting heat parameter Ma on thermal pro�le. It shows that the thermal

pro�le is lowered for large values of Ma: In Figures 3:15 � 3:17 the in�uence of the di¤usion

variable, Brinkman number, and temperature di¤erence parameter on entropy optimization

is shown. The entropy pro�le is reduced by the temperature di¤erence parameter, but it is

increased by the Brinkman number and di¤usion variable.

Table 1 Sherwood number grid-free analysis. The numerically calculated Nusselt number for

various estimates of the melting heat parameter Curie temperature and dimensionless distance,

is shown in Table 2. Evidently, the Nusselt number is falling due to rising estimates for all

components. Table 3 shows how the Schmidt number Brownian motion parameter and reaction

rate constant all a¤ect the results. It is well known that raising estimates of the Schmidt

number, Brownian motion parameter and reaction rate constant increases the concentration

rate. Table 4 is constructed to compare the various estimates of the Prandtl number in the

limited situation with Chen31 and Abeletal32.
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Fig. 3.2 Association of � and f
0
(�).

Fig. 3.3 Association of � and �1 (�).
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Fig. 3.4 Association of � and �2 (�).

Fig. 3.5 Association of �1 and f
0
(�).
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Fig. 3.6 Association of � and �1 (�) :

Fig. 3.7 Association of � and �2 (�).
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Fig. 3.8 Association of � and �1 (�) :

Fig. 3.9 Association of � and �2 (�).
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Fig. 3.10 Association of Dc and �1 (�).

Fig. 3.11 Association of Nb and � (�).
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Fig. 3.12 Association of Nt and � (�).

Fig. 3.13 Association of Rc and � (�).
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Fig. 3.14 Association of Ma and �1 (�) :

Fig 3.15 Association of �1 and NG (�) :
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Fig. 3.16 Association of L and NG (�) :

Fig. 3.17 Association of Br and NG (�).
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Chapter 4

FERROMAGNETIC JEFFREY

NANOFLUID FLOW

INFLUENCED BY MAGNETIC

DIPOLE WITH CATTANEO

CHRISTOV DOUBLE DIFFUSION

AND GYROTACTIC

MICROORGANISM

In this exploration, two-dimensional incompressible Je¤rey nano�uid �ow with bio-

convection passing through a stretching surface subjected to a magnetic dipole is studied. The

customary Fourier law is replaced by C-C heat �ux in this envisioned model. Magnetic nanopar-

ticles play a signi�cant role in the viscoelastic physiognomies of ferro�uid streams. A MATLAB

software bvp4c numerical technique is used to address the coupled nonlinear di¤erential equa-

tions. Graphs and quantitative data are used to show the impact of various parameters on
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velocity, temperature, concentration, and bioconvection pro�les. According to the �ndings, for

large values of the thermophoresis parameter, thermal and concentration pro�les depict increas-

ing behavior. Moreover, the e¤ects of the viscous dissipation parameter on the temperature

�eld show a rising pattern. The motile density pro�le declined for greater Lewis and Peclet

numbers.

4.1 Problems Development

We study a two-dimensional viscous, incompressible, and electrically non-conducting

Je¤ery �uid �ow that is passing across a stretching surface while subjected to a magnetic �eld

created by a two-pole stretching surface magnet. As shown schematically in Fig 1, an extended

surface with velocity uw = cx is examined along the x-axis, with the y-axis perpendicular to

it. The magnetic dipole is positioned at the y-center of the sheet, at a distance of "a" from it.

To completely saturate the ferro�uid, the magnetic �eld strength is increased and orientated

in the positive x-direction. The Curie temperature is Tc, while the uniform temperature at the

sheet�s surface is Tw, and the ambient ferro�uid temperature is T1. They won�t be able to

magnetise until they have cooled.

Fig. 4:1 Geometry of the problem.
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4.2 Governing equation

Mathematical modeling the governing equations of the assumed system are:
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with suitable boundary conditions

ujy=0 = uw = cx; v = 0; N jy=0 = Nw;

�kTy = hf (Tw � T ) ; �DBCy = hf (Cw � C) ;

ujy!1 ! 0; T jy!1 ! Tc; Cjy!1 ! Cc; N jy!1 ! Nc;
@u

@y
jy !1: (4.6)

4.2.1 Magnetic dipole

The permanent magnetic scalar potential of a dipole �eld is taken as
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where,the magnetic �eld�s intensity is represented by the symbol .

The components of the intensity of the magnetic �eld along the x and y axes are HX and

Hy, respectively are given as:
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Magnetization M is a temperature-dependent variables

M = K(Tc � T ): (4.13)

Since K is the gyro-magnetic coe¢ cient in the above calculation, where M is utilized here

to represent magnetization.

Similarity Transformations are de�ned as:

u = cxf
0
(�); v =

p
��fcf (�) ; � =

r
c

�f
y ; � =

r
c

�f
x; (4.14)
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= �1 (�) + �
2�2 (�) ; � =
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Cw � Cc

; � =
N �Nc
Nw �Nc

:
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Dimensionless equations are as follows:
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Boundary conditions for dimensionless equations:
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The above mentioned parameters are translated as:
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4.3 Numerical solutions

Using the bvp4c MATLAB tool, Eqs (4:15) � (4:19) that correspond to the

boundary conditions (4:20) are numerically solved. In order to accomplish this, the higher-

order di¤erential equation system under discussion is converted into an order-one system. The

tolerance for the given issue is 10�6. The appropriate �nite estimate of � !1 as �1 = � = 9

is determined while taking into account the values of the emerging parameters.

Below is the algorithim of the numerical Scheme
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with the transformed B.CS

y0 (2)� 1; y0 (10) +Bi2 (1� y0 (9)) ; y0 (1) ; y0 (6) +Bi1 (1� y0 (5)) ; y0 (7)

y0 (11)� 1; y inf (11) ; y inf (2) ; y inf (3) ; y inf (5) ; y inf (9) ; y inf (7) (4.27)

4.4 Results and discussion

The main aim of this part has to investigate the outcomes of various appropriate

factors including ferrohydrodynamic interaction parameter �; Prandtl no Pr; Deborah number

, retardation times parameter �2, Brownian movement variable Nb, Thermophoresis variable

Nt, Dimensionless thermal relaxation time �, Viscous dissipation factor �, Peclet number Pe;

Concentration Lewis number Le, microorganism concentration di¤erence parameter �; Bio-

convection Lewis number Lb and Concentration relaxation parameter �c verses the associated

pro�les.

Figure 4:2 shows the e¤ect of ferrohydrodynamic interaction parameter (�) on the velocity

pro�le. It shows that velocity diminishes as � increments Because of the ferrohydrodynamic

interaction parameter, the �uid will become more viscous and have high adhesion forces, and

the velocity will appear to be slower. Figure 4:3 depicts the e¤ect of Deborah number () on

velocity distribution. It is noted that the Deborah number has an increasing relationship with

both boundary layer thickness and velocity. Figure 4:4 shows the impact of the retardation

time parameter (�2) on the velocity distribution. It is seen that the velocity declines with

expanding �2 and, consequently, diminishing the boundary layer thickness. Figures 4:5 and 4:6

display the impact of the ferrohydrodynamic interaction parameter (�) on the thermal pro�le.

Here, temperature increments with a higher estimation of �. Figures 4:7 and 4:8 enhance the

e¤ect of the dimensionless thermal relaxation time (�) on both thermal pro�les. Because of

the longer thermal time, the temperature of the liquid drops. Figures 4:9 and 4:10 show the

impact of viscous dissipation factor (�) on temperature distribution. The temperature rises as

viscous dissipation increases, as shown by the graphs. Figure 4:11 depicts the in�uence of the

thermophoresis parameter (Nt). As the value of Nt rises, the temperature pro�le of the �uid

rises as well. The reason behind this, the particles of the �uid push the hot �uid away from
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the hot surface. Figure 4:12 depicts the relationship between the thermal pro�le and Prandtl

Number (Pr). As (Pr) rises, the relationship becomes more negative.

When the Lewis number (Le) is increased, the boundary layer thickness and nanoparti-

cle concentration decline, as shown in Figure 4:13. For various values of the thermophoresis

parameter (Nt) in Figure 4:14;which shows the �uctuations in nanoparticle concentration. In

the absence of the Nt, particle concentration is relatively modest. The presence of the Nt

increases nanoparticles concentration and the thickness of the boundary layer that surrounds

them. The concentration boundary layer shrinks as the concentration relaxation parameter

(�c) increases, as shown in Figure 4:15. It also indicates that decreasing the value of �c im-

proves the concentration movement on the sheet. Figure 4:16 shows the impact of Biot number

�i1 on concentration pro�le. It shows the concentration �eld and boundary layer thickness are

increasing at higher Biot numbers. Figures 4:17 � 4:19 show the impact of Lewis number Lb

on motile density pro�le, bio-convection peclet number Pe; and microorganism concentration

di¤erence parameter � respectively. It is seen that the density pro�le is decreasing for greater

estimates of these parameters.

Fig. 4.2. Graph representing e¤ect of f
0
for several values of �:
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Fig. 4.3. Graph representing e¤ect of f
0
for several values of :

Fig. 4.4. Graph representing e¤ect of f
0
for several values of �2:
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Fig. 4.5 Graph representing e¤ect of �1 for several values of �

Fig. 4.6 Graph representing e¤ect of �2 for several of �:
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Fig. 4.7 Graph representing e¤ect of �1 for several values of �:

Fig. 4.8 Graph representing e¤ect of �2 for several values of �:
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Fig. 4.9 Graph representing e¤ect of �1 for several values of �:

Fig. 4.10 Graph representing e¤ect of �2 for several values of �:
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Fig. 4.11 Graph representing e¤ect of �1 for several values of Nt:

Fig. 4.12 Graph representing e¤ect of �1 for several values of Pr :
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Fig. 4.13 Graph representing e¤ect of � for several values of Le:

Fig. 4.14 Graph representing e¤ect of � for several values of Nt:
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Fig. 4.15 Graph representing e¤ect of � for several values of �c:

Fig. 4.16 Graph representing e¤ect of � for several values of �i1:
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Fig. 4.17 Graph representing e¤ect of � for several values of Lb:

Fig. 4.18 Graph representing e¤ect of � for several values of Pe:
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Fig. 4.19 Graph representing e¤ect of � for several values of �:
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Chapter 5

CONCLUSION AND FUTURE

WORK

The �rst problem in this thesis is review work, and the second problem is extension

work, both of which have been studied. The conclusion to both problem are as follows.

5.1 Review work

� In comparison to increased estimations of the ferromagnetic parameter, the temperature

pro�les, and velocity pro�les show a reverse tendency.

� The Brownian motion parameter displays a falling trend in the concentration pro�le,

while the thermophoretic parameter shows the opposite trend.

� The temperature ratio parameter reduces entropy generation, whereas the di¤usion vari-

able and Brinkman number increase entropy generation.

� The thermal of the �uid drops for large rising values of the melting heat parameter.

The heated �uid actually transfers more heat to the surface when melting heat parameter

values are high. In due course, the �uid temperature begins to decline.

� The enhanced heat-generating parameter results in the rise of �uid temperature.
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5.2 Contribution of thesis

The following are the major �ndings of this study:

� The thermophoresis parameter Nt indicates the rising behaviour for both temperature

and concentration pro�les.

� The microorganisms in the density pro�le decrease as the Lewis number Lb, bio-convection

Peclet number Pe, and microorganism concentration di¤erence parameter increase �.

� The expansion in Pr has adverse consequences for the temperature distribution.

� The Ferrohydrodynamic interaction parameter � has a positive impact on the temperature

�eld, while having an adverse consequence on velocity dissemination.

� When the values of concentration relaxation parameter �c and Lewis number Le are

increased, the boundary layer thickness and its related nanoparticle concentration are

also decreased.

� The Viscous dissipation factor � has a positive impact on the thermal pro�le.

� The increase in dimensionless thermal relaxation time � corresponds to the thermal

pro�le decline.

� As Biot number �i1 increase, the yield to the boundary layer thickness is increased to-

gether with the concentration �eld.

5.3 Future work

For future work, following may be considered:

� The Je¤rey �uid may be replaced with any other non-newtonian �uid.

� The boundary conditions may also be replaced with temperature and solutal strati�ca-

tions.

� The magnetic dipole may be replaced with Hall and Ion slip e¤ects.
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