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Abstract 

 

The goal of this thesis to investigate the consequence of thermal stratification, 

thermal radiation, heat source/sink, the gyrotactic microbes in the nanofluid is important 

to enhance the thermal proficiency of various systems like bacteria live micro-mixers, 

microbial fuel cells, micro volumes such as enzymatic biosensor, microfluid flow devices, 

and chip shaped microdevices as bio-micro systems. In addition, the motivating research 

area in the current era is the suspension of nanoparticles with microorganisms which plays 

a vital role in the field of biotechnology and biomedical implementations. With this 

motivation, the purpose of this examination is to give an analysis of gyrotactic microbes 

bioconvection occurrence for the flow of Reiner-Philippoff (R-P) nanofluid in presence 

of thermal radiation and heat source-sink within a non-uniform thickness over a stretching 

surface. The governing equations are partial differential equations which are transformed 

into a coupled system of nonlinear dimensionless equations. The dimensionless equations 

are then tackled by a numerical technique (shooting method) using computational 

MATLAB scheme. The influences of the flow parameters on the velocity, mass and heat 

transfer rates, motile microbe rate of diffusion is analyzed and demonstrated via graphs 

and tables. Numerical findings concluded that the bioconvection Peclet number and 

motile microbe increase the motile microorganism’s concentration. Furthermore, the 

thermal radiation increases the temperature. 
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CHAPTER 1 

INTRODUCTION 

This chapter contains a few significant basic definitions as well as some useful flow 

laws and equations which help to understand the work related in the next chapters. Moreover, 

few major concepts of solution methods such as shooting technique and Runge-Kutta method 

are also discussed. 

1.1 Basic Definitions 

1.1.1 Fluids 

A continually deforming substance due to external force or an applied shear stress is 

called fluid. Fluid is a form of matter which includes gas or liquid. Liquids have definite 

volume but do not hold a shape. On the other hand, the gases do not own either a definite 

shape or volume. The fluid is very common in our daily life such as air, water, petrol, 

nitrogen, honey, methane, and helium. The field of science that deals with the behavior of 

fluid is called fluid mechanics. It has wide range of applications in biological sciences, 

environmental sciences, marine sciences, oceanology, engineering, and study of blood flow 

etcetera. 

1.1.2 Real Fluid 

Real fluids or viscous fluids are those which have at least some viscosities. The fluid 

which possesses zero viscosity is termed as ideal fluid, which does not exist. The real fluid 

can be categorized as 

i. Newtonian fluid 

ii. Non-Newtonian fluid  
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i) Newtonian Fluid 

When shear stress on a fluid is applied directly proportional to deformation rate or the 

fluid that obey the Newton’s law of viscosity is identified as Newtonian fluid, where 

Newton’s law of viscosity says that applied shear stress is directly and linearly proportional 

to the velocity gradient. In Newtonian fluid, the viscosity remains fixed, regardless, how 

much amount of shear applied for a fix temperature. 

Mathematically 

휏 = 휇 ,      (1.1) 

where 휏 represents the shear stress applied on the fluid, 휇 denotes viscosity of fluid, and  

shows that the velocity gradient normal to the direction of shear. Water, mineral oil, and 

gasoline are the representations of Newtonian fluids. 

ii) Non-Newtonian Fluid 

Many of the fluids exist in nature whose viscosity vary with the variation of the acting 

shear stress, such type of fluid observed as non-Newtonian fluids. In other words when shear 

stress is contradicting the relation of directly proportional to the rate deformation is called 

non-Newtonian fluid.  

휏 ∝  ,      (1.2) 

휏 = 푘 ,     (1.3) 

where 푛 is performance index, 푛 ≠ 1, when 푛 > 1 is called pseudo-plastic and 푛 < 1 is 

known as dilatant fluid and 푘 is constant index. 
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1.1.3 Bioconvection 

Bioconvection is the motion of a large number of small organisms in a fluid, 

especially free swim zooplankton in water. Microorganisms are well known as unicellular 

organisms. They live universally, as in human and plant bodies. They are considerable 

thicker than water, due to which microorganisms develop a cause of bioconvection. 

Bioconvection’s physical significance is proficiently assorted in ethanol, biofuels, and a 

variety of industrial and environmental structures. The functionality of bioconvection is 

established by an upsurge in the concentration of motile microorganisms. 

1.1.4 Stretching Flow 

When the sheet is stretched in its own plane velocity comparative from a fixed point 

to its distance is known as stretching flow. There are different kinds of stretching flow such 

as linearly and non-linearly stretching flow.  

1.1.5 Variable Thickness of Sheet 

In this era, the researchers are focusing over a sheet with nonlinear stretching. Many 

of the physical circumstances happens in which the need of a nonlinear stretching sheet must 

be critical. The expression for non-linear stretching 푈 = (푥 + 푏)  with 푛 variation, and 푏 

represents the variable thickness of extending sheet. Particular form of nonlinearly extending 

sheet with non-uniform thickness is frequently utilized in acoustical components, 

architecture, nuclear reactor technology, machine design, and naval structure. 

1.1.6 Brownian Motion 

It is unsystematic movement of microscopic particles adjourned in a liquid or gas, 

due to collisions with molecules of the neighboring medium. The Brownian motion is 

demonstrated and discoursed the indication for the movement of molecules provided by an 

experiment. The Brownian motion was firstly introduced by Robert Brown in 1827. 
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1.1.7 Thermal Radiation 

The process by which energy is emitted by a warmed surface in all ways and moves 

at the speed of light directly to its point of absorption. There is not any intervening medium 

required to carry thermal radiations. The thermal radiation performs a vital role in various 

mechanical, chemical processing, engineering technologies, and climate change. High 

absorbers are great emitters, objects with maximum absorption will have maximum 

emission. 

Thermal radiation depends on factors given below 

 Shape of the body 

 Nature of the surface material 

 The temperature of the body 

 

1.1.8 Thermal Stratification 

Thermal stratification happens while two natures of steam with various temperatures 

arise into interaction. The difference in temperature causes the colder and heavier water to 

settle at the bottom, while permitting the lighter and warmer water to float at over the cooler 

water. The thermal transport phenomenon is considered by thermal radiation. Thermal 

radiation has energetic role in industries, airplane, gas turbines etc. 

1.1.9 Solutal Stratification 

Solutal stratification is that which occur due to its concentration difference or the 

occurrence of different fluids getting diverse densities. Thermal stratification develops due 

to temperature variations. Double stratification process in fluid gains much interest in heat 

and mass transport analysis. In fact, inspecting mixed convection flow over a double 

stratified medium is a significant fluid problem due to the presence of geo-physical flows 

like in the lakes, rivers, seas, and solar ponds. 
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1.1.10 Heat Source/Sink 

A heat absorption is an inactive heat exchanger that transfers the heat formed by 

electronics or a mechanical device into a coolant fluid in motion. A heat source is a body that 

produces or radiates heat. 

1.2 Constitutive Equations 
1.2.1 Continuity Equation 

Continuity equation states that mass is conserved in such a way when fluid is in 

motion. Conservation of mass is mathematically represented by continuity equation. It 

describes the mass of any object of body remains same. This law was given by “Antoine 

Lavoisier” in 1789. Which can be written mathematically as: 

+ ∇. (휌 푉) = 0 ,     (1.4) 

where the stability is for incompressible fluid as follows: 

∇. 푉⃗ = 0,      (1.5) 

where 휌 describes density, 푡 for time, velocity field 푉 = [푢(푥, 푦, 푧),푣(푥, 푦, 푧),푤(푥,푦, 푧)] 

and ∇ is the divergence parameter. 

1.2.2 Momentum Equation 

The general law of physics states that the quantity of momentum that describes 

motion remains unchanged in isolated system of objects or the sum of momentum remains 

constant. The momentum equation involves that the time rate of momentum changes in each 

direction be evenly balanced to total of the forces acting in that direction, this observable fact 

is also called Newton’s second law of motion. The incompressible Navier-Stocks equation 

is derived form of Newton’s second law of motion. 

Mathematically it can be written as 
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휌 
⃗
 + 푉⃗.∇ 푉⃗ = 푑푖푣 휏 + 휌 푏.   (1.6) 

where 휌푏 represents body force divided by unit mass, 휏 is the Cauchy stress tenor, and 푉⃗ is 

the velocity vector. 

The Cauchy stress tensor 휏 has the form 

휏 = −푃퐼 + 휇 퐴∗.     (1.7) 

In above equation, 푃 and 퐼 express the pressure and identity tensor, respectively and  퐴∗ is 
Rivlin Erickson tensor written as  

 퐴∗ = ∇푉 + (∇푉)푇,      (1.8) 

푇 denotes transpose of matrix. Given below expression is for three-dimensional flow 

∇ 푉 =

⎣
⎢
⎢
⎢
⎡

  

휕푢
휕

휕푢
휕

휕푢
휕

휕푣
휕

휕푣
휕

휕푣
휕

휕푤
휕

휕푤
휕

휕푤
휕

  

⎦
⎥
⎥
⎥
⎤

.    (1.9) 

1.2.3 Concentration Equation 

+ 푉⃗.∇ 퐶 = 퐷 ∇  퐶 + 푘  퐶 .    (1.10) 

The equation (1.10) is known as concentration equation, 퐶 shows the intensity of the 

species, D is for diffusion coefficient, and 푘  is for reaction rate of the 푛푡ℎ order 

homogeneous chemical reaction. 

1.2.4 Boundary layer Equation/Flow 

The discovery of boundary layer flow has vital role in fluids. This innovation is done 

in 1904. The influential Navier-stokes equations of Newtonian fluid flow vastly simplified 

inside the boundary layer have order of significance analysis of results. Certainly, PDE’s 

turn into parabolic. This process massively achieves solution process for equations. The flow 

is split up into inviscid term which is easy to solve by several methods, and boundary layer 
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which will be derived easily to tackled by PDE. Incompressible two-dimensional flow of 

Navier-stoke equations are 

푢 + 푣 = −  + 휈 + ,    (1.11) 

푢 + 푣 = −  + 휈 + ,     (1.12) 

 +  = 0.      (1.13) 

In above mentioned expressions 휈 is kinematic viscosity, 푢 and 푣 are the velocity 

components in 푥,푦 direction, respectively. The wall is assumed at 푦 = 0, using 

dimensionless parameters 

푥 =  , 푦 =  , 푢 =  ,푣 =   ,    푃 =  .   (1.14) 

here the parameter 퐿 indicates horizontal length and 훿  represents boundary layer thickness. 

Equations (1.11 - 1.13) in form of non-dimensional parameters are 

푢  +  푣  = − +  +   ,    (1.15) 

푢  +  푣  = − +  +   ,   (1.16) 

푢 +  푣  = 0,     (1.17) 

where Reynold’s number can be written as 

푅 =  .     (1.18) 

In the boundary layer theory, the inertial forces and viscous forces are of the same order 

 Hence, 

 = 푂(1) ,    (1.19) 
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or 

훿 = 푂 푅  퐿  .    (1.20) 

Vanishing tilde notation and utilizing above equation we obtain 

푢 + 푣 = −  +  + ,    (1.21) 

푢 + 푣 = −  +  + ,    (1.22) 

+ = 0.       (1.23) 

For 푅 → ∞, it becomes 

푢 + 푣 = −  +  ,     (1.24) 

−  = 0,       (1.25) 

 +  = 0,      (1.26) 

where Eq. (1.25) reveals that pressure is fixed all over the boundary layer. Dimensional 

form of Eq. (1.21) - (1.23) become  

푢 + 푣 = −  + 휈  ,     (1.27) 

−  = 0,       (1.28) 

 +  = 0.      (1.29) 

1.3 Solution Methodology 

Physical and engineering problems are mostly presented by means of differential 

equations either ordinary DEs or partial DEs. These ordinary/partial DEs are not easy to 
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solve. By putting similarity suitable transformations, one convert partial DEs into ordinary 

DEs which can be solved by numerical methods as well as analytical techniques. Mostly 

problems of phenomena of universe are originally nonlinear thus they are demonstrated by 

non-linear equations. Science had groomed up, but it is still much difficult to get accurate 

solutions of non-linear problems in the form of analytical approximation than numerical 

solution. A numerical method is given below is used to solve the present problem.   

1.3.1 Runge- Kutta Method 

Various numerical techniques are used for explaining initial value problems in terms 

of ordinary differential equations. The most effective technique according to get accurate 

results was established by two German mathematicians C. Runge and W. Kutta. This method 

is famous as Runge-Kutta method (RK method) and distinguished due to acceptance of 

Taylor’s series. Fourth order RK method is preferably used to find the numerical solution of 

linear as well as nonlinear ordinary DEs. The standard form of second order initial value 

problem is written as  

= 푓 푥, 푦, ,    (1.30) 

having initial conditions  

푦(푥 ) = 푦 ,       (푥 ) = 푎,    (1.31) 

for solving the above problem directly, we need to transform second order IVP into the 

system of first order IVP by taking 

=  푔(푥, 푦, 푧) =  푧 ,    (1.32) 

therefore, we get  

= 푓(푥, 푦, 푧),    (1.33) 

then the initial conditions are  

푦(푥 ) = 푦 , 푧(푥 ) = 푎.    (1.34) 
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For above system of first ODEs with initial conditions, the Runge-Kutta (RK) method is 

given below 

푦 = 푦 + (푝 + 푝 + 푝 + 푝 ),    (1.35) 

and 

z = z + (푞 + 푞 + 푞 + 푞 ),    (1.36) 

where  

푝 = ℎ 푔 (푥 , 푦 , z  ),      푞 = ℎ 푓 (푥 , 푦 , z  ),   (1.37) 

푝 = ℎ 푔 푥 + , 푦 + , z +  ,   푞 = ℎ 푓 푥 + , 푦 + , z +  , (1.38) 

푝 = ℎ 푔 푥 + , 푦 + , z +  ,   푞 = ℎ 푓 푥 + , 푦 + , z +  , (1.39) 

푝 = ℎ 푔 (푥 + ℎ, 푦 + 푝 , z + 푞 ),     푞 = ℎ 푓 (푥 + ℎ,푦 + 푝 , z + 푞 ), (1.40) 

where the step size is defined as  

ℎ = ,     (1.41) 

here 푛 is the number of steps. 

1.3.2 Shooting Method 

An iterative technique that is used to change the boundary value problems into initial 

value problems is called shooting method. By assuming the unknown conditions, the method 

converts the BVP to some IVP. In shooting method, we must find the solution of one ending 

point of the boundary value problem and “shoot” to the other ending point with the initial 

value, unless it converges to the other end of boundary condition or current value. The 

advantage of this initial value problem method is that it takes good speed and adaptability.  

= 푓 푥, 푦, ,     (1.42) 
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with concern boundary conditions 

푦(0) = 0,     푦(퐿) = 퐴,    (1.43) 

where 푓 is an arbitrary function where 푥 = 0,and 푥 = 퐿. The same DE prescribed an initial 

value problem if given data is described as  

푦 (0) = 0,   푦 (0) = 푠.    (1.44) 

We convert (1.42) into system of first order DEs for solving boundary value problem as  

= 푢, = 푓(푥, 푦,푢),    (1.45) 

and initial conditions 

푦(0) = 0,   푦 (0) = 푢(0) = 푠,   (1.46) 

where 푠 represents the missing initial condition, that will be considered as initial value. After 

that we will find the nearly true value of 푠 therefore the solution of equation (1.45) according 

to initial conditions of (1.46) satisfied the boundary conditions (1.43). Particularly, if the 

solution of the initial value problem is represented as 푦 = (푥, 푠) and 푢 = (푥, 푠), after that 

searching the value of 푠,  

suppose  

푦(퐿, 푠) − 퐴 = 0 = ϕ∗ (푠).    (1.47) 

Now, by the help of Newton’s formula which is a strong technique for solving the equations 

numerically, we will discover the value of 푠 as we are selecting a root of linear algebraic 

equation (1.44) as 

푠 = 푠 −
∗( )
∗

( )
,     (1.48) 

implies that  

푠 = 푠 − ( , )

( , )
,    (1.49) 
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Differentiation of  푦 with respect to 푠, equation (1.45) and (1.46) give 

= 푈 ,    = 푌 + 푈,    (1.50) 

where 

푌 = ,       푈 = ,     (1.51) 

and resulting initial condition will be 

푌(0) = 0,   푈(0) = 1.    (1.52) 

where prime notion does not represent the derivative. 

According to boundary conditions (1.43) can get the solution of the equation (1.42) by the 

following steps. 

(i) 푠( ) denotes initial guess which is chosen for missing initial condition. (1.46) 

(ii) According to initial condition (1.46) from  푥 = 0 to 푥 = 퐿, will be utilized to 

solve the system of equations (1.45). 

(iii) By integrating the system of equations (1.50) based on initial conditions (1.52) 

from 푥 = 0 to 푥 = 퐿. 

(iv) Putting the value of  푦(퐿, 푠( )) from the step (ii), and 푌(퐿, 푠( )) obtained by step 

(iii) into the equations (1.49) as 

푠( ) = 푠( )  −   , ( )

 , ( ) ,    (1.53) 

next guess of missing initial condition is 푠( ) obtained. 

(v) Repetition of these steps (i) to (iv) until the values of  푠 shows the specified degree 

of accuracy or solution 푦 퐿, 푠( )  satisfied the imposed boundary condition Eq. 

(1.43). 

  



13 
 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

In this chapter we discussed the literature study related to heat and mass transfer, 

Reiner-Philippoff nanofluid, MHD, bioconvection, stratification, and slendering sheet. The 

fundamental concepts and technique as well as results are also demonstrated. 

2.2 Literature Review 

Attention of the number of scientists have been attracted to non-Newtonian fluid in 

the field of engineering for several years because of its applications in several fields of 

science and technology. The fluid which does not hold the Newton’s law of viscosity but 

varies as shear stress is proportionally to the nonlinear velocity profile is called non-

Newtonian fluid. Scientists and engineers usually deal fluids such as oils, water and air 

known as Newtonian. While in many situations occurs, the supposition of Newtonian action 

is not valid or more complex and have to deal with non-Newtonian models. such as 

conditions arise in plastic and chemical processing industry. Non-Newtonian performance is 

also found in the mining industry, whereas muds, lubrication, biomedical flows, and slurries 

are often tackled. Non-Newtonian fluid used in our daily life like ketchup, toothpaste, paint, 

shampoo, mud, fiber technology, greases, lubricants, plastic etc. In a single relation, the 

behavior of non-Newtonian fluid under the shear is not predicted. Many mathematical 

models are formed to recognize the behavior of shear stress and shear strain phenomenon 

under the consideration of non-Newtonian fluids. Several useful models to understand such 

fluids are the viscoelastic model, Ellis model, Powell-Eyring model, Sisko model, Carreau 

viscosity model, Cross viscosity model, and R-P model. Nanofluids have a lot of potential 

uses in technological processes, thermal engineering, plasma physics, and nuclear 

engineering in this century. Nanofluids, which are different from traditional fluids, have 

reached a critical stage in research and industry. Due to their attractive strength, thermal 
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transfer, and features, nanofluids are increasingly being used as thermodynamic fluids. 

Because of the applications of nanofluids in numerous areas of biotechnology, the flow of 

gyrotactic microorganisms in nanofluids is receiving a significantly attention from research 

scholars and scientists in these days. The Reiner-Philippoff model possesses the family of 

pseudo plastic/shear-thinning fluid. The specified form of non-Newtonian fluid is R-P fluid. 

It is assumed to determine the non-Newtonian fluid flow through a non-uniform enlarging 

surface where thickness is not uniform. It is examined the nature of fluid and surface 

thickness of fluid for three types of fluids either dilatant, pseudo-plastic or viscous, which 

are meaningfully differentiate the features of flow, also observed the thickness of the surface 

can be adopted to handle the skin friction and velocity of fluid. The Bingham number found 

greater than zero for dilatant fluid, less than zero for pseudo-plastic fluid and zero for the 

viscous according to the rate of skin friction concluded by Ahmed et al. [1]. The researchers 

Kumar et al. [2] determined C-C heat flux appearance on R-P fluid over a perpendicular 

magnetized field. They concluded that comparatively the lessening of heat transformation is 

additional in pseudo plastic fluid then others, shrinkage of compactness in momentum layer 

for excessive values of three cases, i.e, Dilatant, Newtonian, and Pseudo-plastic fluids. Sajid 

et al. [3] examined the effect of heat sink/source, nonlinearly thermal radiation, and variation 

molecular diffusivity on R-P fluid passing through an extending sheet. A decline in the field 

of shear stress happens on account of access in the Bingham number but perpendicular 

behavior is observed in the case of fluid variable. The coefficient of skin friction decreases 

in the case of dilatant fluid but increases in the case of pseudo-plastic fluid. The certain 

variation in the kind diffusivity parameter affects an augmentation in the mass friction field.  

Na [4] explored the R-P boundary layer flow of fluids across the bodies other than a 

90° wedge. A conventional formulation is under consideration where boundary layer 

equation for every body shape can be tackled by a finite difference procedure, in the same 

way the result of the flow over 90° wedge is produced the family of parameters. The classical 

explanation of the edge layer flow on a flat plate is famous as Blasius solutions, which are 

created due to non-Newtonian fundamental of the fluids. Authors are paying must interest in 

the boundary layer flow fluids of 90° as well as R-P fluid. The flow of a pure non-Newtonian 

R–P fluid, the occupancy of nanoparticles through a nonlinearly stretching sheet is 
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numerically calculated by Ahmed [5]. It is recognized that drag coefficient for dilatant is 

higher than Pseudo-plastic fluids and heat, nano-particles consolidation fluxes on the surface 

increase with enhancement in R–P fluid parameter. The parallel expression shows the drag 

friction is a reducing momentum of R–P fluid. The impact of one parameter is extremely 

insignificant as compared to other, therefore, variation of only 2nd parameter is observed to 

illustrate the special impact of non-Newtonian fluid. To decrease Nusselt number is observed 

a reducing act, but the parameter of Brownian motion and thermophoresis are augmented 

with increasing R-P fluid parameter. 

 Tahir [6] determine the influence of pseudo-plastic and dilatant of fluid on pressure 

gradient, velocity, temperature parameter, and bolus velocity. Given research paper is 

summarized with key determinations by intensifying the value of the R-P fluid variable, the 

momentum of fluid enhances at the middle of the channel and reduces near the edges of 

channel. However, the effect of shear stress variable is totally contradicted on dilatants fluid 

by comparing with Pseudo-plastic fluid parameter. The value of pressure over pseudo-plastic 

fluid enhanced as shear stress variable increased. It is noted that hotness of pseudo-plastic 

fluid improves with an enhancement in shear stress variable. The performance of temperature 

is contradicted for dilatants fluid to pseudoplastic fluid. Reddy et al. [7] focused in their 

research work is to examine a linear stretching surface and Darcy–Forchheimer medium. 

There is the capability of developing microorganisms along nanofluids in numerous bio-

micro systems, i.e. the reformation of carbohydrates and to estimate harmfulness of 

nanoparticles in micro-process microprocessor devices by Khan et al. [8]. The improved 

relation for heat and mass transference enquiry encountered considering the theory of C-C 

heat flux model by Li et al. [9]. The author concluded; an increment of R-P fluid is observed 

to increasing nanofluid velocity as well as microorganism profile. However, velocity profile 

is reduced by the bouncy force and slip factor. The classical R-P fluid is taken to inspect the 

flow of non-Newtonian fluid on a non-linearly spreading sheet having non-uniform thickness 

including the occurrence of thermal radiation and bioconvection is studied. Due to thermal 

radiation influence the heat transfer rate decreases while the energy increases. Peclet number 

and Schmidt number of bioconvection is tend to drop the density profile and improve the 

diffusion rate of microorganism summarized by Ahmed et al. [10]. The consequence of 

bioconvection microorganism in (Buongiorno) nanofluid flow by stretching sheet 
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considering MHD, chemically reactant, Brownian motion, activation energy, and 

thermophoresis diffusion. The concentration profile enhances the temperature and activation 

energy is observed  to enhance the thermophoresis as well as Brownian parameter by Chu et 

al. [11]. The magnetic flow through a R–P nanofluid and heat transfer augmentation on the 

extending surface under the impression of solar radiation is examined by Reddy et al. [12]. 

The work is finished by concluding, generation and transformation of heat is spread in non-

uniform radiation as compere to linear radiation, the influence of Pseudo-plastic, dilatant, 

and Newtonian fluid are highly differentiation in higher values of Hartman number. Effect 

of pseudo-plasticity and dilatancy of liquid on peristaltic flow and heat transformation is 

scrutinized described Tahir and Ahmad [6]. The research paper is summarized with key 

observation which is by growing the value of R-P fluid parameter the velocity of fluid 

increases at the middle of the channel and drops close the boundary of the channel.  

The impact of thermal stratification is an essential phase in mass and heat transfer. 

Fluid stratification is observed due to change in temperature, the difference of concentration, 

or the occurrence of distinct fluids of various thicknesses. In the specific condition where 

mass and heat transfer are considered instantaneously, it is essential to examine the influence 

of dual stratification upon the convective transportation in nanofluids. Thermally stratified 

fluids can be found in practically every heterogeneous fluid body in nature. The density 

variations have a major influence on the dynamics and combining of heterogeneous fluids in 

the presence of gravity. Thermal stratification in reservoirs, for example, it can decrease 

vertical oxygen combination to the point that underneath water be converted into anoxic due 

to biological processes. However, conditional on other limnological mixed layer factors, 

understanding the dynamic contrast of stratified fluids is required for avoiding, predicting, 

and fixing such a reservoir difficulty. In lakes and ponds, the concept of stratification is 

crucial. Controlling temperature stratification and hydrogen and oxygen concentration 

differences in such conditions is critical because they may have a direct impact on the growth 

rate of all kinds of species. Thermal stratification analysis is also significant for solar 

engineering since better stratification can be observed in improved energy proficiency [13-

16].  

Rehman et al. [17]. observed the occurrence of mixed convection consequence both 

the fluid concentration and temperature are declining parameters of solutal stratification 
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along with thermal stratification respectively. They found values are qualified by improving 

assessment with present values and an outstanding settlement is witnessed which approves 

the performance of computational software. The temperature and concentration profile are 

noted declining by thermal and solutal stratification respectively. The thickness of the 

velocity boundary layer decline with an upsurge thermal and solutal stratification. The 

temperature profile is decrease with an augmentation of the values of 푆 . The solutal 

stratification is boosting up by Sherwood number and local Nusselt number described by 

Ibrahim and Makinde [18]. Thermal stratification in partially ionized hybrid nano-fluid flow 

on non-linear extended sheet has been discoursed by Chung et al. [19].which declare the 

final remarks, the surface skin coefficient  and the rate of heat flux show increasing and 

decreasing respectively for the augmentation of the 푆  parameter.  

Shah et al. [20] summarized that the thin film thickness of nanofluid decreases with 

improved magnetic parameter. The nano-fluid temperature was increased with improving 

value of thermal radiation. The temperature flow to increase due to increment the thermal 

radiation parameter. And temperature profile reduced when Prandtl number increases. The 

encouragement of gold nanoparticle with the oxytactic microorganism on radiative R-P fluid 

due to stretchable sheet. The process of motile density and heat transfer profile with an 

intensification in Peclet number is investigated is investigate. The density of microorganism 

profile run down on the behalf of an enlargement in Peclet number by Sajid et al. [21]. Cross 

diffusion properties on magnetic and multiple slip flow of Carreau liquid on a slendering 

sheet in the existence of non-linear heat generation and absorption is presented by Raju et al. 

[22]. It is resolved, the temperature is a growing function of heat source/sink parameter. 

Multiple slip apparatus has a trend to increase the velocity profile and declines the 

temperature fields. Whereas the space and temperature dependent heat sink are desirable for 

actual cooling of the extending sheet. The outcome of chemical reaction and Brownian 

motion on the concentration are scrutinized by Qayyum et al. [23]. heat generation or 

absorption and nonlinear convection is under consideration. The non-linear moveable sheet 

with convectively heated is taken out. The Brownian motion is improved when the 

concentration of nano particles declined. Thermally analysis in non-steady radiative Maxwell 

nanofluid flow subject to heat generation/absorption is considered by Ahmed et al. [24]. 

They detected that the thermophoresis factors and Brownian motion augment the thermal 



18 
 

energy transfer in nanofluid flow. Influence of temperature supported heat source or sink and 

non-uniform species diffusivity on R–P radiative fluid is investigated by Sajid et al. [25, 26]. 

They concluded that a certain difference in the 푃푒 directs to a decline in the solute element. 

The result exposed that certain variation the heat generation/absorption parameter produces 

more heat to yields and improvement the temperature field. 

Magnetic flow of Powell-Eyring nanofluid utilizing variable thickness on a non-

uniform extending sheet is analyzed by Hayat et al. [27]. It is decided that qualitative 

performances of temperature and thickness of thermal layer are comparable for radiation as 

well as temperature ratio parameters. Increment the wall thickness parameter is witnessed to 

decreases the velocity and temperature profiles. Hayat et al. [28, 29] calculated the fluid flow 

and heat transfer of thixotropic and walters-B nanoliquid. An augmentation in heat 

generation/absorption display rise to temperature profile. Thermal profile and heat transfer 

enhance the temperature ratio parameter outcome of thermophoresis parameter and 

Brownian motion are pretty opposite for concentration field. Flow of nano-liquid with non-

uniform stretching and porous velocities over a extending sheet with non-uniform thickness 

is investigated by Alam et al. [30]. The investigation for the boundary layer quiescent fluid 

over the permeable stretched flat surface is presented by Cortell Rafeal [31]. MHD and 

effects of viscous dissipation on nonlinear shrinking sheet using R-P fluid model is analyzed 

by Kashi’ie et al. [32]. They concluded that the impact of suction has a remarkable increment 

on the flow of R-P fluid by enhancing the suction parameter. The entropy improved Darcy-

Forchheimer flow of R-P fluid along with chemical reaction is modeled by Xiong et al. [33]. 

Bioconvective flow of nanofluid inclosing gyrotactic motile microbes over a non-uniform 

extending surface is analyzed by Mondal and Pal [34]. Hatami and Jing [35]. 

It is detected from the studies described above that no such work is done in which the 

Reiner-Philippoff gyrotactic microorganism nano-fluid flow on a slendering sheet with 

thermal stratification under the impact of non-linear heat source/sink. The collective study 

of thermal stratification, thermal radiation, heat source-sink, the gyrotactic microorganisms 

in nanofluids is important to augment the thermal proficiency of various systems like bacteria 

live micro-mixers, microbial fuel cells, micro volumes such as enzymatic biosensor, 

microfluid flow devices, and chip shaped microdevices as bio-micro systems. In addition, 

the motivating research area in the current era is the suspension of nanoparticles with 
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microorganisms which plays a vital role in the area of biotechnology and biomedical 

implementations. With this motivation, the purpose of this examination is to give an analysis 

of gyrotactic microbes bioconvection occurrence for the flow of Reiner-Philippoff (R-P) 

nanofluid in attendance of radiation and heat source/sink within a non-uniform thickness 

over a spreading surface. The inspirations of numerous physical governing aspects on 

velocity, concentration profiles, temperature, concentration of microorganisms with drag 

friction coefficient, Sherwood number, Nusselt number, and density number of motile 

microbes (local) are analyzed numerically and shown via tabular and graphical illustrations. 
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CHAPTER 3 

 

REINER-PHILIPPOFF FLUID FLOW PASSING THROUGH 

A STRETCHING SHEET WITH VARIABLE THICKNESS 

3.1 Introduction 

This section consists characteristics of the R-P fluid across a non-uniform stretching 

sheet having variable thickness. The solution of considered boundary layer equation is 

carried out and determined the effect of non-uniform enlarging sheet in the existence of 

variable thickness of wall considering the flow of R-P fluid. The mathematical model is 

formulated in PDE’s formed. The governing equation are converted into system of non-linear 

first order ODE and solved be the numerical technique. The obtained results are discussed in 

detail and presented graphically. This chapter contains review of research done by Ahmed et 

al. [1]. 

3.2 Mathematical Formulation 

Consider 2-dimensional, laminar, incompressible, and steady-state flow of R-P fluid 

through a continuously stretched sheet and non-uniform wall thickness. It is assumed that 

푥 −axis along the plane of the extendable sheet and 푦 −axis is the perpendicular to the sheet. 

The sheet consists of non-uniform variable width with given profile 푦 = 퐴 (푥 + 푏) / . The 

velocity of the flow is determined by the stretching sheet of the form 푈 (푥 + 푏) / . Figure 

3.1 is based on boundary layer assumptions. The correlation among shear stress 휏 and shear 

strain  of R-P fluid is written as [1]: 

 =
( / )

  

for R-P fluid model. The governing equations are mentioned blow: 
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Figure 3.1: Physical configuration of the problem 

+ = 0,      (3.1) 

푢 + 푣 =  
 
 .     ( 3.2) 

The suitable boundary conditions are 

푢(푥,푦) = 푈 (푥) = 푈 (푥 + 푏)

 푣(푥, 푦) = 0,
  at      푦 = 퐴(푥 + 푏) ,  (3.3) 

푢(푥,푦) → 0     as     푦 → ∞.    (3.4) 

The solution of the above equation is obtained through given similarity transformations 

휂 = ( )  푦,     휓 = 푈(푥) 푥 휈푓(휂),     휏 = 휌 푈  휈푔(휂) ,   (3.5) 

The transformed equations (3.1) and (3.2) into ordinary DEs are given below 

푔 =  푓 −  푓 푓 ,     (3.6) 

푔 =  푓 (  ).     (3.7) 

and correspond boundary conditions are  

푓′(훼) = 1, 푓(훼) =     at   휂 = 훼, 푓 → 0  as  휂 → ∞.   (3.8) 
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where Reiner-Philippoff fluid parameters are  휆(= 휇 /휇 ) and 훾 = 휏 /휌 푈  휈 . The 

value 휆 = 1 is for viscous fluid, 휆 < 1 shows the performance of dilatant fluid and 휆 > 1 

corresponds the behavior of pseudo-plastic. The rate of the yield stress to viscous stress given 

by  훾 parameter which is Bingham number. 

Now defining 퐹(ξ) = 퐹(휂 − 훼) = 푓(휂)  and  퐺(ξ) = 퐺(휂 − 훼) = 푔(휂) the boundary value 

problem (3.5)-(3.7) result the given form  

퐺 =  퐹 −  퐹 퐹′′,     (3.9) 

퐺 =  퐹  .     (3.10) 

According to given boundary conditions  

퐹′(휉) = 1,   퐹(휉) =     at   휉 = 0,   퐹 → 0    as   휉 → ∞.   (3.11) 

The skin friction is given as  

퐶 =  ,     (3.12) 

The dimensionless form of skin friction converted as 

 퐶  푅푒 /  = 푔(0).    (3.13) 

3.3 Solution Methodology 

The solution of nonlinear boundary layer problem (3.9) – (3.10) is to be tackled by 

utilizing the numerical technique, known as shooting technique.  

푦 = 푦 푦 (0) = 0,

푦 =
 

,        푦 (0) = 1,

푦 =  푦 −  푦 푦 ,       푦 (0) = 푠.⎭
⎪⎪
⎬

⎪⎪
⎫

    (3.14) 

with corresponding boundary conditions: 
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푦 = 0,     푦 = 1  at     휂 = 0,    (3.15) 

푦 = 1    as     휉 → ∞.     (3.16) 

The resulting momentum equations (3.9)-(3.10) with correspond initial conditions can be 

tackled using IVP solving technique that is Runge-Kutta technique, by using 푓 as a known 

function indicating 푓 = 푦 , 푓 = 푦 , 푔 by the 푦  and the absent initial condition by 푠, the 

momentum equations of (3.9) and (3.10) are transformed into system of first order ODE’s 

(3.14). 

3.4 Results and Discussion 
 Shooting technique and RK method are used for solving nonlinear ODEs 

numerically. By the above-mentioned method, the physical parameters are analyzed in this 

section. It is determined that the consequence of wall thickness variable 훼 over the velocity 

variation in figure 3.2. We have seen that velocity is gradually declining with growing of 훼. 

In physical aspect, with the wall thickness variable, the stretching velocity decreased which 

decreased the velocity of the fluid flow in boundary. In the numerical solution we must 

obtained dual solution using the initial estimates of the missing value and in which all the 

velocity satisfies boundary conditions on infinity according to the thickness of boundary 

layer with parameter values. Repeat the initial guess up to the precision iteration method. To 

compare the current numerical outcome is given to demonstrate the sustainability and 

precision of the current technique and this is obtained a good argument. In figure 3.3 we 

observed the boundary layer thickness and velocity increase with inclining values of 휆 and 

the derivative of the velocity decreased as 휆 rises, i.e. the phenomena of fluid dilatant, 

viscous, and pseudo-plastic. In figure (3.4-3.6), the coefficient of drag friction is plotted 

individually for dilatant, Newtonian, and pseudo-plastic fluids for varying thickness 

parameters and Bingham number. As physically expected, wall thickness has declining 

impact of drag friction irrespective of the nature of fluid, having fixed thickness of the 

surface. We concluded the fluid obey the Reiner-Philippoff model, the magnitude of the 

friction is observed by the pseudo-plastic fluid when the sheet is enhanced than viscous fluid, 

and magnitude of the friction of dilatant fluid is less than the viscous fluid. In figure 3.4, it 

is shows that the skin is decreasing by inclining the parameter of Rainer-Philipoff fluid 훾 for 
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the dilatant case, because of the dilatant fluid appeared viscosity increases by inclining the 

shear rate. The same movement is opposed for the pseudo-plastic fluid, i.e. The dynamic 

viscosity remains fixed, 휆 = 1 at high and at low shear rate, it becomes independent system 

of parameter 훾 and therefore, the skin coefficient remains same with 휆. It is observed that the 

ratio of yield stress to the viscous stress which is Bingham number denoted as 훾, it rises in 

the case of skin friction for dilatant fluid. It is noted constant behavior for the viscous fluid 

and decreasing behavior for the pseudo-plastic fluid. Moreover, the non-Newtonian fluid in 

figure 3.4-3.6 shows that when yield stress is less than viscous stress (휆 < 1) the difference 

in skin friction is higher as compared to system where the yield stress overlooks the viscous 

stress (휆 > 1). 

 

 

Figure 3.2: Velocity parameter for variation of surface thickness 훼 with = 1 , 휆 = 0.5. 
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Figure 3.3: Velocity parameter for varying 휆 with 훼 = 0.5 and 훾 = 1.0. 

 

Figure 3.4: Dilatant fluid (skin friction varying concerned parameters, where 휆 = 0.5). 
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Figure 3.5: Viscous fluid (skin friction varying involved parameters, where 휆 = 1.0). 

 

 

Figure 3.6: Psuedo-plastic fluid (skin friction coefficient variation of involved parameters, 
where 휆 = 2.0. 
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CHAPTER 4 

EFFECT OF DOUBLE STRATIFICATION AND HEAT 

SOURCE/SINK ON BIOCONVECTION IN REINER-

PHILIPPOFF BASED NANOFLUID FLOW THROUGH 

SLENDERING SHEET 

4.1 Overview 

  The major object of this chapter is to explore the impression of the Reiner-Philippoff 

gyrotactic microorganism nanofluid flow on a slendering sheet through thermal stratification 

having non-linear heat source or sink. With the help of similarity transformations, partial 

DEs are modified into dimensionless ordinary DEs. By using shooting technique, the 

numerical results are obtained along with R-K method. The impacts of several existing 

governing factors on velocity, concentration profiles, temperature, and concentration of 

microorganisms with drag friction coefficient, local Nusselt number, local Sherwood 

number, local density number of motile microbes are analyzed, and numerical results are 

interrogated and displayed via tables and graphs. 

4.2 Description of Problem 

 A two-dimensional steady flow of nanofluids including both gyrotactic 

microbes and nanoparticles across a sheet with non-linear thickness is assumed under the 

impact of thermal radiation and double stratification. It is assumed that 푥−axis is along the 

plane of the spreading surface and 푦−axis is normal to the sheet. The fluid temperature, 

nanofluid concentration, and concentration of the microorganisms over the nonlinearly 

stretchable surface are denoted by 푇  and 퐶  and 푁 . The width of the sheet is considered 

non-uniform having variable profile 푦 = 퐴(푥 + 푏) / . The velocity of extending sheet is 

signified as 푈 = (푥 + 푏) / . No change is seen in the occurrence of nanoparticles for the 

swimming pathway of microorganisms and their velocities. But microbe movement is 
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involved if the volume fraction of nanoparticles is bigger than 1%. Therefore, the mandatory 

bioconvection permanence is accomplished by the combination of microbes and dense 

nanoparticles in base fluid. Momentum, thermal, and species boundary layers inside flow 

treatment are demonstrated in Figure 4.1. The connection between shear stress 휏 and shear 

strain   is written as [1]. 

 
휕푢
휕푦 =

휏

휇 + 휇 − 휇
1 + (휏/휏 )

. 

Here, 휏  is the reference shear stress of the non-Newtonian R–P fluid model, 휇  and 휇  

represent the dynamics viscosities at very small and extremely large values respectively. 

 

Figure 4.1. Flow Configuration 

The flow model of governing equations, in the presence of linear thermal radiation, thermal 

stratification and source/sink, can be stated as[10, 36]: 

+ = 0,          (4.1) 

푢 + 푣 = ,         (4.2) 
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푢 + 푣 = 휏 + 훼∗  +   
  

+ 휏∗퐷 +
∗

,  (4.3) 

푢 + 푣 = 퐷 + ,       (4.4) 

푢 + 푣 +  
( )

푁  = 퐷 ,      (4.5) 

Boundary conditions are given below 

푢(푥,푦) = 푈 (푥) = 푈 (푥 + 푏) ,        푣(푥, 푦) = 0,

푇 = 푇 = 푇 + 푐(푥 + 푏) ,   
퐶 = 퐶 = 퐶 + 푐∗(푥 + 푏) / ,            푁 = 푁 , ⎭

⎬

⎫
 푎푡 푦 = 퐴(푥 + 푏) / , 

푢(푥, 푦) → 0,

푇 → 푇 = 푇 + 푑(푥 + 푏) ,
퐶 → 퐶 = 퐶 + 푑∗(푥 + 푏) / ,            푁 → 푁 ,

 as 푦 → ∞.    (4.6) 

The non-linear heat source/sink parameter 푞∗ is identified as [22]  

푞∗ =
푘푈

휈(푥 + 푏)
퐴∗(푇 − 푇 )

푈 (푥 + 푏)
푢 + 퐵∗(푇 − 푇 ) . 

Here 퐴∗,퐵∗ > 0 communicates to interior heat generation and 퐴∗,퐵∗ < 0, relates to heat 

absorption constants respectively. 

The dimensionless coordinates used [10] are given below to modify the relevant PDEs (4.1)–

(4.5) into ODEs: 

휂 =
푑
휈

푦

(푥 + 푏)
 , 푢 = 푈 (푥 + 푏)  푓′, 푣 =

푑 푦푓

3(푥 + 푏)
−

2
3
√푑 휈 푓

(푥 + 푏)
, 

휏 = 휌 푈 휈푔(휂) 
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Θ(휂) =
푇 − 푇 ,

푇 − 푇 ,
−
푑(푥 + 푏)
푇 − 푇 ,

 , 휑(휂) =
퐶 − 퐶 ,

퐶 − 퐶 ,
−
푑∗(푥 + 푏)
퐶 − 퐶 ,

 ,

ℎ(휂) =
푁 − 푁
푁 −푁 . 

Using similarity transformations in equations (4.2-4.5), we attain the given dimensionless 

equations: 

푔 = 푓   ,         (4.7) 

푔 =  푓 −  푓 푓 ,         (4.8) 

Θ + 푁푟 +  푓 Θ − 푆 + 푁  Θ + 푁  Θ 휑 + (퐴∗푓 + 퐵∗Θ) = 0,  (4.9) 

휑 + Θ + 푓휑′ − 푆∗ = 0,      (4.10) 

ℎ = 푃푒(ℎ휑 + 휑 ℎ + Ω φ ) −  퐿푒푓ℎ′,      (4.11) 

Associated boundary conditions take the form 

푓 (훼) = 1, 푓(훼) = , Θ(훼) = 1 − 푆  ,   휑(훼) = 1 − 푆∗ ,    ℎ(훼) = 1   at   휂 = 훼
푓 → 0, Θ → 0,    휑 → 0, ℎ → 0      as    휂 → ∞ .

,(4.12) 

By following Hayat et al. [37], we convert the domain [훼,∞] into [0,∞] by utilizing the 

following strategy. 

푓(휂) = 퐹(휂 − 훼) = 퐹(휉), 푔(휂) = 퐺(휂 − 훼) = 퐺(휉), Θ(휂) = θ(휂 − 훼) = θ(휉), 

휑(휂) = 휙(휂 − 훼) = 휙(휉), ℎ(휂) = 퐻(휂 − 훼) = 퐻(휉). 

We get, 

퐺 =  퐹 −  퐹퐹 ,         (4.13) 
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θ + 푁푟 +  퐹 θ − 푆 + 푁  θ + 푁  θ 휙 + (퐴∗퐹 + 퐵∗θ) = 0,  (4.14) 

휙 + θ + 퐹휙′ − 푆∗ = 0,      (4.15) 

퐻 = 푃푒(퐻휙 + 휙 퐻 + Ω 휙 ) −  퐿푒 퐹퐻′,     (4.16) 

with boundary conditions 

퐹 (휉) = 1,   퐹(휉) = , θ(휉) = 1 − 푆  ,   휙(휉) = 1− 푆∗ ,퐻(휉) = 1,    at 휉 = 0,  

퐹 → 0, θ → 0,    휙 → 0, 퐻 → 0,  as 휉 → ∞,      (4.17) 

where 훼 represents the wall thickness, 푆 = , and 푆∗ =
∗

∗  denote thermal and solutal 

stratification parameters for temperature and concentration respectively. R-P fluid parameter 

(휆), Bingham number (훾), Peclet number (푃푒), Prandtl number (푃푟), thermal diffusivity 

(훼∗) bio-convection Lewis number (퐿푒), motile microbe parameter (Ω), thermophoresis 

parameter(푁 ), thermal radiation parameter (푁 ), Brownian motion 푁 , are mathematically 

expressed as  

휆 = , 훾 = 푈  휈 , 푃푒 = , 푃푟 = ∗, 훼∗ = , 퐿푒 = ,  

Ω = ,

,
, 푁 =

∗ 
 

푇 − 푇 , ,    푁 =  ,    푁 =
∗

퐶 − 퐶 , . 

The primary important physical quantities such as skin friction coefficient, Nusselt number, 

local Sherwood number and local density of motile microbe in dimensionless form can be 

expressed as:  

−퐶 = 푅푒 퐺(0), −푁푢 = 푅푒 1 + 푁 휃′(0),    −푆ℎ = 푅푒 휙′(0),  

 −푁푛 = 푅푒 퐻′(0). 
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4.3 Solution Methodology  

There are several ways to obtain solution of non-linear differential equation. but due 

to accuracy it is considered an approximate solution of flow equations, a numerical approach 

is used. The shooting scheme and RK method are often used to follow the numerical 

treatment with the support of the MATLAB computational program. The numerical method 

RK method is famous due to its accuracy. 

The mentioned approximation is recommended to start the technique assuming 푦 = 퐹,푦 =

퐹 , 푦 = 퐺,푦 = 휃,푦 = 휃 , 푦 = 휙,푦 = 휙 ,푦 = 퐻, 푦 = 퐻 . 

푦 = 푦 , 

푦 =
푦 (푦 − 훾 )
푦 + 휆훾

, 

푦 =
1
3푦 −

2
3푦 푦 , 

푦 = 푦 , 

푦 =
푦
3 푆 − 2

3푦 푦 − 푁 푦 − 푁 푦 푦 − 1
푃푟 (퐴∗푦 + 퐵∗푦 ) 

1
푃푟 + 4

3푁
, 

푦 = 푦 , 

푦 =
푦
3 푆∗ −

2
3 푆푐 푦 푦 −

푁
푁 푦 , 

푦 = 푦 , 

푦 = 푃푒 푦 (푦 + Ω) + 푃푒 푦 푦 −
2
3 퐿푒푦 푦 , 

 

푦 (0) =
훼
2

푦 (0) = 1
 

푦 (0) = 푢(1) 

푦 (0) = 1 − 푆  

푦 (0) = 푢(2) 

푦 (0) = 1 − 푆∗ 

푦 (0) = 푢(3) 

푦 (0) = 1 

푦 (0) = 푢(4) 

푦 → 0, 푦 → 0, 푦 → 0, 푦 → 0,   as   휉 → ∞. 
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4.4 Results and Discussions 

The governing dimensionless and highly non-linear ODEs (4.14–4.16) are solved 

using the RK method by using MATLAB. The velocity 퐹(휉), temperature θ(휉), 

concentration 휙(휉), and motile microbes density distribution 퐻(휉) appear asymptotic in 

behavior for the preferred values of 휉. Three types of fluid are discussed i.e. 휆 < 1, 휆 = 1, 

and 휆 > 1 for Dilatant, Newtonian, and pseudo-plastic fluid respectively. The behaviours of 

all three kinds are discussed under the impression of different physical constraints while the 

rest of the parameters remain constant as 푁 = 푁 = 푁 = 푃푒 = 퐿푒 = 0.4, 훾 = 0.5, 훼 =

푃푟 = 푆푐 = 1, 퐴∗ = 퐵∗ = −0.2,  푆 = 푆∗ = 0.1, Ω = 0.3. 

Figs. 2 show the effects on temperature graphs according to a change in different physical 

parameters. The effect of heat source/sink parameters, solutal stratification parameter 푆∗, 

Prandtl number 푃푟, thermal radiation parameter 푁 , and Brownian motion 푁  parameters are 

represented graphically. From Figs. 4.2 and 4.3, it can be seen that by growing the negative 

values of 퐴∗ and 퐵∗ the temperature profile decreases and increases respectively for all three 

types of fluids, i.e, (dilatant, viscous, and pseudo-plastic fluids). Extra heat is produced in 

the internal fluid which increases the temperature boundary layer thickness and eventually 

leads to an increase in the temperature profile. Physically, the negative values of 퐴∗ and 퐵∗ 

generally performs as heat absorption and positive values of 퐴∗ and 퐵∗ performs as heat 

generation. Fig. 4.4 and 4.5 reveal the effects of Brownian motion 푁  and thermal radiation 

푁 , against thermal profile respectively. By rising these parameters, the temperature profile 

is observed to have increasing effects gradually for dilatant, viscous, and pseudo-plastic 

fluids. The temperature profile upsurges because of the improving standards of the thermal 

radiation parameter. When a high-level temperature difference is needed, we use thermal 

radiation. It is observed that an improvement in the radiation parameter provides more 

temperature to the fluid which indicates a boost in temperature. Fig. 4.6.  outlined to reveals 

the impact of thermal stratification on the thermal field. This is noticed that fluid temperature 

is declining against the effect of thermal stratification with an upsurge in adjustable thickness 

parameter. The actual convective potential which co-exists between the non-uniform 

extending sheet and the ambient nanofluid reduced with a rise in 푆 . In sight of this, the 

thermal boundary layer thickness and fluid temperature decreased for greater thermal 
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stratification. The rate of heat transfer at the sheet growths for an upsurge in the quantity of 

thermal layer. 

Figs. 4.7-4.11 reveal the concentration graphs for diverse values of  푁 , 푁 , 퐴∗, 푆푐, 

and 푆∗ respectively. The rest of the parameters stay on fixed. Fig. 4.7 displays the variation 

of Brownian motion against the concentration of nanoparticles. It is seen that the 

concentration profile is decreasing by increment in Brownian motion parameter 푁 . Fig. 4.8 

shows the concentration profile with respect to increasing in thermophoresis parameter. It 

can be noticed that the concentration field is rising with respect to an enhancement in 

thermophoresis parameter 푁  for all three cases of fluids. Fig. 4.9 represents the effect of 

heat absorption coefficient over the concentration profile. This reveals, the concentration 

profile is showing dual behavior by increasing the heat absorption parameter. The 

concentration profile increased near surface < 2, but this trend is the opposite in far field 

surface > 2. Fig. 4.10 demonstrates the influence of Schmidt number against the 

concentration profile. It is realized the concentration is decreasing against increasing in 푆푐. 

Fig. 4.11 represents an impression of solutal stratification on the concentration profile which 

discloses that as the values of 푆  boosts, the concentration boundary layer thickness reduces 

gradually. 

 Figs. 4.12-4.18 show the graphical representation of motile microorganism function 

퐻(휉) with changing values of heat absorption parameters 퐴∗,퐵∗ < 0, Lewis number 퐿푒, 

Brownian motion parameter 푁 , motile microbe parameter Ω, thermophoresis parameter 푁 ,  

and Peclet number 푃푒. Figs. 4.12-4.13 examine the variation in motile microorganisms 

against heat absorption parameters. The increasing behavior in 퐻(휉) is seen with negative 

increments in thermal absorption parameters. Effect of Lewis number against the 퐻(휉) is 

determined in Fig. 4.14. Which reveals the decreasing impact of 퐻(휉) which referred to the 

increasing numerical values of 퐿푒. Substantially, while bioconvection Lewis number raises, 

then mass diffusivity of the nanofluid decreases, which facilitates to decrease the solute 

concentration, and finally, the motile microbe density declines. The effect of Brownian 

motion against microorganism profile graphically represented in Fig. 4.15. The Brownian 

motion is the random motion of the floating nanoparticles in the base fluid, and the molecules 

interchange extremely rapidly in the base fluid. Therefore, it is determined the declining 

profile of 퐻(휉) for leading values of Brownian motion. The impression of thermophoresis is 
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shown against the 퐻(휉) in Fig. 4.16 which examined, the boost up in 퐻(휉) by leading values 

of thermophoresis parameters. In the thermophoresis procedure, tiny particles transfer from 

high region temperature to the low region temperature, which finally causes an enhancement 

in the fluid temperature. Fig. 4.17 demonstrates the influence of motile microbe parameter 

Ω over the concentration of microorganisms. Graphical results execute the declining change 

in 퐻(휉) with respect to leading values of Ω. Fig. 4.18 predicts the graphical representation 

of Peclet number 푃푒 with respect to microorganism profile. The ratio of maximum cell 

swimming speed to diffusion of microbes is denoted as Peclet number. Diffusion is the 

procedure by with a substance goes from an area of high-level concentration to an area of 

low-level concentration. It describes the progress of the elements in the fluid. It is observed 

that diffusivity of microbes is declined in the case of an expansion in 푃푒. The physical 

defenses of such reducing microorganism profile are because Peclet number is reversely fell 

on motile intensity. 

Tables 4.1 determines the outcomes of non-dimensional parameters on skin friction. 

The effect of the R-P fluid parameter and variable thickness parameter are analyzed, while 

the rest of all parameters remained fix. An increment in the both parameters are observed to 

increase the drag friction. 

Various parameters are examined on the Nusselt, Sherwood number, and density of 

motile microbes which are shown in table 4.2. It is noted, by increasing wall thickness and 

R-P fluid parameter the Nusselt, Sherwood number, and motile density of microbes are 

increasing numerically. Heat generation, thermal stratification, and Schmidth number are 

increasing the Sherwood number as well as density of microorganism’s number but 

decreasing the Nusselt number. Solutal stratification and Prandtl number are analyzed to 

increasing the Nusselt number however decreasing for Sherwood and density of microbe’s 

number. where Peclet number is seen to decrease the density of motile microbes. 
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Fig. 4.2: Variation of 퐴∗ on 휃(휉). 

 

 

Fig. 4.3: Variation of 퐵∗ on 휃(휉). 
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Fig. 4.4: Variation of 푁   on 휃(휉). 

 

 

Fig. 4.5: Variation 푁  of  on 휃(휉). 
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Fig.4.6: Variation of 푆  on 휃(휉). 

 

 

Fig. 4.7: Variation of 푁  on 휙(휉). 
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Fig. 4.8: Variation of 푁  on 휙(휉). 

 

 

Fig. 4.9: Variation of 퐴∗on 휙(휉). 
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Fig. 4.10: Variation of Sc on 휙(휉). 

 

 

Fig. 4.11: Variation of 푆∗ on 휙(휉). 
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Fig. 4.12: Variation of 퐴∗on 퐻(휉). 

 

 

Fig. 4.13: Variation of 퐵∗ on 퐻(휉). 
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Fig. 4.14: Variation of 퐿푒 on 퐻(휉). 

 

 

Fig. 4.15: Variation of 푁  on 퐻(휉). 
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Fig. 4.16: Variation of 푁  on 퐻(휉). 

 

 

Fig. 4.17: Variation of  Ω on 퐻(휉). 
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Fig. 4.18: Variation of 푃푒 on 퐻(휉). 

 

 

Table 4.1: Impact of 훼 and 휆 on 퐶  with ,푁 = 푁 = 푃푒 = 푁 = 0.4, 퐿푒 = Ω = 푃푟 = 푆푐 = 1, 

퐴∗ = 퐵∗ = −0.2, 푆 = 푆∗ = 0.1, 훾 = 0.5.  

훼 휆 −퐶  

0 0.5 0.571308 

0.4  0.656306 

0.8  0.747033 

1.2 0.5 0.842699 

 0.6 0.859842 

 1 0.917018 

 1.4 0.962575 
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Table 4.2: Impact of different parameters on −푁푢  −푆ℎ  −푁푛  with 훾 = 0.5,  푁 = 푁 = 푁 =

0.4, 퐿푒 = Ω = 1. 

훼 휆 푃푟 푃푒 푆푐 퐴∗ 퐵∗ 푆  푆∗ −푁푢  −푆ℎ  −푁푛  

0 0.5 1 0.4 1 0.1 0.1 0.1 0.1 0.092664 0.459379 0.520150 

0.4         0.177457 0.479695 0.631975 

0.8         0.266544 0.501700 0.748172 

1.2 0.5        0.358084 0.526677 0.868694 

 0.6        0.369834 0.531806 0.875527 

 1        0.399789 0.550113 0.894032 

 1.4 1       0.415777 0.564660 0.905318 

  2       0.694294 0.422640 0.836402 

  4       0.896694 0.319405 0.778628 

  6 0.4      0.982400 0.275610   0.752348 

   0.6      0.982400 0.275610 0.745945 

   0.8      0.982400 0.275610 0.743710 

   1.0 1     0.982400 0.275610 0.746638 

    2     0.878658 0.889416 1.494834 

    3     0.829394 1.402319 2.164826 

    4 0.1    0.800025 1.870980  2.792887 

     0.3    0.755582 1.893986 2.822448 

     0.5    0.710885 1.917129 2.852043 

     0.7 0.1   0.665931 1.940413 2.881675 

      0.3   0.624120 1.962395 2.909770 

      0.5   0.580128 1.985382 2.938718 

      0.7 0.1  0.533575 2.009543 2.968664 

       0.2  0.523062 2.041250 2.993758 

       0.4  0.494379 2.108016 3.046067 

       0.6 0.1 0.455204 2.179437 3.101223 

        0.2 0.473761 1.961786 2.873849 

        0.4 0.512860 1.525247  2.388890 

        0.6 0.554711 1.086986 1.857670 
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CHAPTER 5 

CONCLUSION 

 

This chapter consists of the summary and final remarks of the problem are discussed 

in chapter 3 and chapter 4. Different parameters are showing several effects on concentration, 

velocity profile in the presence of transverse MHD flow exceeding the non-linear stretched 

sheet with variable thickness which have been represented graphically in previous chapters. 

The conclusion of both problems are as follows: 

5.1 Concluding Remarks 

Chapter 3 investigated the characteristics of nonlinearly stretched sheet having variable 

thickness on the Reiner-Philippoff fluid flow which is the classical model of non-Newtonian 

fluid. The solution of the relative boundary-layer equation is attained to determine the effect 

of irregular surface considering the R-P flow. Suitable transformation along with stretched 

velocity are under consideration for BVP.  

 The thickness of surface and nature of fluid of the type (viscous, dilatant or pseudo-

plastic) considerably alter the characteristics of flow.  

 The thickness of the surface is useful to control the skin friction and velocity profile. 

 The rate of change of drag friction according to Bingham number is observed to be 

positive for dilatant fluid, negative for pseudo-plastic and zero for viscous fluid. 

The related work contains a innovative study of Reiner–Philippoff nanofluid flow in the 

attendance of gyrotactic microbe over a slandering sheet, which is quite interesting the 

inclusion of gyrotactic microorganism. Thermal radiation and double stratification are also 

considered in the energy equation. To obtain numerical solution, mathematical behavior is 
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carried out via shooting technique and RK method by using computational software 

MATLAB. The major outcomes may be expressed as: 

 The growth in heat absorption parameters tends to dual behavior of increasing nearby 

the surface and declining for the surface of energy and concentration profiles. 

 The temperature profile is improving by rising the values of  푁 ,푁 , and 퐵∗, and 

declining by leading values of 푆 . 

 The augmentation in 푁  is accelerating the concentration profile. However, 

concentration is decreasing by leading values of 퐴∗ ,푁 ,푆푐, and 푆 . 

 The motile density of microorganism profile 퐻(휉) is depreciates on the rising change 

of Ω, and 푁 . While the increments 푁 ,퐴∗, and 퐵∗ causing the improving in density 

of microorganisms.  

 The density of motile microbe is reducing by enhancing bioconvection Lewis number 

and Peclet number. 

 The amount of skin friction is boosting up with expanding wall thickness and Reiner-

Philippoff parameter. 

 Nusselt, Sherwood, and density motile organism are to be control by varying wall 

thickness parameter.  
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