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Abstract

With the rapid increase in smartphone users, Android has become the most widely

used Operating System in mobile devices. Due to its popularity, Android is the

prime target for malicious applications, which poses a serious and evolving security

threat to these devices. Existing studies focused on statistical features such as in-

tent, permissions, API calls, and entropy for the detection of malicious apps. It is

difficult to achieve a high degree of accuracy using static analysis due to the grow-

ing use of modern obfuscation techniques in Android applications. In recent years,

dynamic analysis has come out as the front runner for in-depth analysis of software

applications. Contemporary studies have shown efficient malware detection using

resource consumption, opcode, heap dump information, object reference graph, and

Process Control Block (PCB), which are extracted from process memory. Among

the aforementioned feature sources, PCB contains the most in-depth and precise

working information for the analysis of Android applications. Due to the complex

structure of PCB in Linux-based Operating System, very limited existing work has

explored the possibility of malware detection using PCB. In this study, a framework

for fingerprinting malicious Android applications is presented. The implemented

framework is capable of installing, executing, issuing pseudorandom events to the

application, dumping memory of the device, extract PCB from memory dump and

saving the result to a datastore (csv file). We extracted a comprehensive feature

set that comprises of 526 features, which are then reduced to 98 features for iden-

tification and categorization of Android applications into five distinct categories.

The proposed feature set is evaluated by using Decision Tree, NB, SVM and KNN

machine learning classifiers. The results demonstrate that the proposed PCB-based

features can significantly improve malware detection using Decision Tree and SVM.
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CHAPTER 1

INTRODUCTION

The mobile devices industry has evolved drastically in the recent past.

According to Statista [2], around 6.2 billion smartphone users were reported in

2021, and expected that the number would reach 7.6 billion in 2027. Among

the different operating systems available for mobile devices, Android is the

most widely used operating system, holding a share of around 71.8% in the

market of mobile devices worldwide [3]. As Android is open source and sup-

portive towards developers, which makes it attractive for developers to develop

applications for it. Currently a large number of different applications are avail-

able on Google Play Store and the number increases on daily basis. Around 89

thousand new applications are released on Google Play Store in June 2022 [4].

Besides the security checks imposed by Google Play Store, there are still a lot

of malicious applications available [5]. As per statistics reported by statista

[6], 10.5 million new Android malware were developed during 2019, and the

development continued to grow with a rate of 0.48 million per month during

2020. The increasing number of malware poses a serious and evolving security

threat to the Android-based mobile devices [7]. Therefore various schemes

have been proposed by researchers to protect and depend these devices.

Security tools offered by security vendors, which are mostly based on sig-

nature based schemes are widely used for mitigating the security threat posed

by malware. These tools are very efficient in detecting known malware but are

unable to detect zero day or newer malware and are also less efficient in de-

tecting malware variants [8]. Various behavioural based schemes are proposed

to overcome the limitation of signature based schemes. These schemes are us-

ing generic footprint or patterns for detection and categorization of malware.

Machine learning based methods can be adopted for generation of generic be-

havioural patterns for malware identification and categorization. However, an

effective machine learning based identification and categorization model de-

pends on the selection of useful features that are efficient in predicting the

response. When it comes to Android’s malware identification and categoriza-
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tion, there are two types of features that have been used so far; static and

dynamic [1].

Static analysis is the examination of an application (code, executables, or

other related files) without executing it. When it comes to Android’s applica-

tions, AndroidManifest.xml and calsses.dex files are normally used to extract

static features[9]. The manifest file contains information about the application

components (such as activities, services, content providers, etc.), name of the

class file of components, intents (which describe how the components to be

activated), and permissions that the application requires during execution[10].

The .dex (Dalvik Executable) file is a compressed file containing all the class

files of an application, whereas class files are the bytecode representation of

the application code. The .dex file is used by many studies for static analysis

of malicious code patterns[11]. Dynamic analysis refers to analysing the appli-

cation behaviour, while the application is running. Dynamic analysis provides

a deeper visibility of the application and hence it is obfuscation resilient[12].

The run-time behaviour of an application includes API usage[13], network

communication[14], memory usage[15] and resource consumption[12].

Obfuscation is arranging the code structure in such a way that makes it

difficult for reverse engineering techniques to understand. Common obfusca-

tion strategies include junk code insertion, string encryption, class encryption,

control flow manipulation, members reordering and identifier renaming[16, 17].

Static analysis schemes are most affected by obfuscation techniques. In case of

class encryption, the structure of code is totally hidden from static analysis[17].

However dynamic analysis techniques and especially the memory based analy-

sis, analyse the run-time behaviour of application, where the application code

is exposed for running to perform the desired activity and is therefore more

resilient to many obfuscation schemes[12, 15].

This study proposes a dynamic analysis technique based on process-

specific memory-based artifacts of Android Operating System. The proposed

framework captures volatile memory dump of Android based device, during

execution of the target application, while the process-specific artifacts are ex-

tracted from the Process Control Block (PCB) of the target process in memory

dump, which represents behaviour profile of the application. As the result or

output of machine learning algorithm is highly dependent on the input data fed

to the algorithm. It implies that the input data should have enough attributes

for defining the output, i.e., too limited attributes will result in overfitting is-

sue, or attributes that does not cover all the aspects will produce poor results.

The feature extraction process yields a comprehensive and effective feature

set, that comprises of 526 attributes, divided into 9 categories, from process

2



control block of Android operating system. The feature-set is evaluated by

employing various feature selection techniques and machine learning classifiers

for identification and categorization of Android malware into five distinct cat-

egories. Moreover, to ensure effectiveness of features and add variability to

the application’s behaviour and memory dumps, the dumps are captured at

4 different times of an application’s execution. Also, to ensure code coverage

of the application, random events are generated against the application being

analyzed before the memory dump is captured.

The contribution of this study are as follows.

1. We designed and implemented a software agent for acquisition of mem-

ory dumps from Android-based devices and feature extraction from the

captured memory dump samples. The software agent is responsible for

dataset creation containing the feature-set from process control block

(task struct) of Android Operating System.

2. We believe that this is the first study that uses features from the Android

kernel task structure using volatile memory dumps for detection and

categorization of unknown malware.

3. We created a feature-set by collecting 526 features from 10,000 memory

samples extracted after execution of 2500 applications, randomly selected

from CICMalDroid 2020 [18] dataset of apk files. The feature set is

comprised of 425 newly identified features and 101 previously identified

features, used by [1, 19] for malware detection. The remaining 11 features

identified by [1, 19] does not exist in the current kernel version (4.4) which

is being used in the experiment.

4. We evaluated the previously identified 112 task struct features set and

the improved feature set, comprising of 526 features, for identification

and categorization of malware and showed their impact on the identifi-

cation and categorization of Android malware.

5. We proposed a feature set comprising of 98 features, which consists of

70 newly identified features, while the rest of 28 features are part of 112

features identified by [1].

1.1 Problem Motivation

Android-based smartphones are the prime target of malicious applica-

tions due to their popularity in the smartphone industry. Malicious applica-

tions not only affect the performance of the phone by utilizing its resources

3



but also pose security threats to user privacy by stealing personal or confi-

dential data. To protect against these threats, security vendors offer tools to

identify and classify malicious applications. These tools normally uses some

signature based techniques for identification of malicious applications. These

signatures need to be updated frequently in order to identify new threats, i.e.,

new malware needs to be analysed by the security analyst and the database

of the security tool needs to be updated with the new signatures. Behavioural

based techniques, which are using behavioural patterns (static/dynamic) for

detection of malicious applications, are used to overcome the limitations of

signature based schemes. Among the behavioural based analysis techniques,

dynamic analysis is the leading candidate because static analysis schemes are

badly affected by modern code obfuscation techniques, where the true picture

is hidden from static analysis.

1.2 Problem Statement

In order to protect the Android information systems from malicious ap-

plications, it is eminent to use dynamic analysis techniques for the detection of

application behaviour precisely. Existing solutions have shown efficient mal-

ware detection using process specific information like resource consumption

[20], runtime opcode [21], heap dump information [22], object reference graph

[23], extracted from process memory. Some recent studies [1, 24] have shown

the strength of using Android PCB features for binary classification (mali-

cious/benign) of Android applications. However, extensive study of Android

PCB can reveal useful features, not only for binary classification but also for

category classification. Category detection is a significant contribution toward

malware analysis, as it not only detects the threat but also classifies the nature

of the threat for taking appropriate countermeasures.

1.3 Objectives

The aim of this study is to analyse the run-time behaviour of Android

applications (benign/malicious) from memory dumps for their identification

and categorization. The following objectives will lead us to achieve the desired

aim.

(a) Categorization of Android malware into distinct classes (Adware, Bank-

ing malware, SMS malware, Riskware, and Benign).

(b) Extraction of memory dumps after executing the application.
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(c) Extraction of PCB-based features and selection of useful and effective

features.

(d) Automating detection and classification of Android malware using ma-

chine learning classifiers.

1.4 Research Question(s)

In order to achieve the research objectives, following questions needs to

be addressed.

(a) How to identify malware and categorize them into distinct classes using

PCB-based features?

(b) How to extract memory dump after executing the application?

(c) How to extract PCB-based features from memory dumps?

(d) How to select useful and effective features that contribute to malware

identification and categorization?

1.5 Significance of the Study

Antivirus software offered by security vendors are widely used to defend

the information systems against the growing malware. However these soft-

ware which are normally using signature based techniques for identification

and classification of malware, needs to be updated with new signatures in

order to identify new malware. The new signatures are created by malware

analysts after a thorough investigation and analysis. This study proposes a

dynamic analysis based framework for extraction of extended process specific

artifacts from memory for identification and classification of malicious An-

droid applications. The proposed framework with extended feature set will

help the malware analyst in identification and classification of malware and

hence strengthen the security solutions. Also, the proposed feature set can be

used for detection and categorization of Android malware using dynamic anal-

ysis techniques to overcome the limitations faced by static analysis techniques

due to the growing use of modern obfuscation techniques.

1.6 Thesis Organization

Rest of the document is structured as follows. The next chapter discusses

background information, chapter 3 provides a detailed literature review, chap-

ter 4 introduces the detailed research methodology, chapter 5 presents the

5



analysis and results of the research. Conclusion and future research goals are

discussed in the last chapter.
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CHAPTER 2

BACKGROUND

As this study focuses on identification and categorization of Android

malware. This chapter provides an overview of Android Operating System and

Process Control Block (PCB), which will help in understanding the proposed

framework and the feature set presented in this study. This chapter is divided

into two parts, the subsequent section provides an overview of the Android

architecture followed by a brief overview of the Android PCB (task struct)

and finally the malware analysis techniques are discussed.

2.1 Overview of Android Operating System

Android is a Linux-based open source operating system for mobile de-

vices. It is started by Android, Inc. in 2003 and later on acquired by Google in

2005. In 2007 it is announced as an open platform for mobile devices [25]. An-

droid is the most used operating system in the mobile industry [26]. Around 2

billion Android users were reported worldwide in 2021 [27] .As shown in figure

2.1 Android operating system consists of five layers, which can be divided into

six components.

The first layer, or bottom layer contains a modified version of Linux ker-

nel, with modifications related to embedded devices like wake locks or power

manager service, support for Binder IPC, and some changes to memory man-

agement for preserving memory such as low memory killer. The Android ker-

nel has drivers to support different hardware like camera, display, audio, WiFi,

Bluetooth, keypad, etc. Besides providing support for hardware, the kernel is

also responsible for providing functionality like memory management, process

scheduling, different file system support, etc.[28, 29]

The next is HAL (Hardware Abstraction Layer), which exposes stan-

dard interfaces for communication with the underlying hardware to the high

level API framework. These interfaces allows to implement/change functional-

ities without modifying the higher level components. HAL implementation is

7
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Figure 2.1: Android architecture
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provided through shared libraries. when the high level API framework needs

to communicate with the specific hardware, the corresponding library for the

specific hardware is loaded by the Android system[30].

The next layer, which comes after HAL, consists of two components; an

Android Runtime (ART) and Native C/C++ libraries. ART is a runtime en-

vironment specially written for Android based devices to execute individual

processes in a sandbox or virtual environment. ART has replaced Dalvik pro-

cess virtual machine and executes Dex or Dalvik executable. Native C/C++

libraries are used by some system components and services built from native

code. Android NDK (a toolset for implementing applications in native code

such as C/C++) is used to develop application (or part of application) to

access these libraries directly from the application code.[29, 30]

The fourth layer, which is called the application framework layer, pro-

vides interfacing to all the functionalities offered by Android system to the

Android apps. Android developers have full access to these APIs, to reuse the

components and services offered by the Android system, such as View system

(for building application’s UI), Notification Manager (for displaying custom

alerts), Activity Manager (for application lifecycle management), etc.[29, 30].

The last layer, which is consist of System Apps, providing the core appli-

cations such as keypad, messaging, dialer, camera etc. These apps can serve as

user apps and also can be used by application developers to use their function-

alities. For example if an application needs to send messaging, the developer

needs not to develop the messaging capability into their application but instead

will reuse the functionalities provided by the messaging app[29, 30].

2.2 Overview of Android Process Control Block (task struct)

As Android operating system is based on modified Linux kernel, the Pro-

cess Control Block (PCB), which is also known as the kernel task structure

in Linux based systems, is a data structure of type task struct located in

the kernel space and includes all the information of a process; like process

identifier, process name, its parent process, its siblings, thread information,

CPU context, memory descriptor, scheduling information, current state of the

process, file descriptor of open files, etc. The information contained in the

PCB is used by the kernel for managing the scheduling and other activities of

the process. Information in the process control block is effective in detection

and categorization of malware because it describes the corresponding appli-

cation in running state, where all its working is exposed for performing the

desired activity, and hence resilient to obfuscation, where intent of the process

is hidden from static analysis.
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Information extracted from the process control block of Android kernel

by examining the memory dump are grouped into 9 categories and are given

below.

1. Task State Information: This category includes information like exit

state, exit code, exit signal, parent process death signal etc. List of

attributes in this category are presented in Table A.1

2. Memory Information: It describes information related to the memory

held by the process and other related information required by the kernel

to manage the process memory. This category comprises information

like page faults, memory limits, heap address, address of code segment

and data segment, information related to memory pages, pointer to ex-

ecutable file etc. List of attributes in this category is presented in Table

A.2

3. Signal Information: It includes different information related to signals;

their sources, handler, timer etc. List of attributes related to Signal

information are described in Table A.3

4. Scheduling Information: The scheduling information of process in-

cludes it’s scheduling state (like running, interruptible, stopped, etc),

time spent while running, priority, etc. List of attributes related to

scheduling information are described in Table A.4

5. Process Credentials: Process credentials are indicated by cred and

real cred structures in the task struct and includes information re-

lated to the process security context like ownership and capabilities. List

of attributes that belongs to process credentials are presented in Table

A.5

6. I/O Statistics: I/O statistics of process is indicated by delays and

ioac structures in the task struct and includes information related

to block I/O delay and other I/O statistical information related to the

process like amount of byte read and written, the number of read and

write system calls etc. List of attributes that belongs to I/O statistics

are presented in Table A.6

7. Open File Descriptors: Open file descriptors are maintained by files

structure in the task struct and includes information related to the

files opened by the process. List of attributes that belongs to open file

descriptors are presented in Table A.7
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8. CPU Specific State: The CPU specific state is maintained by the

thread structure in the task struct, and is used to save the hardware

context (like register states, processor state etc) during context switch.

List of attributes that belongs to CPU specific state are presented in

Table A.8

9. Others: This category indicate miscellaneous information of the corre-

sponding process like execution domain of self and parent process, process

age, tracer flag etc. List of attributes that belongs to this category are

presented in Table A.9

2.3 Malware Analysis Techniques

Malware analysis is the process of comprehending malware behaviour

with the intention to mitigate the threat posed by these malware and prevent

further infections [31]. Security solutions provided by security vendors are

frequently employed to mitigate the evolving security threat posed by the ma-

licious applications. These tools are typically based on signature-based meth-

ods and are quite effective at detecting known malware but fails at detecting

zero-day malware and malware variants[8]. The limitation of signature-based

methods is addressed by various behavioural-based methods, which are us-

ing generic footprints or behavioural patterns for fingerprinting malware. As

shown in Figure 2.2, malware detection and analysis methods can be catego-

rized into two types; static and dynamic.

Malware Analysis

Static Analysis

Dynamic Analysis

• Hash Generation
• Disassemble the code
• Search for string
• Analyze file header

• Fingerprint
• String Patterns
• Functions imported/ 

exported

• Executing the code
• Monitor the 

behaviour

• Registry change
• Network activity
• Run-time API usage
• CPU usage
• Memory usage

Figure 2.2: Malware Analysis Techniques
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2.3.1 Static Analysis

Static analysis is the examination of application (code, executables, or

other related files) without executing it. Calsses.dex and AndroidManifest.xml

files are typically used to extract static features from Android applications[9].

The manifest file contains information about the program’s components, name

of the component’s class files, intents, and permissions needed for the appli-

cation to run[10]. The .dex (Dalvik Executable) file, is a compressed file that

contains all of the class files of an application[11]. Although static analy-

sis is effective in examining all potential execution paths. However, the use

of modern obfuscation techniques seriously affects static analysis. Specially

class encryption or dynamic code loading entirely conceal the code from static

analysis[17].

2.3.2 Dynamic Analysis

Dynamic analysis is the examination of application behaviour, while the

application is running[12]. The examination can be observed at various levels,

it can be the run-time opcode[21], API usage[13], network communication[14],

memory usage[15] or resource consumption[12]. Since dynamic analysis ex-

amines the application at run-time, where the application code is exposed

for execution, to perform the intended task and is therefore more resilient to

many obfuscation schemes[12, 15]. Although this technique is more resilient

to many obfuscation techniques where the true picture is hidden from static

analysis, but it requires a controlled execution environment to run and observe

the behaviour of application.

12



CHAPTER 3

LITERATURE REVIEW

With the advancements in securing information systems, considerable

studies have focused on the detection and categorization of unknown malware.

This chapter presents research studies that have used information from the pro-

cess control block (task struct) of the Android OS and other Linux based

systems for identification/categorization of unknown malware. This chapter

also describes research studies that have used memory-based features for mal-

ware identification/categorization targeting Android and other Linux-based

systems.

This chapter is divided into two parts. The first subsection describes the

relevant studies using process-specific information as feature set. The second

subsection summarizes the relevant studies that utilize forensic analysis of

memory dumps for feature extraction, while the third subsection summarizes

other relevant studies that used dynamic analysis for malware detection and

categorization.

3.1 Malware detection/categorization in Android OS using dynamic

analysis

Various studies have been conducted for identification/categorization of

Android malware. Among those studies, the studies that used feature set from

memory dumps or kernel data structure task struct directly or indirectly for

identification/categorization of unknown Android malware are briefly reviewed

here in the following sections.

3.1.1 By using information from Process Control Block

Wang and Li [1] presented a malware detection framework for the An-

droid platform by utilizing information from kernel data structure task struct.

They extracted 112 features, grouped into 5 categories from task struct,

against 2550 apk samples (comprising of 1275 benign and 1275 malware apk
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samples). Because their feature extraction method extracts 15,000 records per

application per 20 seconds, therefore they used Information Gain, Correlation,

Component Analysis and chi-squared statistic for lowering dimensionality of

the features. A total of 70 out of 112 features are prioritized using dimen-

sional reduction for maximizing the classification performance. The proposed

framework is evaluated by using Decision Tree, K-Nearest Neighbors, Naive

Bayes, and Neural Network classifiers. Their proposed framework achieved an

accuracy of 94% to 98% with a false positive rate of 2% to 7%.

Kim and Choi [32] proposed features for malware detection on Android

platform version 4.0 or higher. They extracted 59 features grouped into 3

classes; CPU (10 x features), memory (24 x features) and network (25 x fea-

tures), from the proc filesystem of the Android platform periodically every 10

seconds against each application being examined. The proc filesystem in An-

droid and other Linux-based systems provides interfacing between kernel struc-

tures and userspace. A total of 36 out of 59 features are selected for malware

identification using Support Vector Machine (SVM) classifier for evaluating the

performance. The SVM classifier resulted into an accuracy of 98.85%, TPR

of 95.97% and FPR of 0.67%. The feature selection is validated by comparing

results before and after feature selection. After feature selection, improvement

in performance is observed, however the detection accuracy was relatively high

with full feature list, but the difference was not significant.

Alawneh et al.[24] presented a malware detection framework for identifi-

cation of trojanized malware. The dataset used in the experiment is comprising

of 2400 APKs (1200 benign and 1200 trojanized malware). In the study, 112

features grouped into 5 categories namely task state, Signal information, CPU

scheduling information Memory management information, and others, are ex-

tracted from the kernel process control block (task struct). After eliminating

features with zero variance, 77 features were selected out of 112 features, and

finally 43 features were used to train the machine learning model. The PCB

fields are recorded for 15 seconds against each APK and then sent over to a

UDP server for further analysis. The proposed framework was evaluated by

using BPNN (Back Propagation Neural Network), which resulted into 96.8%

accuracy rate, 98% sensitivity rate, and 4.5% false alarm rate while using a

PCB sequence size of 100 PCBs and the feature set comprising of 43 features.

The model takes around 30 seconds for training and 73 µs for malware identi-

fication, while the information mining takes around 100 ms.

Shahzad et al. [33] presented TstructDroid, which is a real-time malware

detection framework for Android-based devices. The feature set of Tstruct-

Droid is based on information extracted from the Android process control block
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(task struct), which is comprised of 32 features selected from 99 preliminary

task struct fields. The feature set is created by using 110 benign and 110 ma-

licious applications. Feature selection is carried out by eliminating the indexer

fields and then using time series features shortlisting techniques (time-series

difference, mean, and variance) to further reduce the feature set size. After

feature extraction, the redundant instances are removed and the time series

data are segmented into blocks/windows. For each block, the frequency in-

formation are extracted using Discrete Cosine Transform. Hidden patterns in

process execution are identified by using the cumulative variance of features.

The proposed framework is evaluated by using J48 machine learning classifier.

In real-time scenario where one application is considered as testing data and

all the other applications as training data, the proposed framework resulted

into an accuracy of above 98% and less than 1% false alarm rate. However, by

using 10-fold cross validation strategy, which is a standard methodology for

evaluating machine learning classifiers, the proposed framework resulted into

90-93.6% detection rate and 5.4% to 7.3% false alarm rate.

Massarelli et al. [20] introduced AndroDFA, a dynamic malware classi-

fication technique which is based on extracting resource consumption metrics

from the proc file system of Android device. 26 metrics/features grouped into

3 categories; CPU, memory, and network usage, are extracted from proc file

system for fingerprint generation. Features are extracted based on DFA (De-

trended Fluctuation Analysis) and pearson’s correlation. Drebin and AMD

dataset of malware are used in the experiment for evaluating AndroDFA.

SVM classifier is used for evaluating the result, and it is showed that the

proposed methodology achieves 78% and 82% accuracy with the AMD and

Drebin dataset respectively.

3.1.2 Using memory-based information

Bellizzi et al. [34] proposed a framework, JIT-MF, for collecting evidence

of stealthy Android attacks that uses the functionality of benign application.

Functionality of the framework includes capturing process-specific memory

dump at specific trigger points for the identification of in-memory data objects

of benign applications which can be misused by an attacker. Identification of

data objects is performed by using the Android Runtime (ART) Garbage Col-

lector. To capture memory dump of process, repackaging the benign app with

some instrumentation and re-installation is required in order to use the ART

memory dump capability. Where the trigger point is selected based on heuris-

tics. The study is evaluated by using 4 different message hijacking scenarios,

launched using Metasploits Meterpreter for Android. Pushbullet, SMSonPC
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and Telegram are used as the target benign applications.

Zhang et al. [23] used object reference graph birthmarks (ORGB) for

detecting malware in the Android operating system. The proposed system,

DAMBA, uses client-server architecture for detecting malware by means of

static and dynamic analysis. The client part is installed on the Android devices

and is responsible for extracting the heap dump of the application and analyze

it to generate object reference graph (ORG file, serve as dynamic feature for

malware detection) it also extract package information including permission

list and key system class list, while the server part residing remotely establish

the birthmark base and decide whether the application is malicious or benign.

The server part is responsible for generation of ORGB file from ORG file and

also establishes the static feature base by utilizing the permission list and key

system class information of the package being analyzed. Once the application

is analyzed by the server, the client is updated with the result. The framework

is evaluated by using 2239 malicious samples (including 1139 from the Genome

Project and 1100 from Contagion) and 1000 benign apps from the Baidu App

Store. In the experiment, it is showed that the proposed DAMBA framework

achieved better result (Accuracy = 0.9690, Recall = 0.9855, Precision = 0.9568

and F-measure = 0.9709) than McAfee (Accuracy = 0.9381, Recall = 0.9755,

Precision = 0.9124 and F-measure = 0.9429).

Benz et al. [22] presented a methodology for improving Android taint

analysis. In the study, static Android taint analysis is extended with infor-

mation from heap dump and also the impact of heap dump on soundness and

precision is presented. The study is evaluated by modifying FlowDroid (a static

taint analysis tool for Android applications) in order to integrate heap dump

information in the taint analysis. FlowDroid is modified in such a way that it

can capture multiple heap dumps throughout the runtime of application being

analyzed, however the evaluation is performed using ”separate-heaps” (infor-

mation are restricted to, that are present in a single dump), ”merged-heaps”

(information of all the available heap dumps is considered for the analysis)

and ”static-fallback” (heap dumps and abstract heaps are used together) ap-

proaches. In the experiment it is showed that precision is increased while

using heap dumps as an upper bound but recall is dropped by at least 77.2%.

However, when heap dump is used with static-fallback approach, a compar-

atively better result is achieved. It is also showed that using multiple heap

dumps results in better recall value, but single dump results in better runtime

performance and high precision.

16



3.2 Malware detection in Linux-based OS by using memoroy based or

Process Control Block (task struct) based information

Shahzad et al. [35] proposed a dynamic analysis scheme for malware

detection by using information from the process control block (PCB) of pro-

cess in Linux operating system. The scheme extracted 118 parameters from

the task struct of Linux OS, however 16 of them are shortlisted for malware

detection. Parameters shortlisting is performed by initially eliminating the

parameters that do not contribute in malware detection and then time series

analysis is performed for identification of parameters that have a significant

contribution in malware detection. The parameters are extracted from the

task struct by using a customized system call framework, which mines in-

formation of the specific process every millisecond for 15 seconds. The study

is evaluated by using a dataset comprising of 114 malware and 105 benign

samples. It is showed that the proposed scheme achieves a detection accuracy

= 96% and false alarm rate = 0% by using propositional rule learner (J-Rip).

Panker and Nissim [36] presented a framework for detection of malicious

software in Linux cloud environment by capturing memory dumps from the

guest operating system running in a VM. Two types of servers are used in the

experimental setup; an HTTP server and a DNS server. A total of 50 malware

samples and 3 fileless attacks from 9 different categories, as well as 54 benign

applications and two other samples indicating the VM state (one is clean VM

sample when it does not include any DNS server or HTTP server applications

and the other is when the VM is running a DNS or HTTP server) are used in

the study. The memory dump is captured by querying the hypervisor, while

feature extraction (171 total features) from the memory dump is performed

by using 21 different volatility plugins. Out of 171 features, 17 features are

selected for the HTTP server and 26 for the DNS server. Four features are the

same in both cases, while the rest are different. The proposed framework is

evaluated by using seven different ML classifiers (SVM, Naive Bayes, Logistic

Regression, KNN, Random Forest, and ANN). It is showed that the proposed

framework achieved the best result with KNN (Accuracy = 0.959, TPR =

0.934 and FPR = 0.017) and DNN (Accuracy = 0.989, TPR = 0.976 and

FPR = 0) classifier for unknown malware detection in HTTP server and DNS

server respectively. While in case of malware categorization in HTTP and

DNS servers, the best results are achieved by DNN (Accuracy = 0.986) and

RF (Accuracy = 0.981) classifier respectively.

To summarize, in order to identify malicious applications and classify

them, in-memory analysis of applications needed to be carried out because code

obfuscation prevents static analysis to identify the behaviour of the application.
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Categorizing malware is very important to estimate the threat level that the

malicious application poses and for taking appropriate countermeasures. All

the studies [1, 33, 24, 32] except [20] discussed here which are using information

from Android process control block task struct directly or indirectly, focusing

on binary categorization of malware i.e., benign and malicious category. Only

[20] discussed malware classification, but their features set focuses on resource

consumption of malicious processes from proc filesystem and their classification

accuracy is 78% and 82%. Table 3.1 presents summary of these studies.

Furthermore, the efficiency and accuracy of machine learning models are

greatly dependent on the attributes that define the feature space. A detailed

analysis of the Android PCB (task struct) can reveal useful features in addi-

tion to the feature set proposed by these studies. The existing studies extracted

features from task struct grouped into five categories at maximum. However,

the PCB, which defines all the aspects of a running process, can contain more

effective information that can be used to more effectively fingerprint the be-

haviour of the process and hence may improve the detection and classification

accuracy of the machine learning classifier.
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Table 3.1: Summary of studies using information from Android task struct or proc filesystem

Study Feature

Source

Dataset
# of

Features

ML

Classifiers
Accuracy/Reliability Categorization

Wang

and Li,

2021 [1]

task struct

(PCB)

1275 malware1,

1275 benign2 apps

10-70 out

of 112

NB, DT,

NN, and

KNN

Accuracy: 94% to 98%,

FPR: 2-7%

No

Alawneh

et al.,

2019 [24]

task struct

(PCB)

1200 malware1 ,

1200 benign2 apps

43 out of

112

Back Propa-

gation Neu-

ral Network

Accuracy: 96.8%

Sensitivity: 98%

FAR: 4.5%

No

Shahzad

et al.,

2013 [33]

task struct

(PCB)

110 malware,

110 benign apps

32 out of

99

J48 Real-time: Accuracy: 98%,

FAR: < 1%

Cross-validation: Accuracy:

90-93.6%, FAR: 5.4%-7.3%

No

Massarelli

et al.,

2020 [20]

proc

filesystem

Drebin and AMD

dataset

26 SVM Accuracy: 78% (AMD),

82% (Derbin)

Yes3

Kim and

Choi,

2014 [32]

proc

filesystem

Malware samples

from Ahnlab ASEC

report

36 out of

59

SVM Accuracy: 98.85%, Precision:

96.63%, FPR: 0.67%, TPR:

95.97%

No

1VirusTotal
2Google Play Store
313 Families with AMD and 23 Families with Derbin dataset
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CHAPTER 4

PROPOSED METHODOLOGY

The rapid increase in malware development targeting the Android based

devices is a serious and evolving security threat [7]. Depending on their na-

ture, these malicious software can harm the target system in many ways such as

steals, encrypts or deletes user’s data, displays unwanted popups, or consumes

system resources [37]. The security threat posed by these malware demands a

robust solution for identification and categorization of these malware in order

to protect target devices and take appropriate countermeasures against the

threat. This study proposes a framework that uses process specific attributes

from the Android process control block (task struct) for identification and

categorization of Android malware. This chapter covers the methodology of the

underlying framework. The subsequent section discusses the working mecha-

nism of the proposed framework, then the next section provides an overview of

the implementation details followed by feature selection and evaluation tech-

niques.

4.1 Proposed Framework For Feature Extraction and Classification

Broadly, the feature extraction process is comprised of two phases; the

first phase involves acquisition of memory dump from Android-based device

or emulator while the candidate application is running, and the second phase

starts by analyzing the memory dump for extraction of process control block of

the target process and storing the result in a csv file. While the classification

process involves identifying the category of application by utilizing process

control block information from the csv file. Attributes of the process control

block serve as feature set for identification and categorization of malware.

Algorithm 1 describes the feature extraction process. The overall process of

feature extraction and classification is presented in figure 4.1, while the details

are presented in the subsequent section.

20



Algorithm 1 Feature Extractor (Memory Dump Extractor & CSV Generator)

1: procedure Feature Extractor

2: if Emulator is not running then

3: Boot Emulator

4: end if

5: for each app ∈ apk Repository do . apk Repository is a folder on

the host system containing malicious/benign applications

6: pkg name ← package name(app)

7: Install app

. Scenario #1

8: Execute the installed app using pkg name

9: app pid ← pid of(pkg name)

10: CallMemory Dump Extractor & CSV Generator(app pid)

. Scenario #2

11: Call Event Generator(pkg name, event count = 150)

12: app pid ← pid of(pkg name)

13: CallMemory Dump Extractor & CSV Generator(app pid)

. Scenario #3

14: Call Event Generator(pkg name, event count = 1500)

15: app pid ← pid of(pkg name)

16: CallMemory Dump Extractor & CSV Generator(app pid)

. Scenario #4

17: Call Event Generator(pkg name, event count = 4000)

18: app pid ← pid of(pkg name)

19: CallMemory Dump Extractor & CSV Generator(app pid)

20: Reset/Clean Envoirnment

21: end for

22: end procedure

23: procedure Memory Dump Extractor & CSV Generator(pid)

24: Capture memory dump

25: Extract task struct(pid)

26: save task struct info to csv file

27: end procedure

28: procedure Event Generator(pkg name, event count) . where

pkg name is used to distinguish the target application. While event count

is the number of events that needs be generated against the target appli-

cation

29: Run Application

30: Send event count pseudorandom click events to the app

31: end procedure
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Figure 4.1: Proposed Framework for PCB based Feature Extraction and Clas-

sification of Android Malware

4.1.1 Memory Dump Acquisition Module

As shown in figure 4.1, the memory acquisition module reads the target

apk and installs it into an Android-based controlled environment. Before in-

stallation, its package name is extracted, which will help in identifying its pid

when the application is running. After installation, the memory acquisition

module executes the application and captures volatile memory dump of the

device. The acquisition of volatile memory dump is performed at four different

stages; first immediately after execution, then after issuing 150 pseudo-random

events to the application, then after issuing 1500 pseudo-random events to the

application, and finally after issuing 4000 pseudo-random events to the appli-
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cation.

Although the proposed framework extracts information from the process

control block of the target process, but to ensure smooth operation of the ap-

plication and the device, it is necessary to consider one application at a time

for installation and analysis. In order to restore the sandbox environment to

clean state for the next analysis, the sandbox environment needs to be run-

ning in read-only mode to avoid persisting changes made by the installed apk.

Acquisition of volatile memory dumps at different times adds variability to

the dumps and thus contributes to the creation of a rich data collection which

includes 10,000 volatile memory dumps. Exercising of pseudo-random events

are required for ensuring code coverage and triggering of malicious behaviour.

4.1.2 PCB (Process Control Block) Extraction Module

As shown in figure 4.1, the PCB extraction module accepts the volatile

memory dump file as input along with the process id of the target appli-

cation. The PCB extraction module then walks through the Android PCB

(task struct) and extracts task struct of the target application from the

volatile memory dump by comparing the value of pid field in task struct with

the provided input value. After extraction of the target task struct, it stores

its attributes values into a csv file. Columns header of the csv file represents

attributes of the PCB, while its row represents the values of PCB attributes

from the specific volatile memory dump. The PCB extraction module extract

526 attributes from task struct, which can be divided into nine categories as

discussed in section 2.2. Total number of attributes against each category is

described in table 4.1, while the proportion of each category in task struct

relative to the total extracted attributes is presented in figure 4.2.
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Table 4.1: Number of Attributes Against Each Category of task struct

S.No Category # of attributes

1 Task state Information 6

2 Memory Information 211

3 Signal Information 82

4 Scheduling Information 90

5 Process Credentials 74

6 I/O statistics 17

7 Open File Descriptors 11

8 CPU Specific State 19

9 Others 16

Total 526

Task state Information: 1.1%

Open File Descriptors: 2.1%

Others: 3.0%

I/O statistics: 3.2%

CPU Specific State: 3.6%

Process Credentials: 14 .1%

Signal Information: 15.6%

Scheduling Information: 17.1%

Memory Information: 40.1%

Figure 4.2: Percentage of each task struct category against total extracted

attributes

4.1.3 Classification Module

The classification module accepts the extracted Android PCB attributes

stored in the csv file as input and produces the result by identifying and cat-

egorizing the Android application into the distinct categories. The extracted
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attributes from PCB serve as features for the machine learning classifier. Fig-

ure 4.3 shows the overall execution flow of the framework.

APK Feature Extraction Feature Selection Classification

Benign

Riskware

Adware

Banking Malware

SMS Malware

Figure 4.3: Framework Flow of Execution

4.2 Implementation of Proposed Framework

The experimental setup consists of a controlled sandboxed environment,

which uses the Android Virtual Device (AVD) for defining the virtual environ-

ment. AVD helps define the virtual device by specifying its hardware profile,

the amount of memory and storage allocated to the device, and system image

for booting the device. AVD is hosted on a system running Ubuntu 18.04 with

10 GB of memory and 1 TB of Storage. The virtual environment is config-

ured with Nexus 6P hardware profile, 1.5GB of RAM, 512MB SD Card, and

1GB of internal storage. The system image used by the virtual environment

is Android 9.0 with Google APIs and x86 64 architecture.

The host system communicates with the virtual environment via the

Android Debug Bridge (adb). Android Debug Bridge [38] is a command-line

tool which helps in facilitating communication between a host system and an

Android-based device by executing commands on the target device via a Unix

shell provided by adb.

Monkey tool [39] which is a UI/Application exerciser, provided for stress

testing of applications during development, is used as event generator for the

proposed framework. Monkey tool simulates pseudo-random user input against

the target application being installed during the experiment.

Android Asset Packaging Tool (aapt) [40], which is a command-line tool

for viewing, creating, and updating apk files. This tool is mostly used by build

scripts and IDE for packaging of Android applications. Android Asset Packag-

ing Tool is used in the experimental setup for the extraction of package name

25



from the target apk before their installation on the emulator. The extracted

package name is used for identification of the target process among the running

processes.

LiME (Linux Memory Extractor) [41], which is an open source Load-

able Kernel Module (LKM) for dumping of volatile memory from Linux and

Linux-based devices, over a network or to the file system of the target device,

is used for acquisition of volatile memory dump from the target device. To

capture memory dump, LiME is required to be compiled against the target

kernel, running the Android device and loaded into it. Since LiME is LKM,

so the underlying kernel needs to have enabled the loadable kernel module

support. Since Android kernel does not have a default support for loadable

kernel modules, so the kernel needs to be compiled with loadable module sup-

port. Goldfish kernel 4.4 is compiled and utilized in the experimental setup

for booting the virtual environment.

Volatility Framework [42], which is an open source collection of tools

used for analysis of volatile memory dumps captured from Windows, Mac

OSX, Linux, and Linux-based devices, is used in the experimental setup for

extraction of PCB from memory dump obtained through LiME from the target

device. It supports different memory dump formats like Raw linear format,

Hibernation files, crash dump file, LiME format, firewire etc. A Volatility

profile (comprising of module.dwarf and System.map files packaged into a zip

archive) is required to be built against the target kernel, for analysis of memory

dump captured through LiME from the Android based device. The profile

helps volatility framework in locating and parsing of information in the memory

dump.

The proposed framework is implemented as a Python application that

utilize the volatility APIs by importing volatility as library. The developed

application has the ability to power on the virtual environment, install An-

droid applications (apk) placed in a designated directory one by one, execute

the application, simulate pseudo-random user input, capture memory dump,

analyze the memory dump, extract PCB from the memory dump, and save it

to a csv file. Simulation of user input is accomplished 3 times with varying

numbers of inputs (150, 1500, and 4,000) and after each event generation sce-

nario, a memory dump is taken, resulting in 4 x memory dumps against each

application being analyzed. The first memory dump against a single applica-

tion is taken just after execution, then after simulating 150 user inputs, then

after 1,500 user inputs, and finally after issuing 4,000 user inputs.
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4.2.1 Dataset and Extracted Feature-set

CICMalDroid 2020 dataset [18] of apk files is used for generation of the

feature-set. The CICMalDroid 2020 dataset is comprised of 17,341 apk files

divided into five categories: Benign, Riskware, Banking, SMS and Adware.

The resultant features-set comprises of 526 attributes extracted from Android

PCB (task struct) is generated against 2500 apks files, randomly selected

from CICMalDroid 2020 dataset. The 2500 randomly selected applications

consist of 500 apk files from each category of the CICMalDroid 2020 dataset.

Since the feature-set proposed by this study is memory-based and extracted

from the Android process control block (task struct), so each application is

executed in a sandboxed environment and memory dump is captured. The data

collection agent implemented for acquisition of memory dump and extraction of

PCB attributes, captures four memory dumps against each apk file at different

times. From each memory dump file, the corresponding PCB is extracted

and stored into a csv file. After processing of 2500 applications, a feature-

set comprising of information extracted from 10,000 memory dumps (with

2,000 memory dumps against each category of CICMalDroid 2020 dataset) is

generated. The extracted feature-set from Android PCB can be divided into

nine categories as described in section 2.2.

4.3 Feature Selection

The feature extraction process generates a large number of features. It

is important to find the effective features as all the features in the feature set

may not be significant for malware classification. Feature selection helps in

reducing the complexity of model and thus reducing over-fitting [43]. It helps

in identifying the features that add noise to the classification system and are

a cause of low performance [44]. In order to find the set of significant features,

a layered approach comprises of three layers is followed by this study. The

first step analyzes all features for finding the features whose value remains

same for all output classes. Such features are referred as constant features and

are removed from the feature set as they have no influence on the prediction

of output class. The second step focuses on non-constant features and finds

Information Gain values against all features. Different thresholds for informa-

tion gain are utilized for finding an optimum threshold value, which leads to

a reduced feature set based on eliminating features with an IG value less than

the threshold value. The resultant feature set is then passed to the next phase

where features are eliminated based on their correlation, and a final set of

effective features is presented. The details of all the three phases is discussed
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in the subsequent subsections.

4.3.1 Evaluating Constant Features for Feature Selection

The features for which the values of data samples remain same for all

output classes are called Constant features. These features do not add any

value to the classification system and can be regarded as ineffective features.

Therefore, they should be removed from the feature set. As constant features

have no variability in values, therefore the statistical measure of variance can

be used for finding such features. Variance can be calculated for a feature

using Eqn.4.1. Variance measures the distance of all values in a feature from

the mean value of feature. If the values of a feature are diverse, variance is high

and vice versa. A zero value of variance indicates that there is no variation in

the values of the feature. In this study, all features are evaluated using variance

and the ones with zero variance are recorded. Such features are referred as

constant features.

sN =

√√√√ 1

N

N∑
i=1

(xi − x̄)2 (4.1)

where:

xi is the ith value of feature

(xi − x̄)2 is the squared distance of the ith value from mean

N is the total number of samples in the data set

The remaining features will now be gauged for their significance by cal-

culating Information Gain values against the output class.

4.3.2 Information Gain for Feature Selection

Information Gain is a measure that helps to estimate the information,

a feature provides about the output class [45]. It determines the dependency

between a feature and the output. If a feature is influential in determining the

output, the value of Information Gain is high. Its value will be low for less

influential features and zero for independent features. Information Gain can

be calculated using Eqn.4.2. The values for information gain are calculated

for all features selected after constant elimination.

I(X;Y ) = H(X)−H(X|Y ) (4.2)

where:
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H(X) is the entropy of X (feature)

H(X|Y ) is the conditional entropy of X given Y

In order to find features significant for classification, a threshold value for

Information Gain needs to be selected. In this study, features are selected for

thresholds of 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. The threshold at which the value

for classification is highest for all malware classes is chosen for the selection of

final features.

4.3.3 Correlation for Feature Selection

As the name implies, correlation refers to identifying the relationship

or closeness between two features. Features with high correlation are more

linearly dependent, so they have the same effect on the output class. Two

features having higher correlation, one of them can be dropped without much

affecting the output result. In this phase, feature set is reduced by using the

correlation of features.

4.4 Classification Method

After selection of the most effective features from the extracted features-

set, final features-set is used for classification. Different machine learning clas-

sifiers, including Decision Tree, SVM, KNN, and Naive Bayes, are used for

evaluating the feature-set. These classifiers are applied on the feature-set for

identification and categorization of Android malware.

4.5 Classifier Validation Method

Cross-validation is an iterative method of evaluating the classifier based

on partitioning the data into k equal parts and then applying k-1 parts for

training and 1 part for testing the model iteratively. The training and testing

is performed in such a manner that each part is used in testing, resulting

into k tests. 10-fold cross validation is used in the study for evaluating the

extracted feature set, which is the most commonly used method for evaluating

the performance of machine learning classifiers. 10-fold divides the input data

into 10 equal parts and evaluate the classifier performance by using 9 parts for

training and 1 part for testing the classifier. The training and testing process

is performed 10 times, each time with a different testing data, and the classifier

performance is reported.
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4.6 Classifiers Evaluation Metrics

Evaluation metrics are used to evaluate the effectiveness of machine learn-

ing classifiers for detection and classification. The subsequent subsection dis-

cusses various evaluation metrics.

4.6.1 Confusion Matrix

As the name suggests, it is a matrix that provides the complete picture

of prediction model and includes the following metrics.

1. True Positive (TP): Predicting Yes as Yes

2. True Negative (TN): Predicting No as No

3. False Positive (FP): Predicting Yes as No

4. False Negative (FN): Predicting No as Yes

4.6.2 Accuracy Metric

Accuracy is the measure of prediction that a classifier correctly predicts.

As shown in Eqn. 4.3, it is defined as the ratio of correct predictions to the

total predictions made[46].

Accuracy =
TP + TN

TP + TN + FP + FN
(4.3)

4.6.3 Other Metrics

Many other metrics that are related to the confusion matrix are com-

monly used for evaluation of prediction models, these includes Recall, Pre-

cision, False Positive Rate, and F1-Score. These metrics can be given by

equation 4.4, 4.5, 4.6, 4.7

Recall =
TP

TP + FN
(4.4)

Precision =
TP

TP + FP
(4.5)

False Positive Rate =
FP

FP + TN
(4.6)

F1 Score = 2× Presion×Recall
Precision+Recall

(4.7)
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CHAPTER 5

ANALYSIS & RESULTS

This chapter evaluates the research by presenting the experiments and

results of all the applied techniques. The subsequent sections discusses feature

extraction, feature selection (constant feature elimination, Information Gain

and Correlation techniques in layered fashion), classification, and finally the

proposed framework is evaluated by comparing the result of previously identi-

fied features with the result of improved feature-set identified by this study.

5.1 Feature Extraction

The feature extraction process works by collecting information from the

process control block (task struct) using volatile memory dump extracted

from Android-based device. Volatile memory dump are captured 4 times from

the Android based device against a single application at different times, i.e., af-

ter execution, after issuing 150, 1500, and 4000 events against the application.

Each memory image is processed for collecting task struct of the process

under analysis. The analysis of task struct leads to a rich feature set of 526

features. The large number of features is then reduced to a set of effective

features by using the feature selection techniques described in the subsequent

section.

5.2 Feature Selection

Since a rich set of features is extracted by the feature extraction process.

A three-step feature selection process is applied for selecting effective features

in a layered fashion. Initially, the features-set is reduced by eliminating the

constant features, and then the resultant feature-set is passed to the next phase

where Information Gain is applied. Based on experiments, an optimal value

of Information Gain threshold is selected and the features whose Information

Gain value is less than the selected threshold value are eliminated. Finally, the
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resultant feature set is passed to the next phase, where Correlation is applied

and features are eliminated. The results of these three phases are presented in

subsequent subsections.

5.2.1 Constant Feature Elimination

Constant features are the ones that have the same values for all output

classes. This study has calculated the variance measure against all features in

the data set. If the value of variance is zero, then such a feature is grouped into

the set of constant features and is removed from the set of effective features.

Out of 526 extracted features, 241 features are found to be constant in nature.

These features are removed from the set of effective features. The remaining

set of 285 features is passed to the next phase of feature selection, i.e., for

calculating the information gain score.

5.2.2 Information Gain For Feature Selection

Information gain is calculated for all non-constant features selected by

the previous phase. The value of Information Gain reflects the influence of

the feature on prediction of output. Figures 5.1, 5.2 and 5.3 represent the IG

scores for all features.

Figure 5.1: IG scores of Features (1-95)
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Figure 5.2: IG scores of Features (96-190)

Figure 5.3: IG scores of Features (191-285)

In order to select features important for classification; a threshold esti-

mation approach is used. The features are selected at different values of Infor-

mation Gain by measuring performance measures against the selected features.

The values of threshold used for feature selection are 0.1, 0.2, 0.3, 0.4, 0.5, and

0.6. Table 5.1 shows the average 10-fold cross validation accuracy measure and

the resultant total number of features selected against each threshold. Figure

5.4 presents the trade-off between accuracy and IG threshold.
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Table 5.1: IG Thresholds Results, Accuracy and the Resultant Features

IG Threshold Average Accuracy Number of Features selected

0.1 0.967 172

0.2 0.931 106

0.3 0.927 63

0.4 0.883 43

0.5 0.881 35

0.6 0.879 31

0.1 0.2 0.3 0.4 0.5 0.6
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

IG Threshold

A
ve

ra
g

e
 A
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u

ra
cy

Figure 5.4: IG Threshold vs Accuracy

It can be observed that best performance is achieved at an IG thresh-

old of 0.1 with 172 features. Therefore, these features are reported as the

final selected features after phase-2 of feature selection. These features are

then passed to the next phase of feature selection, which uses correlation for

reducing the number of features.
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5.3 Correlation

Correlation of one hundred and seventy-two (172) features, selected through

the previous step of information gain, is calculated and features are eliminated

based on their correlation value. Figure 5.5 shows the resultant correlation

matrix. Based on the correlation, features set is reduced to ninety eight (98)

from one hundred and seventy-two (172). The final feature set after applying

correlation is presented in Table B.1.

Figure 5.5: Correlation Matrix For Features Selected by Information Gain

5.4 Classification

The features-set proposed by this study is evaluated using different ma-

chine learning classifiers that include Decision Tree, K-Nearest Neighbor, SVM,

and Naive Bayes for identification and categorization of Android malware. 10-

fold cross validation technique is used for validating the result against each
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classifier. Table 5.2 shows the result of identification and categorization of

Android malware against multiple machine learning classifiers.

Table 5.2: Evaluation of Proposed Features by Using Different Classifiers with

10-Fold Cross Validation

Classifier
Output

class
Precision Recall

F1-

Score
Accuracy

Decision

Tree

Adware 0.94 0.96 0.95

0.97

Banking 1.00 1.00 1.00

Benign 0.99 0.96 0.97

Riskware 0.99 0.97 0.98

SMS 0.93 0.94 0.94

Avg Score 0.97 0.97 0.97

K-

Nearest

Neighbor

(KNN)

Adware 0.88 0.83 0.86

0.93

Banking 0.99 0.98 0.99

Benign 0.95 0.94 0.95

Riskware 0.95 0.96 0.96

SMS 0.87 0.93 0.90

Avg Score 0.93 0.93 0.93

SVM

Adware 0.92 0.91 0.92

0.97

Banking 1.00 1.00 1.00

Benign 1.00 1.00 1.00

Riskware 0.99 0.97 0.98

SMS 0.92 0.96 0.94

Avg Score 0.97 0.97 0.97

Naive

Bayes

Adware 0.86 0.27 0.41

0.75

Banking 0.82 0.99 0.90

Benign 0.89 0.78 0.83

Riskware 0.73 0.73 0.73

SMS 0.61 0.97 0.75

Avg 0.78 0.75 0.72

5.5 Existing Feature-Set Evaluation

In [1] malware detection using features from task struct is presented

using 112 features. The work shows 94%-98% accuracy for binary classification

(benign/malicious) of malware. The same set of features is used for malware

categorization using 10-fold cross-validation techniques. The 112 features are

reduced to 74 features after eliminating constant features, and then different
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machine learning classifiers are applied. Results are shown in Table 5.3.

Table 5.3: Existing Feature-set [1] Evaluation using 10-Fold Cross Validation

Against Different Classifiers

Classifier
Output

class
Precision Recall

F1-

Score
Accuracy

Decision

Tree

Adware 0.67 0.71 0.69

0.73

Banking 0.76 0.75 0.75

Benign 0.74 0.74 0.74

Riskware 0.71 0.74 0.73

SMS 0.80 0.73 0.77

Avg Score 0.74 0.73 0.74

K-

Nearest

Neighbor

(KNN)

Adware 0.70 0.68 0.69

0.73

Banking 0.75 0.77 0.76

Benign 0.81 0.70 0.75

Riskware 0.70 0.71 0.71

SMS 0.71 0.80 0.75

Avg Score 0.73 0.73 0.73

SVM

Adware 0.73 0.75 0.74

0.76

Banking 0.75 0.73 0.74

Benign 0.86 0.79 0.82

Riskware 0.73 0.73 0.73

SMS 0.75 0.79 0.77

Avg Score 0.76 0.76 0.76

Naive

Bayes

Adware 0.67 0.19 0.29

0.39

Banking 0.20 0.04 0.06

Benign 0.77 0.40 0.53

Riskware 0.73 0.34 0.47

SMS 0.28 0.99 0.43

Avg Score 0.53 0.39 0.36

5.6 Comparison With Existing Study

This study proposed 98 features out of the 526 features for the detection

and categorization of Android malware, which consist of seventy (70) newly

identified features in addition to the features extracted by [1]. The experiments

performed on the improved feature-set resulted in improved precision, recall,

F1-score, and accuracy as compared to the existing feature-set for detection

and categorization of Android malware. Table 5.4 shows the comparison of
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results achieved through existing feature-set and the improved feature-set pro-

posed by this study. The result of existing study is taken from the evaluation

of the feature presented in section 5.5. It can be observed from the Table 5.4

and Figure 5.6 that the improved feature-set proposed by this study greatly

contributes to the detection and categorization of Android malware.

Table 5.4: Comparison Table of Feature-set Evaluation for Categorization of

Android Malware

Feature

set

Proposed

By

Classifiers Precision Recall
F1-

Score
Accuracy

Wang et.

al [1]

DT, KNN,

SVM, NB

DT :0.74

KNN:0.73

SVM:0.76

NB :0.53

DT :0.73

KNN:0.73

SVM:0.76

NB :0.39

DT :0.74

KNN:0.73

SVM:0.76

NB :0.36

DT :0.73

KNN:0.73

SVM:0.76

NB :0.39

This study
DT, KNN,

SVM, NB

DT : 0.97

KNN: 0.93

SVM: 0.97

NB : 0.78

DT : 0.97

KNN: 0.93

SVM: 0.97

NB : 0.75

DT : 0.97

KNN: 0.93

SVM: 0.97

NB : 0.72

DT : 0.97

KNN: 0.93

SVM: 0.97

NB : 0.75

Figure 5.6: Performance Comparison of Android Malware Categorization Us-

ing Feature-Set Proposed by [1] and This Study
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CHAPTER 6

CONCLUSION & FUTURE WORK

In this study, a feature extraction and classification framework is pro-

posed for identification and categorization of Android malware. The proposed

framework is implemented in Python, which is evaluated for the extraction of

features against 2,500 Android applications selected from CICMalDroid 2020

dataset. The 2,500 Android applications belong to 5 categories (Adware, Bank-

ing Malware, Riskware, SMS Malware, and Benign Applications), and include

500 applications in each category. The feature extraction agent extracts fea-

tures from the memory dump of Android device and stores the result into a

csv file. The feature extraction process is performed four times against a sin-

gle application from four different memory dumps captured at different times

of application execution. The feature extraction agent extracted 526 features

from the Android PCB (task struct), which are then reduced to 98 features

based on constant feature elimination, elimination of features based on Infor-

mation Gain threshold, and features correlation. The 98 features consist of 70

newly identified features, while the remaining 28 features belong to the 112

features identified by [1]. By evaluating the proposed feature set with differ-

ent machine learning classifiers, Decision Tree and SVM outperform the other

classifiers with a precision = 0.97, Recall = 0.97, F1-Score = 0.97, and Accu-

racy = 0.97. When the same classifiers were applied to the existing feature set,

the SVM classifier achieved the highest performance with a precision = 0.76,

Recall = 0.76, F1-Score = 0.6, and Accuracy = 0.76. These results showed

that the newly identified features have a high contribution to the detection

and categorization of Android malware.

This study evaluated the effectiveness of improved features set extracted

from Android PCB (task struct) for the categorization of specific malware

categories. In the future, we would like to extend our work for identification

and categorization of obfuscated Android applications.
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APPENDIX A

LIST OF EXTRACTED ATTRIBUTES/FEATURES

IN TASK STRUCT CATEGORY-WISE

Table A.1: Task State Information

Task State attributes/features

1)task→exit state 2)task→exit code 3)task→exit signal

4)task→pdeath signal 5)task→jobctl 6)task→personality

Table A.2: Memory Information

Memory Information attributes/features

7)task → acct rss mem1 8)task → acct timexpd 9)task → acct vm mem1

10)task → dirty paused when 11)task → maj flt 12)task → min flt 13)task

→ mm → arg end 14)task → mm → arg start 15)task → mm → brk 16)task

→ mm → context → ia32 compat 17)task → mm → context → lock →
count → counter 18)task → mm → context → perf rdpmc allowed →
counter 19)task → mm → def flags 20)task → mm → end code 21)task →
mm → end data 22)task → mm → env end 23)task → mm → env start

24)task → mm → exe file → f count → counter 25)task → mm → exe file →
f cred → egid → val 26)task → mm → exe file → f cred → euid → val

27)task → mm → exe file → f cred → fsgid → val 28)task → mm → exe file

→ f cred → fsuid → val 29)task → mm → exe file → f cred → gid → val

30)task → mm → exe file → f cred → group info → nblocks 31)task → mm

→ exe file → f cred → group info → ngroups 32)task → mm → exe file →
f cred → jit keyring 33)task → mm → exe file → f cred → securebits 34)task

→ mm → exe file → f cred → sgid → val 35)task → mm → exe file → f cred

→ suid → val 36)task → mm → exe file → f cred → uid → val 37)task →
mm → exe file → f cred → usage → counter

Continued on next page
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Table A.2 – Continued from previous page

Memory Information attributes/features

38)task → mm → exe file → f cred → user → locked shm 39)task → mm →
exe file → f cred → user → mq bytes 40)task → mm → exe file → f cred →
user → unix inflight 41)task → mm → exe file → f flags 42)task → mm →
exe file → f inode → dirtied time when 43)task → mm → exe file → f inode

→ dirtied when 44)task → mm → exe file → f inode → i atime → tv nsec

45)task → mm → exe file → f inode → i atime → tv sec 46)task → mm →
exe file → f inode → i blkbits 47)task → mm → exe file → f inode →
i blocks 48)task → mm → exe file → f inode → i bytes 49)task → mm →
exe file → f inode → i count → counter 50)task → mm → exe file → f inode

→ i ctime → tv nsec 51)task → mm → exe file → f inode → i ctime →
tv sec 52)task → mm → exe file → f inode → i data → flags 53)task → mm

→ exe file → f inode → i data → nrpages 54)task → mm → exe file →
f inode → i data → nrshadows 55)task → mm → exe file → f inode → i data

→ writeback index 56)task → mm → exe file → f inode → i dio count →
counter 57)task → mm → exe file → f inode → i flags 58)task → mm →
exe file → f inode → i fsnotify mask 59)task → mm → exe file → f inode →
i generation 60)task → mm → exe file → f inode → i gid → val 61)task →
mm → exe file → f inode → i ino 62)task → mm → exe file → f inode →
i mapping → flags 63)task → mm → exe file → f inode → i mapping →
nrpages 64)task → mm → exe file → f inode → i mapping → nrshadows

65)task → mm → exe file → f inode → i mapping → writeback index

66)task → mm → exe file → f inode → i mode 67)task → mm → exe file →
f inode → i mtime → tv nsec 68)task → mm → exe file → f inode →
i mtime → tv sec 69)task → mm → exe file → f inode → i opflags 70)task

→ mm → exe file → f inode → i rdev 71)task → mm → exe file → f inode

→ i sb → cleancache poolid 72)task → mm → exe file → f inode → i sb →
s blocksize 73)task → mm → exe file → f inode → i sb → s blocksize bits

74)task → mm → exe file → f inode → i sb → s count 75)task → mm →
exe file → f inode → i sb → s dev 76)task → mm → exe file → f inode →
i sb → s flags 77)task → mm → exe file → f inode → i sb → s iflags 78)task

→ mm → exe file → f inode → i sb → s magic 79)task → mm → exe file →
f inode → i sb → s max links 80)task → mm → exe file → f inode → i sb →
s maxbytes 81)task → mm → exe file → f inode → i sb → s mode 82)task

→ mm → exe file → f inode → i sb → s quota types 83)task → mm →
exe file → f inode → i sb → s readonly remount

Continued on next page
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Table A.2 – Continued from previous page

Memory Information attributes/features

84)task → mm → exe file → f inode → i sb → s stack depth 85)task → mm

→ exe file → f inode → i sb → s time gran 86)task → mm → exe file →
f inode → i size 87)task → mm → exe file → f inode → i state 88)task →
mm → exe file → f inode → i uid → val 89)task → mm → exe file → f inode

→ i version 90)task → mm → exe file → f inode → i writecount → counter

91)task → mm → exe file → f mapping → flags 92)task → mm → exe file →
f mapping → host → dirtied time when 93)task → mm → exe file →
f mapping → host → dirtied when 94)task → mm → exe file → f mapping

→ host → i blkbits 95)task → mm → exe file → f mapping → host →
i blocks 96)task → mm → exe file → f mapping → host → i bytes 97)task →
mm → exe file → f mapping → host → i flags 98)task → mm → exe file →
f mapping → host → i fsnotify mask 99)task → mm → exe file → f mapping

→ host → i generation 100)task → mm → exe file → f mapping → host →
i ino 101)task → mm → exe file → f mapping → host → i mode 102)task →
mm → exe file → f mapping → host → i opflags 103)task → mm → exe file

→ f mapping → host → i rdev 104)task → mm → exe file → f mapping →
host → i size 105)task → mm → exe file → f mapping → host → i state

106)task → mm → exe file → f mapping → host → i version 107)task →
mm → exe file → f mapping → i mmap rwsem → count 108)task → mm →
exe file → f mapping → i mmap writable → counter 109)task → mm →
exe file → f mapping → nrpages 110)task → mm → exe file → f mapping →
nrshadows 111)task → mm → exe file → f mapping → page tree →
gfp mask 112)task → mm → exe file → f mapping → page tree → height

113)task → mm → exe file → f mapping → writeback index 114)task → mm

→ exe file → f mode 115)task → mm → exe file → f owner → euid → val

116)task → mm → exe file → f owner → pid type 117)task → mm →
exe file → f owner → signum 118)task → mm → exe file → f owner → uid

→ val 119)task → mm → exe file → f path → dentry → d flags 120)task →
mm → exe file → f path → dentry → d time 121)task → mm → exe file →
f path → mnt → mnt flags 122)task → mm → exe file → f pos 123)task →
mm → exe file → f pos lock → count → counter 124)task → mm → exe file

→ f ra → async size 125)task → mm → exe file → f ra → mmap miss

126)task → mm → exe file → f ra → prev pos 127)task → mm → exe file →
f ra → ra pages 128)task → mm → exe file → f ra → start 129)task → mm

→ exe file → f version 130)task → mm → exec vm 131)task → mm → flags

132)task → mm → highest vm end 133)task → mm → hiwater rss 134)task

→ mm → hiwater vm 135)task → mm → hugetlb usage → counter

Continued on next page
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Table A.2 – Continued from previous page

Memory Information attributes/features

136)task → mm → locked vm 137)task → mm → map count 138)task →
mm → mm count → counter 139)task → mm → mm rb → rb node →

rb parent color 140)task → mm → mm rb → rb node → rb left →
rb parent color 141)task → mm → mm rb → rb node → rb right →
rb parent color 142)task → mm → mm users → counter 143)task → mm

→ mmap base 144)task → mm → mmap legacy base 145)task → mm →
mmap sem → count 146)task → mm → mmap sem → osq → tail → counter

147)task → mm → mmap → rb subtree gap 148)task → mm → mmap →
shared → rb subtree last 149)task → mm → mmap → shared → rb →

rb parent color 150)task → mm → mmap → vm end 151)task → mm →
mmap → vm file → f count → counter 152)task → mm → mmap → vm file

→ f cred → jit keyring 153)task → mm → mmap → vm file → f cred →
securebits 154)task → mm → mmap → vm file → f flags 155)task → mm →
mmap → vm file → f inode → dirtied time when 156)task → mm → mmap

→ vm file → f inode → dirtied when 157)task → mm → mmap → vm file →
f inode → i blkbits 158)task → mm → mmap → vm file → f inode →
i blocks 159)task → mm → mmap → vm file → f inode → i bytes 160)task

→ mm → mmap → vm file → f inode → i flags 161)task → mm → mmap

→ vm file → f inode → i fsnotify mask 162)task → mm → mmap → vm file

→ f inode → i generation 163)task → mm → mmap → vm file → f inode →
i ino 164)task → mm → mmap → vm file → f inode → i mode 165)task →
mm → mmap → vm file → f inode → i opflags 166)task → mm → mmap →
vm file → f inode → i rdev 167)task → mm → mmap → vm file → f inode

→ i size 168)task → mm → mmap → vm file → f inode → i state 169)task

→ mm → mmap → vm file → f inode → i version 170)task → mm → mmap

→ vm file → f mapping → flags 171)task → mm → mmap → vm file →
f mapping → nrpages 172)task → mm → mmap → vm file → f mapping →
nrshadows 173)task → mm → mmap → vm file → f mapping →
writeback index 174)task → mm → mmap → vm file → f mode 175)task →
mm → mmap → vm file → f owner → pid type 176)task → mm → mmap

→ vm file → f owner → signum 177)task → mm → mmap → vm file →
f pos 178)task → mm → mmap → vm file → f ra → async size 179)task →
mm → mmap → vm file → f ra → mmap miss 180)task → mm → mmap →
vm file → f ra → prev pos 181)task → mm → mmap → vm file → f ra →
ra pages 182)task → mm → mmap → vm file → f ra → start 183)task →
mm → mmap → vm file → f version 184)task → mm → mmap →
vm page prot → pgprot 185)task → mm → mmap → vm pgoff

Continued on next page
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Table A.2 – Continued from previous page

Memory Information attributes/features

186)task → mm → mmap → vm rb → rb parent color 187)task → mm →
mmap → vm start 188)task → mm → nr pmds → counter 189)task → mm

→ nr ptes → counter 190)task → mm → pgd → pgd 191)task → mm →
pinned vm 192)task → mm → shared vm 193)task → mm → stack vm

194)task → mm → start brk 195)task → mm → start code 196)task → mm

→ start data 197)task → mm → start stack 198)task → mm → task size

199)task → mm → tlb flush batched 200)task → mm → tlb flush pending

201)task → mm → total vm 202)task → mm → vmacache seqnum 203)task

→ nivcsw 204)task → normal prio 205)task → nr dirtied 206)task →
nr dirtied pause 207)task → nvcsw 208)task → pagefault disabled 209)task

→ rss stat → events 210)task → stime 211)task → stimescaled 212)task →
tlb ubc → flush required 213)task → tlb ubc → writable 214)task → usage

→ counter 215)task → utime 216)task → utimescaled 217)task →
vmacache seqnum

Table A.3: Signal Information

Signal Information attributes/features

218)task → sas ss size 219)task → sas ss sp 220)task → sighand → count →
counter 221)task → signal → audit tty 222)task → signal →
audit tty log passwd 223)task → signal → cgtime 224)task → signal →
cinblock 225)task → signal → cmaj flt 226)task → signal → cmaxrss

227)task → signal → cmin flt 228)task → signal → cnivcsw 229)task →
signal → cnvcsw 230)task → signal → coublock 231)task → signal →
cputime expires → stime 232)task → signal → cputime expires →
sum exec runtime 233)task → signal → cputime expires → utime 234)task

→ signal → cputimer → checking timer 235)task → signal → cputimer →
cputime atomic → stime → counter 236)task → signal → cputimer →
cputime atomic → sum exec runtime → counter 237)task → signal →
cputimer → cputime atomic → utime → counter 238)task → signal →
cputimer → running 239)task → signal → cstime 240)task → signal →
cutime 241)task → signal → flags 242)task → signal → group exit code

243)task → signal → group stop count 244)task → signal → gtime 245)task

→ signal → inblock 246)task → signal → ioac → cancelled write bytes

Continued on next page
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Table A.3 – Continued from previous page

Signal Information attributes/features

247)task → signal → ioac → rchar 248)task → signal → ioac → read bytes

249)task → signal → ioac → syscfs 250)task → signal → ioac → syscr

251)task → signal → ioac → syscw 252)task → signal → ioac → wchar

253)task → signal → ioac → write bytes 254)task → signal → leader

255)task → signal → leader pid → count → counter 256)task → signal →
leader pid → level 257)task → signal → live → counter 258)task → signal →
maj flt 259)task → signal → maxrss 260)task → signal → min flt 261)task

→ signal → nivcsw 262)task → signal → notify count 263)task → signal →
nr threads 264)task → signal → nvcsw 265)task → signal → oom flags

266)task → signal → oom score adj 267)task → signal → oom score adj min

268)task → signal → oublock 269)task → signal → pacct → ac exitcode

270)task → signal → pacct → ac flag 271)task → signal → pacct →
ac majflt 272)task → signal → pacct → ac mem 273)task → signal → pacct

→ ac minflt 274)task → signal → pacct → ac stime 275)task → signal →
pacct → ac utime 276)task → signal → posix timer id 277)task → signal →
prev cputime → stime 278)task → signal → prev cputime → utime 279)task

→ signal → real timer → softexpires → tv64 280)task → signal →
real timer → base → clockid 281)task → signal → real timer → base →
cpu base → active bases 282)task → signal → real timer → base → cpu base

→ clock was set seq 283)task → signal → real timer → base → cpu base →
cpu 284)task → signal → real timer → base → cpu base → max hang time

285)task → signal → real timer → base → cpu base → migration enabled

286)task → signal → real timer → base → cpu base → nohz active 287)task

→ signal → real timer → base → cpu base → nr events 288)task → signal

→ real timer → base → cpu base → nr hangs 289)task → signal →
real timer → base → cpu base → nr retries 290)task → signal → real timer

→ base → index 291)task → signal → real timer → base → offset → tv64

292)task → signal → real timer → is rel 293)task → signal → real timer →
node → expires → tv64 294)task → signal → real timer → state 295)task →
signal → sigcnt → counter 296)task → signal → stats lock → seqcount →
sequence 297)task → signal → stime 298)task → signal →
sum sched runtime 299)task → signal → utime
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Table A.4: Scheduling Information

Scheduling Information attributes/features

300)task → cputime expires → stime 301)task → cputime expires →
sum exec runtime 302)task → cputime expires → utime 303)task → dl →
deadline 304)task → dl → dl boosted 305)task → dl → dl bw 306)task → dl

→ dl deadline 307)task → dl → dl density 308)task → dl → dl new 309)task

→ dl → dl period 310)task → dl → dl runtime 311)task → dl → dl throttled

312)task → dl → dl timer → softexpires → tv64 313)task → dl → dl timer

→ base → clockid 314)task → dl → dl timer → base → cpu base →
active bases 315)task → dl → dl timer → base → cpu base →
clock was set seq 316)task → dl → dl timer → base → cpu base → cpu

317)task → dl → dl timer → base → cpu base → max hang time 318)task

→ dl → dl timer → base → cpu base → migration enabled 319)task → dl →
dl timer → base → cpu base → nohz active 320)task → dl → dl timer →
base → cpu base → nr events 321)task → dl → dl timer → base → cpu base

→ nr hangs 322)task → dl → dl timer → base → cpu base → nr retries

323)task → dl → dl timer → base → index 324)task → dl → dl timer →
base → offset → tv64 325)task → dl → dl timer → is rel 326)task → dl →
dl timer → node → expires → tv64 327)task → dl → dl timer → node →
node → rb parent color 328)task → dl → dl timer → state 329)task → dl

→ dl yielded 330)task → dl → flags 331)task → dl → rb node →
rb parent color 332)task → dl → runtime 333)task → flags 334)task →

on cpu 335)task → on rq 336)task → policy 337)task → prev cputime →
lock → raw lock → val → counter 338)task → prev cputime → stime

339)task → prev cputime → utime 340)task → prio 341)task → ptrace

342)task → rcu read lock nesting 343)task → rt priority 344)task → rt →
schedtune enqueued 345)task → rt → schedtune timer → softexpires →
tv64 346)task → rt → schedtune timer → base → clockid 347)task → rt →
schedtune timer → base → cpu base → active bases 348)task → rt →
schedtune timer → base → cpu base → clock was set seq 349)task → rt →
schedtune timer → base → cpu base → cpu 350)task → rt →
schedtune timer → base → cpu base → max hang time 351)task → rt →
schedtune timer → base → cpu base → migration enabled 352)task → rt →
schedtune timer → base → cpu base → nohz active 353)task → rt →
schedtune timer → base → cpu base → nr events 354)task → rt →
schedtune timer → base → cpu base → nr hangs 355)task → rt →
schedtune timer → base → cpu base → nr retries

Continued on next page
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Table A.4 – Continued from previous page

Scheduling Information attributes/features

356)task → rt → schedtune timer → base → index 357)task → rt →
schedtune timer → base → offset → tv64 358)task → rt → schedtune timer

→ is rel 359)task → rt → schedtune timer → node → expires → tv64

360)task → rt → schedtune timer → node → node → rb parent color

361)task → rt → schedtune timer → state 362)task → rt → time slice

363)task → rt → timeout 364)task → rt → watchdog stamp 365)task →
sched info → last arrival 366)task → sched info → last queued 367)task →
sched info → pcount 368)task → sched info → run delay 369)task → se →
avg → last update time 370)task → se → avg → load avg 371)task → se →
avg → load sum 372)task → se → avg → period contrib 373)task → se →
avg → util avg 374)task → se → avg → util sum 375)task → se → depth

376)task → se → exec start 377)task → se → load → inv weight 378)task →
se → load → weight 379)task → se → nr migrations 380)task → se → on rq

381)task → se → prev sum exec runtime 382)task → se → sum exec runtime

383)task → se → vruntime 384)task → stack canary 385)task → state

386)task → static prio 387)task → wake cpu 388)task → wakee flip decay ts

389)task → wakee flips

Table A.5: Process Credentials

Process Credentials attributes/features

390)task → cred → egid → val 391)task → cred → euid → val 392)task →
cred → fsgid → val 393)task → cred → fsuid → val 394)task → cred → gid

→ val 395)task → cred → group info → nblocks 396)task → cred →
group info → ngroups 397)task → cred → group info → usage → counter

398)task → cred → jit keyring 399)task → cred → securebits 400)task →
cred → session keyring → datalen 401)task → cred → session keyring →
flags 402)task → cred → session keyring → gid → val 403)task → cred →
session keyring → last used at 404)task → cred → session keyring → perm

405)task → cred → session keyring → quotalen 406)task → cred →
session keyring → sem → count 407)task → cred → session keyring → serial

408)task → cred → session keyring → state 409)task → cred →
session keyring → uid → val 410)task → cred → session keyring → usage →
counter 411)task → cred → sgid → val 412)task → cred → suid → val

413)task → cred → uid → val 414)task → cred → usage → counter 415)task

→ cred → user → count → counter

Continued on next page
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Table A.5 – Continued from previous page

Process Credentials attributes/features

416)task → cred → user → epoll watches → counter 417)task → cred →
user → inotify devs → counter 418)task → cred → user → inotify watches

→ counter 419)task → cred → user → locked shm 420)task → cred → user

→ locked vm → counter 421)task → cred → user → mq bytes 422)task →
cred → user → pipe bufs → counter 423)task → cred → user → processes →
counter 424)task → cred → user → sigpending → counter 425)task → cred

→ user → uid → val 426)task → cred → user → unix inflight 427)task →
real cred → egid → val 428)task → real cred → euid → val 429)task →
real cred → fsgid → val 430)task → real cred → fsuid → val 431)task →
real cred → gid → val 432)task → real cred → group info → nblocks

433)task → real cred → group info → ngroups 434)task → real cred →
group info → usage → counter 435)task → real cred → jit keyring 436)task

→ real cred → securebits 437)task → real cred → session keyring → datalen

438)task → real cred → session keyring → flags 439)task → real cred →
session keyring → gid → val 440)task → real cred → session keyring →
last used at 441)task → real cred → session keyring → perm 442)task →
real cred → session keyring → quotalen 443)task → real cred →
session keyring → sem → count 444)task → real cred → session keyring →
serial 445)task → real cred → session keyring → state 446)task → real cred

→ session keyring → uid → val 447)task → real cred → session keyring →
usage → counter 448)task → real cred → sgid → val 449)task → real cred →
suid → val 450)task → real cred → uid → val 451)task → real cred → usage

→ counter 452)task → real cred → user → count → counter 453)task →
real cred → user → epoll watches → counter 454)task → real cred → user →
inotify devs → counter 455)task → real cred → user → inotify watches →
counter 456)task → real cred → user → locked shm 457)task → real cred →
user → locked vm → counter 458)task → real cred → user → mq bytes

459)task → real cred → user → pipe bufs → counter 460)task → real cred

→ user → processes → counter 461)task → real cred → user → sigpending

→ counter 462)task → real cred → user → uid → val 463)task → real cred

→ user → unix inflight
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Table A.6: I/O Statistics

I/O Statistics attributes/features

464)task → delays → blkio count 465)task → delays → blkio delay 466)task

→ delays → blkio start 467)task → delays → flags 468)task → delays →
freepages count 469)task → delays → freepages delay 470)task → delays →
freepages start 471)task → delays → swapin count 472)task → delays →
swapin delay 473)task → ioac → cancelled write bytes 474)task → ioac →
rchar 475)task → ioac → read bytes 476)task → ioac → syscfs 477)task →
ioac → syscr 478)task → ioac → syscw 479)task → ioac → wchar 480)task

→ ioac → write bytes

Table A.7: Open File Descriptors

Open File Descriptors attributes/features

481)task → files → count → counter 482)task → files → fdt → close on exec

483)task → files → fdt → full fds bits 484)task → files → fdt → max fds

485)task → files → fdt → open fds 486)task → files → fdtab →
close on exec 487)task → files → fdtab → full fds bits 488)task → files →
fdtab → max fds 489)task → files → fdtab → open fds 490)task → files →
next fd 491)task → files → resize in progress

Table A.8: CPU Specific State

CPU Specific State attributes/features

492)task → thread → cr2 493)task → thread → debugreg6 494)task →
thread → ds 495)task → thread → error code 496)task → thread → es

497)task → thread → fpu → counter 498)task → thread → fpu →
fpregs active 499)task → thread → fpu → fpstate active 500)task → thread

→ fpu → last cpu 501)task → thread → fsbase 502)task → thread → fsindex

503)task → thread → gsbase 504)task → thread → gsindex 505)task →
thread → io bitmap max 506)task → thread → iopl 507)task → thread →
ptrace dr7 508)task → thread → sp 509)task → thread → sp0 510)task →
thread → trap nr
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Table A.9: Others

Others attributes/features

511)task → atomic flags 512)task → btrace seq 513)task →
default timer slack ns 514)task → gtime 515)task → last switch count

516)task → parent exec id 517)task → preempt disable ip 518)task →
ptrace message 519)task→ pushable tasks→ prio 520)task→ real start time

521)task → self exec id 522)task → sessionid 523)task → start time 524)task

→ timer slack ns 525)task → trace 526)task → trace recursion
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APPENDIX B

LIST OF SELECTED FEATURES

Table B.1: Final feature set against each category

Task State features (01)

1)task → personality

Memory Info features (35)

2)task → usage → counter 3)task → acct vm mem1 4)task →
vmacache seqnum 5)task → utime 6)task → nivcsw 7)task → nr dirtied

8)task → maj flt 9)task → stimescaled 10)task → acct rss mem1 11)task →
mm → mmap legacy base 12)task → mm → start brk 13)task → mm →
mmap → vm file → f inode → i ino 14)task → mm → mmap → shared →
rb → rb parent color 15)task → mm → shared vm 16)task → mm →
exe file → f path → dentry → d time 17)task → mm → mmap → vm rb →

rb parent color 18)task → mm → mm rb → rb node → rb right →
rb parent color 19)task → mm → exec vm 20)task → mm → pgd → pgd

21)task → mm → mm count → counter 22)task → mm → mmap →
vm page prot → pgprot 23)task → min flt 24)task → mm → mm users →
counter 25)task → mm → mmap → vm end 26)task → mm → map count

27)task → mm → hiwater rss 28)task → mm → nr ptes → counter 29)task

→ mm → mmap → shared → rb subtree last 30)task → mm → nr pmds →
counter 31)task → mm → vmacache seqnum 32)task → mm → mmap →
vm file → f ra → start 33)task → nvcsw 34)task → mm → mmap → vm file

→ f count → counter 35)task → mm → exe file → f inode → i writecount →
counter 36)task → mm → exe file → f count → counter

Signal Info features (24)

37)task → sas ss sp 38)task → signal → ioac → rchar 39)task → signal →
ioac → wchar 40)task → signal → ioac → syscr 41)task → signal →
sum sched runtime 42)task → signal → sigcnt → counter

Continued on next page
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Table B.1 – Continued from previous page

43)task → signal → live → counter 44)task → signal → nr threads 45)task

→ signal → ioac → syscw 46)task → signal → min flt 47)task → signal →
utime 48)task → signal → leader pid → count → counter 49)task → signal

→ prev cputime → stime 50)task → signal → prev cputime → utime 51)task

→ signal → ioac → write bytes 52)task → signal → oom score adj min

53)task → signal → ioac → read bytes 54)task → signal → ioac → syscfs

55)task → sighand → count → counter 56)task → signal → stats lock →
seqcount → sequence 57)task → signal → nvcsw 58)task → signal → nivcsw

59)task → signal → stime 60)task → signal → pacct → ac majflt

Scheduling Info features (11)

61)task → dl → dl timer → base → cpu base → clock was set seq 62)task →
dl → dl timer → base → cpu base → nr retries 63)task → dl → dl timer →
base → cpu base → nr events 64)task → prio 65)task → sched info →
run delay 66)task → sched info → pcount 67)task → se → vruntime 68)task

→ se → avg → util sum 69)task → se → load → inv weight 70)task → se →
avg → load sum 71)task → se → load → weight

Process Credentials features (07)

72)task → cred → session keyring → last used at 73)task → cred →
session keyring → serial 74)task → cred → user → epoll watches → counter

75)task → cred → usage → counter 76)task → cred → user → processes →
counter 77)task → cred → user → mq bytes 78)task → cred → user →
pipe bufs → counter

I/O Statistics features (11)

79)task → delays → blkio start 80)task → delays → blkio delay 81)task →
delays → swapin delay 82)task → delays → blkio count 83)task → ioac →
rchar 84)task → ioac → syscr 85)task → ioac → wchar 86)task → ioac →
syscw 87)task → ioac → write bytes 88)task → ioac → syscfs 89)task → ioac

→ read bytes

Open file Descriptors features (09)

90)task → files → fdtab → close on exec 91)task → files → fdt →
close on exec 92)task → files → fdt → open fds 93)task → files → fdtab →
open fds 94)task → files → count → counter 95)task → files → fdt →
full fds bits 96)task → files → next fd 97)task → files → fdt → max fds

98)task → files → fdtab → full fds bits
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APPENDIX C

LIST OF COMMANDS

1) To Check Whether Emulator/Device is Running/Connected

adb devices

2) To Boot the Emulator with Custom kernel

path to android sdk/emulator/emulator -avd <avd-name> -kernel

<kernel-image>

3) To Copy File(s) to the Emulator

adb push <file-to-copy> <target-location>

4) To Install apk to the Emulator

adb install <apk-file>

5) Get Package Name of an APK using aapt(Android Asset Pack-

aging Tool)

aapt dump badging <apk-file> | awk -F" " ’/package/ {print $2}’
| awk -F"’" ’/name=/ {print $2}’

6) To Run a Specific Application

adb shell monkey -p <package-name> -c android.intent.categor

y.LAUNCHER 1

7) To Find PID of a Specific Process by it’s Package Name

adb shell pidof <package-name>

8) Configure and Load LiME to Send Memory dump to Host over

TCP

• adb forward tcp:4444 tcp:4444

• adb shell insmod <path-to-LiME-Module> "path=tcp:4444

format=lime"
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9) Receive Memory Dump on the Host

nc localhost 4444 > <dump-file-name>

10) To Issue Pseudorandom Events Against the Application

adb shell monkey -p <package-name> -v <event-count>

11) To Disable Device Admin for an Application

adb shell pm disable-user <package-name>

12) To Stop Execution of an Application

adb shell am force-stop <package-name>

13) To Uninstall an Application

adb uninstall <package-name>

14) To Power-off Emulator

adb shell reboot -p
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