FINAL YEAR PROJECT REPORT

OBJECT TRACKING ROBOT MACHINE GUN (OTROM)

G-1

4/22/2011

This is a concept project solely based on military base defense and offence purpose and to minimize the number of lives lost during wars. We intend to complete our project in time and give an eye opening demonstration.

SUPERVISOR:

SIR IMRAN FAREED NIZAMI

GROUP MEMBERS:

FAIZA ABBAS (01-113072-014)

MUHAMMAD NUMAN ANWAR (01-113072-025)

KHAYYAM ALI BOKHARI (01-113072-017)

"THE OTROM"

List of figures

Figure 3.1	17
Figure 3.2	17
Figure 4.1	24
Figure 4.2	25
Figure 4.3	26
Figure 4.4	29
Figure 4.5	31
Figure 4.6	33
Figure 4.7	33
Figure 4.8	34
Figure 4.9	36
Figure 4.10	36
Figure 4.11	36
Figure 4.12	37
Figure 4.13	37
Figure 5.1	38
Figure 5.2	38

Figure 5.3	39
Figure 5.4	39
Figure 5.5	40

Table of Contents

Acknowledgement	09
• Abstract	10
List Of Figures	05
Chapter 1 Introduction	11
1.0. Introduction	12
1.1. Concept And Objective Of The Project	12
1.2. About The OTROM	12
Chapter 2 Analysis	13
2.0. Introduction	14
2.1. Why Are We Using GAIT Recognition?	14
2.1.1 Advantages	15
2.1.1.1. Unremarkable	15
2.1.1.2. Distance Recognition	15
2.1.1.4 Compact Aspect	15
2.1.1.4 Hard To Screen	15
2.1.2 Cons 13	
2.1.2.1 Stimulants	15
2.1.2.2 Biological Changes	16
2.1.2.3 Psychological Changes	16
2.1.2.4 Dressing	16
Chapter 3 Plan	17
3.0. Plan	18
3.1 Scenario	19
3.1.1. Recognition Engine	20
3.1.2. Segmentation	20
3.1.3. Characteristic Removal	20
3.1.4. Data Acquisition	20
3.2 Object Tracking	21
3.2.1. Introduction	21
3.2.2. Means Of Object Tracking	21
3.2.3. Following through A Solitary Camera	22
3.3 Important Problems In Realistic Scenarios	22
3.3.1 Object Detection	23
3.3.2 Boring Motion Of The Object	23

April 22, 2011 [THE OTROM]

3.3.3	Shadows	23
3.3.4	Way Out And Entrance Of Items From The Sight	24
3.3.5	Background Subtraction	24
Chapter 4	Conceptual Implementation	25
4.1 Concept	ual Implementation	26
4.2 Building	g The OTROM	32
4.3. OTRO	M Working	35
4.4. Main W	Vorking Of Components	36
4.4.1. AN	MTEL 89c51	36
4.4.2. M	AX 232 33	36
Chapter 5	pictures of OTORM	40
Chapter 7	Conclusion	44
Chapter 8	References	46

ACKNOWLEDGEMENT

We would like to thank Sir Imran Fareed Nizami, intended for the original mission suggestion and tolerant to manage our project. Sir assisted in a wide variety of matters on or after providing us way, lend a hand to discover key to troubles, exactness supplies and for all time containing the time to observe us, yet whilst we come into view unexpected inquiring query.

We also are fond of thanking Sir Kashif Naseer, Lab advisor, who assisted us resolve a numeral of troubles through the distance end to end of our project, about image processing and as well intended for his specialist knowledge of Matlab.

ABSTRACT

In the modern world there is a quest for power from every emerging nation. UNITED STATES OF AMERICA is currently the most powerful country and also has the largest army in the world. This is because it has been constantly upgrading its weaponry regarding defense and offense. This project is mainly based on the same purpose i.e. to construct a working model of a defense and offense mechanism which would help PAKISTAN ARMY to go one step further in modern warfare. OTROM is using object tracking material color tracking that can easily track the substance. The process is relay on the tracking of any substance in morning or evening and engages into battle in spite of loosing human life. The camera which is built on the driving part it looks out for a moveable targets in any defined area. If there is any moving subject, the camera will start chasing the object and so would the gun built with the camera on the driving area. After the camera starts to chase the substance, it will also distinguish the entity through gait recognition and check for friend or foe. The OTROM identify and choose either to shoot or not. The wireless based controlled driving part is being used because an automated driving part would cost more as it would be required to be programmed. The OTROM consists of a driving part (wireless user controlled), a wireless camera with tilt/pan motors and infrared, mounted machine gun, chip board (PCB), interfacing between camera and machine gun, wireless user control, visualization of the target. The concept of this final year project is to provide Pakistan army a new upgrade in weaponry. This working model has the ability to be applied any where during the war. It can be used as base defense by connecting RPGS', sniper, G3 or any anti aircraft gun. This project is a concept objected to lessen the number of human lives lost during the war.