DESIGN AND IMPLEMENTATION OF REAL-TIME FEASIBLE PATH PLANNING FOR UNINHABITED AERIAL VEHICLE (UAV)

Yasir Iqbal 01-133082-052 Imran Hussain 01-133082-045 Syed Hammad Gillani 01-133082-110 SUPERVISOR Ms. Soyiba Jawed DEPARTMENT OF ELECTRICAL ENGINEERING BAHRIA UNIVERSITY ISLAMABAD

BAHRIA UNIVERSITY ISLAMABAD

Dated:

CERTIFICATE

We accept the work contained in the degree project report titled (Design and Implementation of real-time feasible path planning for UAV) as a confirmation to the required standard for the partial fulfilment the degree of BEE.

Project Coordinator

Supervisor

Internal Examiner

External Examiner

Head of Department

ACKNOWLEDGEMENT

All praise to Almighty Allah, the most merciful and compassionate, who enabled us to complete this project.

First and foremost we would humbly like to submit our profound gratitude to Allah, the Almighty, for providing us with the strength, capacity and guidance to complete this project.

To start with we would like to thank our supervisor Ms. Soyiba Jawed for her valuable guidance during the completion of this project. We thank her for providing us with general direction and for helping us refine our ideas and writing.

Last but not the least a special tribute to our parents who initiative, guidance and love are responsible for our academic career along with achievements. It is their prayers that have always ensured consistency and harmony in our lives.

ABSTRACT

The Uninhabited Aerial Vehicle (UAV) is used in the surveillance, Agricultural industry, military applications, Search and rescue, Pollution monitoring, pipeline monitoring & oil gas security. The effective path planning for UAV is design and implemented to achieve a collision free path. The goal is to achieve smooth flyable path which is done by implementing Bezier and clothoid curve techniques; lately a comparison has been made between the two techniques, which are done by using Matrix Laboratory (MATLAB) software.

The main aim is to avoid the UAV from collision; there is be no problem when the UAV is moving in a straight line but as it takes turn near the edge of any obstacle it will face certain problems. To overcome such problems a Bezier curve method is being used, which is the best solution to make the curvature near the edge of any obstacle without colliding with the obstacles or resistance. To conclude we can say that Bezier curve method is the best solution for the path planning of UAV. Previously a clothoid curve method was used for the path planning.

List of Figures

Fig 1:	A Simple Unmanned Aerial Vehicle (UAV)	2
Fig 2:	Bridge Monitoring byUAV	4
Fig 3:	Matrix Laboratory (MATLAB) logo	7
Fig 4:	Path planning by using visibility line method	10
Fig 5:	Linear Bezier Curve	14
Fig 6:	Qudratic Bezier Curve	15
Fig 7:	Cubic Bezier Curve	16
Fig 8:	GUI Bezier curve	17
Fig 9:	Clothoid Curve	18
Fig.10:	Block Diagram	19
Fig.11:	Main GUI	20
Fig.12:	Buttons Specification	21
Fig.13:	Normal Visibility (VL)	22
Fig.14:	Path Generation	23
Fig.15:	Real Time Flight	24
Fig.16:	Imaginary line	25
Fig. 17:	Bezier curve	

TABLE OF CONTENTS

CHAPTER 1	Introduction	1
1.1 Definition	n of UAV	1
1.2 What is U	nmanned Aerial Vehicle (UAV)?	1
	JAV	
	ons of UAV	
	n	
-	S	
-	entss.	
1.6 Chanenge	5	0
CHAPTER 2	Literature Review	9
2.1 Back Gro	ound and Motivation	9
2.2 Related V	Vork	11
CHAPTER 3	Project Methodologies	12
3.1 Project M	Iethodology and Tool Support	12
3.2 Bezier Cu	ırve	13
3.3 Types of	Bezier Curves	13
3.3.1 Line	ar Bezier Curve	14
3.3.2 Quad	ratic Bezier Curve	15
3.3.3 Cubi	c Bezier curve	16
3.3.4 High	Order Bezier Curve	17
3.4 Comparis	on between Clothoid curve and Bezier curve	
	noid curve	

CHA	PTER	4 Sim	ulation and results	20
4.1	Butto	ns Specit	fications	21
	4.1.1	Step 1:	The environment	22
	4.1.2	Step 2:	Path Planning	
	4.1.3	Step 3:	Flyable path calculation	23
	4.1.4	Step 4:	Real time Flight	24

APPENDIX	
References	