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Abstract

We present a Serial Assemble Optimizer (SOA) for the Media Engine
(ME-2), being developed in Communications Enabling Technology
(CET). The SOA works in collaboration with the already coded
module that takes the C code and converts it into the serial assembly,
referred hereon as Front-end Serial Assembly Generator (FSAG).
CET has only implemented a minimal functionality prototype of
FSAG, whereas in actuality the GNU C compiler is being used as the
serial code generator on the backend. Our project scope is the Serial
Assembly Optimizer (SAQO), which takes the serial code generated by
the FSAG and makes use of advanced optimization techniques to

generate a parallel, and optimized code.
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