Software Pipelining

Serial Assembly Optimizer for a VLIW Processor

Submitted
by
Muhammad Salman

Supervised
by
Mr. Jehanzeb Ahmed

A report submitted to the department of Computer Science,
Bahria Institute of Management and Computer Sciences, Islamabad.
In partial fulfilment of requirement for the degree of BCS (Hons).

Department of Computer Sciences,
Bahria Institute of Management and Computer Sciences, Islamabad.
University of Peshawar, Peshawar.



Certificate

We accept the work contained in this report as a confirming to the required
standard for the partial fulfillment of the degree of BCS (Hons).

oo -

Mr. Fazal\Wahat"
Head of Department

r. Jehanzeb

Dr. M. A. Khan
External Examiner

r. Zafrar Jayaid /

Internal Examiner




Abstract

We present a Serial Assemble Optimizer (SOA) for the Media Engine
(ME-2), being developed in Communications Enabling Technology
(CET). The SOA works in collaboration with the already coded
module that takes the C code and converts it into the serial assembly,
referred hereon as Front-end Serial Assembly Generator (FSAG).
CET has only implemented a minimal functionality prototype of
FSAG, whereas in actuality the GNU C compiler is being used as the
serial code generator on the backend. Our project scope is the Serial
Assembly Optimizer (SAQO), which takes the serial code generated by
the FSAG and makes use of advanced optimization techniques to

generate a parallel, and optimized code.

C Compiler for a Parallel Processor 3



Acknowledgements

The final year project has been a great experience for us. During the
course of its duration we have learned a lot. We have been able to
apply the knowledge and skills that we have developed during our
three and a half years of stay in Bahria. However, this humble effort
would not have been fruitful if it were not for the guidance and
support many people. We would like to thank those who, often
despite of their own commitments, have taken time and effort to help
us.

First of all we would like to thank Allah Almighty for his guidance,
without which we would have been lost. Then we would like to thank
our Project Supervisor, Mr. Jehanzeb Ahmed for his help,
understanding and considerations at difficult times and of course all
the people in CET who helped us in every possible way.

C Compiler for a Parallel Processor 4



Table Of Contents

Abstract 3
Acknowledgements 4
Table Of Contents 5
Section one 9
Introduction 9
I- Hand Optimization Techniques are not Scalable 10

Il- Hand-Optimized Code is not Portable 10

- Related Work 11
Chapter 1 12
Introduction To The Dissertation 12
1.1) Purpose of Dissertation 12
1.2) Scope of Dissertation 12
1.3) Layout of the Dissertation 13
Chapter 2 14
Project Description 14
2.1) Description 14
2.2) Features 15
2.21) Modular Approach 15

2.2.2) Front-end Serial Assembly Generator 15
2.2.3) Serial Assembly Optimizer 15

2.3) Life Cycle Model 16
2.3.1) PHASES 16
232) FSAG 17
2.3.3) SAO 17
Section two 18
Background Knowledge 18
Chapter 3 19
ME-2 Architecture 19
3.1) Introduction 19
3.2) VLIW Architecture 20
3.2.1) Terminology 22
3.2.2) Principles Behind VLIWs 23
3.2.2.1) Datapaths 23

3.2.2.2) Pipelines 23
3.2.2.3) Functional units 24

3.3) ME-2 Architecture 26
3.3.1) Central Processing Unit (CPU) 26
3.3.2) Internal Memory 27
3.3.3) TXP/RXP Pipeline 27

3.4) Instruction Set Overview 27
3.4.1) Instruction Types 27
3.4.1.1) AGU Instructions 28
3.4.1.2) DataPath Instructions 28

C Compiler for a Parallel Processor 5



3.4.2) Registers 28
3.4.3) Addressing Modes 29
3.4.4) Use of data pointer registers 29
3.4.5) Execution Block Packet Composition 30
3.4.6) VLIW Grouping Restrictions 30
3.4.7) Looping restrictions 31
3.4.8) Conditional Execution 32
3.49) Latencies 33
Chapter 4 34
Optimizations Techniques 34
4.1) Parallelism in Programs 34
4.1.1) Coarse-grain parallelism 34
4.1.2) Fine-grain of Instruction Level Parallelism 35
4.2) Types of Optimizations 35
4.2.1) Classical Optimizations 36
4.2.2) Superscalar Optimizations 36
4.2.3) Multiprocessor Optimizations 37
4.3) Dependence Analysis 38
4.3.1) Resource Dependencies 38
4.3.2) Control Dependencies 38
4.3.3) Data Dependencies 39
4.3.4) Dependence Graphs 40
4.4) VLIW Compilers 41
4.5) Optimization Techniques For a VLIW Compilers 42
4.5.1) Trace Scheduling 42
4.5.2) Software Pipelining 42
4.5.3) Loop Unrolling 60
4.5.4) Register Scheduling 63
Section three 67
Project Specifications 72
Chapter 5 73
Analysis and Design Specification 73
5.1) Environmental Model 73
5.1.1) Statement of Purpose 73
5.1.2) Context Diagram 74
5.2) Data Flow Diagrams 75
5.3) Process Specification 77
5.3.1) Dependence Analysis (2.1) 77

5.3.2) Loop Unrolling (2.2) 77
5.3.3) Software Pipelining and Scheduling (2.3) 77
5.3.4) Low-Level Optimization (1.2.3) 78
5.3.5) Code Generation (1.2.4) 78

5.4) Use Case Diagram 79
5.4.1) Actor—Programmer 80
5.4.2) Use Case Description 80
5.4.2.1) Serial Assembly Optimization 80

5.5) Class Relationship Collaborators 81
5.6) Class Relationship Diagram 85
5.7) Sequence Diagrams 86
5.7.1) Serial Assembly Optimization 86
5.8) Class—Attributes, Methods 87

C Compiler for a Parallel Processor 6



Section four 96

Results and Conclusion 96
I- Results 96

- Analysis and Conclusions 100

- Future Recommendations 100
Appendix A 102
Serial Assembly Format 102
A-1) Register Allocation 103

A-2) For Loops 103

A-3) If else and Predicated Execution 104

A-4) Auto Correlation 104
Index 110
References 112

C Compiler for a Parallel Processor 7



List of Figures/Table

Figure 3.1 Block diagram of an ideal VILIW and its instruction word

Figure 3.2 Datapaths of a generic machine

Figure 3.3 Pipelining example

Figure 3.4 Looping Restrictions

Table 3.1 Latencies

Figure 4.1 Trace scheduling example.

Figure 4.3. Pseudo-assembly code.

Table 4.1. Single loop iteration

Table 4.2. Software pipelined schedule.

Figure 4.5 Pseudo- assembly code

Table 4.3 Single Ioop iteration

Table 4.4. Software pipelined schedule

Figure 4.6. Register renaming

Figure 4.7. A program and its dependence edge of scheduling graph

Figure 4.8. A scheduling Graph, the edge in the set Et, and the interference graph
Figure4.9. Example of modulo scheduling

21
25
25
31
33
44
47
47
48
61
62
62
64
64

65

66

Figure 4.10. Live in and Live out values graph

Figure 4.11. Rotating Register

Figure 4.12. The Generalized branch operation

Figure 5.1 Context Diagram—Level 0

Figure 5.2 DFD (1)

Figure 5.3 DFD (2)

Figure 5.4 DFD (1.1)

Figure 5.5 DFD (1.2)

Figure 5.6 Use case Diagram

Figure 5.7 Class Diagram

Figure 5.9 Sequence Diagram—Serial Assembly Optimization.

67
68
70
74
75
75
76
76
79
85
86

C Compiler for a Parallel Processor 8



