

Plant Doctor

Group Members

Tayyab Shabbir (01-131182-036)

Usama Khalid (01-131182-037)

Supervisor: Dr. Adeel M. Syed

A Final Year Project submitted to the Department of Software Engineering, Faculty

of Engineering Sciences, Bahria University, Islamabad in the partial fulfilment for the

award of degree in Bachelor of Software Engineering

July 2022

ii

THESIS COMPLETION CERTIFICATE

Student Name: ________________________ Enrolment No: ___________________

Student Name: ________________________ Enrolment No: ___________________

Programme of Study: Bachelor of Software Engineering

Project Title: ___

Tayyab Shabbir

Usama Khalid

01-131182-036

01-131182-037

PlantDoctor

iii

CERTIFICATE OF ORIGINALITY

iv

Abstract

Agriculture is the foundation of all civilizations and cultures. According to the Food

and Agricultural Organization (FAO), agriculture is essential to the global economy

because it provides food for more than half of the world's population (62 percent). But

because of crop losses, more than 40% of cultivated plants become unusable annually.

In Pakistan, agriculture is the primary source of income for most of the population.

Plant diseases are difficult to detect with the naked eye most of the time. PlantDoctor

is a cross-platform mobile application that uses deep learning to identify plant diseases

by analysing plant leaves.

PlantDoctor is a cross-platform mobile application which consist of 3 main components

that a cross-platform application, a model which is trained by deep learning for

detecting the disease, and a server-side application that works as the API gateway for

the whole application. The report consists of the research part by observing and

distinguishing existing similar systems and case studies. Deep learning has been used

as an automatic crop disease detection. It was proposed to use Convolutional Neural

Network as the deep learning algorithm but the results we got were not good enough.

So, we had to move on to Transformers for tetter results.

By using Transformers, the deep learning model has achieved 98.75% accuracy and it

was performing well on real-time data as well as compared to CNN other algorithms

like using Visual Geometry Group (VGG) and Residual Neural Network (ResNet). It

has completed the perspectives used to construct this proposed system, design stage,

usage and capacities, and the most critical basic assessment within this application.

Keywords: Crop Disease Detection, Plant Disease Detection, Plant Diseases, Plant

Disease Detection using CNN

v

Dedication

To my parents for their love and support

vi

Acknowledgments

In today's competitive world, there is a race for survival among those who have the

determination to succeed. A project serves as a link between the theoretical and

practical worlds of work. We began this project with that eagerness. We would like to

express our heartfelt gratitude to our loving family members for raising us with love

and encouragement during the project's duration. We feel obligated to take this

opportunity to express our heartfelt gratitude to our supervisor Dr. Adeel M. Syed for

his unwavering support and thoughtfulness throughout the project's duration.

Furthermore, we appreciate his assistance, advice, and the constant guidance in

ensuring that we stay on track with the project timeline.

We believe that now is the best time to express our heartfelt gratitude to all the lecturers

who have helped us grow into the people we are today throughout our academic careers

at the university. Finally, we would like to express our gratitude to all our colleagues

especially Arslan who assisted us whenever we needed it, as well as all of the Software

Engineering department employees for their generous attitudes and friendly support.

We do not have the words to express our heartfelt gratitude, but my heart is still

overflowing with the kindnesses we have received from everyone.

vii

Table of Contents

Thesis Completion Certificate .. ii

Certificate of Originality .. iii

Abstract .. iv

Dedication ... v

Acknowledgments ... vi

Table of Contents ... vii

List of Figures ... x

List of Tables .. xii

Chapter 1 .. 1

Introduction .. 1

1.1. Motivation ... 1

1.2. Problem statement ... 1

1.3. Objectives .. 2

1.4. Main contributions .. 2

Chapter 2 .. 3

Background Study/Literature Review ... 3

2.1. Approaches .. 4

2.2. Algorithm review .. 8

2.2.1. Traditional Machine Learning Algorithms ... 8

Chapter 3 .. 11

System Requirements .. 11

3.1. Use Case Diagram ... 11

3.2. Interface Requirements.. 13

Hardware Interfaces ... 13

Software Interfaces ... 14

3.3. Functional Requirements ... 15

3.4. User Management ... 15

3.4.1. User Login .. 15

3.4.2. User registration ... 16

viii

3.4.3. Upload plant leaf image .. 17

3.5. Non-Functional Requirements .. 18

3.6. Security Requirements .. 19

3.7. Software Quality Attributes... 19

3.8. Analysis Models .. 20

Chapter 4 .. 21

System Design ... 21

4.1. System Architecture .. 21

4.2. Logical Design .. 22

4.2.1. Class Diagram: ... 22

4.3. Dynamic View ... 23

4.4. Development View .. 24

4.5. Data Models .. 24

4.6. Component Design .. 25

4.7. User Interface Design .. 26

Chapter 5 .. 27

Methodology ... 27

5.1. Dataset ... 27

5.2. Splitting dataset ... 29

5.3. Model Training: ... 29

Chapter 6 .. 37

System Implementation ... 37

6.1. Flask Backend implementation ... 37

6.2. Implementation of React Native Mobile application– Visual studio 40

Chapter 7 .. 44

System Testing & Evaluation .. 44

7.1. Test Plan .. 44

7.2. Test Environment .. 44

7.3. Test Data ... 44

7.4. Testing Techniques ... 44

7.5. Test Cases .. 45

7.5.1. Test Case no.1 ... 45

7.5.2. Test Case no.2 ... 46

ix

7.5.3. Test Case no.3 ... 46

7.6. Functional Test Evaluation .. 47

7.6.1. Test Case no.1 ... 47

7.6.2. Test Case no.2 ... 47

7.6.3. Test Case no.3 ... 48

7.6.4. Test Case no.4 ... 48

Chapter 8 .. 50

Conclusion .. 50

8.1. Future work ... 50

Chapter 9 .. 51

References ... 51

x

List of Figures

Figure 2.1: Decision Tree .. 4

Figure 2.2: Artificial Neural Network (ANN) [8] .. 6

Figure 2.3: Convolution Neural Network [10] .. 7

Figure 2.4: Deep learning vs Machine learning [8] ... 9

Figure 3.1: Plant diseases management use-case ... 11

Figure 3.2: Manage plant disease detection use-case .. 12

Figure 3.3: Manage user account use-case .. 12

Figure 3.4: PlantDoctor system use-case ... 13

Figure 3.5: Activity diagram .. 20

Figure 4.1: Framework Architecture [9] .. 21

Figure 4.2: Client-Side applications .. 22

Figure 4.3: Server-side application .. 22

Figure 4.4: System sequence diagram ... 23

Figure 4.5: Model sequence diagram ... 23

Figure 4.6: Deployment diagram ... 24

Figure 4.7: Client-side data model ... 24

Figure 4.8: Server-side data model .. 25

Figure 4.9: Component diagram .. 25

Figure 4.10: PlantDoctor wireframes ... 26

Figure 5.1: Sample images in the dataset [14] ... 29

Figure 5.2: CNN training graphs ... 30

Figure 5.3: Confusion Matrix .. 31

Figure 5.4: CNN (Transfer learning) training graphs .. 32

Figure 5.5: CNN (Resnet) training graphs ... 32

Figure 5.6: CNN (VGG) training graphs ... 33

Figure 5.7: CNN (Optimized VGG) training graphs. .. 33

Figure 5.8: Transformer general structure [13].. 34

Figure 5.9: Vision transformer ... 35

Figure 5.10: Training epochs ... 35

Figure 5.11: Train metrics.. 36

Figure 5.12: Eval metrics ... 36

Figure 6.1: API POST method for disease prediction ... 37

xi

Figure 6.2: Hugging Face API for disease prediction using our transformer 38

Figure 6.3: Disease prediction (get_something) function .. 38

Figure 6.4: Query function for Hugging face API call .. 39

Figure 6.5: Config image file function .. 39

Figure 6.6: pickFromGallery function ... 40

Figure 6.7: pickFromCamera function ... 41

Figure 6.8: onUpload method .. 42

Figure 6.9: Hugging Face API ... 43

Figure 6.10: Method for API call to Flask ... 43

xii

List of Tables

Table 2.2: Advantages and disadvantages of Naïve Bayes .. 5

Table 2.3: Machine learning approaches comparison .. 8

Table 2.4: Differences and similarities between Traditional Machine learning and Deep

learning Techniques ... 10

Table 3.1: User Login .. 16

Table 3.2: User registration.. 17

Table 3.3: Upload plant leaf image .. 18

Table 5.1: Dataset Specification .. 28

Table 7.1: Converting an input image to array use-case .. 45

Table 7.2: Choosing the most accurate possible value .. 46

Table 7.3: Checking the final prediction result for the given image 46

Table 7.4: Testing capturing image functionality .. 47

Table 7.5: Testing selecting image from the gallery.. 48

Table 7.6: Testing image upload functionality .. 48

Table 7.7: Testing result view functionality .. 49

1

Chapter 1

Introduction

This section includes the objectives, problem statement and motivation which describes

the starting point to build PlantDoctor from scratch.

1.1. Motivation

All civilizations are built on the foundation of agriculture. Agricultural productivity has

already had a significant impact on the industrialized economic development of

countries, and its role in developing countries is critical. Plant diseases pose a severe

threat to the agriculture industry and have the potential to starve the entire human

population if not detected early. Plant disease detection will become easier and cheaper

with the deployment of machine learning models in the domain of plant pathology. It

will assist many farmers in the prompt diagnosis of plant diseases, preventing plant

waste, and preventing disease transmission from diseased to healthy plants. Also

nowadays, several people are gardening as a hobby, but they do not have a substantial

knowledge of plants themselves. Because of this many of them are unable to timely

realize the health condition of their plants and end up losing them. This effort of

machine learning models will help people who have minimum knowledge about plant

diseases, to stay aware of their plant’s health through a quick and easy way. We believe

that this will help them be better at gardening and encourage more people to do it, and

if a significant number of people adopt this it may lead to a considerable boost in our

food production. This can be utilized by more professional farmers as well, like if they

are planting a new crop about which they do not have any prior experience or

knowledge.

1.2. Problem statement

According to the Food and Agricultural Organization (FAO), agriculture is essential to

the global economy since it provides food for more than half of the world's population

(62 percent). Grain losses ranging from 10% to 20%, rice losses ranging from 25% to

41%, maize losses of 20%, potato losses ranging from 8% to 21%, soya losses ranging

from 11% to 32%, and so on have been discovered internationally [1] due to pests and

2

mainly due to crop and plant diseases, which make a tremendous impact on global

economy.

Plant disease detection is so crucial in agriculture. Plant diseases are unavoidable if

proper safeguards are not followed in this field, and can have devastating consequences

on plants, affecting their quality, abundance, and productivity. Disease management

rules are inadequate in developing countries, and annual losses of 30 percent to 50

percent are usual for the country's key crops. The basic way for detecting plant diseases

is necked eye observation by professionals. Nonetheless, this necessitates ongoing

expert supervision, which can be prohibitively expensive in large estates. By properly

resolving the above issue, we will be able to reliably evaluate the influence of pests and

plant diseases on crop yield, which will be a huge step forward.

1.3. Objectives

The major goal is to provide a reliable and self-driven plant disease detection system

which will run on android/iOS device that can identify and recognise a wide range of

plant diseases. The application should be able to diagnose plant disease by looking at

the state of the diseased plant leaf. The initial step of the method would be used on a

smaller group of plants, such as grapes, potatoes, apples, potatoes, and so on.

To this end the main objectives of thesis are:

1. To identify crop or plant diseases from their leaf using deep learning.

2. Helping hobbyists who are worried about their plants and their health.

1.4. Main contributions

• User can identify a disease with a single click.

• Identifying a disease using deep learning with 98% accuracy.

• Transformers are used for the first time for plant disease detection.

• Server-side processing let the app to be used on low end devices.

3

Chapter 2

Background Study/Literature Review

Plant diseases have been a danger to the farmers since the dawn of agriculture. Crops

are vulnerable to several different kinds of pathogens like fungi, bacteria, viruses etc.

The diseases can affect almost any part of a plant, but the effect is usually most

prominent on the leaves. These diseases damage 10% to 16% of plants worldwide every

year. By detecting and classifying these diseases contingency measures can be set up

for this issue.

Historically speaking primary mode for scrutinizing diseases in plants have been use of

ones very own trusty eyes and brains for people since the advent of agriculture. Though

with advancement of technology, it has reached a point where it is capable of being

deployed to make observations with high accuracy and provide a reliable way of disease

detection. This can give the farmers an edge in protecting their crops, interests, and the

food supply of the public.

The research in this field has been ongoing for quite some time, using several different

methods and technologies. It will be discussed further later. As for with the latest trend

of client-server architecture-based applications it would a perfect approach to take a

mobile app and do the processing on a server. The use of image classification through

technologies like machine learning and deep learning is perfectly supported by the

modern smart phone which are equipped with latest high-resolution cameras.

4

2.1. Approaches

Following are the Machine learning and deep learning approaches that are used in the

detection process.

Supervised Learning

Supervised learning is achieved by feeding pre-labelled data to an algorithm. The

algorithm then learns to label the any new data provided correctly.

The supervised learning algorithm employs classification algorithms and regression

techniques such as linear regression, logistic regression, and neural networks, as well

as decision trees, Support Vector Machines (SVM), Naive Bayes, and k-nearest

neighbour, to construct prediction models.

Random Forest

Random Forest is one of the most used traditional machine learning models. It consists

of several different decision tree which make prediction about a single problem then

their output is combined, known as assembling, to make the choice.

Decision tree

These are the building blocks of a random forest. Each node in tree represents a

decision. A decision is made based on a property at every node and in the end, it reaches

one of several leaf nodes which represent a class.

Figure 2.1: Decision Tree

Figure 2.1 first determines the number colour i.e., if a number is red or blue in colour,

then determines whether the number is underlined.

5

Naïve Bayes

Another traditional algorithm, based on Bayes’ theory. For our sake, it assumes that

every property of data in independent from others.

It’s simple to build and works well with large datasets. In addition to its simplicity,

Nave Bayes is thought to outperform even the most complex categorization techniques.

The fundamental Naive Bayes hypothesis is that each and every highlight generates an

independent and break-even commitment to the final outcome. [2] [3]

Advantages Disadvantages

• Simple to decide dataset

classes.

• Performs well in classifications

with several classes.

• Normalized input can obtain the

desired level of optimization

• It is difficult to obtain predictors

that are completely independent

in real-life situations, as

suggested by the Nave Bayes

algorithm.

• Inaccurate estimator –

Probability can be deceiving at

times.

• The Zero Frequency issue.

Table 2.1: Advantages and disadvantages of Naïve Bayes

It’s also used widely in other problems like Spam filtering, text classification, sentiment

analysis etc. As stated in the similar system comparison section, the research that was

conducted using the Nave-Bayes classifier yielded an accuracy of 87 percent.

Artificial Neural Networks (ANN)

Brains of living things are complex network of neurons, consisting of several layers of

layers and each layer consisting of several neurons. ANNs try to mimic their behaviour

to achieve a higher level of intelligence than traditional machine learning algorithms.

6

They are considered feed-forward neural networks because the inputs are passed only

in one direction i.e., from the input layer to the output layer [4].

Figure 2.2: Artificial Neural Network (ANN) [8]

There are considered to be 3 fundamental types of layers in ANNs, Input layers, hidden

layers, output layer

• Input layer is the one that receives initial information from external sources and

propagates it forward for further processing, it can be considered as the interface

for incoming information

• Hidden layers are the layers between input and output layers. These layers add

bias to incoming input so that output layers correct neurons are activated to

generate the results

• Output layer these neurons provide the results and are conditionally activated

based on the incoming data

7

Convolution Neural Networks (CNN/ConvNet)

If ANNs try to mimic an animal brain then CNNs try to mimic the animal vision. The

basic principle is based on the understanding of the working of sight. When presented

with an image the feature of image is extracted, important information is maximized

and unimportant is dropped. Then the image is classified based on the presence of

certain features in it [9].

Figure 2.3: Convolution Neural Network [10]

In input layer, each neuron basically receives the value a single pixel. So, the number

of neurons and their arrangement has to be exactly the same as the pixels in the image.

They can either receive grayscale values for grey images or RBG values for colour

images. This has to be decided at the time of developing the CNN along with the shape

and size of input layer.

Then the convolutional layers do the feature extraction from images, after that the

pooling layers make that extracted information easier to process. Then the deep layers

add further bias if needed and finally output layer finishes the job.

This approach takes advantage of the raw computing power available with modern

machines which wasn’t available before.

8

2.2. Algorithm review

In this section, we will review all the algorithms and find the best for our use.

2.2.1. Traditional Machine Learning Algorithms

As expressed above, different kinds of machine-learning techniques can be used in

image recognition. This the comparison between traditional machine learning

algorithms available for image classifications.

Algorithm Problem Predictors Power
Impleme

ntation

Interpret

ability

Normaliza

tion

K-NN
Multiclass

or binary
Numeric Medium Easy Good Required

Naïve

Bayes

Multiclass

or binary
Categorical Medium Medium Good Required

Decision

Tree

Multiclass

or binary

Numeric or

Categorical
High Difficult Good No

Random

Forest

Multiclass

or binary

Numeric or

Categorical
High Difficult Good No

Table 2.2: Machine learning approaches comparison

In image classification, the most extensively used conventional machine learning

techniques are the above-mentioned established algorithms, Random Forest and Nave

Bayes.

9

Why deep learning over traditional machine learning?

When a machine-learning algorithm makes a less accurate prediction, the

developer/system engineer must intervene and make changes to get the intended

outcome. Neural network-based deep learning models can make more accurate

predictions while also judging whether the prediction is right. Deep learning

accomplishes feature extraction automatically, whereas traditional machine learning

requires manual feature extraction.

Figure 2.4: Deep learning vs Machine learning [8]

10

Traditional machine learning and deep learning techniques are compared below

in table 2.4.

Traditional Machine Learning Deep Learning

Process Input data, develop a

mathematical model, use

mathematical model to make

predictions.

Train the neural network

on training data to achieve

right bias for internal

neurons. Then pass new

data through the neurons

that make decisions from

previous learning.

Data

requirements

Less amount of data required

compared to deep learning.

To make accurate

predictions larger amount

of data required.

Hardware

requirements

It is necessary to use less

computational power.

More computational power

is required.

Feature

extraction

Manual feature extraction is

required.

Feature extraction done

automatically (within

convolutional layers for

CNNs)

Accuracy When compared to modern deep

learning techniques, accuracy is

lower.

Possible to achieve high

accuracy with enough

training.

Execution time Faster training and faster

predictions.

Slow training but less

prediction time.

Flexibility and

Optimization

Less flexible need more manual

optimization

More flexible, can do more

self-optimization.

Table 2.3: Differences and similarities between Traditional Machine learning and Deep

learning Techniques

11

Chapter 3

System Requirements

This section enlists and describes the requirements agreed upon during the time of

acceptance of this project.

3.1. Use Case Diagram

This is the use-case diagram for manage plant diseases. In this use-case, the user can

browse through all the diseases and search any of them through the search bar.

Figure 3.1: Plant diseases management use-case

Management of plant disease detection use-case will allow the user to upload any image

from the camera or gallery for the prediction and after prediction a report will be shown

to the user.

12

Figure 3.2: Manage plant disease detection use-case

In this manage user account use-case, the admin will be able to manage all the users.

He will be able to add, edit or delete any user from the database.

Figure 3.3: Manage user account use-case

PlantDoctor system use-case is the whole view of the system which describes the

overall system functionality:

13

Figure 3.4: PlantDoctor system use-case

3.2. Interface Requirements

User Interfaces

This project offers a decent graphical interface for the user that can be run on the device

by any user. The application's front-end is written in React.js and is completely separate

from the Flask backend application, which handles plant disease detection and provides

relevant plant condition information to the user interface (UI), where the final

expected result of the entire process is displayed to the user. The user interface should

be able to communicate with the user management module, and a portion of it should

be dedicated to the login/logout module.

Hardware Interfaces

1. Processor: Intel Core i7, 10th Gen

2. Memory: 12GB

3. Graphics: GTX 1050, 4GB

4. Storage: Solid State Drive: 512GB

PC

14

5. Processor: Hexa-core (2x2.65 GHz Lightning)

6. Memory: 3GB

7. Internal Storage: 64GB

8. Screen (Size & Type): 5.4 inches, IPS LCD

Software Interfaces

Software requirements

• Operating system (OS):

o Microsoft Windows 10 or 11

o iOS 15 or Android 11

• Languages:

o Python 3.9.7

o JavaScript

• Libraries:

o TensorFlow

o Transformers

o Torch

o OpenCV

o NumPy

o Flask

o Pandas

• Frameworks

o React Native (Expo)

• Database

o MySQL

• IDEs

o PyCharm

Mobile

15

o Visual Studio Code

3.3. Functional Requirements

Our system has the following functional requirements which the system must provide

to the user.

• User authentication

o Only authenticated users will be able to access the system.

• Image detection

o To detect images, the user must be logged in and can take an image from

the mobile camera or select an image from the gallery.

• Plant disease detection

o The application should recognize the plant disorder and generate a result

for the image that is being sent for the images detection, the API will

detect the plant disorder with the help of the model that has been trained

by the dataset.

• Browse or search plant diseases

o The system should come up with the feature to the user to browse

through all the disease that our application is capable of and find relevant

information through the system.

• Manage user account

o The system should allow the user to create an account on the application

by providing necessary information of the user.

3.4. User Management

3.4.1. User Login

Use Case ID: 1

Use Case Name: User Login

Actor(s): User

Pre-Conditions: User must have an account and connected to the internet.

Priority: High

16

Basic Flow: Authenticated user clicks on Login button and Login page will

be displayed so that user can get registered.

Actor Actions System Response

1 User enters email, and password in

the relevant fields.

Users click on “Register” button

2 System check user’s provided

credentials. If user’s credentials are

valid, user will be Logged in and home

screen is displayed.

3 Click “Register” button 4 Display Register screen

Alternative Course of Action (if any)

Actor Action System Response

 2.a User press Login button 2.b If user’s credentials are invalid an

error message is displayed and login

screen is shown/redisplayed.

Post condition • The application database is updated with the relevant

details.

• User can view the detail and can upload an image to

prediction the disease.

Table 3.1: User Login

3.4.2. User registration

Use Case ID: 2

Use Case Name: User registration

Actor(s):

Pre-Conditions: User must be connected to the internet.

Priority: High

Basic Flow: Authenticated user clicks on registration button and registration

page will be displayed so that user can get registered.

Actor Actions System Response

1 User enters full name, email, and

password in the relevant fields.

Users click on “Register” button

2 System check user’s provided

credentials. If user’s credentials are

valid, user get registered and home

screen is displayed.

3 Click “Login” button 4 Display Login screen

Alternative Course of Action (if any)

Actor Action System Response

17

 2.a User press register button 2.b If user’s credentials are invalid an

error message is displayed and register

screen is shown/redisplayed.

Post condition • The application database is updated with the relevant details.

• User can view the detail and can upload an image to

prediction the disease.

Table 3.2: User registration

3.4.3. Upload plant leaf image

Use Case ID: 3

Use Case Name: Upload plant leaf image

Actor(s): User

Pre-Conditions: User should be logged in to the system

Priority: High

Basic Flow: Authenticated user clicks on camera, then camera will be

opened, and user can click the image.

Actor Actions System Response

1 The user presses “Take a picture”

button.

2 The device ask for camera

permissions before the camera screen

is opened, and instructions are

displayed.

3 The user takes a photo of the plant

leaf and then clicks the "Select"

button. The image is then sent to

the server-side application (Flask

back-end application).

4 The Hugging Face API is used by the

Flask backend application to

determine whether a plant is infected

or healthy, as well as the confidence

level, and delivers the response in

json format to the frontend so that it

may be displayed to the user.

The use case ends while showing the

user the uploaded image, condition of

plant and confidence level in the user

interface (UI.

18

Alternative Course of Action (if any)

Actor Action System Response

1.a Execute another function 2.a Exit from the use case.

3.a Press “Choose from gallery”

button

1 Smart phone gallery is opened.

2 The user chooses an image or

images from the gallery.

4.a Press “Cancel” button The use case is exited.

6.a

6.b

If the image is not a plant leaf

image

If the image is corrupted

1 1. System recognized the

uploaded image and

“Unknown image” with low

confidence is shown to the

user.

2. Display waring message

saying “Plant leaf image is

required”

2 1. Display Error message

Post Conditions: • Update the system database.

• User can upload more images to prediction.

Table 3.3: Upload plant leaf image

3.5. Non-Functional Requirements

Accuracy

• PlantDoctor application accuracy must be the most critical feature. The

provided results must be accurate with the correct predictions of plant

disease, otherwise the users may be misled, resulting in plant damage.

User-Friendly

• Being user-friendly is important because the application users may lack

technical expertise, the system must include an easy-to-use graphical user

interface (GUI).

Performance

• As the application is primarily concerned with the detection of crop

disorders; the process heavily relies on time; and the disease recognition

19

process should be much more efficient and accurate.

Scalable

• As for now, the system only has the functionality for the plant leaf detection

but in the future, other needs can be developed for example, the functionality

for the full trees identification, birds, or insects’ identification. So, system

should be flexible for the future changes and upgrades.

3.6. Security Requirements

• Ordinary users can read information and can't adjust it, aside from their own

data.

• Every user will have access constraints.

3.7. Software Quality Attributes

• Useability:

The system is designed in such a way that naive user can use it easily. It will

not have complex design.

• Availability:

System will be accessible to the users all day, every day. Clients can use in

any time.

• Interoperability:

System will be developed in cross platform, so it can run on both Android and

IOS.

• Scalability:

The system will accept more image formats in future.

20

3.8. Analysis Models

This analysis model present with the workflow process of our system with the following

activity diagram.

Activity Diagram:

Following diagram is the system activity diagram which is describing step by step

activity of the user through the application and how the application will behave

accordingly.

Figure 3.5: Activity diagram

21

Chapter 4

System Design

Following section contain the design related diagrams.

4.1. System Architecture

React Native is a popular cross-platform framework which helps us to build natively

rendered iOS and Android apps. We can use the same codebase for multiples platforms.

There are four core sections:

Figure 4.1: Framework Architecture [9]

• The React code written by the developer.

• The JavaScript that is eventually interpreted from the code written by the

developer.

• A collection of elements known collectively as The Bridge.

• The indigenous side.

22

4.2. Logical Design

Following are the class diagrams for overall system and model

4.2.1. Class Diagram:

Figure 4.2: Client-Side applications

Figure 4.3: Server-side application

23

4.3. Dynamic View

Overall view of the system:

Figure 4.4: System sequence diagram

Create Model View:

Figure 4.5: Model sequence diagram

24

4.4. Development View

Figure 4.6: Deployment diagram

4.5. Data Models

Client Slide

Figure 4.7: Client-side data model

25

Server Side

Figure 4.8: Server-side data model

4.6. Component Design

Figure 4.9: Component diagram

26

4.7. User Interface Design

Figure 4.10: PlantDoctor wireframes

27

Chapter 5

Methodology

5.1. Dataset

The dataset we used for this project is PlantVillage, a public dataset curated by Sharada

P. Mohanty et al [10]. This dataset contains 87900 RGB images of healthy and diseased

plant leaves (after augmentation). It consists of 38 classes, of which we have chosen all

of them for training our model. Table 5.1 depicts these classes.

No Plant name Plant Disease Name No. of Images

1 Apple Healthy 2008

Diseased Scab 2016

Diseased: Black rot 1987

Diseased: Cedar apple rust 1760

2 Blueberry Healthy 1816

3 Cherry Healthy (Including sour) 1826

Powdery mildew (Including sour) 1683

4 Corn Healthy 1859

Diseased: Cercospora leaf spot 1642

Diseased: Common rust 1907

Diseased: Northern Leaf Blight 1908

5 Grapes Healthy 1692

Diseased: Black rot 1888

Diseased: Esca (Black Measles) 1920

Diseased: Leaf blight (Isariopsis) 1722

6 Orange Haunglongbing (Citrus_greening) 2010

7 Peach Healthy 1728

Diseased: Bacterial spot 1838

8 Pepper Bell Healthy 1988

28

Diseased: Bell (Bacterial spot) 1913

9 Potato Healthy 1824

Diseased: Early blight 1939

Diseased: Late blight 1939

10 Raspberry Healthy 1781

11 Soybean Healthy 2022

12 Squash Powdery mildew 1736

13 Strawberry Healthy 1824

Diseased: Leaf scorch 1774

14 Tomato Healthy 1926

Diseased: Bacterial spot 1702

Diseased: Early blight 1920

Diseased: Late blight 1851

Diseased: Leaf Mold 1882

Diseased: Septoria leaf spot 1745

Diseased: Two-spotted spider mite 1741

Diseased: Target Spot 1827

Diseased: Yellow Leaf Curl Virus 1961

Diseased: Tomato mosaic virus 1790

Table 5.1: Dataset Specification

29

Some images from the dataset are shown in figure below:

Figure 5.1: Sample images in the dataset [14]

5.2. Splitting dataset

Training data Validation data

80% (70320 images) 20% (17580 images)

5.3. Model Training:

As we were initially using CNNs for image classification in our project, we used rather

basic approaches towards the goal.

1. To build a neural net from scratch based on structures suggested in research

papers on plant disease detection.

30

2. Use a pretrained model with ImageNet weights from Kera’s library.

During our interim evaluations, we were suggested to try transformers as well. When

we used them, we got the best results of all. We used the Swim Tiny transformer.

Training a CNN from scratch:

Initially, since we had limited resources, we used an image size that was too small and

it got overfit. When we increased the image size used the full images the accuracy got

low and the model was also underfit. So, we kept on trying different combinations, but

we couldn’t improve a lot.

The best we could do was reach about 90% percent accuracy and the generalization was

also quite bad. The model couldn’t correctly classify most images from the dataset it

was trained on, if fed by being taken with a camera off the screen of a computer. Also,

it gave considerably high confidence on images belonging to classes which were

irrelevant to our dataset.

Figure 5.2: CNN training graphs

31

Figure 5.3: Confusion Matrix

Training a CNN with transfer learning:

After failing to achieve any satisfactory result from custom CNNs, we searched for

better ways. We realised that we had started off on wrong foot. There was no need to

train a CNN from scratch as there were already trained ones out there which could be

modified to fit almost any use-case.

We tried 3 different architectures ResNet, Inception and VGG as they were the most

suggested ones. All of them provided high training and validation accuracy on dataset

but we found out that inception and ResNet architectures were prone to overfitting on

our dataset.

Inception was always getting overfit, so we didn’t go for it.

32

The following figures shows the training graphs of CNN model.

Figure 5.4: CNN (Transfer learning) training graphs

ResNet didn’t do much better either as shown in figure 5.12.

Figure 5.5: CNN (Resnet) training graphs

33

Only VGG provided some promising initial results.

Figure 5.6: CNN (VGG) training graphs

Afterwards we opted for further training and optimizing VGG on our dataset.

Figure 5.7: CNN (Optimized VGG) training graphs.

34

Transformers:

The final method of image classification we tried was transformers. It achieved the best

results of all. Also, it is the first time that transformers have been used for plant disease

detections.

A Transformer is a model architecture that does not use recurrence and instead draws

global dependencies between input and output using an attention mechanism. The

dominant sequence transduction models prior to Transformers were based on complex

recurrent or convolutional neural networks that included an encoder and a decoder. The

Transformer also has an encoder and decoder, but by foregoing recurrence in favour of

attention mechanisms, it can achieve significantly more parallelization than RNNs and

CNNs. [12]

Figure 5.8: Transformer general structure [13]

The Vision Transformer, or ViT, is an image classification model that employs a

Transformer-like architecture over patches of an image. An image is divided into fixed-

size patches, which are then linearly embedded. Position embeddings are then added,

and the resulting vector sequence is fed into a standard Transformer encoder. The

standard approach of adding an extra learnable "classification token" to the sequence is

used to perform classification.

35

Figure 5.9: Vision transformer

We used swin-tiny transformer. It’s a transformer for image classification based on

swin architecture by Microsoft. It uses the same feature extractor under the hood as the

ViT transformer. Batch size we used was 4.

Swin transformer training metrics are shown below,

Figure 5.10: Training epochs

36

Figure 5.11: Train metrics

Figure 5.12: Eval metrics

37

Chapter 6

System Implementation

6.1. Flask Backend implementation

We have used the Flask for the backend as it is fit to use for our demands and easy to

configure which was discussed in the previous chapters. We used these 3 methods for

making an API call to get our disease prediction result.

Method 1 (Using Flask backend with model within the system):

Http Request handling and process of loading deep learning model is done through the

backend of the application.

Figure 6.1: API POST method for disease prediction

When an image is uploaded, the client sends a POST request, which is handled by the

above method. To upload the image from the client side, the system uses the

/api/predict route. The image is saved in the specified path and then it is sent to the

output_prediction method as an argument, which oversees returning the prediction

result for the image. Finally, the method returns a json object containing the server

response and the request status.

38

Method 2 (Making a POST request to Hugging Face API):

In this method, we are making a POST request to the Hugging Face API using Fetch

from the frontend (Camera.js) file and sending the picture with API request to the

Hugging Face where our Transformer is deployed. The API call is returning us an object

with Disease Label and Confidence.

Figure 6.2: Hugging Face API for disease prediction using our transformer

Method 3 (Using Flask backend for Hugging Face API):

In this third method, we are using flask backend to make an API call to Hugging Face

API.

Figure 6.3: Disease prediction (get_something) function

When user uploads a photo then frontend makes an API call to Backend and in the

backend get_something function method calls to query function which calls Hugging

39

face API (where our model is deployed) for the prediction result and returns the

response in json format as shown in Fig 6.3.

Figure 6.4: Query function for Hugging face API call

Selected Method

The method we selected for our application is method no 3 because with the first

method when we deployed our backend on Heroku, it exceeds the limit of their free

storage of 500Mbs only and the size of our backend was 700Mbs, due of the size of our

model and libraries.

With the method no 2, the Fetch API was working fine on iOS device but not on android

device. We tried to use Axios, but it was not working either so, we had to drop this

option too.

The reason why we used method 3 because in this, we removed all the heavy libraries

which reduced the size on Heroku because the Model was already deployed on Hugging

face and what we needed to do was just to make a REST API call. That is why, we used

Flask backend as a middleware for the REST API call to Hugging face and deployed

our Flask backend and it is working fine now on both android and iOS device.

Resizing image file for CNN

Figure 6.5: Config image file function

When an image is uploaded to get a prediction, the pre-processing step is handled by

the config_image_file method. The given image is reshaped, resized, and rescaled

using the OpenCV library (discussed earlier) before being fed to the model to obtain

40

the prediction. The model is expecting to process a 224 x 224 shaped RBG image.

Finally, the image array is returned by the method.

6.2. Implementation of React Native Mobile application– Visual studio

React Native, a modern cross-platform mobile application development framework, is

used to create the client-side mobile application. A user can upload images to the server

using one of two methods: selecting from a gallery or taking a picture with the device

camera and uploading it to the server.

Selecting an image from gallery function

The approach is used to control how photographs from a gallery are chosen. The

component appears and opens the device gallery when the method is called, allowing

the user to select and upload an image.

Figure 6.6: pickFromGallery function

41

The asynchronous pickFromGallery method checks the user to see if the application

has the necessary permissions to use the device camera and gallery. If the permissions

are granted then method proceeds to show the device gallery. ImagePicker has several

properties that control how the image picker behaves.

Pick From Camera Option

PickFromCamera which is a fat arrow asynchronous method allows the user to

capture an image from the camera and upload it to the server in real time. We have

used expo camera to fulfil the image capturing functionality.

Figure 6.7: pickFromCamera function

The method first checks the user permissions on the device and notifies the user if the

permissions are denied before opening the device camera.

42

The method is an Asynchronous method that asynchronously handles internal

functionality. The launchCameraAsync method's ImagePicker is in charge of opening

the device camera and capturing the image. The taken image is subsequently

transmitted to the server via a POST request, and the application's image uploading is

handled by the onUpload method.

On image upload

Figure 6.8: onUpload method

This method receives an image and then initialises the FormData() object so that the

selected image is converted and assigned to a formData typed object for transmission

to the Flask server.

Get Prediction

• Using Hugging Face API

43

Figure 6.9: Hugging Face API

In this method, a request will be sent to Hugging Face API with authorization

Token, an Image and the API returns an object with label and score that will be

sent to PredictionScreen for showing the results to the user. If a user encounters

a network or server error, the user will be notified via an alert.

• Using Flask Server

Figure 6.10: Method for API call to Flask

The function getDiseasePrediction accepts the selected image as an input and

sends it via api/predict, to the server-side application, which returns three

responses: _disease, confidence, and the id, which is then delivered to the

predictionScreen for the user to see. A user will be notified via an alert if there

is a network or server fault.

44

Chapter 7

System Testing & Evaluation

Each test method is intended to detect a specific sort of product failure. All test types,

however, are designed to achieve the same goal: "early detection of all problems before

the product is issued to the consumer."

7.1. Test Plan

Prior to the application's publication, the following types of testing should be carried

out.

• Unit test – Unit testing is essential as the system will be built in division of the

functionality. So, to test each part of the application is mandatory.

• API test – Test the API which is built at the backend before integrating with the

frontend.

• Integration testing – Testing of all the individual components as a single

component.

• System test – Performed on a fully integrated platform to ensure that the system

meets its criteria.

7.2. Test Environment

By breaking down plant leaves, the application hopes to identify many types of plant

leaf diseases. Because the software is designed to run on a phone, the test environment

will be a phone with a camera and a working internet connection.

7.3. Test Data

Diseased plant leaf images are the test data for the testing.

This could be images of recently collected diseased plant leaf images or images

captured by the testing system.

7.4. Testing Techniques

Following are the testing techniques that will be used for the testing of this system.

• Functional testing

45

• Performance testing

• Validation testing

• Accuracy testing

The application user interface (UI) is used for functional testing, while the machine

learning (ML) component of the system is used for validation, accuracy, and

performance testing. Validation testing for the system looks at how the validation

dataset helps train the model, as well as comparing validation loss to training loss and

validation accuracy to training accuracy. The purpose of accuracy testing was to

evaluate the parameters and choose the optimal training model for the predicted system

needs. The system uses a confusion matrix to check the accuracy of the testing data.

The training model's performance was checked, as well as how it predicts the correct

output when using the model.

7.5. Test Cases

Following are the test cases given below:

Test cases = TC

7.5.1. Test Case no.1

Test case description Convert an image into an array.

Pre-condition
It is necessary to upload an image of a diseased plant

leaf. It is necessary to resize the image.

TC no Action Test inputs
Expected

outcome

Actual

outcome

Pass/

Fail

TC-1 1. Image of a

leaf to be

uploaded.

2. Changing the

received image

to an array.

• Image An array

should be

received

representing

the input

image.

Image is

converted into

an array

format.

Pass

Table 7.1: Converting an input image to array use-case

46

7.5.2. Test Case no.2

Test case description
For the prediction, choose the most accurate

possibility value from each class.

Pre-condition
Image should be uploaded after converted into an

array.

TC no Action Test inputs
Expected

outcome

Actual

outcome

Pass/Fai

l

TC-2 For each class,

choose the

highest possible

value.

Set of

possible

values for

every class.

Highest

possible

value.

The highest

possible

value was

viewed.

Pass

Table 7.2: Choosing the most accurate possible value

7.5.3. Test Case no.3

Test case description Checking the final prediction result for a given image

Pre-condition
From the array of alternatives for each class, find the

most possible value for a given image.

Table 7.3: Checking the final prediction result for the given image

TC no Action Test inputs
Expected

outcome

Actual

outcome

Pass/

Fail

TC-3 1. Choose the

highest value for

the array index.

2. From the json

object array, map

the label.

3. Return the

result.

Set of

possible

values for

every class.

View the final

result for a

specific plant

leaf image.

The

confidence

value is

displayed

alongside the

predicted

class.

Pass

47

7.6. Functional Test Evaluation

Following are the test cases for the functionality evaluation.

7.6.1. Test Case no.1

Test case description Capturing image functionality

Pre-condition
• Android/IOS device.

• User must be logged in to the system.

Table 7.4: Testing capturing image functionality

7.6.2. Test Case no.2

Test case description Test for selecting image from the gallery.

Pre-condition
• Android/IOS mobile phone.

• User must be logged in to the system.

TC no Action Inputs
Expected

outcome

Actual

outcome

Pass/

Fail

TC-1 1. Select the

camera option.

2. Take a

picture.

3. Click

‘select’ button.

• Select or

touch the

camera icon.

• Image

The captured

image should

appear on the

screen, ready

to be edited or

submitted.

Image from

the camera

should display

on the screen.

Pass

TC no Action Inputs
Expected

outcome
Actual outcome

Pass/

Fail

TC-2 Select the

‘gallery’

icon.

• Select an

image from

the gallery

by clicking

on gallery

icon.

• Image

On the screen,

the chosen

image should

show, ready to

be altered or

uploaded.

Image from the

gallery is

displaying on

the screen.

Pass

48

Table 7.5: Testing selecting image from the gallery

7.6.3. Test Case no.3

Test case description Testing image upload functionality

Pre-condition
• The application is installed on an Android/IOS phone.

• The user must be logged in to the system.

TC no Action Test inputs
Expected

outcome

Actual

outcome

Pass/

Fail

TC-3 1. Choose an image

from the gallery or

take a photo with

your camera.

2. Click the confirm

button.

• Click the

confirm

button

 • Image

Until the

upload is

complete, a

spinner

should be

visible. The

reaction

should be

obvious.

There was no

spinner

visible, and

the result

was

displayed

directly.

Fail

Table 7.6: Testing image upload functionality

7.6.4. Test Case no.4

Test case description Testing result view functionality

Pre-condition

• The application is installed on an Android/IOS phone.

• User must be logged in to the system.

• There should be a chosen image.

49

Table 7.7: Testing result view functionality

TC no Action Test inputs
Expected

outcome
Actual outcome

Pass/

Fail

TC-004 1. After

selecting

an image,

click the

'Confirm'

button.

• Click the

confirm

button

 • Image

An image of the

predicted plant

disease should

appear, along

with the disease's

name, level of

confidence, and a

brief description.

An image of the

predicted plant

disease should

appear, along

with the

disease's name,

level of

confidence, and

a brief

description.

Pass

50

Chapter 8

Conclusion

The report emphasised the plan and implementation of a deep learning-based cross-

platform mobile application that analyses plant leaf images to detect plant diseases.

Image processing techniques, artificial intelligence, traditional machine learning

techniques, deep learning-based approaches, and case studies of similar systems were

considered to ensure satisfactory performance. Deep learning, which can handle

automatic feature extraction, is used to process feature extraction from the leaves of

diseased plants. Each technology chosen for each task in this project has been justified,

along with supporting evidence.

We achieved 98.36% accuracy for the deep learning model as we transitioned from

CNNs to Transformers over the course of development, for which the results were

satisfactory for validation data and real time input. Many farmers and gardeners can

benefit from a server-based cross-platform smartphone application that can recognise

plant diseases by analysing plant leaves. This will assist people who do not have any

knowledge of crop diseases in gaining an understanding of the plant disease spectrums.

8.1. Future work

PlantDoctor is scalable for the functionality or features we would add in future. A

project always has a space for the extra functionality when it evolves. Following are

the features we would be adding in future:

• Improving multi-lingual feature (Especially Urdu)

• User friendly interface for non-technical users

• More accurate model

• Add more disease classes and improve the accuracy of existing classes.

51

Chapter 9

REFERENCES

[1] F. a. A. Organization, “Trends and challenges,” [Online]. Available:

https://www.fao.org/3/i6583e/i6583e.pdf. [Accessed 15 10 2021].

[2] L. N. B. Algorithm, “Naive Bayes Classifier,” [Online]. Available:

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/.

[Accessed 18 2 2022].

[3] GeeksforGeeks, “Naive Bayes Classifiers,” [Online]. Available:

https://www.geeksforgeeks.org/naive-bayes-classifiers/. [Accessed 8 2 2022].

[4] A. Pai. [Online]. Available:

https://www.analyticsvidhya.com/blog/author/aravindpai/. [Accessed 17 1 2022].

[5] A. N. Network, “ANN,” [Online]. Available:

https://medium.com/@dhea.larasati326/artificial-neural-network-55797915f14a.

[6] KamleshGolhani, “Convolution Neural Networks,” [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2214317317301774.

[7] CNN, “Feature is extracted with the help of CNN,” [Online]. Available:

https://cs231n.github.io/convolutional-networks/.

[8] D. l. v. m. learning. [Online]. [Accessed 16 1 2022].

[9] R. n. f. architecture. [Online]. Available: https://www.educba.com/react-native-

architecture/. [Accessed 12 2 2022].

[10] S. P. M. e. Al., PlantVillage, [Online]. Available:

https://www.kaggle.com/datasets/abdallahalidev/plantvillage-dataset. [Accessed

24 12 2021].

[11] P. Dataset. [Online]. Available:

https://www.kaggle.com/datasets/abdallahalidev/plantvillage-dataset.

[12] V. transformer. [Online]. Available: https://paperswithcode.com/method/vision-

transformer. [Accessed 2 4 2022].

[13] T. g. structure. [Online]. Available:

https://paperswithcode.com/method/transformer. [Accessed 2 4 2022].

52

