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Abstract 

Agriculture is the foundation of all civilizations and cultures. According to the Food 

and Agricultural Organization (FAO), agriculture is essential to the global economy 

because it provides food for more than half of the world's population (62 percent). But 

because of crop losses, more than 40% of cultivated plants become unusable annually. 

In Pakistan, agriculture is the primary source of income for most of the population. 

Plant diseases are difficult to detect with the naked eye most of the time. PlantDoctor 

is a cross-platform mobile application that uses deep learning to identify plant diseases 

by analysing plant leaves. 

PlantDoctor is a cross-platform mobile application which consist of 3 main components 

that a cross-platform application, a model which is trained by deep learning for 

detecting the disease, and a server-side application that works as the API gateway for 

the whole application. The report consists of the research part by observing and 

distinguishing existing similar systems and case studies. Deep learning has been used 

as an automatic crop disease detection. It was proposed to use Convolutional Neural 

Network as the deep learning algorithm but the results we got were not good enough. 

So, we had to move on to Transformers for tetter results. 

By using Transformers, the deep learning model has achieved 98.75% accuracy and it 

was performing well on real-time data as well as compared to CNN other algorithms 

like using Visual Geometry Group (VGG) and Residual Neural Network (ResNet). It 

has completed the perspectives used to construct this proposed system, design stage, 

usage and capacities, and the most critical basic assessment within this application. 

 

 

Keywords: Crop Disease Detection, Plant Disease Detection, Plant Diseases, Plant 

Disease Detection using CNN  
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Chapter 1  

Introduction 

This section includes the objectives, problem statement and motivation which describes 

the starting point to build PlantDoctor from scratch. 

1.1. Motivation 

All civilizations are built on the foundation of agriculture. Agricultural productivity has 

already had a significant impact on the industrialized economic development of 

countries, and its role in developing countries is critical. Plant diseases pose a severe 

threat to the agriculture industry and have the potential to starve the entire human 

population if not detected early. Plant disease detection will become easier and cheaper 

with the deployment of machine learning models in the domain of plant pathology. It 

will assist many farmers in the prompt diagnosis of plant diseases, preventing plant 

waste, and preventing disease transmission from diseased to healthy plants. Also 

nowadays, several people are gardening as a hobby, but they do not have a substantial 

knowledge of plants themselves. Because of this many of them are unable to timely 

realize the health condition of their plants and end up losing them. This effort of 

machine learning models will help people who have minimum knowledge about plant 

diseases, to stay aware of their plant’s health through a quick and easy way. We believe 

that this will help them be better at gardening and encourage more people to do it, and 

if a significant number of people adopt this it may lead to a considerable boost in our 

food production. This can be utilized by more professional farmers as well, like if they 

are planting a new crop about which they do not have any prior experience or 

knowledge. 

1.2. Problem statement  

According to the Food and Agricultural Organization (FAO), agriculture is essential to 

the global economy since it provides food for more than half of the world's population 

(62 percent). Grain losses ranging from 10% to 20%, rice losses ranging from 25% to 

41%, maize losses of 20%, potato losses ranging from 8% to 21%, soya losses ranging 

from 11% to 32%, and so on have been discovered internationally [1] due to pests and 
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mainly due to crop and plant diseases, which make a tremendous impact on global 

economy.  

Plant disease detection is so crucial in agriculture. Plant diseases are unavoidable if 

proper safeguards are not followed in this field, and can have devastating consequences 

on plants, affecting their quality, abundance, and productivity. Disease management 

rules are inadequate in developing countries, and annual losses of 30 percent to 50 

percent are usual for the country's key crops. The basic way for detecting plant diseases 

is necked eye observation by professionals. Nonetheless, this necessitates ongoing 

expert supervision, which can be prohibitively expensive in large estates. By properly 

resolving the above issue, we will be able to reliably evaluate the influence of pests and 

plant diseases on crop yield, which will be a huge step forward. 

1.3. Objectives 

The major goal is to provide a reliable and self-driven plant disease detection system 

which will run on android/iOS device that can identify and recognise a wide range of 

plant diseases. The application should be able to diagnose plant disease by looking at 

the state of the diseased plant leaf. The initial step of the method would be used on a 

smaller group of plants, such as grapes, potatoes, apples, potatoes, and so on. 

To this end the main objectives of thesis are: 

1. To identify crop or plant diseases from their leaf using deep learning. 

2. Helping hobbyists who are worried about their plants and their health. 

1.4. Main contributions 

• User can identify a disease with a single click. 

• Identifying a disease using deep learning with 98% accuracy. 

• Transformers are used for the first time for plant disease detection. 

• Server-side processing let the app to be used on low end devices. 

  



3 

Chapter 2   

Background Study/Literature Review 

Plant diseases have been a danger to the farmers since the dawn of agriculture. Crops 

are vulnerable to several different kinds of pathogens like fungi, bacteria, viruses etc. 

The diseases can affect almost any part of a plant, but the effect is usually most 

prominent on the leaves. These diseases damage 10% to 16% of plants worldwide every 

year. By detecting and classifying these diseases contingency measures can be set up 

for this issue. 

Historically speaking primary mode for scrutinizing diseases in plants have been use of 

ones very own trusty eyes and brains for people since the advent of agriculture. Though 

with advancement of technology, it has reached a point where it is capable of being 

deployed to make observations with high accuracy and provide a reliable way of disease 

detection. This can give the farmers an edge in protecting their crops, interests, and the 

food supply of the public. 

The research in this field has been ongoing for quite some time, using several different 

methods and technologies. It will be discussed further later. As for with the latest trend 

of client-server architecture-based applications it would a perfect approach to take a 

mobile app and do the processing on a server. The use of image classification through 

technologies like machine learning and deep learning is perfectly supported by the 

modern smart phone which are equipped with latest high-resolution cameras. 
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2.1. Approaches 

Following are the Machine learning and deep learning approaches that are used in the 

detection process. 

Supervised Learning 

Supervised learning is achieved by feeding pre-labelled data to an algorithm. The 

algorithm then learns to label the any new data provided correctly. 

The supervised learning algorithm employs classification algorithms and regression 

techniques such as linear regression, logistic regression, and neural networks, as well 

as decision trees, Support Vector Machines (SVM), Naive Bayes, and k-nearest 

neighbour, to construct prediction models. 

Random Forest 

Random Forest is one of the most used traditional machine learning models. It consists 

of several different decision tree which make prediction about a single problem then 

their output is combined, known as assembling, to make the choice. 

Decision tree 

These are the building blocks of a random forest. Each node in tree represents a 

decision. A decision is made based on a property at every node and in the end, it reaches 

one of several leaf nodes which represent a class. 

 

Figure 2.1: Decision Tree 

Figure 2.1 first determines the number colour i.e., if a number is red or blue in colour, 

then determines whether the number is underlined. 
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Naïve Bayes 

Another traditional algorithm, based on Bayes’ theory. For our sake, it assumes that 

every property of data in independent from others. 

It’s simple to build and works well with large datasets. In addition to its simplicity, 

Nave Bayes is thought to outperform even the most complex categorization techniques. 

The fundamental Naive Bayes hypothesis is that each and every highlight generates an 

independent and break-even commitment to the final outcome. [2] [3] 

 

Advantages Disadvantages 

• Simple to decide dataset 

classes. 

• Performs well in classifications 

with several classes. 

• Normalized input can obtain the 

desired level of optimization 

• It is difficult to obtain predictors 

that are completely independent 

in real-life situations, as 

suggested by the Nave Bayes 

algorithm. 

• Inaccurate estimator – 

Probability can be deceiving at 

times. 

• The Zero Frequency issue. 

 

Table 2.1: Advantages and disadvantages of Naïve Bayes 

 

It’s also used widely in other problems like Spam filtering, text classification, sentiment 

analysis etc. As stated in the similar system comparison section, the research that was 

conducted using the Nave-Bayes classifier yielded an accuracy of 87 percent. 

 

Artificial Neural Networks (ANN) 

Brains of living things are complex network of neurons, consisting of several layers of 

layers and each layer consisting of several neurons. ANNs try to mimic their behaviour 

to achieve a higher level of intelligence than traditional machine learning algorithms. 
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They are considered feed-forward neural networks because the inputs are passed only 

in one direction i.e., from the input layer to the output layer [4]. 

 

Figure 2.2: Artificial Neural Network (ANN)  [8] 

 

There are considered to be 3 fundamental types of layers in ANNs, Input layers, hidden 

layers, output layer 

• Input layer is the one that receives initial information from external sources and 

propagates it forward for further processing, it can be considered as the interface 

for incoming information 

• Hidden layers are the layers between input and output layers. These layers add 

bias to incoming input so that output layers correct neurons are activated to 

generate the results 

• Output layer these neurons provide the results and are conditionally activated 

based on the incoming data 
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Convolution Neural Networks (CNN/ConvNet) 

If ANNs try to mimic an animal brain then CNNs try to mimic the animal vision. The 

basic principle is based on the understanding of the working of sight. When presented 

with an image the feature of image is extracted, important information is maximized 

and unimportant is dropped. Then the image is classified based on the presence of 

certain features in it [9].  

 

Figure 2.3: Convolution Neural Network [10] 

 

In input layer, each neuron basically receives the value a single pixel. So, the number 

of neurons and their arrangement has to be exactly the same as the pixels in the image. 

They can either receive grayscale values for grey images or RBG values for colour 

images. This has to be decided at the time of developing the CNN along with the shape 

and size of input layer. 

Then the convolutional layers do the feature extraction from images, after that the 

pooling layers make that extracted information easier to process. Then the deep layers 

add further bias if needed and finally output layer finishes the job. 

This approach takes advantage of the raw computing power available with modern 

machines which wasn’t available before. 
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2.2. Algorithm review 

In this section, we will review all the algorithms and find the best for our use. 

2.2.1. Traditional Machine Learning Algorithms 

As expressed above, different kinds of machine-learning techniques can be used in 

image recognition. This the comparison between traditional machine learning 

algorithms available for image classifications. 

Algorithm Problem Predictors Power 
Impleme

ntation 

Interpret

ability 

Normaliza

tion 

K-NN 
Multiclass 

or binary 
Numeric Medium Easy Good Required 

Naïve 

Bayes 

Multiclass 

or binary 
Categorical Medium Medium Good Required 

Decision 

Tree 

Multiclass 

or binary 

Numeric or 

Categorical 
High Difficult Good No 

Random 

Forest 

Multiclass 

or binary 

Numeric or 

Categorical 
High Difficult Good No 

 

Table 2.2: Machine learning approaches comparison 

 

In image classification, the most extensively used conventional machine learning 

techniques are the above-mentioned established algorithms, Random Forest and Nave 

Bayes. 
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Why deep learning over traditional machine learning? 

When a machine-learning algorithm makes a less accurate prediction, the 

developer/system engineer must intervene and make changes to get the intended 

outcome. Neural network-based deep learning models can make more accurate 

predictions while also judging whether the prediction is right. Deep learning 

accomplishes feature extraction automatically, whereas traditional machine learning 

requires manual feature extraction. 

 

 

Figure 2.4: Deep learning vs Machine learning [8] 
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Traditional machine learning and deep learning techniques are compared below 

in table 2.4. 

 

 

Traditional Machine Learning Deep Learning 

Process Input data, develop a 

mathematical model, use 

mathematical model to make 

predictions. 

Train the neural network 

on training data to achieve 

right bias for internal 

neurons. Then pass new 

data through the neurons 

that make decisions from 

previous learning. 

Data 

requirements 

Less amount of data required 

compared to deep learning. 

To make accurate 

predictions larger amount 

of data required. 

Hardware 

requirements 

It is necessary to use less 

computational power. 

More computational power 

is required. 

Feature 

extraction 

Manual feature extraction is 

required. 

Feature extraction done 

automatically (within 

convolutional layers for 

CNNs) 

Accuracy When compared to modern deep 

learning techniques, accuracy is 

lower. 

Possible to achieve high 

accuracy with enough 

training. 

Execution time Faster training and faster 

predictions. 

Slow training but less 

prediction time. 

Flexibility and 

Optimization 

Less flexible need more manual 

optimization 

More flexible, can do more 

self-optimization. 

 

Table 2.3: Differences and similarities between Traditional Machine learning and Deep 

learning Techniques 
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Chapter 3  

System Requirements 

This section enlists and describes the requirements agreed upon during the time of 

acceptance of this project. 

3.1. Use Case Diagram 

This is the use-case diagram for manage plant diseases. In this use-case, the user can 

browse through all the diseases and search any of them through the search bar. 

 

Figure 3.1: Plant diseases management use-case 

Management of plant disease detection use-case will allow the user to upload any image 

from the camera or gallery for the prediction and after prediction a report will be shown 

to the user. 



12 

 

Figure 3.2: Manage plant disease detection use-case 

In this manage user account use-case, the admin will be able to manage all the users. 

He will be able to add, edit or delete any user from the database. 

 

Figure 3.3: Manage user account use-case 

PlantDoctor system use-case is the whole view of the system which describes the 

overall system functionality: 
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Figure 3.4: PlantDoctor system use-case 

3.2. Interface Requirements 

User Interfaces 

This project offers a decent graphical interface for the user that can be run on the device 

by any user. The application's front-end is written in React.js and is completely separate 

from the Flask backend application, which handles plant disease detection and provides 

relevant plant condition information  to the user interface (UI), where the final 

expected result of the entire process is displayed to the user. The user interface should 

be able to communicate with the user management module, and a portion of it should 

be dedicated to the login/logout module. 

Hardware Interfaces 

1. Processor: Intel Core i7, 10th Gen 

2. Memory: 12GB 

3. Graphics: GTX 1050, 4GB 

4. Storage: Solid State Drive: 512GB 

 

PC 
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5. Processor: Hexa-core (2x2.65 GHz Lightning) 

6. Memory: 3GB 

7. Internal Storage: 64GB 

8. Screen (Size & Type): 5.4 inches, IPS LCD 

 

Software Interfaces 

Software requirements 

• Operating system (OS): 

o Microsoft Windows 10 or 11 

o iOS 15 or Android 11 

• Languages: 

o Python 3.9.7 

o JavaScript 

• Libraries: 

o TensorFlow 

o Transformers 

o Torch 

o OpenCV 

o NumPy 

o Flask 

o Pandas 

• Frameworks 

o React Native (Expo) 

• Database 

o MySQL 

• IDEs 

o PyCharm 

Mobile 
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o Visual Studio Code 

 

3.3. Functional Requirements 

Our system has the following functional requirements which the system must provide 

to the user. 

• User authentication 

o Only authenticated users will be able to access the system. 

• Image detection 

o To detect images, the user must be logged in and can take an image from 

the mobile camera or select an image from the gallery. 

• Plant disease detection 

o The application should recognize the plant disorder and generate a result 

for the image that is being sent for the images detection, the API will 

detect the plant disorder with the help of the model that has been trained 

by the dataset. 

• Browse or search plant diseases 

o The system should come up with the feature to the user to browse 

through all the disease that our application is capable of and find relevant 

information through the system. 

• Manage user account 

o The system should allow the user to create an account on the application 

by providing necessary information of the user. 

 

3.4. User Management 

3.4.1. User Login 

  

Use Case ID: 1 

Use Case Name: User Login 

Actor(s): User 

Pre-Conditions: User must have an account and connected to the internet. 

Priority: High 
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Basic Flow: Authenticated user clicks on Login button and Login page will 

be displayed so that user can get registered. 

Actor Actions System Response 

1 User enters email, and password in 

the relevant fields. 

Users click on “Register” button 

2 System check user’s provided 

credentials. If user’s credentials are 

valid, user will be Logged in and home 

screen is displayed. 

3 Click “Register” button 4 Display Register screen 

   

Alternative Course of Action (if any)  

Actor Action System Response 

 2.a User press Login button 2.b If user’s credentials are invalid an 

error message is displayed and login 

screen is shown/redisplayed. 

Post condition • The application database is updated with the relevant 

details.  

• User can view the detail and can upload an image to 

prediction the disease. 

 

Table 3.1: User Login 

3.4.2. User registration 

Use Case ID: 2 

Use Case Name: User registration 

Actor(s):  

Pre-Conditions: User must be connected to the internet. 

Priority: High 

Basic Flow: Authenticated user clicks on registration button and registration 

page will be displayed so that user can get registered. 

Actor Actions System Response 

1 User enters full name, email, and 

password in the relevant fields. 

Users click on “Register” button 

2 System check user’s provided 

credentials. If user’s credentials are 

valid, user get registered and home 

screen is displayed. 

3 Click “Login” button 4 Display Login screen 

   

Alternative Course of Action (if any)  

Actor Action System Response 



17 

 2.a User press register button 2.b If user’s credentials are invalid an 

error message is displayed and register 

screen is shown/redisplayed. 

Post condition • The application database is updated with the relevant details.  

• User can view the detail and can upload an image to 

prediction the disease. 

Table 3.2: User registration 

3.4.3. Upload plant leaf image 

Use Case ID: 3 

Use Case Name: Upload plant leaf image 

Actor(s): User 

Pre-Conditions: User should be logged in to the system 

Priority: High 

Basic Flow: Authenticated user clicks on camera, then camera will be 

opened, and user can click the image. 

Actor Actions System Response 

1 The user presses “Take a picture” 

button. 

2 The device ask for camera 

permissions before the camera screen 

is opened, and instructions are 

displayed. 

3 The user takes a photo of the plant 

leaf and then clicks the "Select" 

button. The image is then sent to 

the server-side application (Flask 

back-end application). 

4 The Hugging Face API is used by the 

Flask backend application to 

determine whether a plant is infected 

or healthy, as well as the confidence 

level, and delivers the response in 

json format to the frontend so that it 

may be displayed to the user. 

The use case ends while showing the 

user the uploaded image, condition of 

plant and confidence level in the user 

interface (UI. 
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Alternative Course of Action (if any)  

Actor Action System Response 

1.a Execute another function 2.a Exit from the use case. 

3.a Press “Choose from gallery” 

button 

1 Smart phone gallery is opened. 

2 The user chooses an image or 

images from the gallery. 

4.a Press “Cancel” button The use case is exited. 

6.a 

 

6.b 

If the image is not a plant leaf 

image 

If the image is corrupted 

1 1. System recognized the 

uploaded image and 

“Unknown image” with low 

confidence is shown to the 

user. 

2. Display waring message 

saying “Plant leaf image is 

required” 

2 1. Display Error message 

Post Conditions: • Update the system database.  

• User can upload more images to prediction. 

 

Table 3.3: Upload plant leaf image 

 

3.5. Non-Functional Requirements 

Accuracy  

• PlantDoctor application accuracy must be the most critical feature. The 

provided results must be accurate with the correct predictions of plant 

disease, otherwise the users may be misled, resulting in plant damage. 

User-Friendly  

• Being user-friendly is important because the application users may lack 

technical expertise, the system must include an easy-to-use graphical user 

interface (GUI). 

Performance  

• As the application is primarily concerned with the detection of crop 

disorders; the process heavily relies on time; and the disease recognition 
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process should be much more efficient and accurate. 

Scalable  

• As for now, the system only has the functionality for the plant leaf detection 

but in the future, other needs can be developed for example, the functionality 

for the full trees identification, birds, or insects’ identification. So, system 

should be flexible for the future changes and upgrades. 

 

3.6. Security Requirements 

• Ordinary users can read information and can't adjust it, aside from their own 

data. 

• Every user will have access constraints. 

 

3.7. Software Quality Attributes 

• Useability: 

The system is designed in such a way that naive user can use it easily. It will 

not have complex design. 

• Availability: 

System will be accessible to the users all day, every day. Clients can use in 

any time. 

• Interoperability: 

System will be developed in cross platform, so it can run on both Android and 

IOS. 

• Scalability: 

The system will accept more image formats in future. 
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3.8. Analysis Models 

This analysis model present with the workflow process of our system with the following 

activity diagram. 

Activity Diagram: 

Following diagram is the system activity diagram which is describing step by step 

activity of the user through the application and how the application will behave 

accordingly. 

 

Figure 3.5: Activity diagram 

 

 

  



21 

Chapter 4  

System Design  

Following section contain the design related diagrams. 

4.1. System Architecture 

React Native is a popular cross-platform framework which helps us to build natively 

rendered iOS and Android apps. We can use the same codebase for multiples platforms. 

There are four core sections: 

 

Figure 4.1: Framework Architecture [9] 

 

• The React code written by the developer. 

• The JavaScript that is eventually interpreted from the code written by the 

developer. 

• A collection of elements known collectively as The Bridge. 

• The indigenous side.  
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4.2. Logical Design 

Following are the class diagrams for overall system and model 

4.2.1. Class Diagram: 

 

Figure 4.2: Client-Side applications 

 

 

Figure 4.3: Server-side application 

 



23 

 

4.3. Dynamic View 

Overall view of the system: 

 

 

Figure 4.4: System sequence diagram 

 

Create Model View: 

 

Figure 4.5: Model sequence diagram 
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4.4. Development View 

 

Figure 4.6: Deployment diagram 

 

4.5. Data Models 

Client Slide 

 

Figure 4.7: Client-side data model 
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Server Side 

 

 

Figure 4.8: Server-side data model 

 

4.6. Component Design 

 

 

Figure 4.9: Component diagram 
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4.7. User Interface Design 

 

 

Figure 4.10: PlantDoctor wireframes 
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Chapter 5  

Methodology 

5.1. Dataset 

The dataset we used for this project is PlantVillage, a public dataset curated by Sharada 

P. Mohanty et al [10]. This dataset contains 87900 RGB images of healthy and diseased 

plant leaves (after augmentation). It consists of 38 classes, of which we have chosen all 

of them for training our model. Table 5.1 depicts these classes. 

 

No Plant name Plant Disease Name No. of Images 

1 Apple Healthy 2008 

Diseased Scab 2016 

Diseased: Black rot 1987 

Diseased: Cedar apple rust 1760 

2 Blueberry Healthy 1816 

3 Cherry Healthy (Including sour) 1826 

Powdery mildew (Including sour) 1683 

4 Corn Healthy 1859 

Diseased: Cercospora leaf spot 1642 

Diseased: Common rust 1907 

Diseased: Northern Leaf Blight 1908 

5 Grapes Healthy 1692 

Diseased: Black rot 1888 

Diseased: Esca (Black Measles) 1920 

Diseased: Leaf blight (Isariopsis) 1722 

6 Orange Haunglongbing (Citrus_greening) 2010 

7 Peach Healthy 1728 

Diseased: Bacterial spot 1838 

8 Pepper Bell Healthy 1988 
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Diseased: Bell (Bacterial spot) 1913 

9 Potato Healthy 1824 

Diseased: Early blight 1939 

Diseased: Late blight 1939 

10 Raspberry Healthy 1781 

11 Soybean Healthy 2022 

12 Squash Powdery mildew 1736 

13 Strawberry Healthy 1824 

Diseased: Leaf scorch 1774 

14 Tomato Healthy 1926 

Diseased: Bacterial spot 1702 

Diseased: Early blight 1920 

Diseased: Late blight 1851 

Diseased: Leaf Mold 1882 

Diseased: Septoria leaf spot 1745 

Diseased: Two-spotted spider mite 1741 

Diseased: Target Spot 1827 

Diseased: Yellow Leaf Curl Virus 1961 

Diseased: Tomato mosaic virus 1790 

 

Table 5.1: Dataset Specification 
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Some images from the dataset are shown in figure below: 

 

Figure 5.1: Sample images in the dataset [14] 

 

5.2. Splitting dataset 

Training data Validation data 

80% (70320 images) 20% (17580 images) 

 

 

 

5.3. Model Training: 

As we were initially using CNNs for image classification in our project, we used rather 

basic approaches towards the goal. 

1. To build a neural net from scratch based on structures suggested in research 

papers on plant disease detection. 
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2. Use a pretrained model with ImageNet weights from Kera’s library. 

During our interim evaluations, we were suggested to try transformers as well. When 

we used them, we got the best results of all. We used the Swim Tiny transformer. 

Training a CNN from scratch: 

Initially, since we had limited resources, we used an image size that was too small and 

it got overfit. When we increased the image size used the full images the accuracy got 

low and the model was also underfit. So, we kept on trying different combinations, but 

we couldn’t improve a lot. 

The best we could do was reach about 90% percent accuracy and the generalization was 

also quite bad. The model couldn’t correctly classify most images from the dataset it 

was trained on, if fed by being taken with a camera off the screen of a computer. Also, 

it gave considerably high confidence on images belonging to classes which were 

irrelevant to our dataset. 

 

Figure 5.2: CNN training graphs 
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Figure 5.3: Confusion Matrix 

 

Training a CNN with transfer learning: 

After failing to achieve any satisfactory result from custom CNNs, we searched for 

better ways. We realised that we had started off on wrong foot. There was no need to 

train a CNN from scratch as there were already trained ones out there which could be 

modified to fit almost any use-case. 

We tried 3 different architectures ResNet, Inception and VGG as they were the most 

suggested ones. All of them provided high training and validation accuracy on dataset 

but we found out that inception and ResNet architectures were prone to overfitting on 

our dataset. 

Inception was always getting overfit, so we didn’t go for it. 
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The following figures shows the training graphs of CNN model. 

 

Figure 5.4: CNN (Transfer learning) training graphs 

ResNet didn’t do much better either as shown in figure 5.12. 

 

Figure 5.5: CNN (Resnet) training graphs 
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Only VGG provided some promising initial results. 

 

Figure 5.6: CNN (VGG) training graphs 

Afterwards we opted for further training and optimizing VGG on our dataset. 

 

Figure 5.7: CNN (Optimized VGG) training graphs. 
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Transformers: 

The final method of image classification we tried was transformers. It achieved the best 

results of all. Also, it is the first time that transformers have been used for plant disease 

detections.  

A Transformer is a model architecture that does not use recurrence and instead draws 

global dependencies between input and output using an attention mechanism. The 

dominant sequence transduction models prior to Transformers were based on complex 

recurrent or convolutional neural networks that included an encoder and a decoder. The 

Transformer also has an encoder and decoder, but by foregoing recurrence in favour of 

attention mechanisms, it can achieve significantly more parallelization than RNNs and 

CNNs. [12] 

 

 

Figure 5.8: Transformer general structure [13] 

 

The Vision Transformer, or ViT, is an image classification model that employs a 

Transformer-like architecture over patches of an image. An image is divided into fixed-

size patches, which are then linearly embedded. Position embeddings are then added, 

and the resulting vector sequence is fed into a standard Transformer encoder. The 

standard approach of adding an extra learnable "classification token" to the sequence is 

used to perform classification. 
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Figure 5.9: Vision transformer  

 

 

We used swin-tiny transformer. It’s a transformer for image classification based on 

swin architecture by Microsoft. It uses the same feature extractor under the hood as the 

ViT transformer. Batch size we used was 4. 

Swin transformer training metrics are shown below, 

 

 

Figure 5.10: Training epochs 
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Figure 5.11: Train metrics 

 
Figure 5.12: Eval metrics 
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Chapter 6  

System Implementation 

6.1. Flask Backend implementation 

We have used the Flask for the backend as it is fit to use for our demands and easy to 

configure which was discussed in the previous chapters. We used these 3 methods for 

making an API call to get our disease prediction result. 

Method 1 (Using Flask backend with model within the system): 

Http Request handling and process of loading deep learning model is done through the 

backend of the application. 

 

Figure 6.1: API POST method for disease prediction 

 

When an image is uploaded, the client sends a POST request, which is handled by the 

above method. To upload the image from the client side, the system uses the 

/api/predict route. The image is saved in the specified path and then it is sent to the 

output_prediction method as an argument, which oversees returning the prediction 

result for the image. Finally, the method returns a json object containing the server 

response and the request status. 
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Method 2 (Making a POST request to Hugging Face API): 

In this method, we are making a POST request to the Hugging Face API using Fetch 

from the frontend (Camera.js) file and sending the picture with API request to the 

Hugging Face where our Transformer is deployed. The API call is returning us an object 

with Disease Label and Confidence. 

 

Figure 6.2: Hugging Face API for disease prediction using our transformer 

 

Method 3 (Using Flask backend for Hugging Face API): 

In this third method, we are using flask backend to make an API call to Hugging Face 

API. 

 

Figure 6.3: Disease prediction (get_something) function 

 

When user uploads a photo then frontend makes an API call to Backend and in the 

backend get_something function method calls to query function which calls Hugging 
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face API (where our model is deployed) for the prediction result and returns the 

response in json format as shown in Fig 6.3. 

 

Figure 6.4: Query function for Hugging face API call 

Selected Method 

The method we selected for our application is method no 3 because with the first 

method when we deployed our backend on Heroku, it exceeds the limit of their free 

storage of 500Mbs only and the size of our backend was 700Mbs, due of the size of our 

model and libraries. 

With the method no 2, the Fetch API was working fine on iOS device but not on android 

device. We tried to use Axios, but it was not working either so, we had to drop this 

option too. 

The reason why we used method 3 because in this, we removed all the heavy libraries 

which reduced the size on Heroku because the Model was already deployed on Hugging 

face and what we needed to do was just to make a REST API call. That is why, we used 

Flask backend as a middleware for the REST API call to Hugging face and deployed 

our Flask backend and it is working fine now on both android and iOS device. 

 

Resizing image file for CNN 

 

Figure 6.5: Config image file function 

When an image is uploaded to get a prediction, the pre-processing step is handled by 

the config_image_file method. The given image is reshaped, resized, and rescaled 

using the OpenCV library (discussed earlier) before being fed to the model to obtain 
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the prediction. The model is expecting to process a 224 x 224 shaped RBG image. 

Finally, the image array is returned by the method. 

6.2. Implementation of React Native Mobile application– Visual studio 

React Native, a modern cross-platform mobile application development framework, is 

used to create the client-side mobile application. A user can upload images to the server 

using one of two methods: selecting from a gallery or taking a picture with the device 

camera and uploading it to the server. 

 

Selecting an image from gallery function 

The approach is used to control how photographs from a gallery are chosen. The 

component appears and opens the device gallery when the method is called, allowing 

the user to select and upload an image. 

 

 

Figure 6.6: pickFromGallery function 
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The asynchronous pickFromGallery method checks the user to see if the application 

has the necessary permissions to use the device camera and gallery. If the permissions 

are granted then method proceeds to show the device gallery. ImagePicker has several 

properties that control how the image picker behaves. 

 

Pick From Camera Option 

PickFromCamera which is a fat arrow asynchronous method allows the user to 

capture an image from the camera and upload it to the server in real time. We have 

used expo camera to fulfil the image capturing functionality. 

 

Figure 6.7: pickFromCamera function 

The method first checks the user permissions on the device and notifies the user if the 

permissions are denied before opening the device camera.  
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The method is an Asynchronous method that asynchronously handles internal 

functionality. The launchCameraAsync method's ImagePicker is in charge of opening 

the device camera and capturing the image. The taken image is subsequently 

transmitted to the server via a POST request, and the application's image uploading is 

handled by the onUpload method. 

On image upload 

 

Figure 6.8: onUpload method 

This method receives an image and then initialises the FormData() object so that the 

selected image is converted and assigned to a formData typed object for transmission 

to the Flask server. 

Get Prediction 

• Using Hugging Face API 
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Figure 6.9: Hugging Face API 

In this method, a request will be sent to Hugging Face API with authorization 

Token, an Image and the API returns an object with label and score that will be 

sent to PredictionScreen for showing the results to the user. If a user encounters 

a network or server error, the user will be notified via an alert. 

 

• Using Flask Server 

 

Figure 6.10: Method for API call to Flask 

The function getDiseasePrediction accepts the selected image as an input and 

sends it via api/predict, to the server-side application, which returns three 

responses: _disease, confidence, and the id, which is then delivered to the 

predictionScreen for the user to see. A user will be notified via an alert if there 

is a network or server fault. 
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Chapter 7   

System Testing & Evaluation 

Each test method is intended to detect a specific sort of product failure. All test types, 

however, are designed to achieve the same goal: "early detection of all problems before 

the product is issued to the consumer." 

7.1. Test Plan 

Prior to the application's publication, the following types of testing should be carried 

out. 

• Unit test – Unit testing is essential as the system will be built in division of the 

functionality. So, to test each part of the application is mandatory. 

• API test – Test the API which is built at the backend before integrating with the 

frontend. 

• Integration testing – Testing of all the individual components as a single 

component.  

• System test – Performed on a fully integrated platform to ensure that the system 

meets its criteria. 

7.2. Test Environment 

By breaking down plant leaves, the application hopes to identify many types of plant 

leaf diseases. Because the software is designed to run on a phone, the test environment 

will be a phone with a camera and a working internet connection. 

7.3. Test Data 

Diseased plant leaf images are the test data for the testing. 

This could be images of recently collected diseased plant leaf images or images 

captured by the testing system. 

7.4. Testing Techniques 

Following are the testing techniques that will be used for the testing of this system. 

• Functional testing 
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• Performance testing 

• Validation testing  

• Accuracy testing 

The application user interface (UI) is used for functional testing, while the machine 

learning (ML) component of the system is used for validation, accuracy, and 

performance testing. Validation testing for the system looks at how the validation 

dataset helps train the model, as well as comparing validation loss to training loss and 

validation accuracy to training accuracy. The purpose of accuracy testing was to 

evaluate the parameters and choose the optimal training model for the predicted system 

needs. The system uses a confusion matrix to check the accuracy of the testing data. 

The training model's performance was checked, as well as how it predicts the correct 

output when using the model. 

 

7.5. Test Cases  

Following are the test cases given below: 

Test cases = TC 

7.5.1. Test Case no.1  

Test case description Convert an image into an array. 

Pre-condition 
It is necessary to upload an image of a diseased plant 

leaf. It is necessary to resize the image. 

 

TC no Action Test inputs 
Expected 

outcome 

Actual 

outcome 

Pass/

Fail 

TC-1 1. Image of a 

leaf to be 

uploaded. 

2. Changing the 

received image 

to an array. 

• Image An array 

should be 

received 

representing 

the input 

image. 

Image is 

converted into 

an array 

format. 

Pass 

 

Table 7.1: Converting an input image to array use-case 



46 

7.5.2. Test Case no.2 

Test case description 
For the prediction, choose the most accurate 

possibility value from each class. 

Pre-condition 
Image should be uploaded after converted into an 

array. 

 

TC no Action Test inputs 
Expected 

outcome 

Actual 

outcome 

Pass/Fai

l 

TC-2 For each class, 

choose the 

highest possible 

value. 

Set of 

possible 

values for 

every class.  

Highest 

possible 

value. 

The highest 

possible 

value was 

viewed. 

Pass 

 
Table 7.2: Choosing the most accurate possible value 

 

 

7.5.3. Test Case no.3 

Test case description Checking the final prediction result for a given image 

Pre-condition 
From the array of alternatives for each class, find the 

most possible value for a given image. 

 

Table 7.3: Checking the final prediction result for the given image 

  

TC no Action Test inputs 
Expected 

outcome 

Actual 

outcome 

Pass/

Fail 

TC-3 1. Choose the 

highest value for 

the array index. 

2. From the json 

object array, map 

the label. 

3. Return the 

result. 

Set of 

possible 

values for 

every class. 

View the final 

result for a 

specific plant 

leaf image. 

The 

confidence 

value is 

displayed 

alongside the 

predicted 

class. 

Pass 
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7.6. Functional Test Evaluation 

Following are the test cases for the functionality evaluation. 

7.6.1. Test Case no.1 

Test case description Capturing image functionality 

Pre-condition 
• Android/IOS device.  

• User must be logged in to the system. 

 
Table 7.4: Testing capturing image functionality 

7.6.2. Test Case no.2 

Test case description Test for selecting image from the gallery. 

Pre-condition 
• Android/IOS mobile phone.  

• User must be logged in to the system. 

 

TC no Action Inputs 
Expected 

outcome 

Actual 

outcome 

Pass/

Fail 

TC-1 1. Select the 

camera option. 

2. Take a 

picture. 

3. Click 

‘select’ button. 

• Select or 

touch the 

camera icon. 

• Image 

The captured 

image should 

appear on the 

screen, ready 

to be edited or 

submitted. 

Image from 

the camera 

should display 

on the screen. 

Pass 

TC no Action Inputs 
Expected 

outcome 
Actual outcome 

Pass/

Fail 

TC-2 Select the 

‘gallery’ 

icon. 

 

• Select an 

image from 

the gallery 

by clicking 

on gallery 

icon. 

• Image 

On the screen, 

the chosen 

image should 

show, ready to 

be altered or 

uploaded. 

Image from the 

gallery is 

displaying on 

the screen. 

Pass 
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Table 7.5: Testing selecting image from the gallery 

7.6.3. Test Case no.3 

Test case description Testing image upload functionality 

Pre-condition 
• The application is installed on an Android/IOS phone.  

• The user must be logged in to the system. 

 

TC no Action Test inputs 
Expected 

outcome 

Actual 

outcome 

Pass/

Fail 

TC-3 1. Choose an image 

from the gallery or 

take a photo with 

your camera.  

2. Click the confirm 

button. 

• Click the 

confirm 

button 

 • Image 

 

Until the 

upload is 

complete, a 

spinner 

should be 

visible. The 

reaction 

should be 

obvious. 

There was no 

spinner 

visible, and 

the result 

was 

displayed 

directly. 

Fail 

 

Table 7.6: Testing image upload functionality 

 

7.6.4. Test Case no.4 

 

Test case description Testing result view functionality 

Pre-condition 

• The application is installed on an Android/IOS phone.   

• User must be logged in to the system. 

• There should be a chosen image. 
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Table 7.7: Testing result view functionality 

  

TC no Action Test inputs 
Expected 

outcome 
Actual outcome 

Pass/

Fail 

TC-004 1.  After 

selecting 

an image, 

click the 

'Confirm' 

button. 

 

• Click the 

confirm 

button 

 • Image 

 

An image of the 

predicted plant 

disease should 

appear, along 

with the disease's 

name, level of 

confidence, and a 

brief description. 

An image of the 

predicted plant 

disease should 

appear, along 

with the 

disease's name, 

level of 

confidence, and 

a brief 

description. 

Pass 
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Chapter 8  

Conclusion 

The report emphasised the plan and implementation of a deep learning-based cross-

platform mobile application that analyses plant leaf images to detect plant diseases. 

Image processing techniques, artificial intelligence, traditional machine learning 

techniques, deep learning-based approaches, and case studies of similar systems were 

considered to ensure satisfactory performance. Deep learning, which can handle 

automatic feature extraction, is used to process feature extraction from the leaves of 

diseased plants. Each technology chosen for each task in this project has been justified, 

along with supporting evidence. 

We achieved 98.36% accuracy for the deep learning model as we transitioned from 

CNNs to Transformers over the course of development, for which the results were 

satisfactory for validation data and real time input. Many farmers and gardeners can 

benefit from a server-based cross-platform smartphone application that can recognise 

plant diseases by analysing plant leaves. This will assist people who do not have any 

knowledge of crop diseases in gaining an understanding of the plant disease spectrums. 

 

8.1. Future work 

PlantDoctor is scalable for the functionality or features we would add in future. A 

project always has a space for the extra functionality when it evolves. Following are 

the features we would be adding in future: 

• Improving multi-lingual feature (Especially Urdu) 

• User friendly interface for non-technical users 

• More accurate model 

• Add more disease classes and improve the accuracy of existing classes. 
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