
SOP EYE

Group Members

Abdul Rauf (01-131182-003)

Muhammad Umair Tahir (01-131182-027)

Supervisor: Engr Joddat Fatima

A Final Year Project submitted to the Department of Software Engineering,

Faculty of Engineering Sciences, Bahria University, Islamabad in the partial

fulfillment for the award of degree in Bachelor of Software Engineering

July 2022

ii

THESIS COMPLETION CERTIFICATE

Student Name: Abdul Rauf Enrolment No: 01-131182-003

Student Name: Umair Tahir Enrolment No: 01-131182-027

Programme of Study: Bachelor of Software Engineering

Project Title: SOP EYE

It is to certify that the above students’ project has been completed to my satisfaction and to

my belief, its standard is appropriate for submission for evaluation. I have also conducted

plagiarism test of this thesis using HEC prescribed software and found similarity index at

__13% _ that is within the permissible limit set by the HEC. I have also found the thesis in a

format recognized by the department.

Supervisor’s Signature: __________________________

Date: _________________________ Name: ____________________________

iii

CERTIFICATE OF ORIGINALITY

This is certified that the intellectual contents of the project SOP EYE are the product

of my/our own work except, as cited properly and accurately in the

acknowledgements and references, the material taken from such sources as research

journals, books, internet, etc. solely to support, elaborate, compare, extend and/or

implement the earlier work. Further, this work has not been submitted by me/us

previously for any degree, nor it shall be submitted by me/us in the future for

obtaining any degree from this University, or any other university or institution. The

incorrectness of this information, if proved at any stage, shall authorities the

University to cancel my/our degree.

Name of the Student: Abdul Rauf

Signature: _______________________ Date: _________________

Name of the Student: Umair Tahir

Signature: _______________________ Date: _________________

iv

ABSTRACT

The pandemic of 2019, the infamous COVID-19, hit the world and caused a global

crisis. It affected everyone single person, directly and indirectly. People lost their jobs,

their houses and most importantly lost two years of their life. From offices to

educational institutes to out-door activities everything had been halted. The economic

as well as the social damages caused by the pandemic have still not been recovered.

Nearly 3.3 billion workers and employees were affected and productivity around the

world had been heavily compromised. A year later, in order to regain and recover from

the losses, companies started bringing back their employees with strict adherence of

SOPs advised by the World Health Organization (WHO). In order to properly

implement these SOPs a monitoring agent was of dire need. With advancements in

technology and artificial intelligence, the problem of a monitoring agent could be

solved. Hence, SOP EYE, a tool to monitor and detect SOP violations using cutting

edge software technology came into existence. SOP EYE detects COVID-19 SOPs

through live camera feed and alerts the administrators of the violations. With this tool

there will not be any need of a physical agent since the monitoring part will be

automated. SOP EYE will be a helpful tool in detecting three types of SOP violations,

face-mask, six-foot distance and physical touch detection. The agent has been trained

on custom objects using appropriate pre-trained models. It detects violations in near

real-time using only a camera feed as the input. On detecting violations more than a

set threshold, the product sounds an alarm alerting the allocated people to reduce the

violations and follow the SOPs. SOP EYE can be re-trained according to many other

SOPs other than those mentioned. SOP EYE was initially planned to help in monitoring

COVID-19 SOPs but it is not static and can be modified if, God-forbid, any other

pandemic occurs.

Keywords: Machine Learning, Object Detection, SOPs, Custom Model, Model

Training, Pre-trained Models.

v

ACKNOWLEDGEMENT

First all, all praises and thanks to Almighty Allah (SWT) for giving me the strength and

understanding required to work on this project, our parents for their love and support

and their unmatched prayers and our professors. Special thanks to our supervisor,

Engr. Joddat Fatima, for her perceptive remarks, guidance and continuous ideas that

helped us a lot during our research and writing of this thesis. Her vast knowledge and

experience helped us to complete our project in. Also Sir Aleem Ahmad to guide us in

the closure of the project. Lastly to my friends for supporting us and helping us achieve

our goals.

vi

CONTENTS
Thesis Completion Certificate .. ii

Certificate of Originality... iii

ABSTRACT .. iv

ACKNOWLEDGEMENT ... v

List of Figures .. ix

List of Tables .. x

Chapter 1 ... 2

1.1. Motivation .. 4

1.2. Problem statement .. 4

1.3. Objectives... 4

1.4. Main contributions ... 4

1.4.1. What is new, better and significant? ... 4

1.4.2. How will it help? ... 5

1.5. Constraints and Scope .. 5

1.6. Report organisation .. 5

Chapter 2 ... 8

Background Study/Literature Review .. 8

2.1. Literature Review and Background study .. 8

2.1.1. Classical techniques to detecting humans and objects. ... 8

2.1.2. Face mask Detection Techniques. ... 10

2.2. How previous work being described relates to my own. ... 12

Chapter 3 ... 14

System Requirements ... 14

3.1. Use Case Diagram .. 15

3.2. Functional Requirements ... 17

3.2.1. SOPs Detection.. 17

3.2.2. Alarm Trigger .. 18

3.3. Interface Requirements .. 19

3.3.1. User Interface .. 19

3.3.2. Hardware Interfaces .. 19

3.3.3. Software Interfaces .. 19

3.3.4. Communications Interfaces ... 20

3.4. Database Requirements .. 20

3.5. Non-Functional Requirements ... 20

3.5.1. Performance Requirements ... 20

vii

3.5.2. Safety Requirements.. 20

3.6. Project Feasibility .. 20

3.6.1. Technical Feasibility ... 21

3.6.2. Operational Feasibility .. 21

3.7. Conclusion ... 21

Chapter 4 ... 23

System Design .. 23

4.1. Design Approach.. 23

4.2. Design Constraints ... 24

4.3. Methodologies .. 24

4.4. System Architecture ... 25

4.4.1. Data Layer ... 26

4.4.2. Processing Layer ... 26

4.4.3. Presentation Layer ... 26

4.5. Logical Design ... 27

4.5.1. Class Diagram ... 27

4.6. Dynamic View ... 27

4.6.1. Activity Diagram ... 27

4.7. Component Design ... 28

4.7.1. Component Diagram ... 28

4.7.2. Deployment Diagram .. 28

4.8. Data Models ... 29

4.9. User Interface Design... 30

4.9.1. Animation Screen .. 30

4.9.2. Face Mask Detection ... 30

4.9.3. Distance Detector .. 31

4.9.4. Touch Detector .. 31

4.10. System Prototype ... 32

4.10.1. Main Screen ... 32

 ... 33

4.11. Conclusion ... 33

Chapter 5 ... 35

System Implementation .. 35

5.1. Tools... 35

5.1.1. Jupyter Notebook .. 35

5.1.2. PyQt5 ... 35

viii

5.1.3. Anaconda ... 35

5.1.4. Python .. 35

5.1.5. CUDA .. 35

5.2. Models Used .. 36

5.2.1. SSD MobileNet V2 FPN 320x320 .. 37

5.2.2. Faster R-CNN ResNet152 V2 640x640 .. 38

5.2.3. Yolo ... 39

5.3. Libraries Used .. 40

5.3.1. Pip .. 40

5.3.2. Numpy ... 40

5.3.3. Conda... 40

5.4. Other Tools .. 41

5.4.1. TensorFlow v2 ... 41

5.4.2. PyTorch ... 41

5.4.3. OpenCV ... 41

5.5. Problems faced and Solutions .. 42

5.5.1. Issue while detecting social distance violations in 2D: ... 42

5.6. Conclusion ... 44

Chapter 6 ... 46

System Testing & Evaluation ... 46

6.1. Test Strategy .. 46

6.2. Unit Testing.. 47

6.3. Integrated Testing .. 47

6.4. System Testing ... 47

6.5. Test Cases .. 48

6.6. Results & Evaluation ... 52

6.7. Conclusion ... 52

Chapter 7 ... 54

Conclusion .. 54

7.1. Contributions .. 54

7.2. Reflections ... 55

7.3. Future work .. 55

References... 56

Appendix A ... 58

ix

List of Figures

Figure 1-1 An outcome of social distancing as the reduced peak of the epidemic and matching

with available healthcare capacity. ... 3

Figure 2-1 Experimental results of HOG.. 9

Figure 2-2 The ROC curves of HOG and curvelet feature extraction method 9

Figure 2-3 Detection result of proposed method .. 10

Figure 2-4 Cascaded CNN structure results ... 10

Figure 2-5 Sample output of the proposed framework for ... 11

Figure 3-1: Use Case Diagram ... 15

Figure 4-1: Design Approach of SOP EYE .. 23

Figure 4-2 System Architectural Design .. 25

Figure 4-3 System Layers ... 26

Figure 4-4: Class Diagram .. 27

Figure 4-5 Activity Diagram .. 27

Figure 4-6 Component Diagram ... 28

Figure 4-7 Deployment Diagram .. 28

Figure 4-8 Data Models .. 29

Figure 4-9 Animation Screen UI .. 30

Figure 4-10 Face Mask Detection UI ... 30

Figure 4-11 Distance Detector UI... 31

Figure 4-12 Touch Detector UI .. 31

Figure 4-13 Prototype Screen 1 .. 32

Figure 4-14 Prototype Screen 2 .. 32

Figure 4-15 Prototype Screen 3 .. 33

Figure 5-1 SSD MobileNet v2 Architecture ... 37

Figure 5-2 Faster R-CNN Architecture .. 38

Figure 5-3 Yolov5 Architecture.. 39

Figure 5-4 Birds Eye View ... 42

Figure 5-5: Example of ROI ... 43

Figure 5-6 Applying perspective on ROI ... 43

Figure 5-7 Example of Bird eye view... 44

Figure 6-1 System Testing .. 47

Figure 7-1 Yolov5 models .. 55

file:///C:/Users/Abdul/Documents/FYP%20REPORT%2023.6.docx%23_Toc106883669
file:///C:/Users/Abdul/Documents/FYP%20REPORT%2023.6.docx%23_Toc106883670
file:///C:/Users/Abdul/Documents/FYP%20REPORT%2023.6.docx%23_Toc106883671
file:///C:/Users/Abdul/Documents/FYP%20REPORT%2023.6.docx%23_Toc106883681
file:///C:/Users/Abdul/Documents/FYP%20REPORT%2023.6.docx%23_Toc106883682
file:///C:/Users/Abdul/Documents/FYP%20REPORT%2023.6.docx%23_Toc106883683
file:///C:/Users/Abdul/Documents/FYP%20REPORT%2023.6.docx%23_Toc106883687
file:///C:/Users/Abdul/Documents/FYP%20REPORT%2023.6.docx%23_Toc106883688
file:///C:/Users/Abdul/Documents/FYP%20REPORT%2023.6.docx%23_Toc106883694
file:///C:/Users/Abdul/Documents/FYP%20REPORT%2023.6.docx%23_Toc106883695

x

List of Tables

Table 2.1 Performance comparison of the object detection models ... 11

Table 3.1 This table defines necessary pre-conditions and the basic flow for “Face-Mask

Detection” ... 17

Table 3.2 This table defines necessary pre-conditions and the basic flow for “Social Distance

Detection” ... 17

Table 3.3 This table defines necessary pre-conditions and the basic flow for “Touch Detection”

 .. 18

Table 3.4 This table defines pre-conditions and the basic flow for “All SOPs Detection” 18

Table 3.5 This table defines necessary pre-conditions and the basic flow for “Alarm Trigger”

 .. 18

Table 5.1 Models Speed and Accuracy Comparison .. 36

Table 5.2 Parameters of MobileNet V2 .. 37

Table 5.3 Yolov5 Parameters ... 40

Table 6.1 Test Case for Running Application Successfully ... 48

Table 6.2 Test Case for Making No Face-Mask Detection Successfully 48

Table 6.3 Test Case for Making Face-Mask Detection Successfully 49

Table 6.4 Test Case for Making Face-Mask Detection Successfully 49

Table 6.5 Test Case for Making Social Distance Detection Successfully 50

Table 6.6 Test Case for Detecting no Social Distance Violation Successfully 50

Table 6.7 Test Case for Making Touch Detection Successfully .. 51

Table 6.8 Test Case for Detecting no Touch Violation Successfully 51

Table 6.9 Test Case for Triggering Alarm Successfully .. 52

1

CHAPTER – 1

INTRODUCTION

2

Introduction

In the early months of 2020, the disease called the Coronavirus disease also known as

COVID-19 emerged from China and spread all over the world rapidly. It affected

around 210 countries with more than 67 million confirmed cases and more than 1.5

million deaths were recorded. Pakistan was also very deeply damaged by this disease,

considering the density of population, health care and poverty levels, over 420,000

people were infected and about 8300 or more people lost their lives.

 This was a small example of what dangers and implications this deadly virus brought

to the world. COVID-19 affected every person around the world whether directly or

indirectly. According to the experts, an economic loss of around 10%, i.e. 1.1 trillion

PKR, was observed in the year 2021.

Companies around the world suffered financially as well as socially a lot due to

COVID-19. Small businesses had to shut down because there was no profit. Schools

and educational institutes were also closed due to the pandemic and were shifted online

which was insufficient as compared to education on the premises. Hope was running

out and crisis starting to mount. But then, WHO announced some Standard Operating

Practices (SOPs) which would reduce the chances of getting the disease drastically.

Since the disease spread due to people coming in contact which each other physically,

the SOPs were mostly against people touching each other, wearing face masks, avoid

gathering in public and keeping a distance of 6ft in between themselves.

Following SOPs was a hope for the world to recover. In order to apply these SOPs a

monitoring body was required, a system which could detect violations of such SOPs

easily. Now, a human eye can only focus on somethings at a time that too for a short

period of time but as compared to machines and Artificial Intelligence, this case is for

too convenient.

3

With the world evolving in every aspect of technology and innovation, Artificial

Intelligence and Machine Learning allows us to make things which could easily do

things a human find very difficult to do. Using this technology, we can automate the

process of monitoring and improve it to a great extent. The main idea of this project

was to monitor violation of some of the COVID-19 SOPs through live camera feed.

Figure 1-1 An outcome of social distancing as the reduced peak of the epidemic

and matching with available healthcare capacity.

SOP EYE is a tool which can help authorities in Schools, Hospitals and Detainment

centers to implement SOPs. SOP EYE uses a live camera feed and performs and shows

the detections of SOP violations in real time.

Figure 1-1 shows graphical analysis of how the cases reduced with increase in social

distancing

SOP EYE will be a helpful tool in detecting the following SOP violations:

• Face Mask Detection

• 6ft Distance Detection

• Physical Touch Detection

The agent has been trained on custom objects using appropriate pre-trained models

which would be discussed further. The product detects objects and distances in real-

time using only a camera feed as the input and performs detections and calculations.

Another feature in this monitoring system is that it triggers alarm once number of

violations gets higher than the set threshold. The alarm will be used to alert the allocated

people to reduce the violations and follow the SOPs.

4

SOP EYE is extensible and it can be re-trained according to many other SOPs other

than those mentioned. SOP EYE was initially planned to help in monitoring COVID-

19 SOPs but it is not static and can be modified if, God-forbid, any other pandemic

occurs.

1.1. Motivation

The motivation behind making this project was mostly due to the troubles we faced

when everything got shutdown due to COVID-19. From malls to work environments

and educational institutes. Students had to attend online classes which had a lot of micro

problems leading to difficulty in understanding and learning things. Hence the idea to

make something which could help us overcome the pandemic came into existence.

Along with that, we had also made a couple of projects related to tracking COVID-19

cases.

1.2. Problem statement

In order to control the rapid spread of COVID-19, an automated monitoring agent

which could detect violations and alert authorities of COVID-19 SOPs in workplaces

like classes and offices was required.

1.3. Objectives

To prevent the further spread of COVID-19 in offices and educational institutes by

implementing SOPs. SOP EYE will detect violations and alert the authorities to take

the appropriate actions.

The main objectives of SOP EYE are as follows:

1. Face-Mask Detection

2. Social Distance Detection (6ft)

3. Touch Detection

1.4. Main contributions

1.4.1. What is new, better and significant?

The new thing introduced in SOP EYE is firstly, the integration of three modules that

too in near real time: Face mask Detection, 6ft Distance and touch detection. This has

5

not been performed anywhere as of yet. Lastly, the use of YoloV5, A cutting edge

Object Detection model by DarkNet known to be one of the best pre-trained models.

1.4.2. How will it help?

SOP EYE would make it very convenient for authorities to implement SOPs in their

work space. They will not have to worry about allotting people to monitor and maintain

SOPs. This process will be automated.

1.5. Constraints and Scope

The project is very sensitive to the constraints since it involves real-time application of

AI and ML techniques. The constraints of the SOP EYE are as follows:

• Lighting: The lighting in the video feed should be not to bright and not too dark.

This would cause true false detections.

• GPU with CUDA computation capability of > 3.0 for faster processing of video.

• Processing power more than 2.5 GHz.

• Quality of the camera: The camera should be able to capture video in at least 30

frames per second (fps) and should be clear.

1.6. Report organisation

Chapter 1 of the report illustrates the intro and basic functionality of SOP EYE. In this

chapter we’ve discussed main introduction, problem statement, motivation and

objectives related to SOP EYE and our contributions.

Chapter 2 focuses on detailed background study and literature review. It illustrates all

the work we’ve gone through and the past work contributed to this field. We’ve studied

and discussed different research papers related to our project. Previously used

techniques and models were discussed and compared with out piece of work.

Chapter 3 discusses system requirements including functional and non-functional

requirements. We tried to explain system through Use-case diagram and different use

cases.

Chapter 4 focuses on the design approaches, strategies and constraints necessary to

carry out the project. Different UML diagrams such as Class diagram, activity diagram,

sequence and component diagrams for SOP EYE are displayed.

6

Chapter 5 focuses on different methods, tools and technologies used. Different models

were discussed. All the issues faced during implementation and their solution was

discussed in this chapter.

Chapter 6 illustrates the test strategy, techniques and test cases. Unit, Integration and

System testing techniques are discussed in this chapter.

Chapter 7: Lastly, in this chapter, we have concluded the whole thesis that depicts the

work that has been done already and the future updates that we can look forward to

adding upon this Web Application.

7

CHAPTER – 2

LITERATURE REVIEW

8

Background Study/Literature Review

2.1. Literature Review and Background study

Computer vision and artificial intelligence are fields with a lot of potential of research.

There was not a lot of research done on the application of computer vision in the field

of managing COVID-19 SOPs until the late 2020’s. We found some research papers

which were very helpful in our work. Some of them are discussed below:

In [1] the authors discuss about the importance of having SOPs in order to control the

spread of diseases. The identification of COVID-19 was being performed in the

following methods (using computer vision): X-ray scans of lungs and detecting

anomalies [2], Predicting the spread of COVID-19 using existing cellular wireless

networks [3]. The paper [1] discusses about the two basic SOPs to maintain: 6ft distance

and face masks since they can be detected through CCTV cameras.

2.1.1. Classical techniques to detecting humans and objects.

Zhang et al [4] proposed the use of Histogram of Gradients with SVM Classifier for

detecting persons. They improved the approach by using multi-scale HOG features

narrowed down by AdaBoost algorithm. This approach was able to detect multiple

people but it had a problem. The high dimensionality of the feature vectors increased

the computation cost of SVM classification. The authors solve this problem by using

HOG as basic features and then creating reduced features using the AdaBoost

algorithm. There results can be seen in Error! Reference source not found.:

9

Figure 2-1 Experimental results of HOG

Figure 2-1 shows the results of the methodology proposed by Zhang.’s implementation

of HOG with SVM Classifier

In the article [5] the authors mentioned in their research that a major problem in

detecting human is the change of lighting, pose, backgrounds, occlusions and clothing.

To tackle this issue, they proposed the use of Curvlet feature extraction. This allowed

the transformation of an image into a combination of frequency bands. Helping in

lighting issues in CCTV footage etc.

A graph representing the comparison of HOG with SVM and curvlet+AdaBoost is

shown in Figure 2-2

Figure 2-2 The ROC curves of HOG and curvelet

feature extraction method

10

Figure 2-3 Detection result of proposed method

This method did prove to be better than HOG with SVM but it had a lot of parameters

to manage and was really hectic. The results are shown in Figure 2-3

2.1.2. Face mask Detection Techniques.

Deore et al [6] suggested the use of HOG along with the Viola-Jones algorithm, a

combination of Haar feature selection, integral image creation, Adaboost training and

cascading classifiers. It initially classifies the parts of the face. If a person's mouth is

not detected it is assumed that he or she is wearing a mask. Another author and his

colleagues proposed in the paper [7] a CNN based approach for face mask detection.

Figure 2-4 Cascaded CNN structure results

11

The paper mentioned three approaches to detect face masks on people. The models had

very good accuracy but they were not suitable for near real-time detections. The results

can be seen in Figure 2-4

N. S. Punn et al [8] suggested a technique in which they used Yolo V3 for detecting

distances. In order to track and calculate distances among people, the authors used

YoloV3 along with Deepsort for tracking people and then the pairwise L2-norm is

calculated with the aid of the bounding boxes. The author also mentions that according

to another approach where the framework uses a deep CNN. Region of interest (ROI)

is employed to abstain from crowding by changing the inflow. Both YOLO v4 and

faster R-CNN are incorporated for pedestrian detection. Error! Reference source not

found. shows the performance measure of the proposed model.

Table 2.1 Performance comparison of the object detection models

Figure 2-5 Sample output of the proposed framework for

12

Figure 2-5 shows the result of the proposed approach of the author of [8] article. Where

they used Yolov3 to detect distances.

2.2. How previous work being described relates to my own.

We have opted the proposed research methodology of N.S. Punn [8]. Since we have

used YoloV5 and they have used YoloV3, they have similar properties and methods.

We have used its pre-trained model of Object Detection. It comes with a person detector

by default and then we have used the bounding box coordinates to find the distance and

Bounding Box Overlap for touch detection.

13

CHAPTER – 3

SYSTEM REQUIREMENTS

14

 System Requirements

COVID-19 broke out in 2020 which resulted in pandemic and lockdown across the

World. It’s rapid spread and deadly virus resulted in great increase in death toll and

large drop in states economy. We as a student’s confronted a massive disaster in our

studies. However, to keep things going critical sectors such as hospitals, industries,

educational institutions and government divisions must not be shut down. So, the WHO

suggested some SOPs necessary to reduce the spread of COVID-19 virus. There was

requirement and need of someone to monitor the regularity of those SOPs. With the

world evolving, machine learning techniques are applied to automate the real-world

problems.

So, this system was to automate the detection of COVID-19 SOPs violation using

machine learning algorithms. The system has following features.

• Detect Face Mask

• Detect Social Distance (6 ft)

• Detect Touches.

• Alarm Tigger for several violations.

Basically, system is only to monitor SOPs violations so there is no such focus on User

Interface.

15

3.1. Use Case Diagram

Figure 3-1: Use Case Diagram

There is only one primary actor “Admin” who will be only monitoring real time SOPs

violation.

There is one secondary actor which is system itself which basically implements all the

functionality and modules of SOPs detection.

Use cases include:

• Face-Mask Detection

• Social Distance Detection

• Touch Detection

• Person Detection

• Euclidean Coordinates Detection

• Alarm Trigger

16

Face-Mask Detection:

This use case defines that, it makes detections whether the person is wearing a face-

mask or not.

Social Distance Detection:

This use case defines that, it makes detections whether the people are maintaining 6ft

distance or not.

Touch Detection:

This use case defines that, it makes detections whether any one is making physical

contact or not e.g., Hand shaking etc.

Person Detection:

This use case defines that, it makes person detections necessary for calculating their

position and coordinates.

Euclidean Coordinates Detection:

This use case defines that, it makes calculations and measures the exact location of a

person in a live camera feed.

Alarm Trigger:

This use case defines that, it calculates the ration of SOPs violation. If it exceeds the

set threshold, people will respective area will be alarmed and asked to reduce violations

through some audio.

17

3.2. Functional Requirements

• Face Mask Detection

• Social Distance Detection

• Touch Detection

• Alarm Trigger for critical situations

3.2.1. SOPs Detection

Table 3.1 This table defines necessary pre-conditions and the basic flow for

“Face-Mask Detection”

Use Case ID UC01

Use Case

Name

Face-Mask Detection

Actors Admin

Pre-Conditions Monitoring agent should be running

Priority High

Basic Flow Admin opens SOP Eye and clicks on face-mask detection

Table 3.2 This table defines necessary pre-conditions and the basic flow for

“Social Distance Detection”

Use Case ID UC02

Use Case

Name

Social Distance Detection

Actors Admin

Pre-Conditions Monitoring agent should be running

Priority High

Basic Flow Admin opens SOP Eyes and clicks on social distance detection

18

Table 3.3 This table defines necessary pre-conditions and the basic flow for

“Touch Detection”

Use Case ID UC03

Use Case

Name

Touch Detection

Actors Admin

Pre-Conditions Monitoring agent should be running

Priority High

Basic Flow Admin opens SOP Eyes and clicks on Touch detection

Table 3.4 This table defines pre-conditions and the basic flow for “All SOPs

Detection”

Use Case ID UC04

Use Case

Name

All SOPs Detection

Actors Admin

Pre-Conditions Monitoring agent should be running

Priority High

Basic Flow Admin opens SOP Eyes and clicks on detect all.

3.2.2. Alarm Trigger

Table 3.5 This table defines necessary pre-conditions and the basic flow for

“Alarm Trigger”

Use Case ID UC01

Use Case

Name

Alarm Trigger

Actors Admin

Pre-Conditions Any of three SOPs detection must be running

Priority High

Basic Flow Admin opens SOP Eyes and clicks on any of SOPs detection

button and system’s detecting SOPs violations.

19

3.3. Interface Requirements

Let’s split interface into following three categories

• User Interface

• Hardware Interface

• Software Interface

3.3.1. User Interface

Basically, system is only to monitor SOPs violations so there is no such focus on user

Interface. There would be a simple UI which will be showing live camera feed with

couple of buttons.

There will be buttons to make individual SOP detections as well as button for detecting

all SOPs violations all together.

3.3.2. Hardware Interfaces

Hardware Interface include interface between Computer (on which SOP EYE

monitoring agent would be running) and the Security Camera (which will be used to

get live camera feed)

3.3.3. Software Interfaces

Pre-trained models are used and trained on custom objects.

SSD MobileNet v2 FPN was used for Face-Mask detection whereas Yolov5 was used

for social distance and touch detection.

Python was used as programming language to write all the necessary code including

training, testing and real-time object detection.

Jupyter notebook was used to install and run all necessary libraries and models.

Alarm Trigger module had interface with Detection module, once violations exceeded,

alarm triggers.

OpenCV was used to access live camera feed for real time object detection.

It could be trained and run on multiple Operating Systems such as Windows, Linux etc

20

3.3.4. Communications Interfaces

We will use CCTV cameras to capture live footages. It will send video footage via an

IP network or some third-party app such as DroidCam to monitoring agent which might

be running on Personal Computer over local network.

3.4. Database Requirements

There’s no requirement of maintaining any type of data such as: number of violations,

so no database is integrated.

3.5. Non-Functional Requirements

Non-functional requirements are selling point of a product. It defines the metrics that

can be used to judge the functionality or performance of a system. The NFR for our

system includes:

• Performance Requirements

• Safety Requirements

3.5.1. Performance Requirements

• The system must be reliable and work 24/7

• The Detections should be quick and accurate

• The results should be at least 90% accurate

• System must not label unwanted objects

• The system must perform detections in different circumstance (low light/high light)

3.5.2. Safety Requirements

• The average time to failure shall be a minimum of 1 month.

• In case of a server crash, a backup server will be up and running within half an hour.

3.6. Project Feasibility

Performing this project was technically feasible. We had enough time to deliver all the

deliverables and enough help, tools, resources and expert guidance to carry out this project in

time.

21

3.6.1. Technical Feasibility

To produce this product was technically feasible. We’ve all the required tools and experts

available. There was a lot of help from the research paper which helped us understand technical

difficulties. Our supervisor helped us a lot with all the uncertainties.

3.6.2. Operational Feasibility

The project is also operationally feasible. This project was taken considering the ever increasing

and alarming situation of spread of COVID-19 19. The world has controlled its spread to a

large extent but still there are COVID-19 cases and areas where SOPs are being followed. Yet

5th layer of COVID-19 (Omicron) case is also reported in Pakistan. Moreover, this project

isn’t static and can be modified if, God-forbid, any other pandemic occurs.

3.7. Conclusion

In this chapter, we have illustrated different system requirements necessary to develop

and carry out the project. It includes all the functional, non-functional, and interface

requirements. We also discussed project feasibility.

22

CHAPTER – 4

SYSTEM DESIGN

23

System Design

All the modules were implemented separately at the first place. After successful

implementation of each module, one by one all modules were integrated at single place

and merged into the final product.

Whole System was implemented iteratively. Each module was implemented one by one

and was iteratively evolved time to time until the complete implementation of the

system. Modules were divided and implemented by different persons. However, system

was tested by both members to maximize the quality.

Idea was to use pre-trained models with custom objects to train on our dataset. Research

was made and different models were tested and compared. Model with appropriate

speed and COCO mAP was selected.

For face-mask detection module we used SSD Mobilenet v2 FPN.

Yolov5 was used to make person detections and different techniques were applied to

implement social distance and touch detection.

4.1. Design Approach

Figure 4-1: Design Approach of SOP EYE

Figure 4-1 shows the design approach for SOP EYE. This shows the main modules

and the basic workflow of the application.

24

4.2. Design Constraints

The constraints of software caused by hardware:

• High quality camera

• GPU with good computing power and memory

Dataset constraints:

• The model was trained using dataset from

o CCTV footages

o Self-collected data

o Kaggle

Toolkits Compatibility:

• CUDA and cuDNN versions must be compatible in order to use GPU for training

model. In our case we used cuDNN 8.4.1 for CUDA 10.2.

• Libraries and models used must be compatible. We used v2 models compatible with

TensorFlow v2 from TF model zoo.

Other constraints:

• The model made better detections for good quality video so obviously there was

constraint of having good quality footage in order to produce better result.

• We got more accurate results at areas where backlight was higher as compared to areas

where backlight was low.

4.3. Methodologies

For SDLC, waterfall model approach was used. All the phases were performed in

sequence and were connected in a sequential order. The steps were taken in following

sequence:

• Requirements Gathering

• System Designing

• System Implementation

• Integration and Testing

• System Deployment

• System Maintenance

25

4.4. System Architecture

Figure 4-2 System Architectural Design

26

4.4.1. Data Layer

We opted for real-time object detection so we used CCTV to get video footage. Video

footage is sent to Monitoring system via IP address protocol. SOPs Detection are made

in real time.

4.4.2. Processing Layer

All the work between Data layer and Presentation layer is performed by Processing

layer. This layer includes image and video processing techniques necessary to make

predictions.

4.4.3. Presentation Layer

The final System architecture layer in which we’ll the results which is basically the

output of processing layer. For this system, the final layer will represent the violation

detections of respective SOPs.

Figure 4-3 System Layers

27

4.5. Logical Design

4.5.1. Class Diagram

Figure 4-4: Class Diagram

4.6. Dynamic View

4.6.1. Activity Diagram

Figure 4-5 Activity Diagram

28

4.7. Component Design

4.7.1. Component Diagram

Figure 4-6 Component Diagram

4.7.2. Deployment Diagram

Figure 4-7 Deployment Diagram

29

4.8. Data Models

Figure 4-8 Data Models

30

4.9. User Interface Design

4.9.1. Animation Screen

4.9.2. Face Mask Detection

Figure 4-9 Animation Screen UI

Figure 4-10 Face Mask Detection UI

31

4.9.3. Distance Detector

Figure 4-11 Distance Detector UI

4.9.4. Touch Detector

Figure 4-12 Touch Detector UI

32

4.10. System Prototype

4.10.1. Main Screen

Figure 4-13 Prototype Screen 1

Figure 4-14 Prototype Screen 2

33

4.11. Conclusion

In this chapter we’ve discussed the system design approach and methodologies to

implement the system. The design constraints and problems faced with design phase

were mentioned and discussed. Logical Design, dynamic view and component view

were demonstrated with the help of different UML Diagrams. System UI Design and

prototype was also displayed in this chapter.

Figure 4-15 Prototype Screen 3

34

CHAPTER – 5

SYSTEM IMPLEMENTATION

35

System Implementation

5.1. Tools

We’ve researched a lot and tried out most suitable methods and tools to deal with the

issues and problems we’ve faced during implementation.

5.1.1. Jupyter Notebook

Jupyter Notebook is a web-based open-source software which provides interactive

computing approaches across different programming languages. It was used to

implement python code.

5.1.2. PyQt5

PyQt helps develop Python binding GUI across different platforms. It was used to

design GUI for SOPs detection.

5.1.3. Anaconda

Anaconda framework is provided by Python. Generally, you’ve to manually provide

path for your Python interpreter as it’s required by most of IDEs. We used Anaconda

to use packages like conda and virtual environments.

5.1.4. Python

Python is one of the most vastly used programming language. We used Python v 3.10.2.

It is used to write all the necessary code for numerical computations, distance

calculations and training, testing and detection of SOPs.

5.1.5. CUDA

CUDA is an open-source tool kit developed by NVIDIA. It’s designed to enhance the

performance of training models a whole heap faster and a lot easier.

To utilize GPU resources, CUDA 10.2 was used along with cudNN 8.4.1.

36

5.2. Models Used

We’ve tried multiple pretrained models and trained them on our custom objects in order

to get acceptable results. Some of pretrained models are mentioned below that we used

for Face-Mask Detection.

• SSD MobileNet V2 FPNLite 320x320

• Faster R-CNN ResNet152 V2 640x640

• Yolov5

We gained different COCO mAP and speed for different models.

Table 5.1 Models Speed and Accuracy Comparison

Model Speed (ms) COCO mAP

SSD MobileNet v2 FPN 320*320 22 22.2

Yolov5 38 56

FasterR-CNN ResNet152 V2 640x640 101 37.5

37

5.2.1. SSD MobileNet V2 FPN 320x320

Figure 5-1 SSD MobileNet v2 Architecture

This is one-stage object detection model which means it has higher inference speed

with relatively higher accuracy model. It is also compatible with devices with low

computational power.

As the requirement was to make detections in real-time so it was best suited for

detection of Face masks and it produced satisfactory results.

Table 5.2 Parameters of MobileNet V2

Parameters Values

Learning Rate Base 0.079

Total Steps 50000

Warmup Learning Rate 0.026

Warmup Steps 1000

Batch Norm

Decay 0.997

Scale True

Epsilon 0.001

38

5.2.2. Faster R-CNN ResNet152 V2 640x640

Faster R-CNN is dual stage object detection model. It is Region-Based Convolution

Neural Network whose region of interest is to produce accurate results using deep

ConvNet. Earlier versions had disadvantages like slower object detection and its space

expensive nature. However, they were improved in advance version named as Faster

R-CNN, which was introduced in 2015 by Shaoqing Ren et al.

Basically, Faster R-CNN is composed of two modules,

• Fast R-CNN: In Fast R-CNN the whole image and passed it to several

convolutional and max pooling layers which generates a conv feature map.

• RPN network: The feature map is passed to small RPN network to produce

region proposals. This method introduces a concept of pre-defined anchor boxes

of k sizes. This method speeds up the process of detection, and it produces two

outputs K number of Bounding box and information regarding presence of

object in bounding box

Later ROI layer fixes reshaping of bounding boxes then will finally use fully connected

layer to classify objects.

This model was also used to make face-mask detections. It produced more accurate

results as compared to SSD MobileNet but it was much slower in making real time

detections.

Figure 5-2 Faster R-CNN Architecture

39

5.2.3. Yolo

5.2.3.1. Architecture

Yolo architecture consists of minimum twenty-four convolutional layers followed by

two fully connected layers. It uses reduction layers of 1 × 1 along with 3 × 3

convolutional layers. Fast YOLO version uses a neural network and consists of nine

convolutional layers. Except the size of the network, all the other training and testing

parameters remain same between both versions.

5.2.3.2. Yolov5

Figure 5-3 Yolov5 Architecture

Latest version of Yolo that is YOLOv5 was released by Glenn Jocher in 2020. YOLOv5

is written in the Pytorch framework. It is lightweight and easy to use.

As compared to previous versions of Yolo, Yolov5 provided auto anchoring step which

allows training on custom dataset. The code will automatically look into anchors and

start comparing it with the data if they fall below threshold, then the algorithm will start

training new anchors automatically. It will use a k-mean with and some initial guesses

and generate new anchors using genetic algorithm. Later it will automatically place

these new anchors in the training model.

The decrease in inference time of the YOLOv5 models because of PyTorch framework.

As it allows to half the floating-point precision in training and inference from 32-bit to

16-bit precision. YOLOv5 creates .yaml format file for model configuration this file

specifies the different layers of network and then it multiplies those by the number of

layers in the block.

40

We’ve used Yolov5x for calculating and solving social distancing and touching

between two persons.

Table 5.3 Yolov5 Parameters

5.3. Libraries Used

5.3.1. Pip

It is one of the most immensely used packages installer powered by Python. It usually

comes built-in with Python Binary Installers. It enables you to effortlessly install and

assemble packages.

5.3.2. Numpy

Numpy is free and easily available extension module used for large scientific

computing which uses Python programming language. It is suitable for implementing

multi-dimensional arrays and matrices to operate on these arrays.

5.3.3. Conda

It is a management tool to keep and manage Anaconda Python Installations. Conda tool

is totally different from pip. It helps in managing virtualenv and deployment of binary

extensions.

41

5.4. Other Tools

5.4.1. TensorFlow v2

TensorFlow is an open-source library used for implementing wide range of machine

learning and AI tasks. TensorFlow provides an interface for interactive ML

calculations, and a usage for executing such calculations.

TensorFlow library has been used to implement face mask detection module.

5.4.2. PyTorch

PyTorch is free and open-source framework for machine learning project which is

provided by Torch library.

Yolov5 works perfectly with PyTorch framework so that’s why we implemented

remaining two modules with PyTorch framework.

5.4.3. OpenCV

OpenCV provides a wide range of functions to develop real-time computer vision

applications, so we’ve used OpenCV library to get the live camera feed in order to make

detections on them.

42

5.5. Problems faced and Solutions

5.5.1. Issue while detecting social distance violations in 2D:

While getting distance with Yolo bounding boxes there were chances that objects might

get behind one another through certain angles and might not properly detect if the SOP

violation happened or not. In order to solve the issue, we implemented bird eye’s view.

Bird Eye View:

To handle above mentioned issue, we implemented the concept of Bird Eye View. It

is a built in tool with OpenCV which allows users to add perspective view to an area.

By selecting an ROI, the user can easily manipulate the ROI and apply perspective

view. This gets the job done by taking the top-down view of certain scene, however it

has some disadvantages, we’ve to statically select the ROI each time wherever such

situation arises.

Figure 5-4 Birds Eye View

Figure 5-4 Birds Eye View shows the proposed methodology to implement bird’s eye

view using OpenCV’s perspective functionality.

43

Figure 5-5: Example of ROI

Figure 5-5 Shows how the marked ROI space would look like in the video frame.

Figure 5-6 shows how the marked ROI would look like in virtual space and how an

object would look like in perspective of a birds eye view.

Figure 5-6 Applying perspective on ROI

44

Figure 5-7 shows how the birds eye view would look like in real time with green box

meaning safe distance (more than 6ft) and red boxes meaning not safe distance (less

than 6ft)

5.6. Conclusion

This chapter discussed all necessary tools, libraries, models, methods and techniques

applied to overcome the problems. Different models were discussed in detail and their

comparison was made; thus, reasons were given for using any particular model.

Different problems that were faced were discussed and their proposed solution was also

debated in detail.

Figure 5-7 Example of Bird eye view

45

CHAPTER – 6

SYSTEM TESTING &

EVALUATION

46

System Testing & Evaluation

Necessary measures were taken and system was test against all possible combinations

of input and output. To ensure that system performs as it should under given

circumstances, we’ve performed different level of testing, necessary for development

side, including:

• Unit testing

• Integration testing

• System testing.

In following chapter, we’ll discuss testing practises which we used to measure the

system’s credibility and test-cases that we designed to evaluate system performance.

6.1. Test Strategy

Our project test strategy ran from following three phases:

• Experiment phase

• Development phase

• Production phase

The Experiment phase: It is the core of a Machine Learning Project development as

data science process is very research centric. Different algorithms and models have

been tried throughout the experiment phase until they reach a satisfied result.

The Development phase: In this phase the finalised model from experiment phase has

been used for production usage. After that unit, differential and integration tests are

performed to evaluate the performance of the model as found in the experiment phase.

The Production phase: The final stage in which the system has been used to make

predictions against real-time data. The focus of this testing phase is to evaluate the

performance and accuracy of the system.

47

6.2. Unit Testing

First, we implemented a single module, tested against each possible scenario and then

moved to the next module.

All the three modules were unit tested:

• Face-Mask Detection

• Social Distance Detection (6ft)

• Touch Detection

6.3. Integrated Testing

Each module that was tested individually was then integrated and tested again whether

it gives the expected output for given data.

6.4. System Testing

After implementing the whole system, the system was again tested for all possible set

of data and was matched against expected result and performance of system was

evaluated.

Figure 6-1 System Testing

48

6.5. Test Cases

Table 6.1 Test Case for Running Application Successfully

TC ID TC01

Description Running Application

Initial State Idle

Input Double click on app icon

Expected Output Application should launch successfully

Output Application launched successfully

Status Pass

Table 6.2 Test Case for Making No Face-Mask Detection Successfully

TC ID TC02

Description Face-Mask Detection

Initial State Application running

Input Person Without face-mask (from live camera feed)

Expected Output NoMask label must be shown

Output System shows NoMask label

Status Pass

49

Table 6.3 Test Case for Making Face-Mask Detection Successfully

TC ID TC03

Description Face-Mask Detection

Initial State Application running

Input Person wearing face-mask (from live camera feed)

Expected Output Mask label must be shown

Output System shows Mask label

Status Pass

Table 6.4 Test Case for Making Face-Mask Detection Successfully

TC ID TC04

Description Face-Mask Detection

Initial State Application running

Input
Person has covered faced with something other than face-mask

(from live camera feed)

Expected Output Mask label must be shown

Output System shows Mask label

Status Pass

50

Table 6.5 Test Case for Making Social Distance Detection Successfully

TC ID TC05

Description Social Distance Detection

Initial State Application running

Input Distance between persons is less than 6ft (from live camera feed)

Expected Output Bounding Boxes must turn blue

Output Bounding boxes turned blue

Status Pass

Table 6.6 Test Case for Detecting no Social Distance Violation Successfully

TC ID TC06

Description Social Distance Detection

Initial State Application running

Input People are maintaining 6ft distance (from live camera feed)

Expected Output Bounding Box shouldn’t change colour and stay green

Output Bounding Boxes stayed Green

Status Pass

51

Table 6.7 Test Case for Making Touch Detection Successfully

TC ID TC07

Description Touch Detection

Initial State Application running

Input People make physical contact (from live camera feed)

Expected Output Bounding box must turn red

Output Bounding box turned red

Status Pass

Table 6.8 Test Case for Detecting no Touch Violation Successfully

TC ID TC08

Description All SOPs Detection (Integrated)

Initial State Application running

Input People make SOP violation (Live camera feed or CCTV)

Expected Output Agent must show and highlight each violation

Output All violations detected successfully

Status Pass

52

Table 6.9 Test Case for Triggering Alarm Successfully

TC ID TC09

Description Alarm Trigger on Excessive violations

Initial State Application running

Input More than 40% people are violation SOPs (from live camera feed)

Expected Output Alarm should be triggered

Output Alarm Triggered

Status Pass

6.6. Results & Evaluation

To evaluate the system performance, we’ve put system under different tests such as

providing high- and low-quality footage to check whether it produces accurate results.

System was put under stress by providing footages with excessive violations. The

system was able to do multiple detections at the same time. Following are the results of

the detections made by SOP Eye.

6.7. Conclusion

This chapter concludes that the system is now verified and is validated through different

testing techniques and is running smoothly. In this chapter we have performed complete

testing of our system starting from unit testing and then moving on to the integration

testing to check that modules are working collectively and in the end by performing the

system testing. Our system altogether is working perfectly.

53

CHAPTER – 7

CONCLUSION

54

Conclusion

To conclude we’ve made a lot of efforts and spent a lot of time in research in order to

successfully complete this project. By supervision and support of our supervisor we

completed and submitted every deliverable of this project before given deadline. We’ve

learnt a whole lot of new methods, tools, technologies and problem-solving techniques

which will help us in future

7.1. Contributions

COVID-19 hit and turned the world in global crisis as it affected everyone single person

in terms of jobs, health and other outdoor activities. The main purpose for designing

this machine learning product was to contribute in this pandemic by automating the

detection of COVID-19 SOPs Violation.

It has capability to alarm the people automatically, if number of violations goes above

set threshold/ratio.

It’ll help security staff to deal with SOPs regularity in indoor areas. It’ll eliminate the

need of some security individual to observe SOPs obedience by detecting:

• Face Mask

• Social Distancing

• Touching

Of course, there is a lot of work already done in this domain and there are a lot published

research papers but we’ve integrated all the SOPs detection at one place and given a

final product for SOPs detection which is never done before.

To achieve Quality is the most important trait in software project lifecycle and software

project itself. This quality is achieved by meeting all the requirements and needs of

market and customer. We’ve tried to gain maximum level accuracy and quality of the

product i.e., by making accurate detections of SOPs in real-time.

55

7.2. Reflections

SOP Eye is able to run on multiple Operation Systems. It’s influence on society will

result effectively in SOPs obedience as it’ll automate SOPs violation detection. It is

effective in a manner that it can make several detections at the same time that a naked

eye couldn’t possibly do. This project has enabled us to learn new technologies,

methods and problem-solving techniques. It improved our skills in Machine Learning

and Artificial Intelligence domain.

7.3. Future work

As we know COVID-19 virus isn’t completely eradicated and there are some sectors

where SOPs are still followed and taken care of, such as: medical centres. So, it is still

useable in hospitals.

This system can be advanced by training it more and more with large dataset and new

models to get better accuracy and speed.

Our product is completely extensible and flexible to new technologies and models and

it also has capability to integrate more SOPs. SOP EYE was designed to monitor

COVID-19 SOPs but it is not static. It could be modified, if God-forbid, any other

pandemic occurs.

Using bigger model require more computation power and CUDA memory for example:

Large Yolov5I and XLarge Yolov5x.

Figure 7-1 Yolov5 models

If we’ve finitely large dataset and enough Video memory we can train models better

and get more accurate results.

56

REFERENCES

[1] T. Ikram, A. Saeed, N. Ayn, M. A. Tahir and R. Mumtaz, "A review of the prevalent

ICT techniques used for COVID-19 SOP violation detection," 2020 IEEE 17th

International Conference on Smart Communities: Improving Quality of Life Using

ICT, IoT and AI (HONET), 2020, pp. 194-198, doi:

10.1109/HONET50430.2020.9322821.

[2] X. Wang et al., "A Weakly-Supervised Framework for COVID-19 Classification

and Lesion Localization From Chest CT," in IEEE Transactions on Medical Imaging,

vol. 39, no. 8, pp. 2615-2625, Aug. 2020, doi: 10.1109/TMI.2020.2995965.

[3] A. A. R. Alsaeedy and E. K. P. Chong, "Detecting Regions At Risk for Spreading

COVID-19 Using Existing Cellular Wireless Network Functionalities," in IEEE Open

Journal of Engineering in Medicine and Biology, vol. 1, pp. 187-189, 2020, doi:

10.1109/OJEMB.2020.3002447.

[4] S. Zhang and X. Wang, "Human detection and object tracking based on Histograms

of Oriented Gradients," 2013 Ninth International Conference on Natural Computation

(ICNC), 2013, pp. 1349-1353, doi: 10.1109/ICNC.2013.6818189.

[5] Hong Han, Youjian Fan and Zhichao Chen, "Human detection based on Curvelet

transform," 2011 International Conference on Multimedia Technology, 2011, pp. 356-

359, doi: 10.1109/ICMT.2011.6003080.

[6] G. Deore, R. Bodhula, V. Udpikar and V. More, "Study of masked face detection

approach in video analytics," 2016 Conference on Advances in Signal Processing

(CASP), 2016, pp. 196-200, doi: 10.1109/CASP.2016.7746164.

[7] W. Bu, J. Xiao, C. Zhou, M. Yang and C. Peng, "A cascade framework for masked

face detection," 2017 IEEE International Conference on Cybernetics and Intelligent

Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics

(RAM), 2017, pp. 458-462, doi: 10.1109/ICCIS.2017.8274819.

57

[8] Punn, Narinder Singh, et al. "Monitoring COVID-19 social distancing with person

detection and tracking via fine-tuned YOLO v3 and Deepsort techniques." arXiv

preprint arXiv:2005.01385 (2020).

[9] Rasheed R, Rizwan A, Javed H, Sharif F, Zaidi A. Socio-economic and

environmental impacts of COVID-19 pandemic in Pakistan-an integrated analysis.

Environ Sci Pollut Res Int. 2021 Apr;28(16):19926-19943. doi: 10.1007/s11356-020-

12070-7. Epub 2021 Jan 6. PMID: 33410007; PMCID: PMC7787403.

58

APPENDIX A

Abbreviations Meaning

SOPs Standard Operating Procedures

AI Artificial Intelligence

ML Machine Learning

OS Operating System

GUI Graphical User Interface

UI User Interface

WHO World Health Organization

YOLO You Only Look Once

R-CNN Region-based Convolutional Neural Network

	Thesis Completion Certificate
	Certificate of Originality
	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	Chapter 1
	1.1. Motivation
	1.2. Problem statement
	1.3. Objectives
	1.4. Main contributions
	1.4.1. What is new, better and significant?
	1.4.2. How will it help?

	1.5. Constraints and Scope
	1.6. Report organisation

	Chapter 2
	Background Study/Literature Review
	2.1. Literature Review and Background study
	2.1.1. Classical techniques to detecting humans and objects.
	2.1.2. Face mask Detection Techniques.

	2.2. How previous work being described relates to my own.

	Chapter 3
	System Requirements
	3.1. Use Case Diagram
	3.2. Functional Requirements
	3.2.1. SOPs Detection
	3.2.2. Alarm Trigger

	3.3. Interface Requirements
	3.3.1. User Interface
	3.3.2. Hardware Interfaces
	3.3.3. Software Interfaces
	3.3.4. Communications Interfaces

	3.4. Database Requirements
	3.5. Non-Functional Requirements
	3.5.1. Performance Requirements
	3.5.2. Safety Requirements

	3.6. Project Feasibility
	3.6.1. Technical Feasibility
	3.6.2. Operational Feasibility

	3.7. Conclusion

	Chapter 4
	System Design
	4.1. Design Approach
	4.2. Design Constraints
	4.3. Methodologies
	4.4. System Architecture
	4.4.1. Data Layer
	4.4.2. Processing Layer
	4.4.3. Presentation Layer

	4.5. Logical Design
	4.5.1. Class Diagram

	4.6. Dynamic View
	4.6.1. Activity Diagram

	4.7. Component Design
	4.7.1. Component Diagram
	4.7.2. Deployment Diagram

	4.8. Data Models
	4.9. User Interface Design
	4.9.1. Animation Screen
	4.9.2. Face Mask Detection
	4.9.3. Distance Detector
	4.9.4. Touch Detector

	4.10. System Prototype
	4.10.1. Main Screen

	4.11. Conclusion

	Chapter 5
	System Implementation
	5.1. Tools
	5.1.1. Jupyter Notebook
	5.1.2. PyQt5
	5.1.3. Anaconda
	5.1.4. Python
	5.1.5. CUDA

	5.2. Models Used
	5.2.1. SSD MobileNet V2 FPN 320x320
	5.2.2. Faster R-CNN ResNet152 V2 640x640
	5.2.3. Yolo
	5.2.3.1. Architecture
	5.2.3.2. Yolov5

	5.3. Libraries Used
	5.3.1. Pip
	5.3.2. Numpy
	5.3.3. Conda

	5.4. Other Tools
	5.4.1. TensorFlow v2
	5.4.2. PyTorch
	5.4.3. OpenCV

	5.5. Problems faced and Solutions
	5.5.1. Issue while detecting social distance violations in 2D:

	5.6. Conclusion

	Chapter 6
	System Testing & Evaluation
	6.1. Test Strategy
	6.2. Unit Testing
	6.3. Integrated Testing
	6.4. System Testing
	6.5. Test Cases
	6.6. Results & Evaluation
	6.7. Conclusion

	Chapter 7
	Conclusion
	7.1. Contributions
	7.2. Reflections
	7.3. Future work

	References
	Appendix A

