

Online Election System

By

M. Imran Yaqub Malik

(242022-002)

Supervised By

Mr. Fazal Wahab

A project Submitted in partial fulfillment of the requirements for the degree of MCS

Department of Computer Sciences

Bahria Institute of Management and Computer Sciences (BIM&CS)

Bahria University Islamabad

CERTIFICATE

Certified that we accept the work contained in this report as a confirmation to the

required standard for the partial fulfillment and found satisfactory for the requirements of

the Degree.

Supervisor ____________________________

Internal Examiner: ____________________________

External Examiner: ____________________________

Head of Department ____________________________

Department of Computer Sciences

Bahria Institute of Management and Computer Sciences (BIM&CS)

Bahria University Islamabad

Dedication

Dedicated to my loving family

Table of Contents

ABSTRACT I
ACKNOWLEDGEMENT II

CHAPTER 1: INTRODUCTION 1

1.1 Introduction ………………………………………………………………......... ...2
1.2 About OES ………………………………………………………………………..2
1.3 Why OES & Advantages ………….……………………………………………....3

CHAPTER 2: ANALYSIS 5

2.1 Introduction ……………………………………………………………………….6
2.2 Step Involved (Each of them are reviewed against Customer Requirements)…….6
2.3 Use of UML (Unified Modeling Language) ……………………………………....7
2.4 Five Different views for system Representation/Description……………………..7
2.5 Requirement Analysis……………………………………………………………..8
2.6 High Level System Components…………………………………………………10
2.7 Summary of Requirements ……………………………………………………….11
2.8 High Level Usecase Diagram …………………………………………………….12
2.9 Analysis Level Use case Diagram ………………………………………………..13
2.10 Use Case Description …………………………………………………………….14
2.11 Domain Models …………………………………………………………………..35

CHAPTER 3: DESIGNING 47

3.1 Object-Oriented Design …………………………………………………….…… 48
3.2 Reason for Object-Oriented Design………………………………………….……48
3.3 Software Design Process …………………………………………………………49
3.4 Characteristics for the evaluation of good Design ………………………………..49
3.5 Partitioning the Analysis Model ………………………………………………….50
3.6 Architecture Diagram ……………………………………………………………..51
3.7 System Sequence Diagram ………………………………………………………..52
3.8 Sequence Diagrams ……………………………………………………………….64
3.9 Collaboration Diagrams …………………………………………………………..76
3.10 Design Class Diagrams …………………………………………………………..100
3.11 State Chart Diagrams …………………………………………………………….117

CHAPTER 4: IMPLEMENTATION 129

4.1 Class Specifications………………………………………………………………130

CHAPTER 5: TESTING 177

5.1 Introduction ……………………………………………………………………..178
5.2 Goals …………………………………………………………………………….178
5.3 Testing Approach ………………………………………………………………..178
5.4 Test Case Specification (TCS) …………………………………………………..180
5.5 Evaluation ………………………………………………………………………..182
5.6 Merits & Demerits ……………………………………………………………….182

CHAPTER 6: CONCLUSION 184

APPENDIX A: OES Database Schema 186
APPENDIX B: DATA MODEL 190
APPENDIX C: DATABASE TABLES 192
APPENDIX D: USER’s MANUAL 199
APPENDIX E: REFERENCES 217

Abstract

Online Election System (OES) is a computerized system to carry out secure Local

Government Elections through Online Polling Stations connected to OES Central

Web Server. All management tasks like Candidate Management, Voter Management,

Employees Management, Polling Station lists Management, Voting Management,

Result preparation etc. will be generated electronically using the system. This entire

List will be approved by Election Commission Management. Employees will be

assigned to particular designations at particular destinations. Employees will have

logins and responsibilities, they are required to perform. These lists will be

electronically distributed to the Computerized Polling Stations in a hierarchal order

from Chief Election Commissioner till Presiding Officer.

Voter will be verified from NADRA web Services. A voter can cast its vote through

OES Online System in voting booths. Votes from all the locations will be sent to a

central server from their particular servers. Result will be compiled from the local

servers and will be dynamically updated in central election commission office after

specific intervals.

 I

Acknowledgment

Innumerable thanks to ALMIGHTY ALLAH the creator and the sustainer of the

universe for providing us with the abilities and prospect to complete this work..

All the words of gratitude and thankfulness fall incapacitated to express my deepest

gratefulness to my supervisor Mr. Fazal Wahab for his continuous moral and professional

support and guidance throughout project work. Discussions and meetings with him

provided me very useful insight in this project.

I am grateful to all my honorable teachers for their efforts and valuable moral support

provided during the entire course and my friends Mr. Humayun Aziz & Mr. Adil Malik

who supported me a lot during the project.

Finally, I would also extend my gratitude to my Family for their continued prayers and

encouragement

 II

Project in Brief

Project Name: Online Election System

Developed by: Malik Imran

Supervised By: Mr. Fazal Wahab

Degree: MCS

Institute Name: Bahria Institute of Management &

 Computer Sciences

CHAPTER 1

INTRODUCTION

 1

1.1 Introduction

In the present area, the user of computer technology is increasing day by day.

Different organizations have a computerized system to meet their objective and those

who have manual system are taking decisions to develop such a system. Now lots of

questions raised in mind that why those organizations feel to need of a computerized

system and what are the reasons to develop such a new system. The answer of these

questions is very simple that the organizations faced this problem due to the old

manual system. Therefore in order to overcome such problems of manual system, the

organizations are approaching computerized systems

1.2 About OES

OES (Online Election System) will facilitate both voters and election commission

administration in their tasks. Voters will be able to cast their votes through

computerized polling stations. Election commission will be able to get compiled result

at any time. OES will be reliable and secure mean of conducting election as compare

to the paper pencil election system. OES will work under real environment.

Candidates and voters lists will be generated automatically using our system in

election commission office by using given database. These lists will be electronically

distributed to the computerized polling stations. A voter can cast its vote through

computerized polling stations or through website. Votes from all the three sites will

be sent to a central server from their particular servers. Result will be compiled from

the central server and will be dynamically updated in central election commission

office after specific intervals. Final results will be sent to all main polling stations and

other specific locations. There will be also a module for reporting. The candidates and

voters database management will be out of OES. We will assume that Areas and

resources are already defined by election system and will be provided to OES in some

electronic form.

OES (Online Election System) will facilitate both voters and election commission

administration in their tasks. Voters will be able to cast their votes through

computerized polling stations, phones and through Internet. Election commission will

be able to get compiled result at any time. OES will be reliable and secure mean of

conducting election as compare to the paper pencil election system.

 2

1.3 Why OES & Advantages

 To computerize the manual election system in order to provide maximum ease to

voters and efficient, effective retrieval of voting results for election commission.

1.3.1 Customers and benefits

Primary: This software system specifically target to the Pakistan Election

Commission as reference. It will provide them ease of management activities.

Management will get quick and accurate voting results.

Secondary: An alternative for conducting elections in other government and private

sectors.

It will give ease to voters to caste their votes.

 1.3.2 Key factors used to judge quality

 Candidates and voters lists will be automatically generated and send to the

appropriate polling stations.

 Electronic vote casting and result processing will enhance reliability and

quality as compared to the manual system.

 Through manuals and training, the system developed will be easy to use for

management of election commission. The system also facilitates the voter by

providing more than one ways i.e. by internet and computerized polling

stations, for vote casting.

1.3.3 Key features and technology

 Automatic candidate and voters list generation.

 To send these lists to different polling stations from one location

automatically.

 Online vote casting.

 Vote casting through computerized polling systems.

 Dynamic update of results to a central location.

 Security and reliability in vote casting and in processing of result calculation.

 3

 Reports generation.

1.3.4 Crucial product factors

 It will interact with old election system data base to get candidate and voter

data to generate lists.

 Its design can be modified and can be grown according to the need.

 It will run in election office and in polling stations.

 Maintenance and proper training will be provided to the users of this system to

make their understanding about the system.

 4

CHAPTER 2

ANALYSIS

 5

2.1 Introduction

Object Oriented Analysis is the foundation phase on which whole object-oriented

software engineering depends. It should be carried out effectively and efficiently. The

reason of object-oriented analysis is to model the real system so that it can be

understood and to do this, we must examine requirements, analyze their implications,

and restate them rigorously, and abstracting important real-world features first and

defers small details until later. The successful analysis model state, “What must be

done”, without restricting how it is done, and avoid implementations decisions. The

result of analysis should understand the problem as a preparation for design. Since we

are documenting this whole phase so end result would be “ANALYSIS MODEL” or

“REQUIREMENTS SPECIFICATION DOCUMENT”

Why Document All?

 Serves as a contract between the system user and the system developer

 Serves as a source of test plans

 Serves to specify projects goals and plan development cycles and increments

2.2 Step Involved (Each of them are reviewed against Customer

Requirements)

i. Requirements Analysis

ii. Use Cases & Use Case Diagrams

iii. Class /Object Diagrams

iv. Interaction Diagrams (Sequence & Collaboration Diagrams)

v. State Diagrams representing system behavior

vi. Activity Diagrams describing sequencing of activities

vii. Deployment Diagrams (Physical Diagram)

 6

2.3 Use of UML (Unified Modeling Language)

The UML, is the outcome of combination of the best features of Grady Booch, James

Rumbaugh, and Ivar Jacobson Object Oriented Analysis & Design methods into a

unified process, which went through a standardization process with the OMG (Object

Management Group) and is now an OMG standard.

 UML would allows to put across an analysis model using a modeling notation

that is governed by a set of syntactic (tells us how symbols should look and

combined), semantic (tells us what each symbol means) and pragmatic rules (defines

intentions of symbols through which the purpose of the model is achieved and

becomes understandable for others)

2.4 Five Different views for system Representation/Description:

2.4.1 User Model View:

This view represents the system/software from the end user’s (action in

UML) perspective and is defined by a set of USE CASES and USE CASE

DIAGRAMS.

2.4.2 Structure Model view:

Data and functionality are viewed from inside the system, that is static

structure (classes, object and relationships) is modeled.

2.4.3 Behavior Model view:

Represent the dynamic or behavior aspects of system and depicts the

interactions or collaborations between various structural elements

described in the user and structural models.

2.4.4 Implementation Model view

The structural and behavioral aspects of the system are represented as they

are to be built

 7

2.4.5 Environment Model view

The structural and behavioral aspects of environment in which the system

is to be implemented are represented.

2.5 Requirement Analysis:

2.5.1 Introduction:

 Prior to requirements analysis, modeling or specifying they must be gathered

through an Elicitation process. “Elicitation Process” is one by which customers needs

are understood and documented. Again express “what” is to be built and not ”how” it

is to be built.

C and D Requirements

C Customer requirements and needs; articulated in language understood by the

customer

Types of Customer (C) Requirements:

 Normal Requirements:

Requirements demanded or stated by customers directly / explicitly.

 Expected Requirements:

Implicit requirements and may be so fundamental that the customer doesn’t

explicitly state them and their absence will cause for significant

dissatisfaction. e.g. ease of human/machine interaction, overall operational

correctness and reliability, and ease of software installation etc.

 Exciting Requirements:

These features go beyond customer’s expectations and prove to be very

satisfying when present.

 8

D For the developers, may be more formal.

Types of Developer (D) Requirements:

 Functional Requirements:

The requirements stated by developers that are directly linked to the functions

being performed by their system/software to be developed.

 Non- Functional Requirements:

The requirements that are not directly related with system to be built

functionalities e.g. Performance, Reliability, Constraints etc.

2.5.2 Roadmap:

 Classify Customer and End-user of the system

 Interview with customer representative (Detail Analysis of Existing

System/Environment)

 After Information analysis of existing system, write requirements of

customer, examination with customer and update when it is necessary.

 Developer requirements to be written, check and to make sure that there is no

discrepancy between the requirements of the system customer and developer.

 9

2.6 High Level System Components

2.6.1 Management

• Upload Candidate Forms on the OES Server

• Add Candidate Parties

• Add Symbols

• Assign Symbol To Candidates

• Create Candidate List

2.6.2 Employee Management

• Create Employee List

• Assign Employee to various Designations at various Locations Like(DRO in

Districts, RO in Town-Tehsil , PO in Union Councils ,Polling Stations)

2.6.3 Voter Management

• Verify Voters from NADRA

• Create Voter List

• Approve Voter List

• Send Voter List From CEC down to Polling Stations

2.6.4 Polling Station Management

• Create List Of Polling Stations in All Union Councils

• Approve Polling Station List

• Send Polling Station List

2.6.5 Result Management

• Get Result From All Polling Stations

• Combine Result

• View Result

• Send Result from Polling Stations to all Upper Levels Automatically after

specific interval of time

 10

2.6.6 Voting Management

 Select candidate and cast vote online.

2.6.7 Security Management

• Every System user has his specific rights & View in OES System.

• All the System Users much pass through Secure Login Wall.

• Outdoor Network Traffic wraps in separate layer through Encryption &

Decryption techniques.

• Voter is verified before Voting through their NIC.

• Once Voter has cast his vote his status will be disabled from both online

2.6.8 Web Services NADRA

• This Web service is assumed to be provided by NADRA through which OES

verifies that either NIC# provided by Voter is valid or not.

2.7 Summary of Requirements

Each Assistant Chief Election Commissioner (ACEC) prepares lists of voters of his

province. Chief Election Commissioner (CEC) receives these lists from all ACECs.

CEC proves the lists for further processing. CEC proves the lists of District Returning

Officers (DROs) and Returning Officers (ROs) prepared by ACEC. Each ACEC

prepares the lists of DROs for all districts under his province. Each DRO prepares the

lists of ROs for all Towns/Tehsil under his district. Each RO prepares the lists of

Presiding Officers, Assistant Presiding Officers and of polling staffs. CEC distributes

the lists of voters to ACEC. Each ACEC distributes the lists to DROs of his province.

Each DRO distributes the lists to ROs of his district. Each RO distributes the lists to

POs of all polling stations in a town/tehsil. RO prepares the lists of candidates and

allocate them symbol. DRO approves those lists. Result will be updated automatically

during polling from PO to RO and from RO to DRO and to CEC. At the end of

polling, PO will compile the result and will send unofficial result to DRO. DRO will

validate the result and will send to CEC for approval.

 11

2.8 High Level Usecase Diagram

Figure: 2.8 High Level use case diagram

UC_Update Result RO To Dro to
CEC

UC_Update Result_PO to RO

UC_VoterList_DRO Distribution
UC_Compile_Final Result

UC_Approve DRO List UC_Approve RO List

CEC

UC_Prepare _DRO List UC_Prepare_RO List

UC_Voter List_RO Distribution UC_Compile_DRO Result UC_Submit_DRO Result

UC_Approve_PollingStation List UC_Approve_PO_APO_Polling
Staff List

DRO

UC_Prepare_Symbol_Candidate
List

UC_VoterList_PO Distribution UC_Compile_ROResult

UC_Prepare_Polling Station List UC_Prepare_PO_APO_Polling
Staff List

UC_Submit_RO Result

RO

UC_Candidate_NominationCandidate

UC_Validate Voter UC_Compile_Submit_PO Result

PO

UC_Cast_Vote

Online Election System

Voter

ACEC

Nadra Web Service
<<Actor>>

UC_Prepare Electrol Rolls

 12

2.9 Analysis Level Use case Diagram

Figure: 2.9 Analysis use case diagram

UC_Update Result RO To Dro to
CEC

UC_Update Result_PO to RO

UC_VoterList_DRO Distribution

UC_Approve DRO List

UC_Approve RO List

UC_Voter List_RO Distribution

UC_Submit_DRO Result

UC_Prepare_Symbol_Candidate
List

UC_VoterList_PO Distribution

UC_Prepare_Polling Station List

UC_Prepare_PO_APO_Polling
Staff List

UC_Submit_RO Result

UC_Candidate_Nomination
Candidate

UC_Validate Voter

UC_Compile_Submit_PO Result

PO

UC_Prepare _DRO List

UC_Prepare_RO List
ACEC

UC_Prepare Electrol Rolls

Validate Voter NIC

Nadra Web
Service

<<Actor>>

UC_Compile_Final Result

CEC

<<include>>

UC_Compile_DRO Result

UC_Compile_ROResult

RO

Gather Result

Approve APO

Approve PO

UC_Approve_PO_APO_Polling
Staff List

Approve Polling Staff

Prepare PO List

Prepare APO List

Prepare Polling Staff List

Prepare Candidate List Allocate Symbols
Compile PO Result SubmitPO Result

<<include>>

UC_CastVote

Voter Vote Casting

<<include>> <<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

DRO

UC_Approve_PollingStation List

Online Election System

 13

2.10 Use Case Description

Use Case Id Use Case Name
UC_1 UC_Prepare_ElectorlRoll

Primary Actor:

Assistant Chief Election Commission (ACEC)

Brief Description: ACEC enters the data. The data is validated and saved into
the system. After entering all the data, electoral rolls are
generated from the system.

Preconditions: ACEC is identified and authenticated. Voter’s data entry
screen is presented to ACEC for data entry.

Basic Flow:

1. ACEC enters voter’s information.
2. System verifies the voter’s NIC from web service

provided by NADRA.
3. ACEC confirms saving.

 (ACEC repeats steps 1,2,3,4 until all data is
entered)

4. System generates and presents the electoral rolls
lists.

Post condition:

Data of a voter will be saved and a message of
confirmation will be shown to the user. Voter verification
information is also saved.

Alternate Flow: 1a. Invalid Information:
 System signals error and asks for correct entry.
2a. Invalid voter:
User will be flagged as invalid user.

Use Case Id Use Case Name
UC_2 UC_Candidate_Nomination

Primary Actor:

Returning Officer (RO) ,Candidate

Brief Description: After the publication of Election Schedule by the Election
Commission, nomination papers are invited from interested
contesting candidates.

Preconditions: Returning Officer (RO) is identified and authenticated for

particular district.

Nomination form is available to the candidates from
election commission official website or gets the
Nomination Form from RO office.

 14

Basic Flow:

1. Candidate downloads the nomination form from
Election Commission website.

2. Candidate fills in the form.

3. Attached the required documentation. e.g.
educational background, NIC photocopy, picture etc

4. Candidate submits the nomination form along with
the required documents back to RO.

5. RO accepts/rejects the nomination papers of
candidate.

Post condition:

At the end of this use case the nominated candidate will be
collected by the Returning Officer and symbols assign to
qualified candidates.

Alternate Flow: 1a. Nomination form is not available at Election
Commission site
System shows message to the candidate
Candidate can get nomination form from RO office.
1b. Election Commission web server is down.
System signals error to the candidate
Candidate can get nomination form from RO office.

Use Case Id Use Case Name
UC_3 UC_Prepare_Symbol_CandidateList

Primary Actor:

Returning Officer(RO)

Brief Description: Inspection of nomination papers is carried out by the
Returning Officers and nomination papers are either
accepted or rejected on the basis of set rules by RO.

Preconditions: Returning Officer (RO) is identified and authenticated for
particular district.

Nomination forms of candidates are available to RO.

RO rejects the candidate who does not fulfill the set
criteria.

List of Election Symbols approved by the Election
Commission is available to RO.

Basic Flow:

1. RO enters the id and name of selected candidate.

2. RO assigns the symbol to selected candidate
according to his party affiliation.

3. RO assigns the symbol to individual candidates if
there is any.

4. RO prepares a list of selected candidates with
symbols

 15

5. RO publishes the list of selected candidates with
symbols.

Post condition:

Final list of contesting candidates is prepared and published
in the prescribed manner by the Returning Officer after
incorporation of the decisions on appeals and after
withdrawal of candidature by the candidates if any.

Alternate Flow: 3b. Db server is down

System signals error to the candidate

Use Case Id Use Case Name
UC_4 UC_VoterList_DRODistribution

Primary Actor:

Chief Election Commission (CEC)

Brief Description: CEC will distribute the voters’ lists to specific District
Regional Officers. CEC will do this by uploading the lists
on Web server.

Preconditions: Data about Districts and DROs is already entered. CEC is
identified and authenticated. Voters’ lists distribution
screen is presented to CEC for distribution.

Basic Flow:

1. CEC selects or enters District name.

2. System shows basic information of district.

3. CEC selects or enters DRO ID from the list.

4. System shows basic information of DRO.

5. CEC selects the path of the Voter Lists of the
specified district.

6. CEC confirms for uploading the list.

 (CEC repeats steps 1, 2, 3, 4, 5, 6 until all voters’
lists are uploaded.)

7. System generates and presents the lists distribution
information.

 16

Post condition:

Voters’ lists are uploaded on server. Distribution
information is saved in database.

Alternate Flow: 1a. Invalid District Name:

 System signals error and asks for correct entry.

 3a. Invalid DRO ID:

 System signals error and asks for correct entry.

 5a. Invalid List Path:

 System signals error and asks for correct selection.

Use Case Id Use Case Name
UC_5 UC_VoterList_RODistribution

Primary Actor:

District Returning Officer (DRO)

Brief Description: DRO will distribute the voters’ lists to Regional Officers.

DRO will do this by uploading the lists on Web server.

Preconditions: DRO has received lists from CEC. Data about ROs is
already entered. DRO is identified and authenticated.
Voters’ lists distribution screen is presented to DRO for
distribution.

Basic Flow:

1. DRO selects or enters District name.

2. System shows Towns/Tehsils under that district.

3. DRO selects or enters Town/Tehsil name.

4. System shows basic information of Town/Tehsil.

5. DRO selects or enters RO ID from the list.

6. System shows basic information of RO.

7. DRO selects the path of the Voter Lists of the
specified Town/Tehsil.

8. DRO confirms for uploading the list.

9. (DRO repeats steps 1, 2, 3, 4, 5, 6, 7, 8 until all
voters’ lists are uploaded.)

10. System generates and presents the lists distribution
information.

 17

Post condition:

Voters’ lists are uploaded on server. Distribution
information is saved in database.

Alternate Flow: 1a. Invalid District Name:

 DRO can select or can enter his own district.

System signals error and asks for correct entry.

 3a. Invalid Town/Tehsil Name:

 DRO can select or can enter Town/Tehsil from the
list.

System signals error and asks for correct entry.

 5a. Invalid RO ID:

 System signals error and asks for correct entry.

 7a. Invalid List Path:

 System signals error and asks for correct selection.

Use Case Id Use Case Name
UC_6 UC_VoterList_PODistribution

Primary Actor:

Returning Officer (RO)

Brief Description: RO will distribute the voters’ lists to Presiding Officers to
all polling stations under his Town/Tehsil. RO will do this
by uploading the lists on Web server.

Preconditions: RO has received lists from DRO. Data about POs is already

entered. RO is identified and authenticated. Voters’ lists
distribution screen is presented to RO for distribution.

 18

Basic Flow:

1. RO selects or enters Town/Tehsil name.

2. System shows basic information of Town/Tehsil
and Polling station names.

3. RO selects or enters Polling station name.

4. System shows basic information of Polling station
and PO name.

5. RO selects the location of the voter list of the
specified Polling station.

6. RO confirms for uploading the list.

7. (RO repeats steps 1, 3, 4, 5, 6 until all voters’ lists
are uploaded.)

8. System generates and presents the lists distribution
information.

Post condition:

Voters’ lists are uploaded on server. Distribution
information is saved in database.

Alternate Flow: 1a. Invalid Town/Tehsil Name:
 1. System signals error and asks for correct entry.
 3a. Invalid Polling station name:
 System signals error and asks for correct entry.
 5a. Invalid List Path:
 System signals error and asks for correct selection.

Use Case Id Use Case Name
UC_7 UC_Validate_Voter

Primary Actor:

Presiding Officer (PO)

Brief Description: PO will validate voter on poling station on the basis of
his/her NIC number.

Preconditions: 1. PO is already login.

2. Voter lists are available for polling station.

3. Voter must come with his/her own NIC.
Basic Flow:

1. PO will enter the NIC# in appropriate field
2. System will validate voter from registered polling

station voters list.
3. System will check voter status to be true.
4. PO will allocate polling booth to voter.

Post condition:

Registered authenticated voters will only access polling
booth to cast vote.

Alternate Flow: 1a. PO will enter wrong data

System will show error message

 19

System allows him to reenter again.

2a. If voter is not registered in polling station

System will show Unregistered Voter message.

3a. If voter status is FALSE.

 1. System will show Duplicate Vote message.

Use Case Id Use Case Name
UC_8 UC_Cast_Vote

Primary Actor:

Voter

Brief Description: This use case is related to vote casting by voter at polling
station, which is computerized and connected with server
on a network.

Preconditions: Voter must enter Polling Station along with his NIC

Voter must be validated by the PO

PO must allocate a separate polling both to the Voter

Basic Flow:

1. Voter will enter the polling both allocated by PO.

2. Voter will click or will press Enter button to start
voting.

3. Voter will select his favorite Candidate and press
NEXT button.

4. Voter will repeat step 3 until all categories are
fulfilled

5. Voter will press DONE button to end vote casting

6. System will prepare final ballet paper showing his
selected candidates of each
category for confirmation.

7. Voter will press OK button to successfully casting
his vote.

8. Voter status for vote casting will be disabled on the
basis of NIC to prohibit multiple vote casts from
single voter on polling station either from polling
station or cell phone.

Post condition:

System will save voter vote in local DATABASE of
polling station.

A successful vote casting message will be show to voter.

 20

After a specific time local DATABASE data will be send
to upper level servers.

Alternate Flow: 4a. Voter can press Back button or select any category to
go back

Voter will change candidate for selected category

Voter can repeat step 4a until to visit all previous
categories.

5a. Voter can press REFRESH button to recycle for a fresh
vote.

5b. Voter can press EXIT button to end Voting.

7a. Voter will press CANCEL button to go back and
continue voting.

Use Case Id Use Case Name
UC_9 UC_Compile_Submit_POResult

Primary Actor:

Presiding Officer(PO)

Brief Description: Polling Station results are carried out by the Presiding
Officer (PO) at the end of polling after the given time of
polling. A report of results is generated for polling station.
The results send to concerned Returning Officer (RO).

Preconditions: Voting is completed.

Presiding Officer (PO) is identified and authenticated for
particular polling station.

Basic Flow:

1. Presiding Officer(PO) starts compiling results

2. Results are calculated according to sum formula
defined by Election Commission.

3. Presiding Officer prepares a statement of the count
indicating the number of votes secured by a
candidate

4. A compiled results report of particular polling
station is generated.

5. PO sends the report to RO.
Post condition:

The result displays locally at polling station.

A report is send to concerned RO by PO

Use Case Id Use Case Name

 21

UC_10 UC_Compile_ROResult

Primary Actor:

Returning Officer (RO)

Brief Description: RO receives results from all Polling stations under his

Town/Tehsil. RO will compile the result for further
processing. Compiled result will be shown in a Report
form. This result will be of a single Town or Tehsil.

Preconditions: All polling stations under a town or tehsil has uploaded

result on the web server under their town or tehsil.
Compilation screen is presented to RO for compiling result.

Basic Flow:

1. RO downloads the results of all polling stations
under his Town/Tehsil from the web server

2. RO apply validation checks to validate the result of
a polling station.

3. System checks the validation of result.

4. RO clicks OK button for confirmation.

5. (RO repeats steps 2, 3, 4 until all results of all
polling stations are validated.)

6. System converts the results into a single document
under the name of Town/Tehsil of RO.

7. System shows the compiled result of a Town/Tehsil
in a report format.

Post condition:

Validation criteria are saved. Compiled result is saved.
Validation information is saved.

Alternate Flow: 1a. Invalid or broken download link

RO sends message to specific PO for uploading the result
again.

 3a. Invalid Result:

System signals error and saved the result in invalid results
list.

Use Case Id Use Case Name
UC_11 UC_Submit_ROResult

Primary Actor:

Returning Officer (RO)

Brief Description: All ROs submit their Towns or Tehsils compiled unofficial
results to DRO.

 22

Preconditions: RO has compiled and prepared the unofficial result. Result
uploading screen is presented to RO for submitting result to
DRO.

Basic Flow:

1. RO selects or enters the District name.

2. System shows basic information about the district.

3. RO selects or enters his Town/Tehsil name.

4. System shows basic information about the
Town/Tehsil.

5. RO selects or enters DRO ID.

6. System shows basic information about the DRO.

7. RO enters some description about the result.

8. RO selects the path of compiled result document.

9. RO confirms for uploading the result to DRO.

10. System shows confirmation message for successful
uploading.

Post condition:

Uploading information is saved. Result is uploaded on the
web server.

Alternate Flow: 1a. Invalid District name:

 System signals error and asks for correct entry.

 3a. Invalid Town/Tehsil name:

 System signals error and asks for correct entry.

 5a. Invalid DRO ID:

 System signals error and asks for correct entry.

 8a. Invalid Result document Path:

 System signals error and asks for correct document
path selection.

Use Case Id Use Case Name
UC_12 UC_Compile_DROResult

Primary Actor:

District Returning Officer (DRO)

Brief Description: DRO receives results from all Returning Officers under his
district. DRO will compile the result for further processing.
Compiled result will be shown in a Report form. This result
will be of a single district.

 23

Preconditions: All returning officers have uploaded results of their towns
or Tehsils on the web server. Compilation screen is
presented to DRO for compiling result.

Basic Flow:

1. DRO downloads the results of all ROs under his
district from the web server.

2. DRO apply validation checks to validate the result
of a Town/Tehsil.

3. System checks the validation of result.

4. DRO clicks OK button for confirmation.

5. (DRO repeats steps 2, 3, 4 until all results of all
Towns/Tehsils under his districts are validated.)

6. System converts the results into a single document
under the name of district of DRO.

7. System shows the compiled result of a district in a
report format.

Post condition:

Validation criteria are saved. Compiled result is saved.
Validation information is saved.

Alternate Flow: 1a. Invalid or broken download link

DRO sends message to specific RO for uploading the result
again.

 3a. Invalid Result:

System signals error and saved the result in invalid results
list.

Use Case Id Use Case Name
UC_13 UC_Submit_DROResult

Primary Actor:

District Returning Officer (DRO)

Brief Description: All DROs submit their districts compiled unofficial results
to Assistant Chief Election Commission (ACEC) of
specific province and Chief Election Commission (CEC).

Preconditions: DRO has compiled and prepared the unofficial result.
Result uploading screen is presented to DRO for submitting
result to ACEC and CEC.

Basic Flow:

1. System shows the name of CEC.

2. DRO selects or enters ACEC ID of his Province.

3. System shows basic information about the
Province.

4. DRO selects or enters the District name.

5. System shows basic information about the district.

 24

6. DRO enters some description about the result.

7. DRO selects the path of compiled result document.

8. DRO confirms to upload the result to ACEC and
CEC.

9. System shows confirmation message for successful
uploading.

Post condition:

Uploading information is saved. Result is uploaded on the
web server.

Alternate Flow: 2a. Invalid ACEC ID:

 System signals error and asks for correct entry.

 4a. Invalid district name:

 System signals error and asks for correct entry.

 6a. Invalid Result document Path:

 System signals error and asks for correct document
path selection.

Use Case Id Use Case Name
UC_14 UC_Compile_FinalResult

Primary Actor:

Chief Election Commission (CEC)

Brief Description: Chief Election Commission (CEC) compiles and approves
the final result.

Preconditions: All DROs have uploaded results of their districts on the
web server. Compilation screen is presented to CEC for
compiling result.

Basic Flow:

1. CEC downloads the results of all DROs under all
districts.

2. CEC apply validation checks to validate the result
of a district.

3. System checks the validation of result.

4. CEC clicks OK button for confirmation.

5. (CEC repeats steps 2, 3, 4 until all results of all
districts are validated.)

6. System converts the results into a single document
under the name Final result.

7. System shows the Final compiled result in a report
format.

8. CEC approves the results.

 25

Post condition:

Validation criteria are saved. Compiled result is saved.
Validation information is saved.

Alternate Flow: 1a. Invalid or broken download link

DRO sends message to specific RO for uploading the result
again.

 3a. Invalid Result:

System signals error and saved the result in invalid results
list.

Use Case Id Use Case Name
UC_15 UC_Prepare_DROList

Primary Actor:

Assistant Chief Election Commission (ACEC)

Brief Description: ACEC prepares the lists of selected District Returning
officers of all districts.

Preconditions: ACEC is identified and authenticated. Data of districts and
DROs is already entered.

Basic Flow:

1. ACEC selects or enters the District Name.

2. System shows information of district.

3. ACEC selects the DRO ID.

4. System shows information of DRO.

5. ACEC enters the start date of the job.

6. ACEC enters the end date of the job.

7. ACEC confirms the appointment.

8. (ACEC repeats steps 1, 3, 5, 6, 7 until all DROs are
appointed to their districts.)

9. System generates the list of all the appointed DROs.
Post condition:

Appointed list of DROs are saved

Alternate Flow: 1a. Invalid District name:

 System signals error and asks for correct entry.

 3a. Invalid DRO ID:

 System signals error and asks for correct entry.

 5a. Invalid Date:

 System signals error and asks for correct entry.

 6a. Invalid Date:

 System signals error and asks for correct entry.

 26

Use Case Id Use Case Name
UC_16 UC_Approve_DROList
Primary Actor:

Assistant Chief Election Commissioner (ACEC), Chief
Election Commissioner (CEC)

Brief Description: ACEC submits the lists of selected DRO to CEC. CEC
receives the lists. CEC applies some validation criteria and
approves after validating the lists.

Preconditions: CEC and ACEC are identified and authenticated. Lists of
District Returning Officers are prepared.

Basic Flow:

ACEC selects the path of list of District Returning
Officers of a province.

ACEC enters some description about the lists.

ACEC confirms for uploading the list to CEC.

System shows confirmation message for successful
uploading.

CEC receives list.

CEC applies validation criteria.

CEC approves the list.
Post condition:

Uploading information is saved. Valid and Invalid
information is saved.

Alternate Flow: 1a. Invalid lists Path:

 System signals error and asks for correct document
path selection.

 5a. Invalid or broken download link

CEC sends message to specific ACEC for uploading the
lists again.

Use Case Id Use Case Name
UC_17 UC_Prepare_ROList

Primary Actor:

Assistant Chief Election Commission (ACEC)

Brief Description: ACEC prepares the lists of selected Returning officers of
all Towns/Tehsils under each district.

Preconditions: ACEC is identified and authenticated. Data of districts,
Towns/Tehsils and ROs is already entered.

 27

Basic Flow:

1. ACEC selects or enters the District Name.

2. System shows Town/ Tehsil ID and name.

3. ACEC selects or enters the Town/Tehsil ID.

4. System shows basic information about
Town/Tehsil.

5. ACEC selects the RO ID.

6. System shows information of RO.

7. ACEC enters the start date of the job.

8. ACEC enters the end date of the job.

9. ACEC confirms the appointment.

10. (ACEC repeats steps 1, 3, 5, 7, 8, 9 until all ROs are
appointed to their Town/Tehsil.)

11. System generates the list of all the appointed ROs.
Post condition:

Appointed list of ROs are saved

Use Case Id Use Case Name
UC_18 UC_Approve_ROList

Primary Actor:

Assistant Chief Election Commissioner (ACEC), Chief
Election Commissioner (CEC)

Brief Description: ACEC submits the lists of selected RO to CEC. CEC
receives the lists. CEC applies some validation criteria and
approves after validating the lists.

Preconditions: CEC and ACEC are identified and authenticated. Lists of
all Returning Officers are prepared.

Basic Flow:

1. ACEC selects or enters the District name.

2. System shows basic information about the district.

3. ACEC selects the path of list of Returning Officers
of a district.

4. ACEC enters some description about the list.

5. ACEC confirms for uploading the list to CEC.

6. System shows confirmation message for successful
uploading.

7. (ACEC repeats steps 1, 3, 4, 5 until lists of all ROs
of all districts are uploaded.)

8. CEC receives list.

9. CEC applies validation criteria.

10. CEC approves the list.

 28

Post condition:

Uploading information is saved. Valid and Invalid
information is saved.

Alternate Flow: 1a. Invalid District name:

 System signals error and asks for correct entry.

 3a. Invalid lists Path:

 System signals error and asks for correct document
path selection.

 7a. Invalid or broken download link

CEC sends message to specific ACEC for uploading the
lists again.

Use Case Id Use Case Name
UC_19 UC_Prepare_PollingStationList

Primary Actor:

Returning Officer (RO)

Brief Description: RO prepares the list of polling stations under his
Town/Tehsil for approval from DRO.

Preconditions: RO is identified and authenticated. Data of districts,
Towns/Tehsils and polling stations is already entered.

Basic Flow:

1. RO selects or enters the District Name.

2. System shows Town/ Tehsil ID and name.

3. RO selects or enters the Town/Tehsil ID.

4. System shows basic information about
Town/Tehsil.

5. RO enters information about a polling station.

6. RO confirms the entry of polling station

7. (RO repeats steps 5, 6 until all polling stations
under a Town/Tehsil are created.)

8. System generates the list of all the polling stations
under the Town/Tehsil.

Post condition:

Polling stations assignment list is saved.

Alternate Flow: 1a. Invalid District name:

 System signals error and asks for correct entry.

 3a. Invalid Town/Tehsil name:

 System signals error and asks for correct entry.

 5a. Wrong entry:

 System signals error and asks for correct entry.

 29

Use Case Id Use Case Name
UC_20 UC_Approve_PollingStationList

Primary Actor:

District Returning Officer (DRO), Returning Officer (RO)

Brief Description: RO submits the lists of polling stations to DRO. DRO
receives the lists. DRO applies some validation criteria and
approves after validating the lists.

Preconditions: RO and DRO are identified and authenticated. Lists of
polling stations are prepared.

Basic Flow:

1. RO selects or enters the District name.

2. System shows basic information about the district.

3. RO selects or enters his Town/Tehsil name.

4. System shows basic information about the
Town/Tehsil.

5. RO selects or enters DRO ID.

6. System shows basic information about the DRO.

7. RO selects the path of list of polling stations under a
Town/Tehsil.

8. RO enters some description about the lists.

9. RO confirms for uploading the result to DRO.

10. System shows confirmation message for successful
uploading.

11. DRO receives list.

12. DRO applies validation criteria.

13. DRO approves the list.
Post condition:

Uploading information is saved. Valid and Invalid
information is saved.

Alternate Flow: 1a. Invalid District name:

 System signals error and asks for correct entry.

 3a. Invalid Town/Tehsil name:

 System signals error and asks for correct entry.

 5a. Invalid DRO ID:

 System signals error and asks for correct entry.

 7a. Invalid lists Path:

 System signals error and asks for correct document
path selection.

Use Case Id Use Case Name
UC_21 UC_Prepare_PO_APO_PollingStaffList

 30

Primary Actor:

Returning Officer (RO)

Brief Description: RO prepares the list of Presiding officers, Assistant Presiding
Officers and Polling staff of all polling stations under his
Town/Tehsil for approval from DRO.

Preconditions: RO is identified and authenticated. Data of districts,
Towns/Tehsils, Polling Stations, Presiding officers (PO),
Assistant Presiding officers (APO) is already entered.

Basic Flow:

1. RO selects or enters the District Name.

2. System shows Town/ Tehsil ID and name.

3. RO selects or enters the Town/Tehsil ID.

4. System shows basic information about Town/Tehsil.

5. RO selects or enters the Polling station ID.

6. System shows information of Polling station.

7. RO selects or enters the PO ID.

8. System shows information of PO.

9. RO selects or enters the APO ID.

10. System shows information of APO.

11. RO selects or enters the Polling staff IDs.

12. System shows information of polling staff information.

13. RO confirms the assignment.

14. (RO repeats steps 5, 7, 9, 11, 13 until all PO, APO and
polling staff are appointed to all polling stations.)

15. System generates the list of all the assigned PO, APO
and polling staffs.

Post condition:

All POs, APOs and polling staff list are saved.

Alternate Flow: 1a. Invalid District name:

 System signals error and asks for correct entry.

 3a. Invalid Town/Tehsil name:

 System signals error and asks for correct entry.

 5a. Invalid Polling station ID:

 System signals error and asks for correct entry.

 7a. Invalid PO ID:

 System signals error and asks for correct entry.

 9a. Invalid APO ID:

 System signals error and asks for correct entry.

 11a. Invalid Polling staff ID:

 System signals error and asks for correct entry.

 31

Use Case Id Use Case Name
UC_22 UC_Approve_PO_APO_PollingStaffList

Primary Actor:

District Returning Officer (DRO), Returning Officer (RO)

Brief Description: RO submits the lists of POs, APOs, Polling staff to DRO.
DRO receives the lists. DRO applies some validation
criteria and approves after validating the lists.

Preconditions: RO and DRO are identified and authenticated. Lists of
POs, APOs, polling staff are prepared.

Basic Flow:

1. RO selects or enters the District name.

2. System shows basic information about the district.

3. RO selects or enters his Town/Tehsil name.

4. System shows basic information about the
Town/Tehsil.

5. RO selects or enters DRO ID.

6. System shows basic information about the DRO.

7. RO selects the path of lists of POs, APOs, polling
staff under a polling station.

8. RO enters some description about the lists.

9. RO confirms for uploading the lists to DRO.
10. (RO repeats steps 7, 8, 9 until all PO, APO and

polling staff lists are uploaded.)

11. System shows confirmation message for successful
uploading.

12. DRO receives lists.

13. DRO applies validation criteria.

14. DRO approves the lists.
Post condition:

Uploading information is saved. Valid and Invalid
information is saved.

Alternate Flow: 1a. Invalid District name:
 System signals error and asks for correct entry.
 3a. Invalid Town/Tehsil name:
 System signals error and asks for correct entry.

 5a. Invalid DRO ID:
 System signals error and asks for correct entry.

 7a. Invalid lists Path:
 System signals error and asks for correct document
path selection.
 11a. Invalid or broken download link

 32

DRO sends message to specific RO for uploading the lists
again.

Use Case Id Use Case Name
UC_23 UC_UpdateResultPOToRO

Primary Actor:

System

Brief Description: System at every PO level will send the result to specific
RO system after a specific time. On RO side system will
update database and will show the updating of results
dynamically.

Preconditions: System is in running state. Votes are being cast on Polling
stations.

Basic Flow:

1. System checks the updating time.

2. System prepares a result for updating to RO data
base.

3. System attaches some information of Polling
station, DRO etc with the result.

4. System sends result to RO system.

5. RO System receives the results from each polling
station after an interval and update in database.

6. RO system shows the updating result on screen.
Post condition:

Updating result is saved in RO database. Changes are
recorded in database.

Alternate Flow: 2a. No new vote is cast in specific time:

System will send only a message to RO system.

4a. Result sending problem:

System internally saves the problem and asks user for
specific settings.

Use Case Id Use Case Name
UC_24 UC_UpdateResultROToDROCEC

 33

Primary Actor:

System

Brief Description: System at every RO level will send the result to specific
DRO system and to CEC system after a specific time. On
RO side system will update the result and will show the
updating of results dynamically.

Preconditions: System is in running state. Results have been updated on
ROs levels.

Basic Flow:

1. System checks the updating time.

2. System prepares a result for updating to specific
DRO and CEC data bases.

3. System attaches some information with the result.

4. System sends result to specific DRO and CEC
systems.

5. Specific DRO and CEC System receive the results
from each RO after an interval and update in
databases.

6. Specific DRO and CEC system shows the updating
result on screen.

Post condition:

Updating result is saved in Specific DRO and CEC
databases. Changes are recorded in database.

Alternate Flow: 2a. No new result is updated on RO system.

System will send only a message to DRO and CEC
systems.

 4a. Result sending problem:

System internally saves the problems and asks user for
specific settings.

 34

2.11 Domain Models

2.11.1 Domain Model of UC_Prepare_ElectorlRoll (UC_1)

Figure 2.11.1

2.11.2 Domain Model of UC_Candidate_Nomination (UC_2)

Figure 2.11.2

 35

2.11.3 Domain Model of UC_Prepare_Symbol_CandidateList (UC_3)

Figure 2.11.3

2.11.4 Domain Model of UC_VoterList_DRODistribution (UC_4)

Figure 2.11.4: Domain Mode

 36

2.11.5 Domain Model of UC_VoterList_RODistribution (UC_5)

Figure 2.11.5

2.11.6 Domain Model of UC_VoterList_PODistribution (UC_6)

Figure 2.11.6

 37

2.11.7 Domain Model of UC_Validate_Voter (UC_7)

Figure 2.11.7:

2.11.8 Domain Model of UC_Cast_Vote (UC_8)

Figure 2.11.8

 38

2.11.9 Domain Model of UC_Compile_Submit_POResult (UC_9)

Figure 2.11.9

2.11.10 Domain Model of UC_Compile_ROResult (UC_10)

Figure 2.11.10

 39

2.11.11 Domain Model of UC_Submit_ROResult (UC_11)

Figure 2.11.11

2.11.12 Domain Model of UC_Compile_DROResult (UC_12)

Figure 2.11.12

 40

2.11.13 Domain Model of UC_Submit_DROResult (UC_13)

Figure 2.11.13

2.11.14 Domain Model of UC_Compile_FinalResult (UC_14)

Figure 2.11.14

 41

2.11.15 Domain Model of UC_Prepare_DROList (UC_15)

Figure 2.11.15

2.11.16 Domain Model of UC_Approve_DROList (UC_16)

Figure 2.11.16

 42

2.11.17 Domain Model of UC_Prepare_ROList (UC_17)

Figure 2.11.17

2.11.18 Domain Model of UC_Approve_ROList (UC_18)

Figure 2.11.18

 43

2.11.19 Domain Model of UC_Prepare_PollingStationList (UC_19)

Figure 2.11.19

2.11.20 Domain Model of UC_Approve_PollingStationList (UC_20)

Figure 2.11.20

 44

2.11.21 Domain Model of UC_Prepare_PO_APO_PollingStaffList

(UC_21)

Figure 2.11.21

2.11.22 Domain Model of UC_Approve_PO_APO_PollingStaffList

(UC_22)

Figure 2.11.22

 45

2.11.23 Domain Model of UC_UpdateResultPOToRO (UC_23)

Figure 2.11.23

2.11.24 Domain Model of UC_UpdateResultROToDROCEC (UC_24)

Figure 2.11.24

 46

CHAPTER 3

DESIGNING

 47

3.1 Object-Oriented Design

Design phase is used to managing complexity in the developing system; designing

technique helps us to divide large projects into manageable portions that can fit in our

brain. Design methods provide a information. Which permits us to store (e.g. on paper

or on computer) and be in touch with design decisions.

Object-Oriented design for projects is the method which go ahead to software

architectures based on the objects every system or subsystem manipulates (rather than

the function it is meant to ensure)

The design of Object-Oriented software requires the definition of multi layered

software architecture the specifications and subsystems that perform required

functions and provide infrastructure support, a description of objects (classes) that

form the building blocks of the system, and a description of the communications

mechanisms that allow data to flow between layers, subsystems and objects. Object-

oriented designs accomplish all these things.

3.2 Reason for Object-Oriented Design

Object-oriented program has become the leading programming style in the software

industry over past few years. The reason for this has to do with the growing size and

scale of software project. It becomes extremely to understand a procedural program

once it gets above a certain size. Object-oriented program scale up batter, meaning

that they are easier to write, understand and maintain than procedural programs of

same size. There are basically three reasons for this:

1. Object-oriented programs tent to be written in terms of real-world objects, not

internal data structures. This makes them somewhat easier to understand by

maintainer & peoples who had to read code – but it makes it harder for the

initial designer. Identify objects in a problem is a challenge

2. Object-oriented programs encourage encapsulation – details of objects

implementation are hidden from other objects. This keeps a change in one part

 48

of the program from affecting other parts, making the program easier to debug

and maintain.

3. Object-oriented programs encourage modularity. This means that pieces of

the program do not depend on the other pieces of the program. Those pieces

can be reused in future projects, making the new projects easier to build.

The most important purpose of the OOD phase is to convert OOA into something

that could actually implement. In this phase, we decide what information each

class knows, and what other classes it needs to know about. In particular, the

OOD is concerned with how information flows through the system.

3.3 Software Design Process

In the Software design process it develops the architecture details required to build

system or product. The software design process take in the following activities:

 Partition & Analysis model into subsystems

 Identify the concurrency that is dictated by the problem

 Allocate the subsystems to processors and tasks

 Develop a design for user interface

 Chose a basic strategy for implementing data management

 Identify global recourses and the control mechanism required to access

them

 Design appropriate control mechanisms for the system, including task

management.

 Consider how boundary condition should be handled

 Review and consider tradeoffs

3.4 Characteristics for the evaluation of good Design

Following characteristics serves as a guideline for the evaluation of a good design.

 The design must implement all the clear requirements included in the analysis

model as well must contain the contained requirements required by the

consumer.

 49

 The design must me readable & understandable for those who generate code

and for those who test and subsequently support the software.

 The design should provide complete picture of software, addressing the date,

functional behavioral domains from an implementation perspective.

3.5 Partitioning the Analysis Model

The analysis model is partitioned into cohesive collection of classes, relationships and

behavior. The design elements are packed as a subsystem. In subsystem all the

elements which constitute the subsystem are characterized by their responsibilities i.e.

a subsystem can be identified by the services that it provides. A service is collection

of operations that perform a specific function.

When a system is partitioned into subsystems, another design activity called

“Layering” occurs. Each layer of system contains one or more subsystems and

represents a different level of abstraction of the functionality required to accomplish

system functions.

Class Diagrams

Class Diagrams explain the types of objects in the system and the various kind of

relationship that exist among them. There are two principals’ kinds of static

relationships:

 Associations

Represent relationship between instances of classes

 Subtypes

Like (a doctor is a kind of person)

 50

3.6 Architecture Diagram

 51

 Figure 3.6

3.7 System Sequence Diagram

3.7.1 System Sequence Diagram of UC_Prepare_ElectorlRoll (UC_1)

Figure 3.7.1

3.7.2 System Sequence Diagram of UC_Candidate_Nomination (UC_2)

Figure 3.7.2

 52

3.7.3 System Sequence Diagram of UC_Prepare_Symbol _CandidateList
(UC_3)

Figure 3.7.3

3.7.4 System Sequence Diagram of UC_VoterList_DRODistribution (UC_4)

Figure 3.7.4

 53

3.7.5 System Sequence Diagram of UC_VoterList_RODistribution (UC_5)

Figure 3.7.5

3.7.6 System Sequence Diagram of UC_VoterList_PODistribution (UC_6)

Figure 3.7.6

 54

3.7.7 System Sequence Diagram of UC_Validate_Voter (UC_7)

Figure 3.7.7

3.7.8 System Sequence Diagram of UC_Cast_Vote (UC_8)

Figure 3.7.8

 55

3.7.9 System Sequence Diagram of UC_Compile_Submit_POResult (UC_9)

Figure 3.7.9

3.7.10 System Sequence Diagram of UC_Compile_ROResult (UC_10)

Figure 3.7.10

 56

3.7.11 System Sequence Diagram of UC_Submit_ROResult (UC_11)

Figure 3.7.11

3.7.12 System Sequence Diagram of UC_Compile_DROResult (UC_12)

Figure 3.7.12

 57

3.7.13 System Sequence Diagram of UC_Submit_DROResult (UC_13)

Figure 3.7.13

3.7.14 System Sequence Diagram of UC_Compile_FinalResult (UC_14)

Figure 3.7.14

 58

3.7.15 System Sequence Diagram of UC_Prepare_DROList (UC_15)

Figure 3.7.15

3.7.16 System Sequence Diagram of UC_Approve_DROList (UC_16)

Figure 3.7.16

 59

3.7.17 System Sequence Diagram of UC_Prepare_ROList (UC_17)

Figure 3.7.17

3.7.18 System Sequence Diagram of UC_Approve_ROList (UC_18)

Figure 3.7.18

 60

3.7.19 System Sequence Diagram of UC_Prepare_PollingStationList (UC_19)

Figure 3.7.19

3.7.20 System Sequence Diagram of UC_Approve_PollingStationList (UC_20)

Figure 3.7.20

 61

3.7.21 System Sequence Diagram of UC_Prepare_PO_APO_PollingStaffList
(UC_21)

Figure 3.7.21

3.7.22 System Sequence Diagram of UC_Approve_PO_APO_PollingStaffList
(UC_22)

Figure 3.7.22

 62

3.7.23 System Sequence Diagram of UC_UpdateResultPOToRO (UC_23)

Figure 3.7.23

3.7.24 System Sequence Diagram of UC_UpdateResultROToDROCEC
(UC_24)

Figure 3.7.24

 63

3.8 Sequence Diagrams

3.8.1 Sequence Diagram of UC_Prepare_ElectorlRoll (UC_1)

Figure 3.8.1

3.8.2 Sequence Diagram of UC_Candidate_Nomination (UC_2)

Figure 3.8.2

 64

3.8.3 Sequence Diagram of UC_Prepare_Symbol _CandidateList (UC_3)

Figure 3.8.3

3.8.4 Sequence Diagram of UC_VoterList_DRODistribution (UC_4)

Figure 3.8.4

 65

3.8.5 Sequence Diagram of UC_VoterList_RODistribution (UC_5)

Figure 3.8.5

3.8.6 Sequence Diagram of UC_VoterList_PODistribution (UC_6)

Figure 3.8.6

 66

3.8.7 Sequence Diagram of UC_Validate_Voter (UC_7)

Figure 3.8.7

3.8.8 Sequence Diagram of UC_Cast_Vote (UC_8)

Figure 3.8.8

 67

3.8.9 Sequence Diagram of UC_Compile_Submit_POResult (UC_9)

Figure 3.8.9

3.8.10 Sequence Diagram of UC_Compile_ROResult (UC_10)

Figure 3.8.10

 68

3.8.11 Sequence Diagram of UC_Submit_ROResult (UC_11)

Figure 3.8.11

3.8.12 Sequence Diagram of UC_Compile_DROResult (UC_12)

Figure 3.8.12

 69

3.8.13 Sequence Diagram of UC_Submit_DROResult (UC_13)

Figure 3.8.13

3.8.14 Sequence Diagram of UC_Compile_FinalResult (UC_14)

Figure 3.8.14

 70

3.8.15 Sequence Diagram of UC_Prepare_DROList (UC_15)

Figure 3.8.15

3.8.16 Sequence Diagram of UC_Approve_DROList (UC_16)

Figure 3.8.16

 71

3.8.17 Sequence Diagram of UC_Prepare_ROList (UC_17)

Figure 3.8.17

3.8.18 Sequence Diagram of UC_Approve_ROList (UC_18)

Figure 3.8.18

 72

3.8.19 Sequence Diagram of UC_Prepare_PollingStationList (UC_19)

Figure 3.8.19

3.8.20 Sequence Diagram of UC_Approve_PollingStationList (UC_20)

Figure 3.8.20

 73

3.8.21 Sequence Diagram of UC_Prepare_PO_APO_PollingStaffList (UC_21)

Figure 3.8.21

3.8.22 Sequence Diagram of UC_Approve_PO_APO_PollingStaffList (UC_22)

Figure 3.8.22

 74

3.8.23 Sequence Diagram of UC_UpdateResultPOToRO (UC_23)

Figure 3.8.23

3.8.24 Sequence Diagram of UC_UpdateResultROToDROCEC (UC_24)

Figure 3.8.24

 75

3.9 Collaboration Diagrams

3.9.1 Collaboration Diagram of UC_Prepare_ElectorlRoll (UC_1)

Figure 3.9.1

 76

3.9.2 Collaboration Diagram of UC_Candidate_Nomination (UC_2)

Figure 3.9.2

 77

3.9.3 Collaboration Diagram of UC_Prepare_Symbol _CandidateList (UC_3)

Figure 3.9.3

 78

3.9.4 Collaboration Diagram of UC_VoterList_DRODistribution (UC_4)

Figure 3.9.4

 79

3.9.5 Collaboration Diagram of UC_VoterList_RODistribution (UC_5)

Figure 3.9.5

 80

3.9.6 Collaboration Diagram of UC_VoterList_PODistribution (UC_6)

Figure 3.9.6

 81

3.9.7 Collaboration Diagram of UC_Validate_Voter (UC_7)

Figure 3.9.7

 82

3.9.8 Collaboration Diagram of UC_Cast_Vote (UC_8)

Figure 3.9.8

 83

3.9.9 Collaboration Diagram of UC_Compile_Submit_POResult (UC_9)

Figure 3.9.9

 84

3.9.10 Collaboration Diagram of UC_Compile_ROResult (UC_10)

Figure 3.9.10

 85

3.9.11 Collaboration Diagram of UC_Submit_ROResult (UC_11)

Figure 3.9.11

 86

3.9.12 Collaboration Diagram of UC_Compile_DROResult (UC_12)

Figure 3.9.12

 87

3.9.13 Collaboration Diagram of UC_Submit_DROResult (UC_13)

Figure 3.9.13

 88

3.9.14 Collaboration Diagram of UC_Compile_FinalResult (UC_14)

Figure 3.9.14

 89

3.9.15 Collaboration Diagram of UC_Prepare_DROList (UC_15)

Figure 3.9.15

 90

3.9.16 Collaboration Diagram of UC_Approve_DROList (UC_16)

Figure 3.9.16

 91

3.9.17 Collaboration Diagram of UC_Prepare_ROList (UC_17)

Figure 3.9.17

 92

3.9.18 Collaboration Diagram of UC_Approve_ROList (UC_18)

Figure 3.9.18

 93

3.9.19 Collaboration Diagram of UC_Prepare_PollingStationList (UC_19)

Figure 3.9.19

 94

3.9.20 Collaboration Diagram of UC_Approve_PollingStationList (UC_20)

Figure 3.9.20

 95

3.9.21 Collaboration Diagram of UC_Prepare_PO_APO_PollingStaffList
(UC_21)

Figure 3.9.21

 96

3.9.22 Collaboration Diagram of UC_Approve_PO_APO_PollingStaffList
(UC_22)

Figure 3.9.22

 97

3.9.23 Collaboration Diagram of UC_UpdateResultPOToRO (UC_23)

Figure 3.9.23

 98

3.9.24 Collaboration Diagram of UC_UpdateResultROToDROCEC (UC_24)

Figure 3.9.24

 99

3.10 Design Class Diagrams

3.10.1 Design Class Diagram of UC_Prepare_ElectorlRoll (UC_1)

Figure 3.10.1

3.10.2 Design Class Diagram of UC_Candidate_Nomination (UC_2)

Figure 3.10.2

 100

3.10.3 Design Class Diagram of UC_Prepare_Symbol _CandidateList (UC_3)

Figure 3.10.3

3.10.4 Design Class Diagram of UC_VoterList_DRODistribution (UC_4)

Figure 3.10.4

 101

3.10.5 Design Class Diagram of UC_VoterList_RODistribution (UC_5)

Figure 3.10.5

3.10.6 Design Class Diagram of UC_VoterList_PODistribution (UC_6)

Figure 3.10.6

 102

3.10.7 Design Class Diagram of UC_Validate_Voter (UC_7)

Figure 3.10.7

3.10.8 Design Class Diagram of UC_Cast_Vote (UC_8)

Figure 3.10.8

 103

3.10.9 Design Class Diagram of UC_Compile_Submit_POResult (UC_9)

Figure 3.10.9

3.10.10 Design Class Diagram of UC_Compile_ROResult (UC_10)

Figure 3.10.10

 104

3.10.11 Design Class Diagram of UC_Submit_ROResult (UC_11)

Figure 3.10.11

3.10.12 Design Class Diagram of UC_Compile_DROResult (UC_12)

Figure 3.10.12

 105

3.10.13 Design Class Diagram of UC_Submit_DROResult (UC_13)

Figure 3.10.13

3.10.14 Design Class Diagram of UC_Compile_FinalResult (UC_14)

Figure 3.10.14

 106

3.10.15 Design Class Diagram of UC_Prepare_DROList (UC_15)

Figure 3.10.15

 107

3.10.16 Design Class Diagram of UC_Approve_DROList (UC_16)

Figure 3.10.16

 108

3.10.17 Design Class Diagram of UC_Prepare_ROList (UC_17)

Figure 3.10.17

 109

3.10.18 Design Class Diagram of UC_Approve_ROList (UC_18)

Figure 3.10.18

 110

3.10.19 Design Class Diagram of UC_Prepare_PollingStationList (UC_19)

Figure 3.10.19

 111

3.10.20 Design Class Diagram of UC_Approve_PollingStationList

(UC_20)

Figure 3.10.20

 112

3.10.21 Design Class Diagram of UC_Prepare_PO_APO_PollingStaffList

(UC_21)

Figure 3.10.21

 113

3.10.22 Design Class Diagram of UC_Approve_PO_APO_PollingStaffList

(UC_22)

Figure 3.10.22

 114

3.10.23 Design Class Diagram of UC_UpdateResultPOToRO (UC_23)

Figure 3.10.23

 115

3.10.24 Design Class Diagram of UC_UpdateResultROToDROCEC

(UC_24)

Figure 3.10.24

 116

3.11 State Chart Diagrams

3.11.1 State Chart Diagram of UC_Prepare_ElectorlRoll (UC_1)

Figure 3.11.1

3.11.2 State Chart Diagram of UC_Candidate_Nomination (UC_2)

Figure 3.11.2

 117

3.11.3 State Chart Diagram of UC_Prepare_Symbol _CandidateList (UC_3)

Figure 3.11.3

3.11.4 State Chart Diagram of UC_VoterList_DRODistribution (UC_4)

Figure 3.11.4

 118

3.11.5 State Chart Diagram of UC_VoterList_RODistribution (UC_5)

Figure 3.11.5

3.11.6 State Chart Diagram of UC_VoterList_PODistribution (UC_6)

Figure 3.11.6

 119

3.11.7 State Chart Diagram of UC_Validate_Voter (UC_7)

Figure 3.11.7

3.11.8 State Chart Diagram of UC_Cast_Vote (UC_8)

Figure 3.11.8

 120

3.11.9 State Chart Diagram of UC_Compile_Submit_POResult (UC_9)

.

Figure 3.11.9

3.11.10 State Chart Diagram of UC_Compile_ROResult (UC_10)

Figure 3.11.10

 121

3.11.11 State Chart Diagram of UC_Submit_ROResult (UC_11)

Figure 3.11.11

3.11.12 State Chart Diagram of UC_Compile_DROResult (UC_12)

Figure 3.11.12

 122

3.11.13 State Chart Diagram of UC_Submit_DROResult (UC_13)

Figure 3.11.13

3.11.14 State Chart Diagram of UC_Compile_FinalResult (UC_14)

Figure 3.11.14

 123

3.11.15 State Chart Diagram of UC_Prepare_DROList (UC_15)

Figure 3.11.15

3.11.16 State Chart Diagram of UC_Approve_DROList (UC_16)

Figure 3.11.16

 124

3.11.17 State Chart Diagram of UC_Prepare_ROList (UC_17)

Figure 3.11.17

3.11.18 State Chart Diagram of UC_Approve_ROList (UC_18)

Figure 3.11.18

 125

3.11.19 State Chart Diagram of UC_Prepare_PollingStationList (UC_19)

Figure 3.11.19

3.11.20 State Chart Diagram of UC_Approve_PollingStationList (UC_20)

Figure 3.11.20

 126

3.11.21 State Chart Diagram of UC_Prepare_PO_APO_PollingStaffList

(UC_21)

Figure 3.11.21

3.11.22 State Chart Diagram of UC_Approve_PO_APO_PollingStaffList

(UC_22)

Figure 3.11.22

 127

3.11.23 State Chart Diagram of UC_UpdateResultPOToRO (UC_23)

Figure 3.11.23

3.11.24 State Chart Diagram of UC_UpdateResultROToDROCEC

(UC_24)

Figure 3.11.24

 128

CHAPTER 4

IMPLEMENTATION

(Classes Specifications)

 129

4. Class Specifications

public partial class ACEC : System.Web.UI.MasterPage
{
 protected void Page_Load(object sender, EventArgs e)
 {

 string Name = "";
 string type = "";
 try
 {

 Name = Session["userid"].ToString();
 type = Session["Type"].ToString();
 }
 catch (Exception ex)
 {
 Response.Redirect("../EmployeeLoginForm.aspx?id=1");
 }
 if (type != "ACEC")
 {
 Response.Redirect("../EmployeeLoginForm.aspx?id=1");
 }
 if (Name == "")
 {
 Response.Redirect("../EmployeeLoginForm.aspx?id=1");
 }

 lblACECName.Text = "LoggedIn User: " + Name;

 }

 protected void ImageButton6_Click(object sender, ImageClickEventArgs e)
 {
 try
 {
 Session.Abandon();
 Session.Remove("userid");
 Session.Remove("Type");
 }
 catch (Exception ex)
 {

 }
 Response.Redirect("../EmployeeLoginForm.aspx?id=2");
 }
}

public partial class ACECMainPage : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

 }
}

 130

public partial class ACECResult : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 //Response.Cookies["WWF"].Values.Add("ACEC_Id", "1");
 }
 protected void Timer1_Tick(object sender, EventArgs e)
 {
 GridView1.DataBind();
 }
}

public partial class DROListCECDistribution : System.Web.UI.Page
{
 Database db1, db2;
 int droid;
 protected void Page_Load(object sender, EventArgs e)
 {
 db1 = DatabaseFactory.CreateDatabase("LocalSqlConnection");
 Connect();
 if (!IsPostBack)
 {
 FillCombo(cmbProvince, "SelectProvince");
 }

 }
 protected void FillCombo(DropDownList combo, string spName)
 {
 try
 {
 DbCommand cmd = db1.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;

 IDataReader reader = db1.ExecuteReader(cmd);
 int i = 1;
 combo.Items.Clear();
 combo.Items.Add("");
 while (reader.Read())
 {
 combo.Items.Add(reader.GetValue(1).ToString());
 combo.Items[i].Value = reader.GetValue(0).ToString();
 i++;
 }
 combo.SelectedIndex = 0;
 }
 catch (Exception ex)
 {
 Response.Write(ex.Message);
 }
 }//fill Simple Combo
 protected void cmbProvince_SelectedIndexChanged(object sender, EventArgs e)
 {
 string pid = cmbProvince.SelectedValue;
 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 SetCECByProvince(int.Parse(pid));

 131

 }
 else
 {
 lblDRO.Text = "";
 btnSend.Enabled = false;
 }

 }
 protected void SetCECByProvince(int did)
 {
 try
 {
 lblDRO.Text = "";
 DbCommand cmd = db1.GetSqlStringCommand("SelectCEC");

 cmd.CommandType = CommandType.StoredProcedure;
 db1.AddInParameter(cmd, "Province_Id", DbType.Int64, did);
 IDataReader reader = db1.ExecuteReader(cmd);
 while (reader.Read())
 {
 lblDRO.Text = reader.GetValue(1).ToString();
 ViewState.Add("droid", reader.GetValue(0).ToString());
 btnSend.Enabled = true;
 }
 }
 catch (Exception ex)
 {
 //Response.Write(ex.Message);
 Response.Redirect("~/Problem.aspx");
 }
 }

 protected Boolean Connect()
 {
 try
 {
 db2 = DatabaseFactory.CreateDatabase("ServerSqlConnection");
 return true;

 }
 catch (Exception ex)
 {
 return false;
 }
 }

 protected void btnSend_Click(object sender, EventArgs e)
 {
 string did = cmbProvince.SelectedValue;
 if (did != "")
 {
 if (int.Parse(did) > 0)
 {
 droid = int.Parse(ViewState["droid"].ToString());

 if (UpdateVoterListOnServer(int.Parse(did), droid) == true)
 lblMSG.Text = "Records Send!";
 else
 lblMSG.Text = "Nothing to Send.";
 }//int.parse

 132

 }
 else
 {
 lblMSG.Text = "Wrong Province Selection!";
 }

 }
 private Boolean UpdateVoterListOnServer(int DistID, int DROID)
 {

 try
 {
 DbCommand cmd = db2.GetSqlStringCommand("SendToCECDROList");
 cmd.CommandType = CommandType.StoredProcedure;
 db2.AddInParameter(cmd, "Province_Id", DbType.Int32, DistID);
 db2.AddInParameter(cmd, "CEC_Id", DbType.Int32, DROID);

 int count = db2.ExecuteNonQuery(cmd);
 if (count > 0)
 {
 return true;
 }
 return false;
 }
 catch (Exception ex)
 {
 return false;
 }

 }
}
public partial class EditVoterList : System.Web.UI.Page
{
 Database db1;
 string id = "";
 protected void Page_Load(object sender, EventArgs e)
 {
 db1 = DatabaseFactory.CreateDatabase("LocalSqlConnection");

 try
 {
 id = Request.QueryString["id"];
 }
 catch (Exception ex) {
 }

 if (id == null)
 {
 }
 else {
 if (id.Trim() != "") {
 ShowVoterInfo(int.Parse(id));
 LinkButton1.PostBackUrl = "~/ACEC/UpdateVoterList.aspx?id=" + id;
 }

 }

 133

 }
 protected void ShowVoterInfo(int id)
 {
 try
 {
 DbCommand cmd = db1.GetSqlStringCommand("selectVoter");
 cmd.CommandType = CommandType.StoredProcedure;
 db1.AddInParameter(cmd, "Voter_Id", DbType.Int64, id);
 IDataReader reader = db1.ExecuteReader(cmd);

 while (reader.Read())
 {
 Label1.Text = reader.GetValue(0).ToString();
 Label2.Text = reader.GetValue(1).ToString();
 Label20.Text = reader.GetValue(2).ToString();
 Label21.Text = reader.GetValue(3).ToString();
 Label22.Text = reader.GetValue(4).ToString();
 Label23.Text = reader.GetValue(5).ToString();
 Label24.Text = reader.GetValue(6).ToString();
 Label25.Text = reader.GetValue(7).ToString();
 Label26.Text = reader.GetValue(8).ToString();
 Label27.Text = reader.GetValue(9).ToString();
 Label28.Text = reader.GetValue(11).ToString();
 Label29.Text = reader.GetValue(10).ToString();
 Label30.Text = reader.GetValue(16).ToString();
 Label31.Text = reader.GetValue(15).ToString();
 Label32.Text = reader.GetValue(14).ToString();
 Label33.Text = reader.GetValue(13).ToString();
 Label34.Text = reader.GetValue(12).ToString();
 }

 }
 catch (Exception ex)
 {
 Response.Redirect("~/Problem.aspx");
 }
 }//fill Combo

}

public partial class ACEC_NadraService : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 protected void Button1_Click(object sender, EventArgs e)
 {
 NadraWebService.ValidateNIC wsValidateNIC = new NadraWebService.ValidateNIC();
 String NIC = TextBox1.Text.Trim();
 Boolean flg = wsValidateNIC.Validate(NIC);
 if(flg ==true){
 msg.Text = "NIC is Valid";
 }else{
 msg.Text = "Invalid NIC Try Again";
 }

 }
}

 134

public partial class PrepareDROList : System.Web.UI.Page
{
 Database db;
 long id;
 protected void Page_Load(object sender, EventArgs e)
 {

 db = DatabaseFactory.CreateDatabase("LocalSqlConnection");

 if (!IsPostBack)
 {
 FillCombo(DropDownList4, "SelectProvince");
 FillCombo(DropDownList1, "SelectEmployee");
 }
 }
 protected void Button1_Click(object sender, EventArgs e)
 {
 try
 {
 if (DropDownList1.SelectedIndex > 0)
 {
 DbCommand dbcmd = db.GetSqlStringCommand("AddDRO");
 dbcmd.CommandType = CommandType.StoredProcedure;
 db.AddInParameter(dbcmd, "Employee_Id", DbType.Int32, DropDownList1.SelectedValue);
 db.AddInParameter(dbcmd, "Category_Id", DbType.Int32, 3);
 db.AddInParameter(dbcmd, "District_Id", DbType.Int32, DropDownList3.SelectedValue);
 db.AddOutParameter(dbcmd, "flg", DbType.Int16, 1);
 db.ExecuteNonQuery(dbcmd);

 String flg = db.GetParameterValue(dbcmd, "flg").ToString();

 if (flg == "1")
 {
 lblMsg.Text = "Sorry: Employee is already assigned to some designation.";
 }
 else if (flg == "2")
 {
 lblMsg.Text = "Sorry: This District is already assigned to some employee.";
 }
 else if (flg == "3")
 {
 FillCombo(DropDownList1, "SelectEmployee");
 lblMsg.Text = "Confirmation: DRO is successfully added.";
 }
 else
 {
 lblMsg.Text = "Problem: Illegal Operation!, Try again later.";
 }
 }

 }
 catch (Exception ex) {
 lblMsg.Text = "Sorry: Server is not responding at this time, Try some later time.";
 }

 }
 protected void FillCombo(DropDownList combo, string spName)
 {
 try

 135

 {
 DbCommand cmd = db.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;

 IDataReader reader = db.ExecuteReader(cmd);
 int i = 1;
 combo.Items.Clear();
 combo.Items.Add("");
 while (reader.Read())
 {
 combo.Items.Add(reader.GetValue(1).ToString());
 combo.Items[i].Value = reader.GetValue(0).ToString();
 i++;
 }
 combo.SelectedIndex = 0;
 }
 catch (Exception ex)
 {
 lblMsg.Text = "Sorry: Data is not availabe at this time to fill list..";
 }
 }//fill Simple Combo
 protected void FillCombo(DropDownList combo, string spName, string fieldName, int id)
 {
 try
 {
 DbCommand cmd = db.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;
 db.AddInParameter(cmd, fieldName, DbType.Int64, id);
 IDataReader reader = db.ExecuteReader(cmd);
 int i = 1;
 combo.Items.Clear();
 combo.Items.Add("");
 while (reader.Read())
 {
 combo.Items.Add(reader.GetValue(1).ToString());
 combo.Items[i].Value = reader.GetValue(0).ToString();
 i++;
 }
 combo.SelectedIndex = 0;
 }
 catch (Exception ex)
 {
 lblMsg.Text = "Sorry: Data is not availabe at this time to fill list..";
 }
 }//fill Combo

 protected void DropDownList4_SelectedIndexChanged(object sender, EventArgs e)
 {
 string pid = DropDownList4.SelectedValue;
 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 FillCombo(DropDownList3, "SelectDistrictForDROAllocation", "Province_id",
int.Parse(pid));
 }
 else
 {
 DropDownList3.Items.Clear();

 136

 }
 }

}

public partial class PrepareElectrolRoll : System.Web.UI.Page
{
 Database db1;
 protected void Page_Load(object sender, EventArgs e)
 {

 db1 = DatabaseFactory.CreateDatabase("LocalSqlConnection");
 if (!IsPostBack) {
 FillCombo(cmbProvince, "SelectProvince");
 }

 }
 protected void Button1_Click(object sender, EventArgs e)
 {
 try
 {
 DbCommand dbcmd = db1.GetSqlStringCommand("AddVoter");
 dbcmd.CommandType = CommandType.StoredProcedure;

 db1.AddInParameter(dbcmd, "Voter_Name", DbType.String, TextBox2.Text);
 db1.AddInParameter(dbcmd, "Voter_Father_HusbandName", DbType.String, TextBox3.Text);
 db1.AddInParameter(dbcmd, "Voter_HomeNo", DbType.String, TextBox4.Text);
 db1.AddInParameter(dbcmd, "Voter_StreetBlock", DbType.String, TextBox5.Text);
 db1.AddInParameter(dbcmd, "Voter_NIC", DbType.String, TextBox6.Text);
 db1.AddInParameter(dbcmd, "Voter_DOB", DbType.String, TextBox7.Text);
 db1.AddInParameter(dbcmd, "Voter_Religon", DbType.String, TextBox8.Text);
 db1.AddInParameter(dbcmd, "Voter_HomePhone", DbType.String, TextBox9.Text);
 db1.AddInParameter(dbcmd, "Voter_MobilePhone", DbType.String, TextBox10.Text);
 db1.AddInParameter(dbcmd, "Voter_FamilyNo", DbType.Int16, TextBox11.Text);
 db1.AddInParameter(dbcmd, "Voter_Gender", DbType.String,
RadioButtonList1.SelectedValue);
 db1.AddInParameter(dbcmd, "Voter_Female_Category", DbType.String, TextBox13.Text);
 db1.AddInParameter(dbcmd, "PollingStation_Id", DbType.Int32,
cmbPollStation.SelectedValue);
 db1.AddOutParameter(dbcmd, "Flg", DbType.Int16, 2);
 db1.ExecuteNonQuery(dbcmd);
 string flg = dbcmd.Parameters[13].Value.ToString();
 if (flg == "1")
 lblMsg.Text = "Confirmation: Record is added successfully..";
 else
 lblMsg.Text = "Sorry: Voter with this NIC is already exists, Record is not Added.";
 }
 catch (Exception ex)
 {
 lblMsg.Text = ex.ToString();

 //lblMsg.Text = "Sorry: Server is not responding, Record is not added successfully..";
 }

 }

 protected void FillCombo(DropDownList combo,string spName) {

 137

 try
 {
 DbCommand cmd = db1.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;

 IDataReader reader = db1.ExecuteReader(cmd);
 int i = 1;
 combo.Items.Clear();
 combo.Items.Add("");
 while (reader.Read())
 {
 combo.Items.Add(reader.GetValue(1).ToString());
 combo.Items[i].Value = reader.GetValue(0).ToString();
 i++;
 }
 combo.SelectedIndex = 0;
 }
 catch(Exception ex) {
 //Response.Write(ex.Message);
 Response.Redirect("~/Problem.aspx");
 }
 }//fill Simple Combo
 protected void FillCombo(DropDownList combo, string spName,string fieldName,int id)
 {
 try
 {
 DbCommand cmd = db1.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;
 db1.AddInParameter(cmd, fieldName, DbType.Int64, id);
 IDataReader reader = db1.ExecuteReader(cmd);
 int i = 1;
 combo.Items.Clear();
 combo.Items.Add("");
 while (reader.Read())
 {
 combo.Items.Add(reader.GetValue(1).ToString());
 combo.Items[i].Value = reader.GetValue(0).ToString();
 i++;
 }
 combo.SelectedIndex = 0;
 }
 catch (Exception ex)
 {
 //Response.Write(ex.Message);
 Response.Redirect("~/Problem.aspx");
 }
 }//fill Combo

 protected void cmbProvince_SelectedIndexChanged(object sender, EventArgs e)
 {
 string pid = cmbProvince.SelectedValue;
 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 FillCombo(cmbDistrict, "SelectDistrict", "Province_id", int.Parse(pid));
 }
 else {
 cmbDistrict.Items.Clear();
 cmbTown.Items.Clear();

 138

 cmbUnion.Items.Clear();
 cmbPollStation.Items.Clear();
 }
 }
 protected void cmbDistrict_SelectedIndexChanged(object sender, EventArgs e)
 {
 string pid = cmbDistrict.SelectedValue;
 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 FillCombo(cmbTown, "SelectTown", "District_Id", int.Parse(pid));
 }
 else
 {
 cmbTown.Items.Clear();
 cmbUnion.Items.Clear();
 cmbPollStation.Items.Clear();
 }
 }
 protected void cmbTown_SelectedIndexChanged(object sender, EventArgs e)
 {
 string pid = cmbTown.SelectedValue;
 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 FillCombo(cmbUnion, "SelectUnionCouncil", "TownTehsil_Id", int.Parse(pid));
 }
 else
 {
 cmbUnion.Items.Clear();
 cmbPollStation.Items.Clear();
 }
 }
 protected void cmbUnion_SelectedIndexChanged(object sender, EventArgs e)
 {
 string pid = cmbUnion.SelectedValue;
 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 FillCombo(cmbPollStation, "SelectPollingStation", "UnionCouncil_Id", int.Parse(pid));
 }
 else
 {
 cmbPollStation.Items.Clear();
 }
 }
 protected void Button2_Click(object sender, EventArgs e)
 {
 TextBox2.Text = "";
 TextBox3.Text = "";
 TextBox4.Text = "";
 TextBox5.Text = "";
 TextBox6.Text = "";
 TextBox7.Text = "";
 TextBox8.Text = "";
 TextBox9.Text = "";
 TextBox10.Text = "";
 TextBox11.Text = "";
 TextBox13.Text = "";
 //RadioButtonList1.Items.Clear();

 139

 //cmbProvince.Items.Clear();
 cmbDistrict.Items.Clear();
 cmbTown.Items.Clear();
 cmbUnion.Items.Clear();
 cmbPollStation.Items.Clear();
 }
 protected void cmbPollStation_SelectedIndexChanged(object sender, EventArgs e)
 {
 if (cmbPollStation.SelectedIndex > 0)
 Button1.Visible = true;
 else
 Button1.Visible = false;
 }
}

public partial class PrepareEmployeeList : System.Web.UI.Page
{
 Database db;
 protected void Page_Load(object sender, EventArgs e)
 {
 db = DatabaseFactory.CreateDatabase("LocalSqlConnection");

 }
 protected void Button1_Click(object sender, EventArgs e)
 {
 try
 {
 lblMsg.Text = "";
 DbCommand dbcmd = db.GetSqlStringCommand("AddEmployee");
 dbcmd.CommandType = CommandType.StoredProcedure;

 db.AddInParameter(dbcmd, "Employee_FirstName", DbType.String, TextBox2.Text);
 db.AddInParameter(dbcmd, "Employee_LastName", DbType.String, TextBox3.Text);
 db.AddInParameter(dbcmd, "Employee_FatherName", DbType.String, TextBox4.Text);
 db.AddInParameter(dbcmd, "Employee_NIC_No", DbType.String, TextBox5.Text);
 db.AddInParameter(dbcmd, "Employee_EmailID", DbType.String, TextBox6.Text);
 db.AddInParameter(dbcmd, "Employee_Fax_No", DbType.String, TextBox7.Text);
 db.AddInParameter(dbcmd, "Employee_HomePhoneNo", DbType.String, TextBox8.Text);
 db.AddInParameter(dbcmd, "Employee_OfficePhoneNo", DbType.String, TextBox9.Text);
 db.AddInParameter(dbcmd, "Employee_MobileNo", DbType.String, TextBox10.Text);
 db.AddInParameter(dbcmd, "User_Name", DbType.String, txtUserName.Text);
 db.AddInParameter(dbcmd, "Pwd", DbType.String, txtPassword.Text);
 db.AddOutParameter(dbcmd, "Flg", DbType.Int16, 2);
 db.ExecuteNonQuery(dbcmd);
 string flg = dbcmd.Parameters[11].Value.ToString();
 lblMsg.Text = flg;
 if (flg == "1")
 {
 lblMsg.Text = "Confirmation: New Employee is successfully added.";
 }
 else if (flg == "2")
 {
 lblMsg.Text = "Sorry: Add Failed, Employee with this login name already added.";
 }
 else
 {
 lblMsg.Text = "Sorry: Add Failed, Employee with this NiC is already added.";
 }

 140

 }
 catch (Exception ex)
 {
 lblMsg.Text = "Sorry: Server is not responding at this time, Try again at some later time.";
 }

 }
 protected void Button2_Click(object sender, EventArgs e)
 {
 TextBox2.Text = "";
 TextBox3.Text = "";
 TextBox4.Text = "";
 TextBox5.Text = "";
 TextBox6.Text = "";
 TextBox7.Text = "";
 TextBox8.Text = "";
 TextBox9.Text = "";
 TextBox10.Text = "";
 lblMsg.Text = "";
 }
}

public partial class PrepareROList : System.Web.UI.Page
{
 Database db;
 protected void Page_Load(object sender, EventArgs e)
 {
 db = DatabaseFactory.CreateDatabase("LocalSqlConnection");
 if (!IsPostBack)
 {
 FillCombo(cmbProvince, "SelectProvince");
 FillCombo(DropDownList1, "SelectEmployee");
 }

 }
 protected void FillCombo(DropDownList combo, string spName)
 {
 try
 {
 DbCommand cmd = db.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;

 IDataReader reader = db.ExecuteReader(cmd);
 int i = 1;
 combo.Items.Clear();
 combo.Items.Add("");
 while (reader.Read())
 {
 combo.Items.Add(reader.GetValue(1).ToString());
 combo.Items[i].Value = reader.GetValue(0).ToString();
 i++;
 }
 combo.SelectedIndex = 0;
 }
 catch (Exception ex)
 {
 lblMsg.Text = "Sorry: Data is not availabe at this time to fill list..";

 141

 }
 }//fill Simple Combo
 protected void FillCombo(DropDownList combo, string spName, string fieldName, int id)
 {
 try
 {
 DbCommand cmd = db.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;
 db.AddInParameter(cmd, fieldName, DbType.Int64, id);
 IDataReader reader = db.ExecuteReader(cmd);
 int i = 1;
 combo.Items.Clear();
 combo.Items.Add("");
 while (reader.Read())
 {
 combo.Items.Add(reader.GetValue(1).ToString());
 combo.Items[i].Value = reader.GetValue(0).ToString();
 i++;
 }
 combo.SelectedIndex = 0;
 }
 catch (Exception ex)
 {
 lblMsg.Text = "Sorry: Data is not availabe at this time to fill list..";
 }
 }//fill Combo

 protected void Button1_Click(object sender, EventArgs e)
 {
 try
 {
 DbCommand dbcmd = db.GetSqlStringCommand("AddRO");
 dbcmd.CommandType = CommandType.StoredProcedure;
 db.AddInParameter(dbcmd, "Employee_Id", DbType.Int32, DropDownList1.SelectedValue);
 db.AddInParameter(dbcmd, "Category_Id", DbType.Int32, 4);
 db.AddInParameter(dbcmd, "TownTehsil_Id", DbType.Int32, cmbTown.SelectedValue);
 db.AddOutParameter(dbcmd, "flg", DbType.Int16, 1);
 db.ExecuteNonQuery(dbcmd);
 String flg = db.GetParameterValue(dbcmd, "flg").ToString();

 if (flg == "1")
 {
 lblMsg.Text = "Sorry: Employee is already assigned to some designation.";
 }
 else if (flg == "2")
 {
 lblMsg.Text = "Sorry: This TownTehsil is already assigned to some employee.";
 }
 else if (flg == "3")
 {
 lblMsg.Text = "Confirmation: RO is successfully added.";
 FillCombo(DropDownList1, "SelectEmployee");
 }
 else
 {
 lblMsg.Text = "Problem: Illegal Operation!, Try again later.";
 }
 }
 catch (Exception ex)
 {

 142

 lblMsg.Text = "Sorry: Server is not responding at this time, Try some later time.";
 }

 }
 protected void cmbProvince_SelectedIndexChanged(object sender, EventArgs e)
 {
 string pid = cmbProvince.SelectedValue;
 cmbDistrict.Items.Clear();
 cmbTown.Items.Clear();
 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 FillCombo(cmbDistrict, "SelectDistrict", "Province_id", int.Parse(pid));
 }

 }
 protected void cmbDistrict_SelectedIndexChanged(object sender, EventArgs e)
 {
 string pid = cmbDistrict.SelectedValue;
 cmbTown.Items.Clear();
 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 FillCombo(cmbTown, "SelectTownForROAllocation", "District_Id", int.Parse(pid));
 }
 }
}

public partial class ROListCECDistribution : System.Web.UI.Page
{
 Database db1, db2;
 int droid;
 protected void Page_Load(object sender, EventArgs e)
 {
 db1 = DatabaseFactory.CreateDatabase("LocalSqlConnection");
 Connect();
 if (!IsPostBack)
 {
 FillCombo(cmbProvince, "SelectProvince");
 }

 }
 protected void FillCombo(DropDownList combo, string spName)
 {
 try
 {
 DbCommand cmd = db1.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;

 IDataReader reader = db1.ExecuteReader(cmd);
 int i = 1;
 combo.Items.Clear();
 combo.Items.Add("");
 while (reader.Read())
 {
 combo.Items.Add(reader.GetValue(1).ToString());
 combo.Items[i].Value = reader.GetValue(0).ToString();
 i++;

 143

 }
 combo.SelectedIndex = 0;
 }
 catch (Exception ex)
 {
 //Response.Write(ex.Message);
 Response.Redirect("~/Problem.aspx");
 }
 }//fill Simple Combo
 protected void cmbProvince_SelectedIndexChanged(object sender, EventArgs e)
 {
 string pid = cmbProvince.SelectedValue;
 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 SetCECByProvince(int.Parse(pid));
 }
 else
 {
 lblDRO.Text = "";
 btnSend.Enabled = false;
 }

 }
 protected void SetCECByProvince(int did)
 {
 try
 {
 lblDRO.Text = "";
 DbCommand cmd = db1.GetSqlStringCommand("SelectCEC");

 cmd.CommandType = CommandType.StoredProcedure;
 db1.AddInParameter(cmd, "Province_Id", DbType.Int64, did);
 IDataReader reader = db1.ExecuteReader(cmd);
 while (reader.Read())
 {
 lblDRO.Text = reader.GetValue(1).ToString();
 ViewState.Add("droid", reader.GetValue(0).ToString());
 btnSend.Enabled = true;
 }
 }
 catch (Exception ex)
 {
 //Response.Write(ex.Message);
 Response.Redirect("~/Problem.aspx");
 }
 }

 protected Boolean Connect()
 {
 try
 {
 db2 = DatabaseFactory.CreateDatabase("ServerSqlConnection");
 return true;

 }
 catch (Exception ex)
 {
 return false;
 }

 144

 }
 protected void btnSend_Click(object sender, EventArgs e)
 {
 string did = cmbProvince.SelectedValue;
 if (did != "")
 {
 if (int.Parse(did) > 0)
 {
 droid = int.Parse(ViewState["droid"].ToString());

 if (UpdateVoterListOnServer(int.Parse(did), droid) == true)
 lblMSG.Text = "Records Send!";
 else
 lblMSG.Text = "Nothing to Send.";
 }//int.parse
 }
 else
 {
 lblMSG.Text = "Wrong Province Selection!";
 }

 }
 private Boolean UpdateVoterListOnServer(int DistID, int DROID)
 {

 try
 {
 DbCommand cmd = db2.GetSqlStringCommand("SendToCECROList");
 cmd.CommandType = CommandType.StoredProcedure;
 db2.AddInParameter(cmd, "Province_Id", DbType.Int32, DistID);
 db2.AddInParameter(cmd, "CEC_Id", DbType.Int32, DROID);

 int count = db2.ExecuteNonQuery(cmd);
 if (count > 0)
 {
 return true;
 }
 return false;
 }
 catch (Exception ex)
 {
 return false;
 }

 }
}

public partial class ShowDRO : System.Web.UI.Page
{
 Database db1;
 string id = "";
 protected void Page_Load(object sender, EventArgs e)
 {
 db1 = DatabaseFactory.CreateDatabase("LocalSqlConnection");

 try
 {
 id = Request.QueryString["id"];

 145

 }
 catch (Exception ex)
 {
 }

 if (id == null)
 {
 }
 else
 {
 if (id.Trim() != "")
 {
 ShowROInfo(int.Parse(id));
 LinkButton1.PostBackUrl = "~/ACEC/UpdateDRO.aspx?id=" + id;
 }

 }

 }
 protected void ShowROInfo(int id)
 {
 try
 {
 DbCommand cmd = db1.GetSqlStringCommand("GetDRO");
 cmd.CommandType = CommandType.StoredProcedure;
 db1.AddInParameter(cmd, "Id", DbType.Int64, id);
 IDataReader reader = db1.ExecuteReader(cmd);

 while (reader.Read())
 {
 Label1.Text = reader.GetValue(3).ToString();
 Label6.Text = reader.GetValue(2).ToString();
 Label12.Text = reader.GetValue(0).ToString();
 Label13.Text = reader.GetValue(1).ToString();

 }

 }
 catch (Exception ex)
 {
 //Response.Write(ex.Message);
 Response.Redirect("~/Problem.aspx");
 }
 }//fill Combo
}

 146

public partial class ShowRO : System.Web.UI.Page
{
 Database db1;
 string id = "";
 protected void Page_Load(object sender, EventArgs e)
 {
 db1 = DatabaseFactory.CreateDatabase("LocalSqlConnection");

 try
 {
 id = Request.QueryString["id"];
 }
 catch (Exception ex)
 {
 }

 if (id == null)
 {
 }
 else
 {
 if (id.Trim() != "")
 {
 ShowROInfo(int.Parse(id));
 LinkButton1.PostBackUrl = "~/ACEC/UpdateRO.aspx?id=" + id;
 }
 }
 }
 protected void ShowROInfo(int id)
 {
 try
 {
 DbCommand cmd = db1.GetSqlStringCommand("GetRO");
 cmd.CommandType = CommandType.StoredProcedure;
 db1.AddInParameter(cmd, "Id", DbType.Int64, id);
 IDataReader reader = db1.ExecuteReader(cmd);

 while (reader.Read())
 {
 Label1.Text = reader.GetValue(4).ToString();
 Label6.Text = reader.GetValue(3).ToString();
 Label11.Text = reader.GetValue(2).ToString();
 Label12.Text = reader.GetValue(0).ToString();
 Label13.Text = reader.GetValue(1).ToString();

 }

 }
 catch (Exception ex)
 {
 Response.Redirect("~/Problem.aspx");
 }
 }//fill Combo
}

 147

public partial class UpdateDRO : System.Web.UI.Page
{
 Database db;
 string id = "";
 protected void Page_Load(object sender, EventArgs e)
 {
 db = DatabaseFactory.CreateDatabase("LocalSqlConnection");
 try
 {
 id = Request.QueryString["id"];
 if (id == null)
 {
 }
 else
 {
 if (id.Trim() != "")
 {

 }
 else
 {
 Response.Redirect("~/Problem.aspx");
 }

 }

 }
 catch (Exception ex)
 { }
 if (!IsPostBack)
 {

 FillCombo(DropDownList4, "SelectProvince");
 //FillCombo(DropDownList1, "SelectEmployee");
 //int pid = 3;
 //FillCombo(DropDownList2, "SelectEmployeeCategory", "Category_Id", pid);

try
 {
 if (id == null)
 {
 }
 else
 {
 if (id.Trim() != "")
 {
 Fill(int.Parse(id));
 }

 }

 }
 catch (Exception ex)
 { }
 }

 }
 protected void Fill(int id)
 {

 148

 try
 {
 DbCommand cmd = db.GetSqlStringCommand("GetDRO");
 cmd.CommandType = CommandType.StoredProcedure;
 db.AddInParameter(cmd, "Id", DbType.Int64, id);
 IDataReader reader = db.ExecuteReader(cmd);

 while (reader.Read())
 {
 DropDownList4.SelectedValue = reader.GetValue(5).ToString();
 LoadDistrictsBySelectedProvince();
 DropDownList3.SelectedValue = reader.GetValue(4).ToString();
 Label3.Text = reader.GetValue(1).ToString();

 }

 }
 catch (Exception ex)
 {
 //Response.Write(ex.Message);
 Response.Redirect("~/Problem.aspx");
 }
 }//fill Combo
 protected void DropDownList4_SelectedIndexChanged(object sender, EventArgs e)
 {
 LoadDistrictsBySelectedProvince();
 }
 private void LoadDistrictsBySelectedProvince() {
 string pid = DropDownList4.SelectedValue;
 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 FillCombo(DropDownList3, "SelectDistrict", "Province_id", int.Parse(pid));
 }
 else
 {
 DropDownList3.Items.Clear();

 }
 }
 protected void DropDownList2_SelectedIndexChanged(object sender, EventArgs e)
 {

 }

 protected void Button1_Click(object sender, EventArgs e)
 {
 int flag = 0;
 if (id == null)
 {
 }
 else
 {
 if (id.Trim() != "")
 {
 try
 {

 if (UpdateR(int.Parse(id)) == true)
 {

 149

 flag = 1;
 // break;
 }
 else
 flag = 2;
 }
 catch (Exception ex)
 {
 flag = 3;
 }
 if (flag == 3)
 {
 Response.Redirect("~/Problem.aspx");
 }
 else if (flag == 1) {
 Label6.Text = "Confirmation: Record is Updated.";
 }
 else if (flag == 2)
 {
 Label6.Text = "Sorry: Record is not Updated.";
 }

 }

 }

 }
 private Boolean UpdateR(int id)
 {
 try
 {
 DbCommand dbcmd = db.GetSqlStringCommand("UpdateDRO");
 db.AddInParameter(dbcmd, "Id", DbType.Int32, id);
 dbcmd.CommandType = CommandType.StoredProcedure;
 //db.AddInParameter(dbcmd, "Employee_Id", DbType.Int32, DropDownList1.SelectedValue);
 //db.AddInParameter(dbcmd, "Category_Id", DbType.Int32, DropDownList2.SelectedValue);
 db.AddInParameter(dbcmd, "District_Id", DbType.Int32, DropDownList3.SelectedValue);
 db.AddOutParameter(dbcmd, "flg", DbType.Int16, 1);

 db.ExecuteNonQuery(dbcmd);

 String flg = db.GetParameterValue(dbcmd, "flg").ToString();

 if (flg == "1")
 {
 Label6.Text = "This district is already assigned to an employee.";
 }
 else if (flg == "2")
 {
 Label6.Text = "DRO is successfully Updated.";
 }
 else if (flg == "0")
 {
 Label6.Text = "DRO is not updated! Try again later";

 150

 }

 return true;
 }
 catch (Exception ex)
 {
 return false;
 }
 }
 protected void FillCombo(DropDownList combo, string spName)
 {
 try
 {
 DbCommand cmd = db.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;

 IDataReader reader = db.ExecuteReader(cmd);
 int i = 1;
 combo.Items.Clear();
 combo.Items.Add("");
 while (reader.Read())
 {
 combo.Items.Add(reader.GetValue(1).ToString());
 combo.Items[i].Value = reader.GetValue(0).ToString();
 i++;
 }
 combo.SelectedIndex = 0;
 }
 catch (Exception ex)
 {
 Response.Write(ex.Message);
 }
 }//fill Simple Combo
 protected void FillCombo(DropDownList combo, string spName, string fieldName, int id)
 {
 try
 {
 DbCommand cmd = db.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;
 db.AddInParameter(cmd, fieldName, DbType.Int64, id);
 IDataReader reader = db.ExecuteReader(cmd);
 int i = 1;
 combo.Items.Clear();
 combo.Items.Add("");
 while (reader.Read())
 {
 combo.Items.Add(reader.GetValue(1).ToString());
 combo.Items[i].Value = reader.GetValue(0).ToString();
 i++;
 }
 combo.SelectedIndex = 0;
 }
 catch (Exception ex)
 {
 //Response.Write(ex.Message);
 Response.Redirect("~/Problem.aspx");
 }
 }//fill Combo

 151

 protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
 {

 }
 protected void DropDownList3_SelectedIndexChanged(object sender, EventArgs e)
 {
 Label6.Text = "";
 }
 protected void Button2_Click(object sender, EventArgs e)
 {
 Response.Redirect("ShowDRO.aspx?id=" + id);
 }
}

 152

public partial class UpdateRO : System.Web.UI.Page
{
 Database db;
 string id = "";
 protected void Page_Load(object sender, EventArgs e)
 {
 db = DatabaseFactory.CreateDatabase("LocalSqlConnection");
 try
 {
 id = Request.QueryString["id"];
 if (id == null)
 {
 }
 else
 {
 if (id.Trim() != "")
 {

 }
 else
 {
 Response.Write("Error");
 }

 }

 }
 catch (Exception ex)
 { }
 if (!IsPostBack)
 {
 FillCombo(cmbProvince, "SelectProvince");
 //int pid = 4;
 //FillCombo(DropDownList2, "SelectEmployeeCategory", "Category_Id", pid);

 //FillCombo(DropDownList2, "SelectEmployeeCategory");
 //FillCombo(DropDownList1, "SelectEmployee");
 try
 {
 if (id == null)
 {
 }
 else
 {
 if (id.Trim() != "")
 {
 Fill(int.Parse(id));
 }

 }

 }
 catch (Exception ex)
 { }
 }

 }
 protected void Fill(int id)
 {

 153

 try
 {
 DbCommand cmd = db.GetSqlStringCommand("GetRO");
 cmd.CommandType = CommandType.StoredProcedure;
 db.AddInParameter(cmd, "Id", DbType.Int64, id);
 IDataReader reader = db.ExecuteReader(cmd);

 while (reader.Read())
 {
 cmbProvince.SelectedValue = reader.GetValue(5).ToString();
 LoadDistrictBySelectProvince();

 cmbDistrict.SelectedValue = reader.GetValue(6).ToString();
 LoadTownTehsilBySelectDistrict();

 cmbTown.SelectedValue = reader.GetValue(7).ToString();
 Label3.Text = reader.GetValue(1).ToString();
 Button1.Visible = true;
 }

 }
 catch (Exception ex)
 {
 Label7.Text = "Sorry: Currently required information is not available, Try again at some later
time.";
 }
 }//fill Combo
 protected void FillCombo(DropDownList combo, string spName)
 {
 try
 {
 DbCommand cmd = db.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;

 IDataReader reader = db.ExecuteReader(cmd);
 int i = 1;
 combo.Items.Clear();
 combo.Items.Add("");
 while (reader.Read())
 {
 combo.Items.Add(reader.GetValue(1).ToString());
 combo.Items[i].Value = reader.GetValue(0).ToString();
 i++;
 }
 combo.SelectedIndex = 0;
 }
 catch (Exception ex)
 {
 Label7.Text = "Sorry: Data is not available this time.";
 }
 }//fill Simple Combo
 protected void FillCombo(DropDownList combo, string spName, string fieldName, int id)
 {
 try
 {
 DbCommand cmd = db.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;
 db.AddInParameter(cmd, fieldName, DbType.Int64, id);
 IDataReader reader = db.ExecuteReader(cmd);
 int i = 1;

 154

 combo.Items.Clear();
 combo.Items.Add("");
 while (reader.Read())
 {
 combo.Items.Add(reader.GetValue(1).ToString());
 combo.Items[i].Value = reader.GetValue(0).ToString();
 i++;
 }
 combo.SelectedIndex = 0;
 }
 catch (Exception ex)
 {
 Label7.Text = "Sorry: Data is not available this time.";
 }
 }//fill Combo

 protected void Button1_Click(object sender, EventArgs e)
 {
 if (id == null)
 {
 }
 else
 {
 int flag = 0;
 try
 {
 if (id.Trim() != "")
 {
 if (UpdateR(int.Parse(id)) == true)
 {
 flag = 1;
 }
 else
 //Response.Write("Updation failed,Try again!");
 flag = 2;
 }
 }
 catch (Exception ex)
 {
 flag = 3;
 }
 if (flag == 1)
 {
 Label6.Text = "Confirmation: Record is Updated.";
 }
 else if (flag == 2)
 { Label6.Text = "Sorry: Record is not Updated."; }
 else if (flag == 3)
 { Response.Redirect("~/Problem.aspx"); }
 }
}
 private Boolean UpdateR(int id)
 {
 try
 {
 DbCommand dbcmd = db.GetSqlStringCommand("UpdateRO");
 dbcmd.CommandType = CommandType.StoredProcedure;
 db.AddInParameter(dbcmd, "Id", DbType.Int32, id);
 //db.AddInParameter(dbcmd, "Employee_Id", DbType.Int32, DropDownList1.SelectedValue);

 155

 //db.AddInParameter(dbcmd, "Category_Id", DbType.Int32, 4);
 db.AddInParameter(dbcmd, "TownTehsil_Id", DbType.Int32, cmbTown.SelectedValue);
 db.AddOutParameter(dbcmd, "flg", DbType.Int16, 1);
 db.ExecuteNonQuery(dbcmd);
 String flg = db.GetParameterValue(dbcmd, "flg").ToString();

 if (flg == "1")
 {
 Label7.Text = "Sorry: This Town Tehsil is already assigned to an employee.";
 }
 else if (flg == "2")
 {
 Label7.Text = "Conrirmation: RO is successfully Updated.";
 }
 else if (flg == "0")
 {
 Label7.Text = "Sorry: RO is not updated! Try again later";
 }
 return true;
 }
 catch (Exception ex)
 {
 return false;
 }
 }
 protected void cmbTown_SelectedIndexChanged(object sender, EventArgs e)
 {
 Label7.Text = "";
 }

 protected void cmbProvince_SelectedIndexChanged(object sender, EventArgs e)
 {
 LoadDistrictBySelectProvince();
 }
 private void LoadDistrictBySelectProvince()
 {
 try
 {
 string pid = cmbProvince.SelectedValue;
 cmbDistrict.Items.Clear();
 cmbTown.Items.Clear();
 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 FillCombo(cmbDistrict, "SelectDistrict", "Province_id", int.Parse(pid));
 }
 }
 catch (Exception ex)
 {

 }

 }

 protected void cmbDistrict_SelectedIndexChanged(object sender, EventArgs e)
 {
 LoadTownTehsilBySelectDistrict();

 }

 156

 private void LoadTownTehsilBySelectDistrict()
 {
 try
 {
 string pid = cmbDistrict.SelectedValue;
 cmbTown.Items.Clear();

 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 FillCombo(cmbTown, "SelectTown", "District_Id", int.Parse(pid));
 }
 }
 catch (Exception ex)
 {

 }

 }

}

 157

public partial class UpdateVoterList : System.Web.UI.Page
{
 Database db1;
 string id = "";
 protected void Page_Load(object sender, EventArgs e)
 {
 db1 = DatabaseFactory.CreateDatabase("LocalSqlConnection");
 try
 {
 id = Request.QueryString["id"];
 if (id == null)
 {
 }
 else
 {
 if (id.Trim() != "")
 {

 }
 else {
 Response.Write("Error");
 }

 }

 }
 catch (Exception ex)
 { }

 if (!IsPostBack)
 {
 FillCombo(cmbProvince, "SelectProvince");
 try
 {
 if (id == null)
 {
 }
 else
 {
 if (id.Trim() != "")
 {
 Fill(int.Parse(id));
 }

 }

 }
 catch (Exception ex)
 {}
 }

 }
 protected void Fill(int id)
 {
 try

 158

 {
 DbCommand cmd = db1.GetSqlStringCommand("selectVoterForUpdate");
 cmd.CommandType = CommandType.StoredProcedure;
 db1.AddInParameter(cmd, "Voter_Id", DbType.Int64, id);
 IDataReader reader = db1.ExecuteReader(cmd);

 while (reader.Read())
 {
 TextBox2.Text = reader.GetValue(0).ToString();
 TextBox3.Text = reader.GetValue(1).ToString();
 TextBox4.Text = reader.GetValue(2).ToString();
 TextBox5.Text = reader.GetValue(3).ToString();
 TextBox6.Text = reader.GetValue(4).ToString();
 TextBox7.Text = reader.GetValue(5).ToString();
 TextBox8.Text = reader.GetValue(6).ToString();
 TextBox9.Text = reader.GetValue(7).ToString();
 TextBox10.Text = reader.GetValue(8).ToString();
 TextBox11.Text = reader.GetValue(9).ToString();
 TextBox13.Text = reader.GetValue(11).ToString();
 RadioButtonList1.Text = reader.GetValue(10).ToString();

 cmbProvince.SelectedValue = reader.GetValue(16).ToString();
 LoadDistrictBySelectProvince();

 cmbDistrict.SelectedValue = reader.GetValue(15).ToString();
 LoadTownTehsilBySelectDistrict();

 cmbTown.SelectedValue = reader.GetValue(14).ToString();
 LoadUnionBySelectTown();

 cmbUnion.SelectedValue = reader.GetValue(13).ToString();
 LoadPollinStationBySelectUnion();

 cmbPollStation.SelectedValue = reader.GetValue(12).ToString();
 }

 }
 catch (Exception ex)
 {
 //Response.Write(ex.Message);
 Response.Redirect("~/Problem.aspx");
 }
 }//fill Combo
 protected void FillCombo(DropDownList combo, string spName)
 {
 try
 {
 DbCommand cmd = db1.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;

 IDataReader reader = db1.ExecuteReader(cmd);
 int i = 1;
 combo.Items.Clear();
 combo.Items.Add("");
 while (reader.Read())
 {
 combo.Items.Add(reader.GetValue(1).ToString());
 combo.Items[i].Value = reader.GetValue(0).ToString();
 i++;

 159

 }
 combo.SelectedIndex = 0;
 }
 catch (Exception ex)
 {
 Response.Write(ex.Message);
 }
 }//fill Simple Combo
 protected void FillCombo(DropDownList combo, string spName, string fieldName, int id)
 {
 try
 {
 DbCommand cmd = db1.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;
 db1.AddInParameter(cmd, fieldName, DbType.Int64, id);
 IDataReader reader = db1.ExecuteReader(cmd);
 int i = 1;
 combo.Items.Clear();
 combo.Items.Add("");
 while (reader.Read())
 {
 combo.Items.Add(reader.GetValue(1).ToString());
 combo.Items[i].Value = reader.GetValue(0).ToString();
 i++;
 }
 combo.SelectedIndex = 0;
 }
 catch (Exception ex)
 {

 }
 }//fill Combo

 protected void Button1_Click(object sender, EventArgs e)
 {
 lblMsg.Text = "";
 id = Request.QueryString["id"];
 if (id == null)
 {
 }
 else
 {
 int flag = 0;
 try
 {
 if (id.Trim() != "")
 {
 if (UpdateVoter(int.Parse(id)) == true)
 {
 flag = 1;
 }
 else
 flag = 2;
 }
 }
 catch (Exception ex)
 {
 flag = 3;
 }

 160

 if (flag == 1)
 {
 lblMsg.Text = "Confirmation: Record is Updated.";
 }
 else if (flag == 2)
 { lblMsg.Text = "Sorry: Record is not Updated."; }
 else if (flag == 3)
 { Response.Redirect("~/Problem.aspx"); }

 }
 }
 private Boolean UpdateVoter(int id) {
 try
 {
 DbCommand dbcmd = db1.GetSqlStringCommand("UpdateVoter");
 dbcmd.CommandType = CommandType.StoredProcedure;

 db1.AddInParameter(dbcmd, "Voter_Id", DbType.Int32, id);
 db1.AddInParameter(dbcmd, "Voter_Name", DbType.String, TextBox2.Text);
 db1.AddInParameter(dbcmd, "Voter_Father_HusbandName", DbType.String, TextBox3.Text);
 db1.AddInParameter(dbcmd, "Voter_HomeNo", DbType.String, TextBox4.Text);
 db1.AddInParameter(dbcmd, "Voter_StreetBlock", DbType.String, TextBox5.Text);
 db1.AddInParameter(dbcmd, "Voter_NIC", DbType.String, TextBox6.Text);
 db1.AddInParameter(dbcmd, "Voter_DOB", DbType.String, TextBox7.Text);
 db1.AddInParameter(dbcmd, "Voter_Religon", DbType.String, TextBox8.Text);
 db1.AddInParameter(dbcmd, "Voter_HomePhone", DbType.String, TextBox9.Text);
 db1.AddInParameter(dbcmd, "Voter_MobilePhone", DbType.String, TextBox10.Text);
 db1.AddInParameter(dbcmd, "Voter_FamilyNo", DbType.String, TextBox11.Text);
 db1.AddInParameter(dbcmd, "Voter_Gender", DbType.String,
RadioButtonList1.SelectedValue);
 db1.AddInParameter(dbcmd, "Voter_Female_Category", DbType.String, TextBox13.Text);
 db1.AddInParameter(dbcmd, "PollingStation_Id", DbType.Int32,
cmbPollStation.SelectedValue);

 db1.ExecuteNonQuery(dbcmd);
 return true;
 }
 catch (Exception ex) {
 return false;
 }
 }

 protected void cmbProvince_SelectedIndexChanged(object sender, EventArgs e)
 {
 LoadDistrictBySelectProvince();
 }
 private void LoadDistrictBySelectProvince(){
 try
 {
 string pid = cmbProvince.SelectedValue;
 cmbDistrict.Items.Clear();
 cmbTown.Items.Clear();
 cmbUnion.Items.Clear();
 cmbPollStation.Items.Clear();
 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 FillCombo(cmbDistrict, "SelectDistrict", "Province_id", int.Parse(pid));
 }
 }

 161

 catch (Exception ex)
 {

 }

 }
 protected void cmbDistrict_SelectedIndexChanged(object sender, EventArgs e)
 {
 LoadTownTehsilBySelectDistrict();

 }
 private void LoadTownTehsilBySelectDistrict() {
 try
 {
 string pid = cmbDistrict.SelectedValue;
 cmbTown.Items.Clear();
 cmbUnion.Items.Clear();
 cmbPollStation.Items.Clear();
 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 FillCombo(cmbTown, "SelectTown", "District_Id", int.Parse(pid));
 }
 }
 catch (Exception ex)
 {

 }

 }
 protected void cmbTown_SelectedIndexChanged(object sender, EventArgs e)
 {
 LoadUnionBySelectTown();
 }
 private void LoadUnionBySelectTown() {
 try
 {
 string pid = cmbTown.SelectedValue;
 cmbUnion.Items.Clear();
 cmbPollStation.Items.Clear();
 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 FillCombo(cmbUnion, "SelectUnionCouncil", "TownTehsil_Id", int.Parse(pid));
 }
 }
 catch (Exception ex)
 {
 }

 }
 protected void cmbUnion_SelectedIndexChanged(object sender, EventArgs e)
 {
 LoadPollinStationBySelectUnion();
 }
 private void LoadPollinStationBySelectUnion() {
 try
 {
 string pid = cmbUnion.SelectedValue;
 cmbPollStation.Items.Clear();

 162

 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 FillCombo(cmbPollStation, "SelectPollingStation", "UnionCouncil_Id", int.Parse(pid));
 }
 }
 catch (Exception ex)
 {
 }

 }
 protected void Button2_Click(object sender, EventArgs e)
 {

 }
}

 163

public partial class ViewDROList : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

 }
}

public partial class ViewEmployeeList : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

 }
}

public partial class ViewROList : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

 }
}

public partial class ViewVoterList : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

 }
}

public partial class VoterListCECDistribution : System.Web.UI.Page
{
 Database db1, db2;
 int cecid;
 protected void Page_Load(object sender, EventArgs e)
 {
 db1 = DatabaseFactory.CreateDatabase("LocalSqlConnection");
 Connect();
 if (!IsPostBack)
 {
 FillCombo(cmbProvince, "SelectProvince");
 }
 }
 protected void FillCombo(DropDownList combo, string spName)
 {
 try
 {
 DbCommand cmd = db1.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;

 IDataReader reader = db1.ExecuteReader(cmd);
 int i = 1;
 combo.Items.Clear();
 combo.Items.Add("");

 164

 while (reader.Read())
 {
 combo.Items.Add(reader.GetValue(1).ToString());
 combo.Items[i].Value = reader.GetValue(0).ToString();
 i++;
 }
 combo.SelectedIndex = 0;
 }
 catch (Exception ex)
 {
 //Response.Write(ex.Message);
 Response.Redirect("~/Problem.aspx");
 }
 }//fill Simple Combo
 protected void cmbProvince_SelectedIndexChanged(object sender, EventArgs e)
 {
 string pid = cmbProvince.SelectedValue;
 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 SetCECByProvince(int.Parse(pid));
 }
 else
 {
 lblDRO.Text = "";
 btnSend.Enabled = false;
 }

 }
 protected void SetCECByProvince(int did)
 {
 try
 {
 lblDRO.Text = "";
 DbCommand cmd = db1.GetSqlStringCommand("SelectCEC");

 cmd.CommandType = CommandType.StoredProcedure;
 db1.AddInParameter(cmd, "Province_Id", DbType.Int64, did);
 IDataReader reader = db1.ExecuteReader(cmd);
 while (reader.Read())
 {
 lblDRO.Text = reader.GetValue(1).ToString();
 ViewState.Add("cecid", reader.GetValue(0).ToString());
 btnSend.Enabled = true;
 }
 }
 catch (Exception ex)
 {
 Response.Write(ex.Message);
 }
 }

 protected Boolean Connect()
 {
 try
 {
 db2 = DatabaseFactory.CreateDatabase("ServerSqlConnection");
 return true;

 }

 165

 catch (Exception ex)
 {
 return false;
 }
 }
 protected void btnSend_Click(object sender, EventArgs e)
 {
 string did = cmbProvince.SelectedValue;
 if (did != "")
 {
 if (int.Parse(did) > 0)
 {
 cecid = int.Parse(ViewState["cecid"].ToString());

 if (UpdateVoterListOnServer(int.Parse(did), cecid) == true)
 lblMSG.Text = "Records Send!";
 else
 lblMSG.Text = "Nothing to Send.";
 }//int.parse
 }
 else
 {
 lblMSG.Text = "Wrong Province Selection!";
 }

 }
 private Boolean UpdateVoterListOnServer(int DistID, int cecid)
 {

 try
 {
 DbCommand cmd = db2.GetSqlStringCommand("SendToCECVoterList");
 cmd.CommandType = CommandType.StoredProcedure;
 db2.AddInParameter(cmd, "Province_Id", DbType.Int32, DistID);
 db2.AddInParameter(cmd, "CEC_Id", DbType.Int32, cecid);

 int count = db2.ExecuteNonQuery(cmd);
 if (count > 0)
 {
 return true;
 }
 return false;
 }
 catch (Exception ex)
 {
 return false;
 }

 }
}

public partial class ApprovePollingStationList : System.Web.UI.Page
{
 Database db1;
 protected void Page_Load(object sender, EventArgs e)
 {
 db1 = DatabaseFactory.CreateDatabase("LocalSqlConnection");
 if (!IsPostBack)

 166

 {
 FillCombo(cmbProvince, "SelectProvince");
 }

 }
 protected void FillCombo(DropDownList combo, string spName)
 {
 try
 {
 DbCommand cmd = db1.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;

 IDataReader reader = db1.ExecuteReader(cmd);
 int i = 1;
 combo.Items.Clear();
 combo.Items.Add("");
 while (reader.Read())
 {
 combo.Items.Add(reader.GetValue(1).ToString());
 combo.Items[i].Value = reader.GetValue(0).ToString();
 i++;
 }
 combo.SelectedIndex = 0;
 }
 catch (Exception ex)
 {
 //Response.Write(ex.Message);
 Response.Redirect("~/Problem.aspx");
 }
 }//fill Simple Combo
 protected void FillCombo(DropDownList combo, string spName,
string fieldName, int id)
 {
 try
 {
 DbCommand cmd = db1.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;
 db1.AddInParameter(cmd, fieldName, DbType.Int64, id);
 IDataReader reader = db1.ExecuteReader(cmd);
 int i = 1;
 combo.Items.Clear();
 combo.Items.Add("");
 while (reader.Read())
 {
 combo.Items.Add(reader.GetValue(1).ToString());
 combo.Items[i].Value = reader.GetValue(0).ToString();
 i++;
 }
 combo.SelectedIndex = 0;
 }
 catch (Exception ex)
 {
 Response.Write(ex.Message);
 }
 }//fill Combo
 protected void cmbProvince_SelectedIndexChanged(object sender,
EventArgs e)
 {
 string pid = cmbProvince.SelectedValue;
 HideControls();

 167

 if (cmbProvince.SelectedIndex > 0)
 {
 btnShowPollingStationList.Visible = true;
 }
 else
 {
 btnShowPollingStationList.Visible = false;

 }
 cmbDistrict.Items.Clear();
 cmbTown.Items.Clear();
 cmbUnion.Items.Clear();

 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 FillCombo(cmbDistrict, "SelectDistrict",
"Province_id", int.Parse(pid));
 }

 }
 protected void cmbDistrict_SelectedIndexChanged(object sender,
EventArgs e)
 {
 string pid = cmbDistrict.SelectedValue;
 HideControls();
 cmbTown.Items.Clear();
 cmbUnion.Items.Clear();

 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 FillCombo(cmbTown, "SelectTown", "District_Id",
int.Parse(pid));
 }
 }
 protected void cmbTown_SelectedIndexChanged(object sender,
EventArgs e)
 {
 string pid = cmbTown.SelectedValue;
 HideControls();
 cmbUnion.Items.Clear();
 if (pid != "")
 {
 if (int.Parse(pid) > 0)
 FillCombo(cmbUnion, "SelectUnionCouncil",
"TownTehsil_Id", int.Parse(pid));
 }

 }
 protected void cmbUnion_SelectedIndexChanged(object sender,
EventArgs e)
 {
 HideControls();
 }

 protected void btnShowPollingStationList_Click(object sender,
EventArgs e)
 {
 try

 168

 {
 DataTable dtable = null;
 string pid = cmbProvince.SelectedValue;
 string did = cmbDistrict.SelectedValue;
 string tid = cmbTown.SelectedValue;
 string pollid = cmbUnion.SelectedValue;

 if (pollid != "")
 {
 if (int.Parse(pollid) > 0)
 {
 GetVoters(int.Parse(pollid), "UnionCouncil_Id",
"SelectStation");
 }
 }
 else if (tid != "")
 {
 if (int.Parse(tid) > 0)
 {
 GetVoters(int.Parse(tid), "T_id",
"SelectStationByTownTehsilId");
 }
 }
 else if (did != "")
 {
 if (int.Parse(did) > 0)
 {
 GetVoters(int.Parse(did), "District_id",
"SelectStationByDistrictId");
 }
 }
 else if (pid != "")
 {
 if (int.Parse(pid) > 0)
 {
 GetVoters(int.Parse(pid), "P_id",
"SelectStationByProvinceId");
 }
 }
 }
 catch (Exception ex)
 {
 Response.Redirect("~/Problem.aspx");

 }

 }
 private Boolean GetVoters(int id, string fieldName, string
spName)
 {
 try
 {
 DbCommand cmd = db1.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;
 db1.AddInParameter(cmd, fieldName, DbType.Int64, id);

 DataSet ds = db1.ExecuteDataSet(cmd);

 if (ds.Tables[0].Rows.Count > 0)
 {
 btnApprove.Visible = true;

 169

 GridView1.Visible = true;
 lblMsg.Text = "";
 }
 else
 {
 btnApprove.Visible = false;
 GridView1.Visible = false;
 lblMsg.Text = "Sorry: Data is not available for
selected Criteria, Try with different criteria.";
 }
 GridView1.DataSource = ds.Tables[0];
 GridView1.DataBind();
 return true;
 }
 catch (Exception ex)
 {
 return false;
 }
 }

 protected void btnApprove_Click(object sender, EventArgs e)
 {
 try
 {
 DataTable dtable = GetSelectedVoters();
 if (dtable != null)
 {
 foreach (DataRow drow in dtable.Rows)
 {
 ApproveSelectedVoters(int.Parse(drow[0].ToString()));
 }
 }
 }
 catch (Exception ex)
 {
 Response.Redirect("~/Problem.aspx");

 }

 }
 private DataTable GetSelectedVoters()
 {
 try
 {
 DataTable dtable = null;
 string pid = cmbProvince.SelectedValue;
 string did = cmbDistrict.SelectedValue;
 string tid = cmbTown.SelectedValue;
 string pollid = cmbUnion.SelectedValue;

 if (pollid != "")
 {
 if (int.Parse(pollid) > 0)
 {
 dtable = GetVotersTable(int.Parse(pollid),
"UnionCouncil_Id", "SelectStation");
 }
 }
 else if (tid != "")
 {

 170

 if (int.Parse(tid) > 0)
 {
 dtable = GetVotersTable(int.Parse(tid), "T_id",
"SelectStationByTownTehsilId");
 }
 }
 else if (did != "")
 {
 if (int.Parse(did) > 0)
 {
 dtable = GetVotersTable(int.Parse(did),
"District_id", "SelectStationByDistrictId");
 }
 }
 else if (pid != "")
 {
 if (int.Parse(pid) > 0)
 {
 dtable = GetVotersTable(int.Parse(pid), "P_id",
"SelectStationByProvinceId");
 }
 }
 return dtable;
 }
 catch (Exception ex)
 {
 return null;
 }
 }
 private Boolean ApproveSelectedVoters(int id)
 {
 try
 {
 DbCommand cmd =
db1.GetSqlStringCommand("ApproveStation");
 cmd.CommandType = CommandType.StoredProcedure;
 db1.AddInParameter(cmd, "id", DbType.Int64, id);
 db1.ExecuteNonQuery(cmd);
 return true;
 }
 catch (Exception ex)
 {
 return false;
 }
 }
 private DataTable GetVotersTable(int id, string fieldName, string
spName)
 {
 try
 {
 DbCommand cmd = db1.GetSqlStringCommand(spName);
 cmd.CommandType = CommandType.StoredProcedure;
 db1.AddInParameter(cmd, fieldName, DbType.Int64, id);

 DataSet ds = db1.ExecuteDataSet(cmd);

 return ds.Tables[0];
 }
 catch (Exception ex)
 {
 return null;

 171

 }
 }
 private void HideControls()
 {
 GridView1.Visible = false;
 btnApprove.Visible = false;
 lblMsg.Text = "";
 }

}

public partial class PO_POAllocateVoter : System.Web.UI.Page
{
 Database db;
 DataTable tab;
 int pollId = 1;
 protected void Page_Load(object sender, EventArgs e)
 {
 int flg = -1;
 db = DatabaseFactory.CreateDatabase("LocalSqlConnection");
 try
 {
 IDataReader rdr = db.ExecuteReader(CommandType.Text,
"select PollingStation_Id from PSEmployee_Assignment where
Employee_Id=" + Request.Cookies["PO_Id"].Value.ToString());
 if (rdr.Read())
 {
 pollId = Convert.ToInt32(rdr[0].ToString());

 }
 }
 catch (Exception ex)
 {
 Response.Write(ex.ToString());
 }
 LoadBoothsAndGrid();
 if (!IsPostBack)
 {

 String NIC = "";
 try
 {
 NIC = Request.Cookies["NIC"].Value.ToString();
 flg = 1;
 if(NIC == null || NIC =="")
 flg=0;
 }
 catch (Exception ex) {
 flg = 0;
 }
 if (flg == 1)
 {
 if (getVoterInfo(NIC) == true)
 {
 Button2.Enabled = true;
 }
 else
 lblMsg.Text = "Some Problem While getting Voter
Information..";
 }
 else

 172

Response.Redirect("~/PO/POValidateVoter.aspx?id=193139");
 }
 }
 protected Boolean LoadBooths(int Pid)
 {
 try
 {
 DbCommand dbcmd =
db.GetSqlStringCommand("GetAvailableBooths");
 dbcmd.CommandType = CommandType.StoredProcedure;
 db.AddInParameter(dbcmd, "PollingStation_Id",
DbType.Int64, Pid);
 IDataReader reader = db.ExecuteReader(dbcmd);

 //DDLBoothID.DataSource = reader;
 //DDLBoothID.DataBind();
 //DDLBoothID.DataTextField = "Description";
 //DDLBoothID.DataValueField = "Booth_Id";
 int i = 0;
 DDLBoothID.Items.Clear();
 while (reader.Read())
 {
 string str = reader.GetValue(2).ToString();
 DDLBoothID.Items.Add(str);
 DDLBoothID.Items[i].Value =
reader.GetValue(0).ToString();
 i++;
 }
 if (DDLBoothID.Items.Count == 0)
 Button2.Enabled = false;
 return true;
 }
 catch (Exception e)
 {
 Response.Write(e.Message);
 return false;
 }
 }
 private void LoadBoothsAndGrid()
 {
 DataTable dtable = ShowCurrentBoothsStatus();
 if (dtable != null)
 {
 DataTable dtab = GetDataTableForGrid(dtable);
 //if (dtable.Rows.Count > 0)
 //{
 GridView1.DataSource = dtab;
 GridView1.DataBind();
 //}
 }
 LoadBooths(pollId);
 }
 protected void Button2_Click(object sender, EventArgs e)
 {
 try {
 String booth = DDLBoothID.Text;
 string boothid = DDLBoothID.SelectedValue;

 if (boothid != "") {

 173

 DataTable dtable = AllocateBooth(lblNICNO.Text,
int.Parse(boothid));
 if (dtable != null)
 {
 if (dtable.Rows.Count > 0)
 {
 DataTable dtab = GetDataTableForGrid(dtable);
 GridView1.DataSource = dtab;
 GridView1.DataBind();
 }
 }
 LoadBooths(pollId);
 }

 }
 catch (Exception ex) {
 }

 }
 private void ShowAllocatedBoothGrid(string nic, string name,
string gender, string booth)
 {

 tab = (DataTable)Session["GridTab"];

 DataRow drow = tab.NewRow();
 drow[0] = nic;
 drow[1] = name;
 drow[2] = gender;
 drow[3] = booth;
 tab.Rows.Add(drow);
 Session["GridTab"] = tab;
 GridView1.DataSource = tab;

 GridView1.DataBind();
 }
 private DataTable AllocateBooth(string NIC, int boothId)
 {

 try
 {
 Button2.Enabled = false;
 lblVoterName.Text ="";
 lblNICNO.Text = "";
 lblGender.Text = "";
 DbCommand dbcmd =
db.GetSqlStringCommand("AllocateBooth");
 dbcmd.CommandType = CommandType.StoredProcedure;
 db.AddInParameter(dbcmd, "NICNO", DbType.String, NIC);
 db.AddInParameter(dbcmd, "BoothID", DbType.Int16,
boothId);
 db.AddOutParameter(dbcmd, "Flg", DbType.Boolean, 1);
 DataSet ds = db.ExecuteDataSet(dbcmd);
 return ds.Tables[0];
 }
 catch (Exception ex)
 {
 return null;
 }
 }
 protected Boolean getVoterInfo(String NIC)

 174

 {
 try
 {
 DbCommand dbcmd = db.GetSqlStringCommand("getVoterInfo");
 dbcmd.CommandType = CommandType.StoredProcedure;

 db.AddInParameter(dbcmd, "NICNO", DbType.String, NIC);
 //db.AddOutParameter(dbcmd, "flg", DbType.Boolean, 1);
 db.AddOutParameter(dbcmd, "Gender", DbType.String, 10);
 db.AddOutParameter(dbcmd, "Name", DbType.String, 10);
 db.ExecuteNonQuery(dbcmd);
 String votergender = db.GetParameterValue(dbcmd,
"Gender").ToString();
 String votername = db.GetParameterValue(dbcmd,
"Name").ToString();
 lblGender.Text = votergender;
 lblNICNO.Text = NIC;
 lblVoterName.Text = votername;
 return true;
 }
 catch (Exception e)
 {
 return false;
 }
 }
 private DataTable ShowCurrentBoothsStatus()
 {

 try
 {
 DbCommand dbcmd =
db.GetSqlStringCommand("ShowCurrentBoothsStatus");
 dbcmd.CommandType = CommandType.StoredProcedure;
 DataSet ds = db.ExecuteDataSet(dbcmd);
 return ds.Tables[0];
 }
 catch (Exception ex)
 {
 return null;
 }
 }
 private DataTable GetDataTableForGrid(DataTable dtable)
 {
 try
 {
 DataTable tab1 = new DataTable("AllocatedBooths");
 DataColumn dc = new DataColumn();

 dc = new DataColumn("Name",
System.Type.GetType("System.String"));
 tab1.Columns.Add(dc);
 dc = new DataColumn("NIC",
System.Type.GetType("System.String"));
 tab1.Columns.Add(dc);
 dc = new DataColumn("Father/Husband Name",
System.Type.GetType("System.String"));
 tab1.Columns.Add(dc);
 dc = new DataColumn("Booth Id",
System.Type.GetType("System.String"));
 tab1.Columns.Add(dc);

 175

 dc = new DataColumn("Description",
System.Type.GetType("System.String"));
 tab1.Columns.Add(dc);
 dc = new DataColumn("Booth Allocation Time",
System.Type.GetType("System.String"));
 tab1.Columns.Add(dc);
 dc = new DataColumn("Status",
System.Type.GetType("System.String"));
 tab1.Columns.Add(dc);
 DataRow tabRow;
 if (dtable != null)
 {
 foreach (DataRow drow in dtable.Rows)
 {
 tabRow = tab1.NewRow();
 tabRow[0] = drow[0];
 tabRow[1] = drow[1];
 tabRow[2] = drow[2];
 tabRow[3] = drow[3];
 tabRow[4] = drow[4];
 tabRow[5] = drow[5];
 tabRow[6] = drow[6];
 tab1.Rows.Add(tabRow);
 }
 }

 return tab1;
 }
 catch (Exception ex)
 {
 return null;
 }
 }
 protected void Timer1_Tick(object sender, EventArgs e)
 {
 GridView1.DataBind();
 }
}

 176

 CHAPTER 5

TESTING

 177

5.1 Introduction

Testing is an extremely important part of the product development life cycle of any

software or project. By identifying the defects and problems during the software

testing process,, the end product is indirectly improved. Although the software may

not be 100% error free, it is cheaper to avoid problems, rather than fixing the

problems after deployment. Therefore, planning for testing should start at the early

stages in the requirements gathering. It should be refined and used continuously as the

development proceeds.

5.2 Goals

Software testing is a critical software process. It has the intention to find errors in the

execution of a system. It has a finite set of test cases in controlled condition, The

control condition include normal and abnormal situations.

We identify the expected behaviors. Under the normal conditions, we ask “What will

happen to the software if we enter correct input”

Under the abnormal conditions, we ask “what will happen to the software when we

enter invalid input.”

Testing should intentionally make things go wrong. It determinates if things happen

when they shouldn’t happen when the should

The purpose of testing is to check whether the newly developed system is performing

the entire required task without any kind of errors. Basically, evaluation is measured

through performance enhancement.

For testing the system that it performed all the business processes, we need to create

the test inventory: the following table contains some of the most important test cases

and their results.

5.3 Testing Approach

The strategies taken on for the testing of any given software are different at various

testing levels. Testing levels are used in reference to the scale on which the software

test is being implemented. Normally the testing start from a small portion of the

 178

project or software and than moves on to gradually to its larger parts. The following

are the tests used at different levels of software testing.

5.3.1 Unit Testing

In unit testing each method is tested according to its behavior in response to the

requirements placed before it. In our developed product each method of the

class/object has been tested thoroughly according to the requirements. Debuggers,

testing by the client and the development team were used to verify the requirements.

5.3.2 Integration Testing

In integration testing, the interaction and collaboration between the various classes

that combine to the form software package is pit to test. In this system, the interaction

of the different modules both at the client/interface and the server end has been tested.

The behavior of the modules under the integration tests was found according to the

requirements they were expected to fulfill.

5.3.3 Validation Testing

In validation testing, the complete system is tested as unit. The system is expected to

all possible types of input and under the various scenarios the we expected to

encounter. In case of this system the tests were conducted using a wide range of

inputs. Its response to all the inputs that it was confronted with was more than

satisfactory.

5.3.4 System Testing

Software system testing is often equated with findings bugs. The goal of the system

testing is to find discrepancies between the actual behaviors of the implemented

system and the desired behavior as described in the system specification. The system

testing can be performed at different levels. At the top level, module testing,

integration tests, system tests and acceptance or user test. For proposed system, we

have done the following types of testing.

 Black Box Testing

 White Box Testing

 179

5.4 Test Case Specification (TCS)

Test Case ID Action Expected Result P/F

T1

On login form user

provided his/her

login password and

press OK button

If the information is

correct then the

main form is

displayed else

invalid

login/password

message appears.

P

T2 User will select and

click on a menu

item and the

respective form is

initialized and

loaded.

The form is

initialized and

loaded respectively.

P

T3 CEC press show

voters for approve

or reject

It shows the list of

all Voters

P

T4 CEC sent voter list

to DRO

Shows DRO or

respective District

& confirmation

message

P

T5 ACEC prepares

voter & enters NIC

If NIC format is

not correct it will

displays message

P

T6 ACEC prepares

voter & enters

details

If name, father

name, family

number & NIC is

not entered (red *)

will be displayed to

P

 180

proceed

T7 ACEC prepares

voter & renter NIC

again

If the NIC # is

entered again it will

displays message

P

T8 ACEC Updates

voter List

When Edit voter

infor NIC# field

will be disabled

P

T9 ACEC voter using

NADRA

webservice

If NIC # is valid or

invalid or invalid

format entered,

message appears.

P

T10 DRO approve

polling station &

staff list after

entering details

It shows polling

station details &

Approve button

P

T11 DRO send voter list

to RO

When enter

town/tehsil it

automatically

shows the relevant

RO with

confirmation or

rejection message

P

T12 RO prepares

Candidate details

add, edit or delete

If no name entered

message appears

P

T13 RO send candidate

list to PO

On success &

failure message

appears

P

T14 PO allocates booth

to voter

It will check NIC #

if correct or wrong

message appers

P

T15 PO check booth

status

If available or not

message appears

P

 181

T16 Booth welcome

screen

Continues if PO

assign booth to

respective voter

after checking the

NIC#

P

T17 Booth welcome

screen

If not yet assigned

message appears

P

T18 Vote Confirmation After selection of

all candidates

confirmation,

rejection &

eligibility messages

appears

P

5.5 Evaluation

 A software system is evaluated by the user interface. Some of the factors which are

considered in system evaluation are speed of performance, ease of use and user

satisfaction. Every developer try to succeed in all categories but there is a trade off.

5.6 Merits & Demerits

 Easily Customizable

The developed system is easily customizable i.e. in future any improvement

relating to input/output design, can easily be introduced. This is due to the

SQL server 2005 DBMS utilities.

 Efficiency

The new computerized system has been design in such manner that the users

feel no difficulty in entering the data and generating the desired outputs.

 Accuracy

The outputs produced by the system are accurate, which is made possible by

providing validation checks at the data entry time.

 182

 Duplication of Processes

As in the present system, similar types of activities are carry out at different

places, with the adaptation of computerization system, this can be done

centrally, which will facilitate in avoiding the duplication of processing and

enforcing a better systematic control over activities.

 Minimum Storage Requirements

Computerization system required less storage space, there is no needs of

maintaining big registers more over the required information can be accessed

faster compared to manual system.

 Security

First of all user name and password is required to logon into the system.

Further more database username & password is also required to access the

system. This is done o provide maximum security to the system

 Easy to use

The system is menu driven and user friendly. A simple user, even if without

much computer knowledge, can use the system without any difficulties.

 Speed of Performance

The main task performed by the system i.e. date entry and retrieval, that are

carried out swiftly. During design and development phases every possible

effort was made to overcome the deficiencies in the system but despite of this

effort there may be roams for improvement.

 Modularity

The system is dividing into number of modules integrated to fulfill user

requirements. These modules are independent of each other. Another

advantage of modularity is ease in modification.

 183

CHAPTER 6

CONCLUSION

 184

6.1 Conclusions

Systems are made after the detail & complete Project life cycle, theoretical and

practice is different learning aspects. Theory provides a world to its ideal state but the

development of the real environment is very difficult. Real working environment is

achieved only by the interaction with the end user & their requirements.

Group of peoples who ultimately define the fate on any software, weather it is flashy

software for a giant company or a study and small project from a computer graduate

or student. It is the end user that has the real power to decide about the software.

Another main thing is the significance of the analysis of the system to be developed. It

has always been a tendency to consider the analysis as a non-productive activity, but

any mistake made here is replicated many times over the next phase, ending in the

system to be re-analyze

At the end I just want to say that this product is very flexible, user friendly and easy

to understand for a simple user, which will be the end user of this product ultimately.

This system has been tested by using different testing strategies e.g. unit testing,

system testing etc.

The following are some of the conclusions that could be made after development and

implementation of this system.

 Effective, Efficient and Reliable

 Enhanced Manageability & Availability

 Timely and accurate decision Support

 Professional Business Practice

 To get rid of Paper work

 User Friendly Interface & easily understandable

 Maintainability & Verifiability.

 185

APPENDIX A

OES Database Schema

 186

Figure 3.12 (a)

 187

Figure 3.12 (b)

 188

Figure 3.12 (c)

 189

APPENDIX B

DATA MODEL

 190

 191

APPENDIX C

DATABASE TABLES

 192

Figure DT-1

Figure DT-2

Figure DT-3

Figure DT-4

Figure DT-5

 193

Figure DT-6

Figure DT-7

Figure DT-8

Figure DT-9

 194

Figure DT-10

Figure DT-11

Figure DT-12

Figure DT-13

Figure DT-14

 195

Figure DT-15

Figure DT-16

Figure DT-17

Figure DT-18

Figure DT-19

 196

Figure DT-20

Figure DT-21

Figure DT-22

 Figure DT-23

 197

Figure DT-24

Figure DT-25

 198

APPENDIX D

USER’S MANUAL

 199

Screen Shots CEC

 CEC Home Page
 Approve, Send Voter List to DRO & View Result

Figure: CEC Home page

 CEC View & Approves DRO list send by ACEC

Figure: Approve/Reject DRO

 200

 CEC View & Approves RO list send by ACEC

Figure: Approve/Reject RO

 CEC View & Approves VOTER list send by ACEC

Figure: Approve Reject Voter List to DRO

 201

 CEC send Voter list to DRO of selected province & district

Figure: Send Voter List to DRO

 CEC can see results of all Province, Districts & Tehsils & Union councils

Figure: Result

 202

ACEC
 Prepare voters of the province Verifying eligibility by NADRA web service
 Should enter NIC & Family No in valid format

Figure: Prepare Voter

 Already created employees are assigned DRO role by selecting for cretin
Province & District

Figure: Prepare DRO

 203

 Already created employees are assigned RO role

Figure: Prepare RO list

 Create new Employees for DRO & RO roles

Figure: Prepare Employee

 204

 View List > View Voter list
 Show all voters created for certain district, town tehsil & union council

Figure: View voter list

 View List > View DRO list
 Show all DRO’s created for certain district.

Figure: View DRO list

 205

 View List > View Employee list
 Show all Employees created for certain for all levels starting from CEC,

ACEC, DRO, RO & PO
 Can Delete & update users as well

Figure: View Employee List

 After voter list preparation it is send to CEC for approval

Figure: Send Voter list to CEC

 206

 CEC can see results of all District’s & Tehsil’s & Union council’s of certin
province

Figure: View Result

 Voter eligibility is checked & further helping for preparing the voter

Figure: NADRA webservice

 207

DRO

 Approve Polling station list assigned by RO

Figure: Approve Polling station list

 Approve Polling station staff list assigned by RO

Figure: Approve Polling station staff List

 208

 Send voter list approved by CEC to concern Town/Tehsil RO

Figure: Send Voter list to DRO

 DRO can see results of all Town/Tehsil’s & Union council’s of certain
province

Figure: View Result DRO

 209

RO
 Prepare list of candidates category, symbols, parties & assigning it to all

candidates
 Upload Candidate form provided by Election Commission

Figure: Candidate Management

 Assign PO role to already created Employee list by ACEC

Figure: Prepare Polling station staff list

 210

 Creates polling station for Union Council of selected Town/Tehsil

Figure: Prepare Polling station List

 After creating the Polling station Booth is created for vote casting

Figure: Create Booth

 211

 View List for all created candidates
 Can be updated or deleted if required

Figure: View Candidate List

 View List for all created Polling station staff list
 Can be updated or deleted if required

Figure: Polling station staff list

 212

 View List for all Polling station list
 Can be updated or deleted if required

Figure: Polling station list

 Send created list of candidates to PO

Figure: Send candidate list to PO

 213

 Send Polling station list to DRO for approval

Figure: Send polling station list to DRO

 View Result for Union Council & Polling stations

Figure: Result RO

 214

PO

 Ask voter for NIC & enter its number

Figure: Booth Allocation to Voter

 Can view the Result of Polling station

Figure: View Result PO

 215

 Screen shown on the Booth for voter to continue after NIC validation from PO

Figure: Booth welcome screen

 Contact Us Screen

Figure: Contact Us details

 216

APPENDIX E

REFERENCES

 217

 218

References

Books

1. Bernd Bruegge & Allen H. Dutoit, Object-Oriented Software Engineering

 Using UML, Patterns, and Java. Second Edition

2. Mark Priestley, Practical Object-Oriented design with UML, Second Edition,

 TATA McGraw HILL

3. Craig Larman, Applying UML and patterns, Third Edition, PEARSON

 Education

4. Charles Wright, C# TIPS & TCHNIQUES, TATA McGraw HILL

5. Art Gittleman, Computing with C# and .NET Framework, Jones & Bartlett

 Publishers.

Web

1. www.elections.com.pk

2. www.ecp.gov.pk

3. www.dotnetspider.com

4. www.wikipedia.org

5. www.aspfree.com

6. msdn.microsoft.com

http://www.elections.com.pk/
http://www.ecp.gov.pk/
http://www.dotnetspider.com/
http://www.wikipedia.org/
http://www.aspfree.com/

	1. Title Page
	2. Certificate
	3. Dedication
	4.Table of Contents(final)
	5.Abstract
	6.Acknowledgment
	7.Project In brief
	8.Final Version of Documentation(Chapters)

