Isotopic and Chemical Characteristics of Khewra George Rocks

by Ahsan Jawaad Maryam Shami Mubbashar Rauf

Department of Earth & Environmental Sciences, Bahria University, Islamabad

July, 2011

Chapter #			Page #		
	Ackno	wledgement	iii		
	Abstra	ct			
	List of	Abbreviations	vi		
	List of	Figures	vii		
	List of	Tables	xi		
1.	INTR	ODUCTION	1		
	1.1	Khewra Gorge	1		
	1.2	Lithology	1		
	1.3	Khewra Trap	2		
	1.4	Khewra Sandstone	2		
	1.5	Kussak Formation	3		
	1.6	Jutana Formation	3		
	1.7	Baghanwala Formation	5		
	1.8	Topography Of Salt Range	5		
	1.9	Straitigraphy	6		
	1.10	Cambrian System	7		
	1.11	Metals In Rocks	10		
	1.12	Stable Isotopes In Rocks	12		
	1.13	Objective Of Study	15		
2.	LITE	RATURE REVIEW	16		
3.	MATI	MATERIALS AND METHODS			
	3.1	3.1 Sample Collection			
	3.2	Sample Preparation and Analysis	24		
		3.2.1 Sample preparation for chemical analysis	24		
		3.2.2 Sample preparation for isotope analysis	24		
	3.3	Analysis	24		

CONTENTS

3.3.1 Metal Analysis						24		
	3	.3.1.1	Inductively Spectrome	-	Plasma	optical	emission	25
	3	.3.1.2	Working Prin	nciple				25
	3	.3.1.3	Ideal Use fo	r ICP-OES	Analysis			28
	3	.3.1.4	Strengths of	ICP-OES	Analysis			28
	3	.3.1.5	Applications	s of ICP-OI	ES			28
	3	.3.1.6	Sample Intro	oduction Sy	/stem			29
3.4	Stable I	Isotope	Analysis					30
RESU	JLTS AN	DIS	CUSSION					32
4.1	Metal A	Analysis	3					32
	4.1.1	Majo	r Cations					32
	4.1.2	Metal	contents					37
	4.1.3	Metal	ls correlation					55
4.2	Stable (Carbon	and Oxygen I	sotope Ana	lysis			56
CON	CLUSIO	NS						60
REFERENCES						62		

#

4

Acknowledgement

Praise to Almighty Allah, The Greatest, The most Gracious, The most Merciful and The most Beneficent who granted us wisdom and perseverance for completing this study.

We wish to express my sincere thanks and gratitude to my research supervisors, Professor Dr. Azhar Mashiatullah, Pr. Scientist, Head Isotope Geochemistry and Ecological Research Group, IAD, PINSTECH-Islamabad and Mr. Saqib Mahmood, Lecturer, Department of Earth & Environmental Sciences, Bahria University, Islamabad Campus for their continuous precious guidance, valuable advices and encouragement from the beginning till the finalization of the thesis. We are especially thankful to administration of PINSTECH for providing transport and laboratory facilities for research work.

We would like to express my gratitude to Dr. Zafar, Head of department E & ES, Bahria University Islamabad, for giving valuable suggestion.

We are indebted to my colleagues Mr. Tariq Javed, Muhammad Sarwar Khan, Mr. Zaman Chaudhry, Dr. Nadeem Yaqoob, Dr. Abdul Ghaffar Ms. Adila Hilal, and Mr. Muhammad Aslam, for their help in field work and laboratory analysis.

Finally, we wish to acknowledge my debt to our mother and father for their best wishes, moral support and prayers for the successful completion of our studies. We are also extremely thankful to our family and friends for encouraging us to complete this uphill task.

Abstract

Khewra Gorge is present in the Eastern Salt Range. It is located about a distance of 1km from the Khewra town, after this town it is named as Khewra Gorge. "Khewra Gorge is known as the Museum of Geology." In this Gorge, Salt range formation which is of Pre-Cambrian age, Jehlum group rocks which are of Cambrian age, it includes Khewra Sandstone, Kussak formation, Jutana formation and Baghanwala formation.

Ten rock samples collected from Khewra George were analysed for major ion, metal and stable carbon and oxygen isotope with the objective to; (i) to determine major cation in Khewra rock, (ii) to determine and to find correlation among selectee metals in the rocks of the area and (iii) to find stable carbon and isotope composition of rocks in the area. Major cations analyzed were Ca, Mg, K Na, while metals analyzed were Al, B, Cd, Co Cr, Cu Fe, Li, Mn, Ni, Sr and Zn. Stable isotope analyzed were C-13 and O-18.

Calcium, Potassium, Magnesium, and Sodium in Khewra rock samples were in the range of 19752.0 μ g/g to 319322.5 μ g/g, 95.8 μ g/g to 47774.4 μ g/g, 121.1 μ g/g to 63117.7 μ g/g, and 211.2 μ g/g to 42982 μ g/g. respectively.

Al concentration in these samples varied from 17.4 μ g/g to 108843.5 μ g/g with a mean value of 18962 μ g/g. Sample of marl at gypsiferrous bed was very rich in Al with almost 10% Aluminum contents. Boron contents of Khewra george rocks ranges from 8.7 μ g/g to 157.1 μ g/g with a mean value of 50.37 μ g/g. Maximum concentration is found in samples of Khewra George Marl which is 157.1 μ g/g. Cadmium of Khewra george rocks ranges from 1.3 μ g/g to 108 μ g/g with a mean value of 33.78 μ g/g. Co was found in narrow range of 1.2 μ g/g to 10 μ g/g with a mean value of 3.8 μ g/g. Cr is found in narrow range 6.9 μ g/g to 55.6 μ g/g with a mean value of 21.47 μ g/g. Cu was also found in narrow range of 2.8 μ g/g to 9.4 μ g/g with a mean value of 5.2 μ g/g. Whereas Iron concentration in Khewra george rocks varied considerably, from 30.9 μ g/g to 26620.7 μ g/g with mean value of 7091.11 μ g/g. Lithium concentration in Khewra George Rocks is not widely distributed, it ranged from 2.9 μ g/g to 69.6 μ g/g with a mean value of 22.8 μ g/g. Mn concentration was widely distributed, it ranged from 3.1 μ g/g to 806.9 μ g/g with a mean value of 228.07 μ g/g. Sr has a range of 38.2 μ g/g to 574.5 μ g/g and mean concentration in rock samples is 329.4 μ g/g. while Zn concentration in Khewra

George Rocks showed a narrow ranged of 1.2 μ g/g to 47.9 μ g/g with a mean value of 15.2822.8 μ g/g.

Metals analysis revealed that Al was not significantly correlated with other metals but it was positively correlated with B, Cu, and Fe and negatively correlated with Cd, Co and Zn. B is significantly correlated with Li and Zn and while negative with Cd and Co. Cd is significantly correlated with Co and Sr, however its significant negative correlation exist with Zn. Co is correlated positively with Cr, Cu, Fe, Ni and Zn whereas negative correlation exist between Co , Sr and Zn. Positive correlation exist between Cr and Cu, Li, Mn, Ni and Zn. Fe exhibits positive correlation with Li, Mn, Ni, Zn and negative correlation is seen with Sr. Significant correlation is observed between Li and Zn. High negative correlation is seen between Ni and Sr and Sr and Zn. Significant negative correlation between Mn and Sr indicate replacement of Sr with Mn.

 δ 13C values of rock sample in this study ranged from -5.27 to 0.77 ‰ VPD. Sample from red marl at gypsiferrous bed showed highly enriched values (0.77‰ VPD) followed by fossiliferrous hard limestone) which has the values of 0.66‰ VPD.. Very low values correlate with diagenetic alteration close to deposits of the meteoric realm. The values of δ 18O range from - 5.56 to 1.4 ‰. As with δ 13C, there are mostly trends towards higher values as a consequence of diagenesis.

No covariance exists between δ^{13} C and δ^{18} O in case of Khewra George Rocks; this indicates that the circulating meteoric fluid volume was insufficient to re-equilibrate and alter the carbon isotopic composition to any significant extent owing to the fact that the carbon system is rock buffered whereas the oxygen system is water-dominated.

LIST OF ABBREVIATIONS

ppm	Parts per million
ppb	Parts per billion
SMOW	Standard Mean Ocean Water
RDA	Recommended daily allowance
VPDB	Vienna Pee Dee Belemnite
DIC	Dissolved inorganic carbon
TDIC	Total dissolved inorganic carbon
mg/L	milligram per liter
DO	Dissolved Oxygen
TDS	Total dissolved solids
EC	Electrical conductivity
HMDE	Hanging mercury dropping electrode
DME	Dropping mercury electrode
m.eq	milli equivalent
ICP-OES	Inductively coupled plasma optical emission spectrometry
ICP-MS	Inductively coupled plasma mass spectrometry
RSD	Relative standard deviation
QIP	Quenched Index Parameter
AES	Automatic external standardization
tSIE	Transformed spectral index of external standard

LIST OF FIGURES

Figure #	Figure explanation	Page #
Figure 3. 1	Details the sample locations	22
Figure 3.2	Schematic diagram of an ICP torch and induced magnetic field	26
Figure 3.3	Systematic diagram of ICP-OES	30
Figure 3.4	Isotope Ratio mass Spectrometer	31
Figure 4.1	Ca contents in Khewra George rock sample	33
Figure 4.2	K contents in Khewra George rocks	34
Figure 4.3	Mg content in sampled rocks	35
Figure 4.4	Comparison of Na content in Khewra George rocks	36
Figure 4.5	Al contents in rock samples	38
Figure 4.6	B contents in Khewra George Rocks	40
Figure 4.7	Cd contents in Khewra George Rocks	42
Figure 4.8	Co levels in Khewra George rocks samples	43
Figure 4.9	Chromium Content in Khewra george rocks	44
Figure 4.10	Copper contents in rocks of Khewra George	45
Figure 4.11	Iron contents in Khewra George rock samples	47

Figure 4.12	Li concentration in Khewra George rocks	48
Figure 4.13	Mn content in rock samples of Khewra George	50
Figure 4.14	Ni content in rock samples of Khewra George	51
Figure 4.15	Sr content in rock samples of Khewra George	53
Figure 4.16	Sr content in rock samples of Khewra George	54
Figure 4.17	A cross plot of δ^{13} C and δ^{18} O	58

LIST OF TABLES

Table #	Table explanation	Page #
Table 1.1	Nature and Distribution of Principal Rock Formations in Khewra Gorge.	4
Table 3.1	Geological locations of samples and type of samples	23
Table 3.2	Atomic lines used for the determination of different elements	27
Table 4.1	Major cation contents in rocks samples	32
Table 4.2	Correlation among cation	37
Table 4.3	Metal content in Khewra gorge rocks	39
Table 4.4	Correlation among metals in Khewra George rock	55
Table 4.5	Stable carbon and oxygen isotope composition of Khewra George Rock	57