# RESERVOIR CHARACTERISTICS AND SEDIMENTOLOGY OF THE PIRKOH LIMESTONE IN MARU WELL 01 CENTRAL INDUS BASIN PAKISTAN



BY

# Mehran Khan Muhammad Nauman Khan Taimur Shahzad

DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES BAHRIA UNIVERSITY ISLAMABAD

FOR OUR DEAR PARENTS, BROTHERS, SISTERS, WELL WISHERS AND LOVERS FOR THEIR MORAL SUPPORT AND CONTRIBUTIONS IN MAKING OUR EDUCATION A SUCCESS

#### **ABSTRACT**

THE PRESENT ACCOUNT OF CORE ANALYSIS IN MARU 1 OIL AND GAS DEVELOPMENT COMPANY LIMITED (OGDCL) LEAD TO THE IDENTIFICATION OF RESERVOIR CHARACTERISTICS (POROSITY AND PERMEABILITY) AND SEDIMENTOLOGY (PETROGRAPHY, MICROPALEONTOLOGY AND ENVIRONMENT OF DEPOSITION) OF PIRKOH LIMESTONE.

PIRKOH LIMESTONE ENCOUNTERED IN MARU 1 IS OF EOCENE AGE AND CONSISTS OF LIMESTONE. THIN SECTIONS OF 14 SAMPLES WERE PREPARED FOR THEIR DETAILED PETRO GRAPHIC STUDIES THAT LEAD TO THE CLASSIFICATION OF PIRKOH LIMESTONE AND ITS ENVIRONMENT OF DEPOSITION, PETROGRAPHY, MICROPALEONTOLOGY. 30 PLUGS WERE ANALYZED FOR RESERVOIR CHARACTERISTICS I.E. POROSITY AND PERMEABILITY.

ALL THE STUDIED SAMPLES OF PIRKOH LIMESTONE ARE CLASSIFIED AS WACKSTONE, BOUNDSTONE, GRAINSTONE, PACKSTONE CONSISTING OF MICROFOSSILS AND MATRIX AS CEMENTING MATERIAL. IN SOME SAMPLES DISTORTION OF FOSSILS ARE PRESENT. THE ENVIRONMENT OF DEPOSITION IS HIGH ENERGY SHALLOW MARINE.

THE PLUG ANALYSIS INDICATES THAT THE POROSITY IS GOOD TO VERY GOOD (12.20 TO 27.46%) AND PERMEABILITY IS LOW TO FAIR (0.11 TO 6.59 MD). THE REASON OF LOW PERMEABILITY OF SUCH SAMPLES AT CERTAIN INTERVAL COULD BE DUE TO THE ARGILLACEOUS NATURE OF LIMESTONE.

#### ACKNOWLEDGEMENTS

WE ARE THANKFUL TO OUR SUPERVISOR, SAFDAR SHAH, CHIEF GEOLOGIST (GEOLOGICAL AND RESEARCH LABORATORY), OIL AND GAS DEVELOPMENT COMPANY LIMITED (OGDCL), ISLAMABAD FOR HIS FULL CO-OPERATION AND COMMITMENT. HIS KIND AND FRANK BEHAVIOR GREATLY FACILITATED THE CORE STUDIES. THANKS ARE ALSO EXTENDED TO OUR CO-SUPERVISOR MR. ANWAR QADIR, ASSISTANT PROFESSOR, FOR HIS INVALUABLE GUIDANCE AND MR. HUMMAD GHANI, LECTURER, DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES, BAHRIA UNIVERSITY, ISLAMABAD FOR HIS ENCOURAGEMENT AND OVERWHELMING SUPPORT.

WE ARE HIGHLY INDEBTED TO MR. M. AFZAL KAKAR, SEDIMENTOLOGIST (GEOLOGICAL AND RESEARCH LABORATORY), OIL AND GAS DEVELOPMENT COMPANY LIMITED (OGDCL), ISLAMABAD WHO PROVIDED ROCK SAMPLES FOR THIN SECTION STUDY. MR. ISHTIAQ NOOR, SENIOR GEOLOGIST, HYDROCARBON DEVELOPMENT INSTITUTE OF PAKISTAN (HDIP), ISLAMABAD ALSO HELPED IN FACILITATING US ACQUIRING PHOTOMICROGRAPHS OF THE THIN SECTIONS IN HDIP. HIS COOPERATION IN THIS REGARD IS HIGHLY ACKNOWLEDGED. PROFESSOR DR. TAHSEENULLAH KHAN CRITICALLY REVIEWED THE THESIS, WE ARE INDEED THANKFUL TO HIM.

LAST BUT NOT THE LEAST WE ARE EXTREMELY THANKFUL TO OUR PARENTS WHO SUPPORTED US MORALLY AND FINANCIALLY AT EVERY STAGE OF OUR LIFE. MAY ALLAH BLESS THEM AND GIVE US A CHANCE TO SERVE THEM BETTER.

## **List of Contents**

#### **CHAPTER 1**

#### INTRODUCTION

| 1.1   | General Description                         | 1  |
|-------|---------------------------------------------|----|
| 1.2   | Geographic Boundaries                       | 2  |
| 1.3   | Vegetation                                  | 2  |
| 1.4   | Climate                                     | 3  |
| 1.5   | Exploration History                         | 3  |
| 1.6   | Objective of Research                       | 4  |
|       | CHAPTER 2                                   |    |
|       | GEOLOGY AND TECTONICS OF STYDY AREA         |    |
| 2.1   | Tectonic Frame Work of Pakistan             | 5  |
| 2.1.1 | Indus Platform Foredeep                     | 5  |
| 2.1.2 | Structural Zones                            | 6  |
| 2.2   | Tectonic History                            | 6  |
| 2.2.1 | Regional Tectonic Settings                  | 7  |
| 2.3   | Regional Structural Setting                 | 9  |
| 2.4   | General Stratigraphy of the Area            | 10 |
| 2.5   | Stratigraphic Description of Maru Well No.1 | 11 |
| 2.5.1 | Habib Rahi Formation                        | 11 |
| 2.5.2 | Sirki Formation                             | 12 |
| 2.5.3 | Pirkoh Limestone                            | 12 |
| 2.5.4 | Drazinda Formation                          | 13 |
| 2.5.5 | Siwaliks                                    | 14 |

#### **METHODOLOGY**

| 3.1     | Objectives of Core Analysis                    | 16 |
|---------|------------------------------------------------|----|
| 3.1.2   | Coring Requirements and Techniques             | 16 |
| 3.1.3   | Coring Procedure                               | 17 |
| 3.2     | Method of Core Analysis                        | 17 |
| 3.3     | Method of Thin Section Study                   | 21 |
|         |                                                |    |
|         | CHAPTER 4                                      |    |
|         | RESERVOIR CHARACTERESTICS                      |    |
| 4.1     | Porosity                                       | 23 |
| 4.1.2   | Porosity Ranges                                | 23 |
| 4.1.3   | Classification of Porosity                     | 24 |
| 4.1.4   | Porosity Ranges in Different Rocks             | 25 |
| 4.2     | Permeability                                   | 25 |
| 4.2.1   | Classification of Permeability                 | 26 |
| 4.2.1.1 | Absolute Permeability                          | 26 |
| 4.2.1.2 | Effective Permeability                         | 26 |
| 4.2.1.3 | Relative Permeability                          | 26 |
| 4.2.2   | Permeability Ranges                            | 27 |
| 4.3     | Gas Permeability Vs Liquid Permeability        | 27 |
| 4.4     | Klinkenberg Correction                         | 28 |
| 4.5     | Methods of Measuring Porosity and Permeability | 28 |
| 4.6     | Preparation of Core Plugs                      | 29 |
| 4.7     | Results of Porosity and Permeability           | 30 |
| 4.8     | Depth Vs Porosity                              | 31 |
| 4.9     | Depth Vs Permeability                          | 32 |
| 4.10    | Permeability Vs Porosity                       | 33 |
| 4.11    | Results and Discussion                         | 34 |

**CHAPTER 5** 

#### **PETROGRAPHY**

| 5.1        | Limestone                        | 33 |
|------------|----------------------------------|----|
| 5.2        | Components of Limestone          | 35 |
| 5.2.1      | Skeletal Grain                   | 35 |
| 5.2.2      | Nonskeletal Grains               | 36 |
| 5.2.3      | Carbonate Mud                    | 37 |
| 5.2.4      | Microsparite and Sparite Cement  | 37 |
| 5.3        | Classification of Limestone      | 38 |
| 5.3.1      | Folk Classification              | 38 |
| 5.3.2      | Dunham Classification            | 39 |
| 5.3.3      | Embry and Klovan Classification  | 40 |
| 5.3.4      | Wright Classification            | 41 |
| 5.4        | Well Descriptions                | 43 |
| 5.5        | Samples Description              | 50 |
| 5.5        | Plates Description               | 57 |
|            | CHAPTER 6                        |    |
|            | DISSCUSSION                      |    |
| 6.1        | Rock Composition of Maru Well 01 | 76 |
| 6.2        | Core                             | 76 |
| 6.3        | Regional Petroleum System        | 77 |
| 6.3.1      | Source Rock                      | 77 |
| 6.3.2      | Reservoirs                       | 77 |
| 6.3.3      | Seals                            | 77 |
| 6.3.4      | Migration Pathways               | 77 |
| CONC       | LUSIONS                          | 79 |
| REFERENCES |                                  | 80 |
|            |                                  |    |

# **List of Tables and Graphs**

| Table/ Graph # | Captions                                                    | Page # |
|----------------|-------------------------------------------------------------|--------|
| Table 3.1.     | Process of core handling in reservoir laboratory.           | 22     |
| Table 4.1.     | Ranges of porosity.                                         | 23     |
| Table 4.2.     | Ranges of porosity in different rocks.                      | 25     |
| Table 4.3.     | Ranges of permeability.                                     | 27     |
| Table 4.4.     | Klinkenberg correction.                                     | 28     |
| Table 4.5.     | Porosity and permeability of each plug of Pirkoh Limestone. | 30     |
| Graph 4.1.     | Depth vs. Porosity.                                         | 31     |
| Graph 4.2.     | Depth vs Permeability.                                      | 32     |
| Graph 4.2.     | Porosity vs Permeability.                                   | 33     |

# **List of Figures**

| Figure #    | Captions                                                    | Page #       |
|-------------|-------------------------------------------------------------|--------------|
| Figure 1.1. | Areal view of Ghotki Area.                                  | 1            |
| Figure 1.2. | Map showing the study area.                                 | 2            |
| Figure 1.3. | Map showing the previous work done.                         | 4            |
| Figure 2.1. | Main Boundary Thrust (MBT) and Salt Range Thrust (SRT)      |              |
|             | (Farah et al.,1984; Yeats and Lawrence, 1984.               | 8            |
| Figure 2.2. | Stratigraphy of Study Area.                                 | 10           |
| Figure 2.3. | Stratigraphy of studied well.                               | 15           |
| Figure 3.1. | (A) Plugging machine which cut the plug from core,          |              |
|             | (B) Other plugging machine which cut the plug in length,    | 19           |
| Figure 3.2. | (A) Centrifugal Extractor,                                  |              |
|             | (B) Oven,                                                   |              |
|             | (C) Weight machine,                                         |              |
|             | (D) Vernier caliper measuring the diameter of the plug.     | 19           |
| Figure 3.3. | (A) Plug with serial numbers,                               |              |
|             | (B) CMS-300 machine,                                        |              |
|             | (C) Carousal of CMS-300,                                    |              |
|             | (D) Gas cylinder of Helium in brown color and Nitrogen in g | green color, |
|             | (E) Compressor for gases control,                           |              |
|             | (F) All the system of core measurement process.             | 20           |
| Figure 4.1. | Different types of porosity.                                | 24           |
| Figure 5.1. | Folk classification of carbonate rock.                      | 39           |
| Figure 5.2. | Dunham classification of carbonate rock.                    | 40           |
| Figure 5.3. | Classification of carbonate rock after Embry                |              |
|             | and Klovan (1971).                                          | 40           |
| Figure 5.4. | Wright classification of carbonate rock.                    | 41           |
| Figure 5.5. | Percentage classification based lithology of                |              |
|             | Maru Well 01 (this study).                                  | 42           |
| Figure 5.6. | Legends of Lithology and fossils.                           | 47           |
| Figure 5.7. | Samples taken from core at different depths.                | 48           |

| Figure 5.8.  | Fossils present in thin sections of core.              | 49 |
|--------------|--------------------------------------------------------|----|
| Figure 5.9.  | Vertical distributions of fossils in Pirkoh Limestone. | 54 |
| Figure 5.10. | Petrographic Data Sheet #1 of Pirkoh Limestone.        | 55 |
| Figure 5.11. | Petrographic Data Sheet #2 of Pirkoh Limestone.        | 56 |
| Figure 5.12. | Formations thickness and depositional environments     |    |
|              | through studied well.                                  | 74 |
| Figure 5.13. | Sedimentological log of studied well.                  | 75 |
| Figure6.2.   | Correlation of different wells of Sindh area.          | 78 |

### **List of Plates**

| Plate #    | Captions                                  | Page # |
|------------|-------------------------------------------|--------|
| Plate 1 A  | Photomicrograph displaying Coraline Algae | 60     |
| Plate 1 B  | Photomicrograph displaying Nummulities    | 60     |
| Plate 2 A  | Photomicrograph displaying Algae          | 61     |
| Plate 2 B  | Photomicrograph displaying Lockhartia     | 61     |
| Plate 3 A  | Photomicrograph displaying Assilina       | 62     |
| Plate 3 B  | Photomicrograph displaying Nummulities    | 62     |
| Plate 4 A  | Photomicrograph displaying Gastropod      | 63     |
| Plate 4 B  | Photomicrograph displaying Discocyclina   | 63     |
| Plate 5 A  | Photomicrograph displaying Discocyclina   | 64     |
| Plate 5 B  | Photomicrograph displaying Algae          | 64     |
| Plate 6 A  | Photomicrograph displaying Coraline Algae | 65     |
| Plate 6 B  | Photomicrograph displaying Lockhartia     | 65     |
| Plate 7 A  | Photomicrograph displaying Algae          | 66     |
| Plate 7 B  | Photomicrograph displaying Coraline Algae | 66     |
| Plate 8A   | Photomicrograph displaying Nummulities    | 67     |
| Plate 8 B  | Photomicrograph displaying Lockhartia     | 67     |
| Plate 9 A  | Photomicrograph displaying Lockhartia     | 68     |
| Plate 9 B  | Photomicrograph displaying Nummulities    | 68     |
| Plate 10 A | Photomicrograph displaying Lockhartia     | 69     |
| Plate 10 B | Photomicrograph displaying Assilina       | 69     |
| Plate 11 A | Photomicrograph displaying Lockhartia     | 70     |
| Plate 11 B | Photomicrograph displaying Gastrpods      | 70     |
| Plate 12 A | Photomicrograph displaying Algae          | 71     |
| Plate 12 B | Photomicrograph displaying Nummulities    | 71     |
| Plate 13 A | Photomicrograph displaying Lockhartia     | 72     |
| Plate 13 B | Photomicrograph displaying Nummulities    | 72     |
| Plate 14 A | Photomicrograph displaying Lockhartia     | 73     |
| Plate 14 B | Photomicrograph displaying Nummulities    | 73     |